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ABSTRACT

Reinforcement learning (RL) presents a promising framework to learn policies
through environment interaction, but often requires an infeasible amount of inter-
action data to solve complex tasks from sparse rewards. One direction includes
augmenting RL with offline data demonstrating desired tasks, but past work of-
ten require a lot of high-quality demonstration data that is difficult to obtain, es-
pecially for domains such as robotics. Our approach consists of a reverse cur-
riculum followed by a forward curriculum. Unique to our approach compared to
past work is the ability to efficiently leverage more than one demonstration via
a per-demonstration reverse curriculum generated via state resets. The result of
our reverse curriculum is an initial policy that performs well on a narrow initial
state distribution and helps overcome difficult exploration problems. A forward
curriculum is then used to accelerate the training of the initial policy to perform
well on the full initial state distribution of the task and improve demonstration
and sample efficiency. We show how the combination of a reverse curriculum
and forward curriculum in our method, RFCL, enables significant improvements
in demonstration and sample efficiency compared against various state-of-the-art
learning-from-demonstration baselines, even solving previously unsolvable tasks
that require high precision and control. Website with code and visualizations are
here: https://reverseforward-cl.github.io/

1 INTRODUCTION
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Figure 1: Results over 3 environment suites and the
hardest task given fixed compute budgets ranging
from 1M to 10M samples and few demonstrations.
Our RFCL method drastically outperform recent ap-
proaches like JSRL and RLPD which are included in
the baselines.

The RL paradigm enables a trial and error ap-
proach to learn behaviors from rewards. How-
ever, RL from scratch is sample-inefficient, es-
pecially in high-dimensional tasks with complex
dynamics and/or long horizons. Even when train-
ing in fast simulators or highly GPU parallelized
simulators (Makoviychuk et al., 2021; Freeman
et al., 2021) a lack of priors means infeasible
amounts of exploration and human programmed
priors such as shaped reward functions or en-
vironment simplifications are required, none of
which are remotely scalable.

Learning from demonstrations has become a pop-
ular paradigm for learning complex control skills
without relying on engineered dense reward sig-
nals, complex motion planning, or infeasible
amounts of compute to brute force learn solu-
tions. However, as often is the case in robotics,
demonstrations are infeasible to collect at scale,
making it difficult to scale learning from demon-
stration methods. The classical approach to lever-
aging demonstrations is through behavior cloning (Atkeson & Schaal, 1997), with more recent meth-
ods performing behavior cloning via sequence modelling (Chen et al., 2021a; Zheng et al., 2022). A
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recent class of methods in offline RL learn value functions from demonstrations and finetune online
(Kostrikov et al., 2022; Nakamoto et al., 2023), allowing them to learn from more demonstrations
including suboptimal ones.

However, many of these methods require many demonstrations even with finetuning to solve hard
tasks, which raises a critical issue in domains such as robotics since robotics demonstration data
is scarce. Even human demonstrations, while flexible to collect, are not only difficult to collect
at scale but also exhibit undesirable properties like non-Markovianess and sub-optimality making
them complicated to learn from (Mandlekar et al., 2021). Furthermore, these methods still cannot
overcome the problem of exploration when it comes to sparse reward tasks, where achieving the
reward in online training is infrequent, or when the task has a very wide state distribution. Such
difficult tasks include long-horizon tasks (Zakka et al., 2023), highly randomized and high-precision
robot manipulation tasks (Gu et al., 2023), or complex dynamics such as dexterous hand tasks (Chen
et al., 2023; Rajeswaran et al., 2018).

The main motivating question then for our work is how can we effectively and practically overcome
the exploration problem with access to only a few demonstrations? To address these challenges
we leverage state reset from demonstrations and apply reverse and forward curriculums to online
RL for sample and demonstration-efficient learning. We show how our per-demonstration reverse
curriculum can overcome the exploration problems that prevent prior works from ever solving some
tasks by first training an initial weak policy capable of only solving a task from a narrow initial state
distribution. We then demonstrate the sample-efficiency improvements a forward curriculum brings
when finetuning the reverse curriculum-trained policy to gradually learn to solve the task under the
full initial state distribution.

Our primary contributions consist of our novel reverse forward curriculum learning (RFCL) algo-
rithm and several key methods that accelerate RFCL, making it the most demonstration and sample-
efficient model-free RL algorithm. We rigorously evaluate RFCL against several state-of-the-art
baselines across 21 fully-observable manipulation tasks from 3 benchmarks: Adroit, ManiSkill2,
and MetaWorld (Rajeswaran et al., 2018; Gu et al., 2023; Yu et al., 2019). Critically, we show that
RFCL is the only method that can solve every main task from just 5 demonstrations or less
with strong sample-efficiency in addition to fast wall-time results. Through ablations, we show how
reverse and forward curriculums enable sample and demonstration-efficient learning.

2 RELATED WORK

Learning from Demonstrations: Offline collected demonstrations provide an avenue for acceler-
ating policy learning without excessive online interactions. The classical behavior cloning approach
is one method that tries to clone the exact behavior of the agent that generated the demonstrations
via supervised learning (Atkeson & Schaal, 1997) and recently via sequence modelling (Chen et al.,
2021a). Offline RL is another approach to imitate demonstrations without any online interactions.
However, both BC and offline RL tend to be incapable of achieving high success rates/returns due to
being limited to the quality and diversity of the demonstrations. Some offline RL methods address
this via online finetuning (Kostrikov et al., 2022; Nakamoto et al., 2023).

Finally, there are online RL solutions that incorporate demonstration data into their objective (Ra-
jeswaran et al., 2018; Ball et al., 2023). However, when demonstration data is extremely limited,
prior approaches cannot solve complex tasks that are long-horizon, precise, and/or highly random-
ized due to exploration difficulty.

Curriculum Learning: Prior work has investigated how to incorporate curriculum learning ap-
proaches to gradually increase the difficulty of a task to facilitate training. Typically, these curricu-
lums are hand-designed in order to solve complex long-horizon problems with sparse rewards and/or
little guidance from other sources of data like demonstrations (Li et al., 2020).

Alternatively, reverse curriculums have been leveraged by initializing the agent near states that are
easier to achieve meaningful rewards from, and the curriculum progresses by initializing from grad-
ually more difficult states. Reverse curriculums can be generated via reversible dynamics (Florensa
et al., 2017) or a model of backward reachability (Ivanovic et al., 2019). Some methods rollout a
separate policy or demonstrator and initialize the learning agent at the end of the rollout, with some
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rolling out a random number of steps (Popov et al., 2017), and recently JSRL (Uchendu et al., 2023)
rolling out fewer steps over time to form a reverse curriculum.

State Reset: A number of approaches leverage state reset in order to overcome the problems of ex-
ploration by initializing the agent directly in more often difficult-to-reach states instead of relying on
sampled actions to reach there. Some methods leverage hardcoded states or previously encountered
states during interaction (Florensa et al., 2017; Ecoffet et al., 2019; Chen et al., 2023). Other meth-
ods use demonstrations as their source of initial states to initialize to, with some using a uniform
curriculum over these initial states (Nair et al., 2018; Peng et al., 2018; Hosu & Rebedea, 2016), a
hand-defined curriculum (Zhu et al., 2018), or a reverse curriculum (Resnick et al., 2018; Salimans
& Chen, 2018).

Our method is similar to some prior work in that we leverage a reverse curriculum and reset to
states in demonstrations. Unique to our approach, however, is the ability to efficiently leverage
more than one demonstration via a per-demonstration reverse curriculum, different to Resnick et al.
(2018) which only uses one demonstration and tackles tasks with small initial state distrbutions, and
different to Nair et al. (2018) which uses multiple demonstrations but applies a uniform curriculum
and struggles with more difficult tasks due to exploration inefficiency. Furthermore, we propose a
novel approach of coupling reverse curriculum with a forward curriculum, which enables greater
demo efficiency and drastically improves sample efficiency compared to state-of-the-art baselines.
Moreover, we introduce key methods that further accelerate learning in our curriculum designs not
done by past work. These contributions enable our approach to even solve some previously unsolved
environments from sparse rewards that even human designed dense rewards are insufficient for.

3 PRELIMINARIES

3.1 PROBLEM SETTING

We consider the standard Markov Decision Process (MDP) which can be described as a tuple M =
(S,A,R, T , ρ, γ) where S is the continuous state space, A is the continuous action space, R :
S × A → R is the scalar reward function, T : S × A → S is the environment dynamics function,
ρ is the initial state distribution, and γ ∈ [0, 1] is the discount factor. The goal is to learn a policy
πθ : S → A parameterized by θ that maximizes the expected discounted return, namely solving
maxθ Eπθ

[
∑∞

t=0 γ
trt] where rt is the reward at timestep t. One goal in RL is sample efficiency,

learning a πθ that maximizes the discounted return with as few environment interactions as possible.

In this work, we consider complex MDPs with sparse reward functions where +1 is given for being
in a success state and 0 otherwise. This setting is motivated by how many environments in embodied
AI research such as robotics are high-dimensional with difficult dynamics. Moreover, dense reward
functions are non-trivial to construct and may be sub-optimal (Singh et al., 2019; Amodei et al.,
2016). While sparse reward functions are desirable as they reflect directly our desired goal (e.g.
high success rates), they are more difficult to learn from due to exploration. A common approach
is to leverage pre-collected demonstration data to aid in overcoming the problems of exploration
in sample-efficient learning under sparse rewards. We define a dataset of demonstrations D =
{τ0, τ1, ..., τN} to be a set of N demonstrations where τi = (si,0, ai,0, ..., si,Ti−1, ai,Ti−1, si,Ti) is
a trajectory of length Ti composed of a sequence of states and actions. In practice, the observations
used by the policy πθ may be different from the actual environment state but for simplicity in this
paper state also refers to observation.

3.2 CURRICULUM LEARNING

In RL, curriculum learning is an approach where during training, the agent is presented with gradu-
ally harder tasks, each leveraging skills from the previous easier tasks in order to accelerate learning,
mimicing how humans learn (Narvekar et al., 2020). In this paper, the MDP M is changed through-
out training by modifying the initial state distribution ρ to facilitate a curriculum. Define Sinit to be
the original initial state distribution of the MDP we wish to maximize discounted return. We can
then define a curriculum as a sequence of initial state distributions (ρ0, ρ1, ...); each of the elements
are also referred to as stages of the curriculum. Each curriculum also comes with a criterion for
whether to advance to the next stage of the curriculum from ρi to ρi+1.
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A key novelty of our work is leveraging both reverse curriculums and forward curriculums.
The reverse curriculum initial state distributions are denoted with ρr and the forward curriculum
with ρf . In the reverse curriculum, we reset to states in the demonstrations similar to Nair et al.
(2018). Different to prior work we auto generate a per-demonstration reverse curriculum around
these demonstration states in order to accelerate learning under sparse rewards. The reverse cur-
riculum enables sample-efficient learning of solving the MDP from the narrow set of initial states
in the demonstrations {si,0}, detailed in Sec. 4.1. In the forward curriculum, we adopt a similar
approach to Prioritized Level Replay (PLR) (Jiang et al., 2021) which assumes no priors about the
parameterization of the state. Different to the reverse curriculum, we reset to states sampled from
Sinit instead of states in demonstrations. The curriculum here is constructed in a way that prioritizes
initial states that are at the edge of the ability of the policy πθ. By sampling these initial states more
frequently, the training focuses on learning to solve from initial states just within reach of the agent,
and as the agent improves, the curriculum advances to provide more difficult initial states, enabling
the agent to solve the majority of initial states in Sinit. This is detailed in Sec. 4.2, and results
in our demonstration ablations in Sec. 5.2 demonstrate how the forward curriculum coupled with
the reverse curriculum enables our algorithm to use fewer demonstrations than just using a reverse
curriculum and significantly fewer demonstrations than prior work.

4 REVERSE FORWARD CURRICULUM LEARNING (RFCL)

Reverse 

Curriculum

Forward

Curriculum

Figure 2: A simplfied view of the reverse and forward curriculum.
The blue arrows represent the given demonstration trajectories (2
in this example), starting from an initial state and moving towards
the goal marked by a gold star. The area covered by dashed green
lines represent the distribution of initial states from which the pol-
icy can achieve high return. The area shaded in red represents the
most frequently sampled initial states during each stage of curricu-
lum. From left to right represents the progression of the trained
policies ability over the course of the curriculum training.

The goal of our method is to pro-
vide a practical and flexible algorithm
that accelerates learning in complex
environments with a limited number
of demonstrations without shaped re-
wards. A visual overview of the two
stage training process of RFCL is in
Fig. 2. In stage 1, a reverse cur-
riculum is generated via state resets
to states in demonstrations, learning
a policy to initially solve a narrow
initial state distribution. The reverse
curriculum and state resets help over-
come difficult exploration problems
by initializing the agent near success
states and gradually moving it fur-
ther away. The forward curriculum
then generalizes the initial policy to
a larger initial state distribution without using more demonstration data by gradually sampling more
difficult initial states to train on over time, enabling additional demonstration and sample efficiency.
In both stages, we use the off-policy algorithm Soft Actor Critic (Haarnoja et al., 2018) with a
Q-ensemble (Chen et al., 2021b), see hyperparameters in Appendix C.

4.1 STAGE 1: REVERSE CURRICULUM

In this stage, we start with randomly initialized actor and critic networks and train using standard RL
with SAC. We further aggressively oversample a separate offline buffer consisting of all the given
demonstration data, optimal and sub-optimal, as done in Hansen et al. (2023); Ball et al. (2023)
during online RL by sampling 50% of data from the online buffer and the rest from the offline buffer
during optimization. We further adopt a per-demonstration reverse curriculum that improves sample-
efficiency compared to prior work that use other kinds of reverse curriculums or demonstration state
resets. Finally, we introduce a few key methods that further accelerate reverse curriculum learning.

Per-demonstration Reverse Curriculum Construction: We observe that not all demonstrations
are similar due to different initial states and are often multi-modal, as is the case of human or
motion-planned demonstrations. As a result, a curriculum for each demonstration is necessary as
opposed to a curriculum constructed from all demonstrations as done in prior work. A per-demo
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curriculum ensures noisy information arising from the multi-modality of demonstrations do not
impact the reverse curriculum of each demonstration as much.

For each successful demonstration τi we assign a start step ti. For each new episode during training,
we first sample a demonstration τi from our dataset D with probability ti/Ti, sampling demonstra-
tions progressing slower more frequently. Then, we sample a discrete offset value k ∼ K and reset
the environment to the state si,t+k from τi, the state at the t + k timestep of demonstration τi. We
make the design choice of using a geometric distribution as K.

Initializing all ti = Ti, the horizon of τi, at the start of training, we train mostly on states that
are success states as these demonstrations are successful. As a result, it is highly likely to achieve
positive rewards during training and thus easy to learn. We also define a small reverse step size δ
constituting the distance between stages in the curriculum. Thus, the reverse curriculum for each
demonstration τi is defined as (ρrTi

, ρrTi−δ, ..., ρ
r
0) where ρrt samples si,t+k with probability pK(k).

We now define the stage transition criterion. During training and at curriculum stage ρrt , whenever
we sample si,t (when k = 0), we are sampling an initial state that is at the frontier of the agent’s
abilities. If the last m times the agent achieved success at the end of episodes initialized at state si,t,
then we progress the curriculum of demonstration τi to the next stage ρrt−δ . This ensures the agent
only begins to tackle the task from the slightly more difficult demonstration state si,t−δ provided it
is already succesful enough on si,t, forming the curriculum.

Once all demonstration curriculums are at stage ρr0, the reverse curriculum is considered complete,
as now the agent can achieve a high return on all demonstration initial states si,0. We visualize
how the reverse curriculum progresses in Fig. 2 and via videos on the project page. The red area
demonstrates how the sampled initial states slowly reverse their way back to the first states of the two
demonstrations, training the policy in reverse to perform well on the narrow initial state distribution
visualized by the green region. An empirical investigation via a simple pointmaze is done as well in
Sec. 5.2. We benchmark alternative curriculum choices in addition and show the sample efficiency
gains of the per-demonstration reverse curriculum in Table 1.

Dynamic Episode Timelimits: Since we are often resetting to states not from the true initial state
distribution Sinit but from various points in demonstrations, the time it takes to achieve success from
these states as quickly as possible varies significantly. Observe that if we sample a state near a
success state that yields positive reward, we need far less environment interactions to then get the
positive reward compared to sampling a state farther away. This motivates the use of a dynamic
timelimit depending on which state is sampled. Suppose we sample state si,t, then a simple choice
is to set the episode timelimit to 1+(Ti− t)ϕ−1. ϕ is hyperparameter for the ratio of demonstration
length to episode horizon. We fix the value of ϕ for each environment suite and generally for better
sample-efficiency ϕ can be set larger if the source demonstration is fairly slow (e.g. human demon-
strations) and smaller if the source demonstration is fast or optimal (e.g. scripted policies). We show
an ablation on dynamic epsiode timelimits on stage 1 training and demonstrate the improved sample
efficiency in Table 1.

4.2 STAGE 2: FORWARD CURRICULUM

In this stage, we continue the training of the actor and critics from stage 1 without resetting any
networks. We instead reset the online buffer and initialize a new offline buffer. Like stage 1, we
continue to aggressively sample from a separate offline buffer. Different this time is that we fill the
offline buffer with the online buffer of the stage 1 training, with the motivation being to ensure the
value functions do not suddenly have to learn from completely unseen data and avoid unlearning
phenomenon encountered by past work investigating finetuning of pretrained policies (Peng et al.,
2019; Kostrikov et al., 2022). Moreover, our choice of RL algorithm is capable of learning from
sub-optimal data so it is helpful to add in the data that was collected from stage 1 training instead
of just using successful demonstrations. Crucial to this stage is the forward curriculum described
below, which enables more demonstration-efficient learning.

Forward Curriculum Construction: Following the reverse curriculum stage, we will have trained
a policy πθ that achieves a high return on the MDP given the initial state is one of the initial states
of a demonstration si,0. It is critical to have the reverse curriculum as only applying a forward
curriculum cannot work well in sparse reward settings due to exploration difficulty. If there do not
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exist initial states s0 ∈ Sinit where it is easy to obtain any reward, the problem becomes very difficult
and sample-inefficient, in addition to making it difficult to automatically generate a useful forward
curriculum without relying on prior heuristics. Even when learning from demonstrations, if there are
few demonstrations it still remains difficult to get the sparse reward due to the exploration problem
and lack of state coverage in the few demonstrations, especially in complex tasks.

Thanks to a few demonstrations and reverse curriculum learning, the problem of ‘no easy initial
states’ is alleviated, as we know that πθ can at least perform well when starting from the initial states
in the demonstrations. We only make a weak assumption that the initial state in the demonstrations
we reverse-solved are close to states in Sinit, which is often the case in collected demonstrations.
Then, using a forward curriculum, with RL we initially prioritize training on initial states where
there is the most learning potential. These are often close to the initial states of demonstrations
because the policy can still get some nonzero reward if the initial state is similar enough to one seen
during reverse curriculum learning. Eventually, the forward curriculum will train the policy on a
sufficient number of initial states in Sinit and learn a policy that achieves high return on initial states
sampled from Sinit, not just the demonstration initial states.

In order to maximize the outcome of each environment interaction, following PLR (Jiang et al.,
2021) we prioritize resetting to initial states that are at the edge of the agent’s abilities before reset-
ting to states that are too difficult to solve from or states that are already easy to solve from. As PLR
was originally designed for PPO, an on-policy algorithm, we make a simpler adaptation of PLR that
works well and robustly for off-policy SAC and our environments.

First, we uniformally sample a set of n initial states Λtrain = {si,init} from Sinit. As policy π after
reverse curriculum learning has high return on initial states si,0 we add these to Λtrain. Our method
uses a simpler score function to PLR that assigns three scores with higher scores leading to higher
priority, and it does not have a separate seen vs unseen set of initial states. Define q to be the fraction
of episodes out of the last k episodes that receive nonzero return starting from a sampled initial state
si,init. If q is 0, then assign a score of 2 to si,init. If 0 < q < ω for a threshold 0 < ω < 1, assign
a score of 3. If q ≥ ω, assign a score of 1. In order of decreasing priority, we sample initial states
that sometimes receive return, then states that receive no return, then states that consistently receive
return. Following PLR, we adopt a rank-based prioritization scheme which enables prioritization to
be invariant to score scale, and we scale the importance of rank via a temperature value β, resulting
in the score-prioritized distribution PS . We also adopt the same staleness-aware prioritization PC .

PS(si,init|Λtrain, S) =
rank(Si)

−1/β∑
j rank(Sj)

−1/β
, PC(si,init|Λtrain, C, c) =

c− Ci∑
Cj∈C c− Cj

(1)

where Si are the scores assigned to initial state si,init, c is the total number of episodes rolled out
in training, and Ci is the episode count at which initial state si,init was last sampled. As q is based
on whether an episode received nonzero return or not, our score function is independent of scale of
return of the environment under a optimal policy, making it a more generalizable scoring scheme.
We follow the same intuition as PLR in that staleness prioritization ensures initial states that have
not been sampled in a while get re-sampled in order to update their scores and ensure scores do
not drift too far off their true value. The forward curriculum follows stages ρf0 , ρ

f
1 , ..., advancing

each time a new score is assigned. The linear combination of the score and staleness prioritzation
distributions form the initial state distribution at each stage

Pρf
i
(si,init) = PS(si,init|Λtrain, S) + PC(si,init|Λtrain, C, c) (2)

For all experiments we use the same hyperparameters that construct the forward curriculum. We
visually showcase how the forward curriculum progresses over the course of training in Fig. 2 via a
toy example. While the initial policy starts off successful only on a narrow initial state distribution
represented by the narrow green region, via the forward curriculum the policy prioritizes starting
from initial states at the edge of what it is capable of and expands the green region until the majority
of initial states are covered.
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5 RESULTS

Through our experiments we aim to answer the following questions (1) How sample and demonstra-
tion efficient is RFCL compared to other model-free baselines? (2) What methods accelerate reverse
curriculum learning? (3) How does the curriculums in RFCL enable success from significantly less
demonstrations and robustness to the demonstration source?

For our experiments, we rigorously evaluate and compare our algorithm against several baselines
across 3 robot environment suites for a total of 21 fully-observable environments with sparse re-
wards. The 3 environments suites are MetaWorld (Yu et al., 2019), Adroit (Rajeswaran et al.,
2018), and ManiSkill2 (Gu et al., 2023), see B.1 for details on each task. We use an absolute sparse
reward where +1 is rewarded only on success states and 0 is given otherwise. The environments
consist of a range of easy to challenging tasks and we benchmark our algorithm on the low demon-
stration regime, showcasing how RFCL is far more sample/demo efficient than prior approaches. We
benchmark against 3 model-free baselines that also leverage demonstrations: (1) RLPD (Ball et al.,
2023) is a well-tuned variation of SAC + demonstration data that at the time of writing achieves the
state-of-the-art results on Adroit; (2) Jump Start RL (JSRL) (Uchendu et al., 2023) like RFCL lever-
ages reverse curriculums, although they generate the curriculum with a offline trained guide policy.
JSRL code is currently not available so we can only report on Adroit environments with numbers
from their paper; (3) DAPG (Rajeswaran et al., 2018) uses a demo-augmented policy gradient for
RL. (4) Cal-QL is a state-of-the-art offline-to-online RL method. For each training run, we select
a random seed. The seed also determines which uniformly sampled demonstrations are used for
training. All baselines use the same seeds and thus the same demonstration data.

5.1 MAIN BENCHMARK RESULTS
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Figure 3: Mean success rate of algorithms for each environment suite across all tasks after 1M interaction steps
with 5 demonstrations. Results are averaged within environment. Shaded areas represent 95% CIs over 5 seeds.
The result show RFCL is significantly more performant and sample efficient compared to baselines. Note that
RLPD and JSRL can normally achieve decent results but require many more demonstrations for harder tasks.
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Figure 4: On the harder tasks, RFCL significantly outperforms baselines. PlugCharger from ManiSkill2 is not
in the suite of tasks we test on usually as it is one of the most difficult environments, but RFCL can solve it
given enough compute and demonstrations. Note PegInsertionSide and PlugCharger have high variance due to
one seed failing for each, see Fig. 9 for the same graph with 30 seeds.

The main results are summarized in Fig. 3, showing how RFCL outperforms all baselines that
leverage demonstrations across all benchmarks and tasks. There are significant improvements in
ManiSkill2 and MetaWorld and minor improvements in Adroit. RFCL is the only method that is
capable of achieving nonzero success on every environment within a reasonable compute budget.
We argue that the critical reason why prior methods are unable to solve these tasks is because of the
exploration bottleneck, which is more easily overcome via our method’s state reset reverse curricu-
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Figure 5: Mean success rate of algorithms on ManiSkill2 tasks after 2M interaction steps given varying amount
of demonstrations to train on. Error bars represent 95% CIs over 5 seeds. Vertical gray lines indicate the average
number of samples until the reverse curriculum completes. Reverse curriculum only is RFCL but instead of a
forward curriculum in stage 2 we sample uniformally from the initial state distribution. Forward curriculum
only skips stage 1 training entirely.
lum. Fig. 4 shows a selection of the most difficult tasks and demonstrate that RFCL is significantly
better if the task is complex and difficult to explore. To visually see why these are more difficult see
Appendix B.2. For a disambiguation of each environment’s results, see Appendix A.1.

5.2 ABLATIONS

For all ablations, we benchmark on the ManiSkill2 environments as it is the most difficult set of
environments due to high initial state randomization and precise manipulation requirements.

# of Demonstrations: RFCL provides a flexible approach to leveraging a wider range of demon-
stration dataset sizes and still being able to perform well as shown in Fig. 5. We observe that when
there are very few demonstrations, the forward curriculum is important for improving performance.
We see significant improvements on success rate for PickCube for 1 demonstration, for Stackcube
for 5 demonstrations or less, and for PegInsertionSide for 10 demonstrations or less. The same
conclusions can be drawn from the same demonstration ablation on Metaworld which we show in
Appendix A.3. We can attribute this effect to the narrowness of the distribution of initial states the
reverse curriculum trained policy performs well on. When given very few demonstrations covering a
small set of initial states, the policy is successful on a narrow distribution of initial states. Without a
forward curriculum, we are sampling initial states uniformly from Sinit, meaning a large majority of
initial states are usually completely out of distribution and lead to 0 return and mostly useless explo-
ration. With a forward curriculum, initial states that lead to nonzero return are prioritized, leading
to sample-efficiency gains. Critically, we observe that RFCL still can solve difficult tasks that have
high initial state randomization like PegInsertionSide from just a few demonstrations whereas the
strongest baseline fails completely and can only solve PickCube when given 20× the demonstrations
RFCL needs to solve PickCube.

Reverse Curriculum Dynamic Timelimit Steps (×104)
Uniform ✓ > 100.0
Global ✓ 41.5 ± 10.8

Per Demo ✗ 33.5 ± 3.0
Per Demo ✓ 24.1 ± 5.9

Table 1: Ablations on the reverse curriculum stage comparing
number of environment steps until the agent can achieve ∼100%
success rate from the initial states {si,0} of 5 demonstrations in
the ManiSkill2 suite. Results shown are 95% CIs over 5 seeds.
Uniform choice failed to reach 100% within 1M interactions.

Demonstration Source: Adroit, Meta-
world, and ManiSkill2 demonstrations
are tele-operated, generated via scripts,
and generated via motion planning re-
spectively. For all these different kinds
of demonstrations, RFCL can still solve
the task showing that it is robust to
demonstration source. This is exempli-
fied by how human and motion planned
demonstrations are often sub-optimal
(with respect to a sparse reward maximization objective), exhibiting multiple modes in actions,
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and possessing non-Markovian characteristics (Mandlekar et al., 2021). The robustness can be at-
tributed to the fact that we are learning from a purely sparse reward objective via online interaction,
and not perfectly imitating past demonstrations. The demonstrations primarily provide a means of
overcoming exploration bottlenecks instead of leading to suboptima during training.

Reverse Curriculum: For stage 1 of training, alternative curriculums utilizing demonstration states
for state resets are uniform and global. In a uniform “curriculum” we benchmark the uniform state
reset method used in Nair et al. (2018) where they uniformly sample a random demonstration and
state in the demonstration. In a global curriculum, instead of assigning each demonstration a start
step value ti, all demonstrations are assigned the start step value Ti−u and we progress the curricu-
lum of all demonstrations at the same time if the mean success rate of the past v episodes exceeds
a threshold. We perform a hyperparameter sweep over v and reported the best results. We further
ablate on the use of a dynamic timelimit. From the results in Table 1, we find that the uniform state
reset approach when given just 5 demonstrations cannot get any reasonable results in 1M interac-
tions. The per-demonstration reverse curriculum and dynamic timelimit both significantly improve
the sample efficiency of the first training stage and learn a weak policy that can solve from {si,0}.

None

Forward 
Only

Reverse

Forward

100% SR

0% SR

Reverse Forward

Forward

Figure 6: Heatmap of agent’s success rate at each maze cell over
the course of training, comparing three kinds of training: None
(no curriculum / normal RL), forward curriculum only, and our
method applying reverse and forward curriculums. Blue arrow
is the demonstration provided. Red dot is the goal.

Impact of Reverse and Forward
Curriculums: The toy experiment
on a continuous state/action space
pointmaze environment in Fig. 6
demonstrates the agent’s performance
throughout training. The agent can re-
set to any square not covered by the
demonstration and the default initial
state distribution is heavily biased to
the squares far away from the goal,
making exploration difficult. In order
to succeed, a policy would need to ex-
plore around states along the demon-
stration as the state space is continuous.
Notably, under the reverse forward cur-
riculum the agent quickly learns to first perform well around states along the demonstration, after
which it relies on the forward curriculum to quickly learn to solve from states all around the maze
in a ever-growing frontier. Comparatively, without a curriculum under the same time budget the
agent is unable to improve due to no initial state prioritization and difficult exploration. The forward
curriculum works eventually thanks to prioritizing initial states closer to the demonstration and goal,
but is less sample efficient compared to reverse forward due to exploration difficulty.

6 CONCLUSION

In this work, we introduce the RFCL algorithm that can solve complex tasks with significantly fewer
demonstrations than before, including previously never-before solved sparse reward manipulation
tasks. We show how the reverse curriculum trains an initial policy that solves the task from a narrow
initial state distribution, and how the forward curriculum generalizes the policy to the full initial
state distribution, enabling extreme demonstration and sample efficiency as shown in Fig. 3 and 5.
We further motivate why the combination of a reverse and forward curriculum works, and introduce
key methods that accelerate the reverse curriculum compared to alternatives.

A limitation of RFCL is the use of state reset and is thus generally restricted to training in simulation,
relying on sim2real to be deployed in the real-world for robotics tasks. Despite this limitation, we
argue sim2real is orthogonal research that can augment our research, and point to past work such as
Chen et al. (2023) that succesfully perform sim2real on dexterous tasks and use state reset.

We hope our work provides a strong starting point for how far the capabilities of robot learning
from demonstration methods can go if we fully leverage the advantages of simulation vs real world
training. With the demo efficiency of RFCL, one can prioritize scaling up the diversity of tasks as
opposed to the quantity of demonstrations. All code is open sourced on Github and are excited with
how far the community can push when leveraging more properties of simulation.
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A FULL ENVIRONMENT RESULTS

We show the training curves of our method compared to the primary baseline, RLPD, on all envi-
ronments here without averaging across environments in Appendix A.1.

Because we are working with an extremely small number of demonstrations relative to the total
number of demonstrations usually used with the tasks we tackle, there can be a high amount of
variance in the result curves caused by the choice of demonstrations, not the algorithm itself. To
disambiguate the source of variance, in Appendix A.2 we show results on ManiSkill2 on one of the
harder environments PegInsertion where we have 2 sets of demonstrations and for each set we run
5 training runs. The 2 sets of demonstrations are the same ones sampled for the main results shown
in Figure 3.

Finally we show some additional experiments with a demo ablation on MetaWorld in Appendix
A.3 and compare against a baseline that uses state reset by Nair et al. (2018) on one of their tasks
in Appendix A.4 (their open sourced code does not use state reset so we can only test on their
environment instead of benchmarking their algorithm on the more common robotics benchmarks
like Metaworld).

A.1 RESULTS WITH RANDOM DEMONSTRATIONS

All algorithms are given 5 randomly sampled demonstrations. We further mark the average step
at which the reverse curriculum stage completes training with a vertical, dashed gray line. The
bolded lines represent the mean values, and the shaded areas represent 95% CIs over 5 seeds. Note
that each seed uses the same demonstrations. Figures 7 and 8 show results on each environment
in MetaWorld and Adroit respectively. The demo ablation curve in Fig. 5 in the main paper shows
results for ManiSkill2. We further explored just how variable demonstations are by running 30 seeds
on the PegInsertion task with each seed using different sets of 5 demonstrations in Fig. 9. The figures
show that we are the only method to succeed on all environments, significantly beating baselines.
Furthermore, empirically our method is generally quite robust to choice of demonstrations as shown
in in Fig. 9. Only 1 seed out of 30 failed to get above 80% success rate after 6M interactions. Note
that the robustness may vary between environments, and our results in the main figures do include
the seeds where nearly no success was obtained that occured. We believe there could be interesting
future work in investigating what kind of demonstrations are easier to learn from using RFCL.
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Figure 7: Metaworld Results with random demonstrations. Results averaged over 5 seeds with shaded area
representing 95% CIs. Every single seed succesfully finished the reverse curriculum and the success rate
trended upwards.
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Figure 8: Adroit Results with random demonstrations. Results averaged over 5 seeds with shaded area repre-
senting 95% CIs. Every single seed succesfully finished the reverse curriculum and the success rate (not shown)
reached near 100%. The normalized return of RFCL plateaus just below the state-of-the-art method RLPD for
the two easier environments, but significantly outperforms RLPD and Cal-QL on the harder Adroit Relocate
environment.
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Figure 9: ManiSkill2 PegInsertion results with random demonstrations. Results averaged over 30 seeds with
shaded area representing 95% CIs. The results appear much better than the main figures due to the noise caused
by hard-to-learn-from demonstrations being mostly cancelled out. Here, only 1 out of the 30 seeds failed (the
same seed from the main results that failed.
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Figure 10: ManiSkill2 PegInsertion results with fixed demonstration sets. ”Bad” Demos correspond to runs
using the only set of demonstrations that led to no success in the main results in Fig. 4. ”Good” Demos is
randomly chosen to be one of the other set of demonstrations used in the main results. Results averaged over 5
seeds with shaded area representing 95% CIs.

A.2 RESULTS WITH FIXED DEMONSTRATIONS

We pick 2 of the 5 sets of demonstrations used for training shown in Figures 3 and 4, one of which
was succesful and solved PegInsertionSide rather fast, and the other demonstration set being the one
where there was no success after training for 2M interactions. We then run 5 seeds on both sets of
demonstrations and show the results in Fig. 10. We observe that the failed set of demonstrations is
indeed harder to learn from, although not impossible as 2/5 seeds can solve the task using that set of
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demonstrations while 3/5 seeds still has around 0 success after 2M interactions. For the successful
set of demonstrations, all seeds solved the task relatively quickly.

A.3 METAWORLD DEMO ABLATION

Fig. 11 is another set of demo ablations on the Metaworld suite comparing RFCL with reverse cur-
riculum only and shows that when there are fewer demonstrations, the forward curriculum enables
more sample efficiency. The conclusions drawn from the main demo ablation on ManiSkill2 in Fig.
5 can also be drawn here.
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Figure 11: Metaworld Results with varying number of demonstrations and comparing RFCL vs Reverse cur-
riculum only. Results averaged over 5 seeds with shaded area representing 95% CIs.

A.4 COMPARISON AGAINST PREVIOUS STATE RESET METHODS

Fig. 12 compares our RFCL method with the state reset method proposed by Nair et al. (2018) on
the difficult Stack 3 task, which tasks the agent to stack 3 blocks into a tower. We label their method
as Nair et. al (2018). Our approach vastly outperforms their method by being able to solve the
task in less than 10 million samples with just 20 demonstrations whereas Nair et al. (2018) requires
more than 100 million samples using 100 demonstrations to just get a 39% success rate and has 0
success even after 50 million samples (see their paper for their exact success rate curves). We note
that while RFCL performs better, this comparison is a little unfair as the core RL algorithms used
are different between papers (hence why this figure is in the appendix). For a more fair comparison
we benchmarked the state reset strategy Nair et al. (2018) uses in Table 1 while keeping the rest of
RFCL the same, which still shows that our per-demo reverse curriculum is far more sample efficient
compared to alternatives
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Figure 12: Stack 3 results of RFCL when given 20 random demonstrations. Results averaged over 5 seeds with
shaded area representing 95% CIs.

B TASK DETAILS AND VISUALIZATIONS

B.1 TASK DETAILS

Below is the observation dimensions, action dimensions, and task horizons of all benchmarked tasks.
For ManiSkill2 and Metaworld, we use the more robust and difficult metric of measuring success
at the end of episodes as opposed to allowing success and then failure (e.g. stopping an episode
upon success being reached). Following recent past work on Adroit environments, we measure a
normalized score which is equal to the percent of timesteps in an episode where the agent is in a
success state. For all tasks we do not use any action repeat.

Task Observation Dimensions Action Dimensions Horizon
Adroit Door 39 28 200
Adroit Pen 45 24 100

Adroit Relocate 39 30 200

Table 2: Adroit Tasks: We consider the same 3 Adroit tasks and task horizons as our baselines JSRL and RLPD.
The controller used to control the Adroit hand is the default one in the benchmark, which controls each finger
joint and the hand position with delta actions.

Task Observation Dimensions Action Dimensions Horizon
All Tasks 39 4 200

Table 3: Metaworld Tasks: We consider the most difficult 15 Metaworld tasks following the categorization by
Seo et al. (2022). The controller used to control the robot end-effector is the default one in the benchmark,
which controls the 3D position and gripper position of the end-effector with delta actions.

B.2 TASK INITIAL START STATES AND CATEGORIZING DIFFICULTY

In Figures 13 to 18 we show visually what randomly sampled start states from the true start state
distribution Sinit look like. We further note which of the environments have large amounts of ran-
domization, which environments do not, and where the randomization comes from, in addition to
briefly detailing where the complexity of the task comes from that makes it difficult to solve. Our
conclusion with regards to which environments are difficult in MetaWorld is corroborated by the
categories used by Hansen et al. (2023); Seo et al. (2022).

Notably we observe that environments that are complex and have a large amount of initial state
randomization tend to need more compute or demonstrations to solve while those with less ran-
domization can get by with much less demonstrations. For example, Adroit Door has little to no
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Task Observation Dimensions Action Dimensions Horizon
PickCube 51 7 100
StackCube 55 7 100

PegInsertionSide 50 7 100
PlugCharger 53 7 100

Table 4: Maniskill2 Tasks: We consider 4 tasks of various difficulty, with PickCube being the easiest (and solv-
able by baselines when given enough demonstrations) and PegInsertionSide/PlugCharger being the most diffi-
cult. PegInsertionSide and PlugCharger have never been solved before under sparse rewards and few demon-
strations. The controller used to control the robot end-effector is the called pd-ee-delta-pose, one of the defaults
in the benchmark, which controls the pose and gripper position of the end-effector with delta actions.

randomization and is easily solved by RFCL and the RLPD baseline with just 1 demonstration. On
the other end, ManiSkill2 PegInsertionSide and PlugCharger are complex and have a lot of random-
ization and can only be reliably solved by our method RFCL when given enough demonstrations
and/or more compute. The randomization magnitude can stem from higher dimensions (e.g. more
objects have randomized shape and positions) and/or stem from a wider range of random sampling.

Figure 13: ManiSkill2: PegInsertionSide. High randomization: peg length, peg width, peg pose, block pose,
hole in block position, robot position. Complex: Small clearance between peg and hole, requires learning to
grasp and insert precisely of different shapes from highly randomized poses

Figure 14: ManiSkill2: PlugCharger. High randomization: charger pose, receptacle pose, robot position.
Complex: Very small clearance (much smaller than any other environment benchmarked in this paper) between
the charger head and receptacle space, requires learning to grasp and insert very precisely

Figure 15: Adroit: AdroitHandRelocate. High randomization: ball position, goal position. Complex: Difficult
dynamics with regards to grasping a ball with a high-dimensional robot

Figure 16: Adroit: AdroitHandDoor. Low randomization: door position. Simple: While robot hand is high-
dimensional, the door barely changes position

18



Published as a conference paper at ICLR 2024

Figure 17: MetaWorld: Pick Place. High randomization: block position, goal position. Complex: Highly
randomized positions of goal and object, and object is small leaving little room for error.

Figure 18: MetaWorld: Assembly. Low randomization: cylinder position. Simple: Only the cylinder position
is randomized and to only a small range, all other objects are initialized in the same place.

B.3 TASK REVERSE CURRICULUM

Below are samples of various states of the automatically generated per-demonstration reverse cur-
riculum over the course of training for some of the more difficult tasks. Note that during the reverse
curriculum stage of training, the reverse step size is small and the distance between adjacent stages
of the curriculum are smaller than shown here.

Figure 19: ManiSkill2: PegInsertionSide

Figure 20: Adroit: Relocate

B.4 TASK SOLVES

For videos of example solves of these environments produced by our method RFCL, see our website
at https://reverseforward-cl.github.io/

B.5 BASELINE SELECTION METHODOLOGY

As we are proposing a learning-from-demonstrations model-free RL algorithm that is more efficient
in terms of samples and demonstrations, we select state-of-the-art model-free RL baselines that can
use demo data with code.

We select RLPD (Ball et al., 2023) as its the current state of the art method on the Adroit suite of
tasks for learning from demos. It is the best baseline we have as well. As the RLPD paper shows
it out-performs standard SAC + adding demo data to the online buffer, we do not include a SAC
baseline.
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We also select Jump Start RL (Uchendu et al., 2023). Although it does not achieve state of the art
results on Adroit, the concept of a reverse curriculum shares similarities with our proposed RFCL
method.

We further select DAPG (Rajeswaran et al., 2018) and Cal-QL (Nakamoto et al., 2023) as they once
achieved state-of-the art results on some tasks for learning from demos algorithms.

There are many on-policy algorithms including the popular PPO (Schulman et al., 2017) baseline
that could be benchmarked. However, it is well known that off-policy algorithms like SAC are much
more sample efficient than on-policy algorithms, and it would be unfair to compare against on-policy
methods as they would do poorly. The recent Sequential Dexterity (Chen et al., 2023) method in
theory would be good to compare against as they are one of the few papers with code that use state
resets, however they use PPO and rely on human engineering to split a task into subtasks which is
infeasible to do on the 20+ tasks we test on.

There are also model-based methods like MoDem (Hansen et al., 2023) that are very sample efficient
thanks to the off-policy setup and model-based approach. We do not compare against MoDem
directly as they use world models, but we believe it would be interesting future work to investigate
reverse forward curriculums with world models for even better sample efficiency.

Finally, while we cite a number of past methods that use state resets, we currently are unable to
benchmark any of them as the majority do not have code and/or have results on tasks that are not
open-sourced. We qualitatively comment on key differences in the related works section Sec. 2 and
benchmark the uniform state reset strategy employed by Nair et al. (2018) and show that strategy
performs worse compared to our per-demo reverse curriculum state reset approach in 1. We further
show results of RFCL on a task that Nair et al. (2018) tests on in Appendix A.4.
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C HYPERPARAMETERS

Hyperparameter Value
RL Hyperparameters (Soft-Actor-Critic)
Discount factor (γ) 0.99 (Adroit and MetaWorld tasks)

0.99 (MS2 PegInsertionSide and Plugcharger)
0.9 (All other MS2 tasks)

Update to Data Ratio 10
Actor Update Frequency 20
Seed Steps 5,000
Replay Buffer Capacity 1,000,000
Batch Size 256
Number of Critics 10
Number of Sampled Critics 2
Polyak Averaging Coefficient (τ) 0.005
Initial Temperature 1.0
Learnable Temperature True
Total Interactions / Samples 1,000,000
Offline buffer to online buffer sample ratio 50:50
Networks and Optimization
Network Shape of Actor and Critic (MLP) [256, 256, 256]
Layer Norm Applied after every layer of critic only
Activation Rectified Linear Unit (ReLU)
Actor Learning Rate 3e-4
Critic Learning Rate 3e-4
Actor and Critic Optimizers Adam
Environment and Data
Number of demonstrations 5/25 human teleoperated

demonstrations for Adroit
out of total demonstrations available [1-20]/1000 motion planned

demonstrations for ManiSkill2
5/∞ scripted demonstrations for MetaWorld

Reward Function Sparse (+1 on success, 0 otherwise)
Action Repeat 1
Episode Horizon 100 (ManiSkill2 and Adroit Pen)

200 (Adroit and MetaWorld Tasks)
Observation Type State
Reverse Curriculum
Reverse Step Size (δ) 8 for Adroit and MetaWorld

4 for ManiSkill 2
Per-trajectory Curriculum Buffer Size (m) 3
Demonstration Horizon to Episode Horizon Ratio (ϕ) 3
Forward Curriculum
Forward Curriculum Score Threshold (ω) 0.75
Forward Curriculum Buffer Size (k) 5
Forward Curriculum Score Temperature (β) 0.1
Forward Curriculum Ranking Strategy Rank
Forward Curriculum Staleness Coefficient 0.1
Forward Curriculum Number of Seeds/Levels (n) 1000

Table 5: RFCL sample-efficient variation of hyperparameters. These are the ones used to generate all figures
and results. Highlighted in blue indicates hyperparameters introduced by this paper, which are for the automatic
construction of reverse and forward curriculums.

The non-highlighted hyperparameters are standard ones used in Soft-Actor-Critic with a Q-ensemble
or Prioritized Level Replay (PLR). Furthermore, while a discount of 0.99 could be used for all tasks,
we opt to use 0.9 for some ManiSkill2 tasks as it seems neither our method nor any of the baselines
can solve the tasks with a discount of 0.99 easily in 1M interactions when given significant amounts
of demonstration data. Moreover, while it is strange only 1 Adroit task (Pen) has a smaller horizon
of 100, recent past work (Uchendu et al., 2023; Ball et al., 2023) use this specific horizon so we
copy them for fair comparison.
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Finally, for just the PlugCharger environment, we make a few modifications to make it work rela-
tively more efficiently. We use a discount of 0.95, batch size of 512 to improve sample efficiency
a little. Importantly, we rescale the action space to be 125% the magnitude of the actions in the set
of demonstrations used during training as the demonstration actions of PlugCharger on average are
very small in magnitude, suggesting the full action space of the environment is unrealistic and pose
great difficulty to exploration. This is a fairly reasonable method to make the problem easier without
relying on heavy heuristics, just introducing some bias about the magnitude of actions. We observe
this rescaling not only accelerates learning but produces more reasonable policies that take smaller
actions and are likely easier to transfer to real. We only use the action rescaling for PlugCharger
tests, leaving all other environments as they were, although we believe this would likely accelerate
learning for other environments requiring high precision like PegInsertionSide.

D WALL TIME EFFICIENT RESULTS

We note that while it is standard in the field of robot learning and reinforcement learning to compare
performance against the number of environment samples, for practical purposes it is also important
to have fast wall-time performance. This is made more critical if one’s direction of research is
towards sim2real of which then environment sample time is generally fast. With fast environment
sample times, it is more wall-time optimal to increase the number of environment samples and
lower the relative number of gradient updates, which is done with our wall time efficient set of
hyperparameters. The only changes are to use a much smaller update to data ratio of 0.5 and increase
actor update frequency to 1, essentially for e.g. every 32 environment steps we update the critic and
actor 16 times each. Moreover, the fast hyperparameters run 8 parallel environments with each
taking 4 steps at a time, after which then 16 gradient updates are performed. Training can go even
faster if 32 parallel environments are used.

We did not heavily tune these hyperparameters since they were already quite fast, but we note that
depending on environment speed, it may be optimal to tune the update to data ratio accordingly.

Time in Table 6 is reported in GPU minutes representing the time until the running average success
rate of the last 5 evaluations reaches 90%. Experiments all ran on a RTX 2080 GPU. This is a
very loose evaluation as it includes the non-trivial amount of time spent running test evaluation in
addition to actual training, but it’s clear that simply tuning a few hyperparameters can easily improve
training time.

Task Wall Time Efficient Hyperparams Sample Efficient Hyperparams
Metaworld Soccer 47min 143min

Metaworld Stick Pull 38min 104min
Metaworld Pick Place 39min 180min

Table 6: Training time of select environments using different hyperparameters.
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