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Abstract

Generation with source attribution is impor-001
tant for enhancing the verifiability of retrieval-002
augmented generation (RAG) systems. How-003
ever, existing approaches in RAG primarily004
link generated content to document-level ref-005
erences, making it challenging for users to006
locate evidence among multiple content-rich007
retrieved documents. To address this chal-008
lenge, we propose Retrieval-Augmented Gener-009
ation with Visual Source Attribution (VISA), a010
novel approach that combines answer genera-011
tion with visual source attribution. Leveraging012
large vision-language models (VLMs), VISA013
identifies the evidence and highlights the ex-014
act regions that support the generated answers015
with bounding boxes in the retrieved document016
screenshots. To evaluate its effectiveness, we017
curated two datasets: Wiki-VISA, based on018
crawled Wikipedia webpage screenshots, and019
Paper-VISA, derived from PubLayNet and tai-020
lored to the medical domain. Experimental re-021
sults demonstrate the effectiveness of VISA for022
visual source attribution on documents’ origi-023
nal look, as well as highlighting the challenges024
for improvement. Code, data, and model check-025
points will be released.026

1 Introduction027

Retrieval-augmented generation (RAG) has be-028

come a key technique for enhancing the reliabil-029

ity in information-seeking processes (Gao et al.,030

2024). Traditional RAG pipeline directly gen-031

erates an answer to a user query from retrieved032

candidate documents (Chen et al., 2017; Lewis033

et al., 2020). Yet, it is hard for users to verify034

the sources and appropriately trust generated an-035

swers, given that models could produce halluci-036

nated content (Min et al., 2023; Malaviya et al.,037

2024). Recent works have introduced the genera-038

tion with citation paradigm (Gao et al., 2023; Ye039

et al., 2024), prompting the model to not only gen-040

erate answers but also directly cite the identifiers041

of the source documents. Such source attribution 042

approaches make it possible for users to check the 043

reliability of the outputs (Asai et al., 2024). 044

However, text-based generation with source attri- 045

bution faces several issues: First, citing the source 046

at the document level could impose a heavy cogni- 047

tive burden on users (Foster, 1979; Sweller, 2011), 048

where users often struggle to locate the core ev- 049

idence at the section or passage level within the 050

dense and multi-page document. Despite such 051

granularity mismatch could be addressed through 052

passage-citation-based generation methods — link- 053

ing answers to specific text chunks, it requires non- 054

trivial extra engineering efforts to match the chunk 055

in the document source. Moreover, visually high- 056

lighting text chunks in the source document is more 057

intuitive for users, but it remains challenging as it 058

requires control over document rendering, which is 059

not always accessible, such as in PDF scenarios. 060

Inspired by the recent document screenshot em- 061

bedding retrieval paradigm — dropping the docu- 062

ment processing module and directly using VLM 063

to preserve the content integrity and encoding doc- 064

ument screenshots for retrieval (Ma et al., 2024), 065

we ask whether source attribution can also be in- 066

tegrated into such a unified visual paradigm to es- 067

tablish a fully visual, end-to-end verifiable RAG 068

pipeline that is both user-friendly and effective? 069

To this end, we propose Retrieval Augmented 070

Generation with Visual Source Attribution (VISA). 071

In our approach, a large vision-language model 072

(VLM) processes single or multiple retrieved docu- 073

ment images and not only generates an answer to 074

the user query but also returns the bounding box 075

of the relevant region within the evidence docu- 076

ment. As Figure 1 illustrated, this method enables 077

direct attribution by visually pinpointing the exact 078

position within the document, allowing users to 079

quickly check the supporting evidence within the 080

original context for the generated answer. VLMs 081

are not restricted by document format or render- 082
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Figure 1: Comparison between (a) Text-based generation with source attribution in a RAG pipeline. and (b)
Visual-based generation with source attribution in a V-RAG pipeline. VISA directly pinpoints the source evidence
of the answer for user query in the original document with a bounding box.

ing, making them more versatile for diverse use083

cases. Moreover, this task serves as a meaningful084

evaluation of VLMs, assessing their ability to pro-085

vide self-explanations and accurately localize sup-086

porting information within their input in an RAG087

paradigm. To the best of our knowledge, this is the088

first work to enable the visual source attribution in089

an end-to-end RAG framework using VLM.090

To train and evaluate VISA, we curated two091

datasets: Wiki-VISA and Paper-VISA. Wiki-092

VISA is derived from the Natural Questions093

dataset (Kwiatkowski et al., 2019). It reconstructs094

the original Wikipedia webpages, using short an-095

swers as generation targets and corresponding long096

answer’s HTML bounding box as source attribution097

targets. This dataset supports the test of model’s098

ability to attribute sources across multi-document,099

multi-page, and multi-modal content. On the other100

hand, Paper-VISA, built from PubLayNet (Zhong101

et al., 2019) with synthetic query generation, fo-102

cuses on the biomedical domain by evaluating per-103

formance on multi-modal scientific paper PDFs.104

Together, they provide diverse and challenging105

benchmarks for assessing the granularity and ac-106

curacy of source attribution in RAG systems. Our107

experiments, spanning both in-domain training and108

zero-shot evaluation, revealed existing state-of-the-109

art models like QWen2-VL-72B (Wang et al., 2024)110

struggle with precise visual source attribution in111

zero-shot prompting. Fine-tuning VISA on our cu-112

rated datasets significantly improved model perfor-113

mance in visual attribution accuracy. Further anal-114

ysis highlights key areas for improvement, such115

as enhancing bounding box precision for long im-116

age documents, multi-documents, and zero-shot117

generalization capabilities. 118

2 Related Work 119

2.1 RAG attribution 120

Open-domain question answering with LLMs often 121

suffer from two key issues: hallucinations and out- 122

dated internal knowledge. Retrieval-Augmented 123

Generation (RAG) has been recognized as an ef- 124

fective solution to these problems (Lewis et al., 125

2020; Gao et al., 2024; Ovadia et al., 2024). In 126

RAG, relevant documents are first retrieved from 127

an external database and then fed into LLMs along- 128

side the question. This allows LLMs to reference 129

the retrieved documents during answer generation. 130

Furthermore, RAG can generate a list of citations 131

attached to the generated answers, linking them 132

to the retrieved documents so users can verify the 133

accuracy of the output. This process is known as 134

source attribution (Rashkin et al., 2023; Bohnet 135

et al., 2023; Khalifa et al., 2024). 136

Typically, RAG with source attribution follows 137

a text-only pipeline where all inputs and outputs, 138

such as questions, retrieved documents, generated 139

answers, and citations, are in textual form. Re- 140

cently, vision-based RAG pipelines have emerged, 141

where the retrieved documents are represented 142

as screenshot images (Ma et al., 2024; Faysse 143

et al., 2024), and VLMs process both textual ques- 144

tions and these document images to generate an- 145

swers (Riedler and Langer, 2024; Xia et al., 2024; 146

Yu et al., 2024; Cho et al., 2024). Compared to 147

traditional text-only RAG, vision-based RAG can 148

leverage structured and visual information from 149

documents, such as tables, graphs, and images, 150

which are often challenging to extract through text- 151

2



only pipelines.152

Our VISA attribution method proposed in this153

paper is a novel approach for vision-based RAG154

pipelines: directly drawing bounding boxes around155

the content in retrieved document screenshots that156

potentially supports the generated answers. This157

approach differs from existing attribution methods158

in two ways: (1) Granularity: Existing attribution159

methods often operate at the document level, re-160

quiring users to read entire documents to locate161

supportive content. In contrast, our method directly162

attributes the answer to specific content within the163

document, such as a passage, table, or image in164

the screenshot. (2) Presentation: Traditional attri-165

bution methods provide a list of textual citations,166

whereas our method uses bounding boxes, offering167

a visually-oriented form of attribution. This can168

help users quickly locate the relevant information.169

2.2 Bounding Box Drawing with VLM170

Bounding box-based object detection is a well-171

established task in computer vision (CV) (Zhao172

et al., 2019; Zou et al., 2023). Traditional ap-173

proaches rely on convolutional neural networks174

(CNNs) (LeCun et al., 2015) or Vision Transform-175

ers (ViTs) (Dosovitskiy et al., 2021) to extract fea-176

tures and predict bounding boxes alongside object177

classification (Ren et al., 2015; Dai et al., 2016;178

Redmon et al., 2016; Carion et al., 2020).179

Recent vision-language models (VLMs) like180

GPT4o (OpenAI, 2024), QWen2-VL (Wang et al.,181

2024), and PaliGemma (Steiner et al., 2024)182

have shown the ability to generate bounding183

box coordinates in an image-to-text manner, tak-184

ing input images and generate the top-left and185

bottom-right coordinates of target objects. Meth-186

ods like BuboGPT (Zhao et al., 2023) and187

GLAMM (Rasheed et al., 2024) integrate addi-188

tional modules or modify the VLM architecture tai-189

loring for the visual grounding tasks. Unlike tradi-190

tional object detection or grounding that focuses on191

natural images, our method applies bounding box192

drawing to text-intensive document screenshots. In193

addition, we intentionally leave the VLM archi-194

tecture unchanged, envisioning visual attribution195

eventually can be naturally integrated into general-196

purpose VLM training data.197

Grounding elements on screenshots have been198

explored in GUI agent systems (Cheng et al., 2024;199

Lin et al., 2024), where bounding boxes are used to200

localize UI elements like buttons. However, these201

approaches focus on GUI contexts, our work tar-202

gets visual source attribution in vision-based RAG 203

processes, grounding bounding boxes to locate evi- 204

dence within document images. 205

3 Method 206

3.1 Task Definition 207

Our model VISA is a novel source attribution 208

method primarily designed for vision-based RAG 209

systems. To formally define the task of RAG with 210

visual-based source attribution: given a textual user 211

query q as the RAG system input, the retrieval 212

component of the system needs to retrieve a set 213

of candidate documents D = {d1, ..., dn} from 214

corpus C. Then the generation component of the 215

system needs to return three outputs: an answer a 216

that answers the query q, the identifier i of the most 217

relevant document d∗ in D, and a bounding box 218

coordinates Bd∗ = [(x1, y1), (x2, y2)] within d∗ 219

that highlight the content supporting the generated 220

answer a. 221

In a vision-based RAG setup, user queries are 222

textual, while all documents in the corpus C are 223

screenshots of documents (e.g., webpages or PDF 224

pages) provided as image inputs. 225

3.2 Generation with Visual Source 226

Attribution 227

This paper focuses on VISA within the generation 228

component of vision-based RAG systems. As dis- 229

cussed in the previous section, VISA must handle 230

multimodal input. To achieve this, we leverage 231

VLMs for implementing VISA. Specifically, for a 232

given query and a set of retrieved candidate docu- 233

ments (i.e., screenshots of documents), the system 234

processes the inputs as follows: query tokens are 235

directly input into the language model, while docu- 236

ment screenshots are first processed by the image 237

encoder to extract image representations, which are 238

then fed into the language model. 239

The language model subsequently generates the 240

answer, the identifier of the relevant document, and 241

the xy-coordinates of the bounding box’s top-left 242

and bottom-right corner on the content that sup- 243

ports the generated answer. Notably, this entire 244

process can be framed as a next-token prediction 245

task. Finally, the generated identifier and bounding 246

box coordinates are used to draw the bounding box 247

on the target document screenshot, which is pre- 248

sented to the user along with the generated answer. 249

Technically, existing instruction-tuned VLMs, 250

such as Qwen2-VL-72B (Wang et al., 2024), can 251
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potentially be prompted to perform VISA in a zero-252

shot manner. However, we find that VISA remains253

a challenging task. Consequently, further super-254

vised fine-tuning on a dedicated VISA task dataset255

is necessary. In the next section, we introduce the256

datasets we crafted specifically for training and257

evaluating VISA.258

3.3 Dataset Acquisition259

The training and evaluation data suitable for the260

VISA task needs to be formatted as follows: the261

input consists of a textual query and document262

screenshot images as multimodal inputs, while the263

target outputs include the textual short answer, the264

relevant document identifier, and the coordinates265

of the bounding box. To create datasets that meet266

these requirements, we craft existing publicly avail-267

able datasets to support the training and evaluation268

of our proposed VISA method.269

Wiki-VISA is derived from the Natural Ques-270

tions (NQ) dataset (Kwiatkowski et al., 2019). The271

original NQ dataset provides natural questions,272

along with short and long answers sourced from273

Wikipedia webpages. We use the short answers274

as answer targets. However, the original dataset275

does not contain the original webpage screenshots.276

We use the Selenium Python toolkit1 to access and277

render the webpage with the original URL with a278

history version stamp. And take a screenshot with279

980 pixels width and up to 3920 pixels (4 pages)280

height. Using the long answer, we identify the cor-281

responding element in the HTML from which the282

long answer is derived. We then draw a bounding283

box around this element to obtain the coordinates.284

Notably, the answers in this dataset can come from285

various elements, such as passages, tables, lists,286

or images within the webpage. Since the ques-287

tions and answers in Wiki-VISA are human-judged,288

we consider this dataset a high-quality, supervised289

dataset and evaluation for VISA on general knowl-290

edge, with Wikipedia webpage.291

Paper-VISA is derived from PubLayNet (Zhong292

et al., 2019), a dataset originally designed for doc-293

ument layout analysis of single-page PubMed PDF294

documents (adhering to a 3:2 aspect ratio). Pub-295

LayNet provides bounding box coordinates and296

class labels (e.g., title, text, table, figure, etc.) for297

each element in a paper’s PDF screenshot. How-298

ever, the dataset does not include queries or an-299

swers associated with each document. To ad-300

1https://pypi.org/project/selenium/

dress this limitation, we leverage instruction-tuned 301

VLMs (e.g. Qwen2-VL-72B) to synthetically gen- 302

erate queries and answers. Specifically, for each 303

paper screenshot sample in the PubLayNet training 304

data, we select a bounding box within the sam- 305

ple and overlay it on the screenshot. The modi- 306

fied screenshot is then input to the VLM with a 307

prompt designed to instruct the model to generate 308

a question and a short answer based on the content 309

within the bounding box. See Appendix A.10 for 310

the prompt details and generation example. By aug- 311

menting the original PubLayNet in this way, we 312

create synthetic queries and answers, enabling it 313

to support VISA training. We consider the result- 314

ing Paper-VISA dataset as synthetic training and 315

evaluation for scientific paper PDFs in the medical 316

domain. 317

FineWeb-VISA is based on the FineWeb-edu 318

corpus (Penedo et al., 2024), a high-quality text 319

corpus of crawled webpages. We sampled 60k 320

webpage URLs and used Selenium to capture 321

screenshots of diverse, content-rich webpages (in 322

980x3920 pixels). A passage containing more 323

than 50 words was randomly selected as the tar- 324

get source. A bounding box was drawn around 325

the selected content, and a VLM was prompted to 326

generate a query and short answer supported by the 327

target content, similar as Paper-VISA. Although 328

Fineweb-VISA provides a diverse layout, it does 329

not guarantee be high-quality data as human anno- 330

tated in Wiki-VISA or Paper-VISA that assessing a 331

specific domain, we only leverage Fineweb-VISA 332

as training data to analysis zero-shot and data aug- 333

mentation effectiveness. 334

3.4 Multi-Candidates 335

By now, each query is paired with the triplet of a 336

positive document, target short answer, and target 337

evidence bounding box. To set up a RAG exper- 338

imental environment for evaluating VISA, we in 339

addition need to let the generator take multiple can- 340

didates as input, simulating the scenario that the 341

generator is taking multiple retrieval candidates 342

and attributing the evidence in most relevant docu- 343

ments. Given the query q, we use a retriever R to 344

retrieve top-k candidates. And randomly sampled 345

m− 1 candidates that are not ground truth as hard 346

negative candidates. The hard negative candidates 347

are mixed with the one ground truth document to- 348

gether as the input for the multi-document VISA. 349

The reason we did not directly take top-m docu- 350

ments as the retrieval candidate is that we do not 351

4

https://pypi.org/project/selenium/


Dataset # Train # Test

Wiki-VISA 87k 3,000
Paper-VISA 100k 2,160
Fineweb-VISA 60k -

Table 1: Datasets statistics for train and test splits.

want VISA biased on a specific retriever and posi-352

tion of the candidate docs. Generally, our model353

VISA does not rely on the type of retriever. It can354

be either a traditional text-based retriever that in-355

dexes the document with extracted text or a recent356

document screenshot retriever that directly indexes357

the original document screenshot. However, inte-358

grating with those visual-based retrievers enables359

us to build an end-to-end RAG solution without the360

necessity of explicit document content processes361

such as HTML parsing or OCR. Thus, we leverage362

an off-the-shelf Document Screenshot Embedding363

(DSE) model (Ma et al., 2024) to serve as the re-364

trieval component of the RAG system. When en-365

coding queries and documents, the model directly366

encodes textual queries and document screenshot367

images into single vector embeddings and performs368

cosine similarity search during inference. In this369

work, we set k = 20 and m = 3.370

Additionally, an RAG pipeline may have the371

chance of having no ground truth document re-372

turned from the retriever. We use a probability of373

20% to randomly replace the ground truth docu-374

ment in the candidates, to access the model’s capa-375

bility to detect no-answer situations. After these376

operations, the data statistics are shown in Table 1.377

4 Experiment Setup378

4.1 Evaluation379

Evaluation metrics assessed both generated an-380

swers and bounding box predictions. Relaxed exact381

match (EM) was used to measure generated answer382

accuracy, considering a generated answer correct if383

it shares a subsequence relationship with the golden384

answer and differs by no more than 20 characters.385

Intersection over Union (IoU) was calculated to386

determine bounding box precision, with an IoU387

threshold of 0.5 indicating a correct prediction.388

To analyze performance across varying content389

types, test samples were categorized by the modal-390

ity and location of the evidence. For Wiki-VISA,391

categories included first-page passages, passages392

beyond the first page, and non-passage content such393

as tables and figures. For Paper-VISA, since it is394

a single-page document, categories were divided395

into passage and non-passage content. The overall 396

accuracy for each dataset was computed as a macro 397

average across these categories. 398

We evaluate the effectiveness of VISA in two dif- 399

ferent settings: Single oracle candidate and Multi- 400

candidate. Single oracle candidate setting solely 401

evaluates the generation and visual attribution com- 402

ponent. We conduct controlled experiments by 403

training and testing the VLMs using only a single 404

ground truth relevant document screenshot as input. 405

In this setup, it is guaranteed that the answer can 406

be found within the input document. The VLMs do 407

not need to predict the relevant document identifier 408

and can focus exclusively on answer generation 409

and bounding box prediction. 410

In a Multi-candidate setting, the model is evalu- 411

ated on its ability to distinguish relevant documents 412

from irrelevant ones, in addition to generating ac- 413

curate answers and bounding boxes. This setup 414

better reflects the RAG scenarios in which multiple 415

candidate documents are retrieved, and the model 416

must not only generate a correct response but also 417

attribute it to the correct source document. For the 418

Multi-candidate evaluation, we assess two config- 419

urations: Multi-candidate, Oracle in Candidates 420

which has ground truth in candidates, this setting 421

has the same query set as the single setting, hence 422

directly comparable. Multi-candidate, Oracle Not 423

in Candidates evaluated on the queries with no 424

ground truth documents in candidates, assessing 425

the model’s ability to recognize when there is no 426

supporting evidence 427

4.2 Training Details 428

To train vision-language models (VLMs) for an- 429

swer generation with VISA, we initialized the mod- 430

els using the open-source Qwen2-VL-2B-Instruct 431

and Qwen2-VL-7B-Instruct (Wang et al., 2024), 432

finetuning on training datasets (Sec. 3.3). 433

We first trained the models in a single-candidate 434

setup, where the input was limited to a single or- 435

acle document image. In this setup, the model 436

was trained to generate both the answer and its 437

corresponding bounding box. We used the prompt 438

template provided in Appendix A.8 to format the 439

model’s input and output. Next, we trained the 440

models in a multi-candidate setup. Here, the model 441

received three document candidates and the task 442

was to generate the identifier of the relevant docu- 443

ment (if present), the answer, and the bounding box 444

for the evidence. For cases where no relevant doc- 445

ument was present (20% of the training samples), 446
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Method Wiki-VISA Paper-VISA
Average [<1] Passage [>1] Passage Non-Passage Average Passage Non-Passage

bbx ans bbx ans bbx ans bbx ans bbx ans bbx ans bbx ans

Zeroshot Prompt, Single Oracle Candidates
QWen2-VL-72B 1.5 60.4 3.4 58.5 0.1 54.9 0.9 67.9 1.5 43.1 0.5 40.2 2.5 45.9

Fine-tune, Single Oracle Candidates
VISA-2B-single 37.5 57.1 70.0 61.1 18.7 44.9 23.8 65.3 63.0 38.3 50.6 34.4 75.3 42.1
VISA-7B-single 54.2 65.2 75.6 66.5 50.1 56.0 36.8 73.1 68.2 43.8 58.1 41.6 78.2 45.9

Fine-tune, Multi Candidates, Oracle in Candidates
VISA-2B-multi 22.5 37.9 46.5 46.1 6.4 27.2 14.6 40.5 51.3 32.4 41.1 30.1 61.4 34.7
VISA-7B-multi 32.3 41.8 51.7 48.6 23.0 32.7 22.2 44.1 59.9 39.2 47.7 35.9 72.0 42.4

Fine-tune, Multi Candidates, Oracle Not in Candidates
VISA-2B-multi 73.7 84.9 68.0 82.0 73.2 84.9 80.0 87.7 95.2 95.2 97.2 97.2 93.1 93.1
VISA-7B-multi 82.2 91.0 75.1 87.6 84.0 91.4 87.4 94.0 95.6 95.6 97.2 97.2 93.9 93.9

Table 2: Effectiveness of VISA on Wiki-VISA and Paper-VISA datasets for bounding box accuracy (bbx) and
answer accuracy (ans). Fine-tuned models are trained individually on in-domain data. The Multi-Candidate, Oracle
in Candidates setting uses the same query set as the Single Oracle Candidates setting, allowing direct comparison.
The Oracle Not in Candidates setting is evaluated on the queries with no ground truth documents in candidates.

the model was trained to generate “No answer.”447

We used the prompt template in Appendix A.9 to448

format the model’s input and output.449

During the training, random cropping was ap-450

plied outside of the bounding box. This augmen-451

tation exposed the model to varying input sizes,452

which enhanced its zero-shot effectiveness on un-453

seen document layouts. Bounding box targets were454

represented using absolute coordinate values. We455

also explored normalizing the scale of bounding456

box coordinates to values in the range[0-1]. Details457

can be found in Appendix A.3 and A.4.458

5 Experimental Results459

Table 2 presents the performance of VISA on the460

Wiki-VISA and Paper-VISA datasets across dif-461

ferent experimental settings. Zero-shot prompting462

results reveal the difficulty of directly applying463

state-of-the-art VLMs to the visual source attribu-464

tion task. QWen2-VL-72B achieves a reasonable465

answer generation accuracy of 60.4% on average466

on Wiki-VISA but fails to deliver effective bound-467

ing box predictions, with only 1.5% accuracy. This468

observation is consistent on Paper-VISA. These469

highlight the limitations of existing VLMs in pin-470

pointing the source evidence in original documents471

with proper location and granularity.472

Fine-tuning on our crafted training data enables473

the model to effectively execute the task. In the474

single-candidate setup, where the model processes475

only the relevant document, fine-tuned models476

demonstrate substantial gains compared to zero-477

shot prompting a much larger model. On Wiki-478

VISA, the 7B variant achieves 54.2% bounding479

box accuracy and 65.2% answer accuracy, while480

on Paper-VISA, the corresponding scores reach 481

68.2% and 43.8%. It further demonstrates that the 482

effectiveness of VISA is influenced by document 483

characteristics, such as content location and modal- 484

ity. For Wiki-VISA, bounding box accuracy is 485

significantly higher for passages on the first page 486

([<1] passage) compared to passages beyond the 487

first page ([>1] passage). For example, the 2B vari- 488

ant achieves 70.0% accuracy for [<1] passages but 489

only 18.7% for [>1] passages, indicating the chal- 490

lenges posed by long, multi-page documents. The 491

larger model, the 7B variant, narrows this gap, re- 492

flecting the better handling of long-context inputs. 493

Non-passage content, such as tables and figures, 494

also have obviously a different level of grounding 495

effectiveness, indicating the difference of effective- 496

ness in different visual elements. 497

In the multi-candidate setting, which more 498

closely mirrors real-world retrieval-augmented gen- 499

eration (RAG) systems, the 7B model achieves 500

32.3% bounding box accuracy and 41.8% answer 501

accuracy when handling three candidate documents 502

This demonstrates the model’s capability to iden- 503

tify relevant sources among multiple documents 504

while enabling fine-grained attribution. It should be 505

noted that this setting is more challenging than the 506

single-oracle candidate scenario, as visual source 507

attribution among multiple candidates additionally 508

requires the model to identify the relevant docu- 509

ment among hard negatives. 510

When the oracle candidate is absent from the 511

multi-candidate set, the model generally handles 512

the “No Answer” scenario well. For example, 513

VISA-7B-multi correctly indicates “No Answer” 514

in 82.2% of cases on average for Wiki-VISA, refus- 515
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Paper-VISA
Paradigm Model Average Passage Non-Passage

bbx ans bbx ans bbx ans

Zero-Shot Prompt
Textual Qwen2-VL-72B 43.5 16.7 58.2 19.6 28.7 13.7
Visual Qwen2-VL-72B 1.5 43.1 0.5 40.2 2.5 45.9

Fine-tune
Textual Qwen2-VL-2B 56.8 14.6 51.9 17.8 61.7 11.4
Textual Qwen2-VL-7B 59.5 18.1 52.4 21.3 66.5 14.8
Visual Qwen2-VL-2B 63.0 38.3 50.6 34.4 75.3 42.1
Visual Qwen2-VL-7B 68.2 43.8 58.1 41.6 78.2 45.9

Table 3: Comparing with Text-based Visual Attribution
in single oracle candidate setting of Paper-VISA. The
visual paradigm indicates our VISA method. The textual
method combines layout detector, OCR, and LLM.

ing to respond. In these cases, both attribution and516

answer are considered correct. In the remaining517

cases, the model attempts to answer despite lack-518

ing oracle evidence, leading to incorrect bounding519

boxes. Notably, in 8.8% of cases (91% - 82.2%),520

the model provides correct answers despite no ora-521

cle document in candidates, likely due to memoriza-522

tion, hallucination, or false negatives in candidate523

documents. This phenomenon does not occur in524

Paper-VISA, likely because synthetic queries in525

the publication domain are more directly related526

to the oracle document, whereas NaturalQuestions527

for Wiki-VISA are more general.528

6 Analysis529

6.1 Text-based Visual Source Attribution530

Our VISA method performs RAG and visual531

source attribution in an end-to-end manner.532

Alternatively, a modularized text-based RAG533

pipeline—incorporating a layout prediction model,534

OCR, and text-based LLMs—could achieve sim-535

ilar functionality. Comparing VISA with such a536

modularized text-based pipeline would be valuable537

for understanding the advantages of different ap-538

proaches. We construct a text-based pipeline for539

evaluating Paper-VISA in a single-oracle candidate540

setting. Using PubLayNet’s bounding boxes, we541

assume a perfect layout model that accurately de-542

tects document elements. We apply pytesseract543

OCR to extract text from each bounding box, then544

feed the text list and a given question into an LLM,545

which generates an answer along with the index of546

the supporting evidence. The corresponding bound-547

ing box is used for visual attribution. For a fair548

comparison, we use Qwen2-VL’s language model549

for both zero-shot prompting and fine-tuning.550

As shown in Table 3, in the zero-shot setting, the551

text-based method achieves higher bounding box552

accuracy than the visual-based method, as LLMs553

are well-trained for text-based tasks. In contrast,554

Train Data Wiki-VISA Paper-VISA
Average Average

bbx ans bbx ans

Wiki 54.2 65.2 27.8 36.2
Paper 0.2 42.6 68.2 43.8
FineWeb 37.6 50.2 22.0 43.3
Wiki+Fineweb 58.2 65.3 21.0 43.1
Paper+Fineweb 36.1 48.7 66.5 44.6
Wiki+Paper+Fineweb 58.1 64.8 67.6 44.3

Table 4: Effectiveness of VISA trained on different
combinations of training data for bounding box accuracy
(bbx) and answer accuracy (ans) in the single oracle
candidate setting.

visual-based methods struggle with precise bound- 555

ing box attribution without fine-tuning. However, 556

the text-based method has lower answer accuracy 557

due to OCR errors, which introduce typos (e.g., 558

misrecognized technical terms) making it more dif- 559

ficult to match the ground truth answer. For fine- 560

tuned variants, both bounding box accuracy and 561

answer accuracy improve over the zero-shot setting. 562

However, the text-based method still has inherent 563

limitations. While integrating a vision-language 564

model (VLM) for OCR could potentially enhance 565

text extraction accuracy, it introduces additional 566

latency and complexity in the system. Moreover, in 567

this comparison, we assume the text-based method 568

benefits from a perfect layout detector—an unreal- 569

istic assumption in real-world applications. These 570

findings further support the advantages of the pro- 571

posed visual-based solution for VISA. 572

6.2 Out-of-Domain Zero-Shot 573

Table 4 shows the effectiveness of VISA while 574

trained with different data combinations in the sin- 575

gle candidate setting. It enables us to study the ef- 576

fectiveness of out-of-domain transfer and augmen- 577

tation. First, we highlight the challenges of zero- 578

shot generalization in VISA. Training and evaluat- 579

ing on in-domain achieves an effective bounding 580

box accuracy, e.g. 54.2% on average for Wiki- 581

VISA. However, significant performance drops are 582

observed when models are tested on out-of-domain 583

datasets. For instance, a model trained on Wiki- 584

VISA achieves only 27.8% bounding box accuracy 585

on Paper-VISA, while a model trained on Paper- 586

VISA achieves near-zero performance (0.2%) on 587

Wiki-VISA. This gap underscores the difficulty of 588

transferring visual source attribution capabilities 589

across datasets with differing document structures, 590

layouts, and content modalities. Interestingly, Wiki- 591

VISA appears to transfer better to Paper-VISA com- 592

pared to the reverse. This may be because of the 593
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Question

Error Type

Where is the energy released from 
when food is metabolized?

Type-I: Wrong source attribution Type-II: Position misalignment Type-III: Granularity mismatch

Who is the movie phantom thread 
based on?

Who played skeletor in the 
movie masters of the universe?

Document

Ground Truth VISA Output

Figure 2: Type of errors in the evaluation of Wiki-VISA.

multi-page nature of Wiki-VISA, which provides594

richer training signals that generalize better to sim-595

pler single-page setting in Paper-VISA.596

FineWeb-VISA shows as a promising resource597

for training models with improved zero-shot capa-598

bilities. When trained on FineWeb-VISA alone,599

the model achieves 37.6% bounding box accu-600

racy on Wiki-VISA and 22.0% on Paper-VISA.601

Notably, FineWeb-VISA outperforms Wiki-VISA602

training on [>1] passage bbx accuracy for Wiki-603

VISA (57.3% vs. 50.1%), suggesting its effective-604

ness in handling long and complex document struc-605

tures. However, FineWeb-VISA does not perform606

as well on non-passage content, likely due to its607

training focus on passage-level targets.608

6.3 Data Augmentation609

The results also demonstrate the benefits of aug-610

menting training data with FineWeb-VISA. On611

Wiki-VISA, combining Wiki and FineWeb train-612

ing data improves bounding box accuracy from613

54.2% to 58.2% and improves performance on614

[>1] passages from 50.1% to 61.7%, indicating615

that FineWeb complements Wiki by enhancing the616

model’s ability to attribute evidence in multi-page617

contexts. For Paper-VISA, however, augmenting618

with FineWeb does not significantly improve in-619

domain performance. Training on Paper+FineWeb620

achieves a comparable bounding box accuracy to621

Paper alone, but it enhances zero-shot performance622

on Wiki-VISA (from 0.2% to 36.1%).623

Training on the full combination of datasets624

(Wiki+Paper+FineWeb) yields strong results across625

both domains, with 58.1% bbx accuracy on Wiki-626

VISA and 67.6% on Paper-VISA. This shows the627

importance of diverse training data for building628

generalizable models capable of handling differ-629

ent document types, layouts, and evidence modal-630

ities. Future work should focus on expanding the631

dataset diversity to further improve generalization 632

and enable robust visual source attribution for a 633

wide range of document structures. 634

6.4 Error Analysis 635

We conducted an error analysis on 50 randomly 636

sampled cases from Wiki-VISA to better under- 637

stand the limitations of VISA. Errors were cate- 638

gorized into three main types as demonstrated in 639

Figure 2. The first type, wrong source attribution, 640

occurred in 43 cases where the model attributed 641

the source to an incorrect section of the document, 642

failing to identify the precise region containing the 643

evidence. The second type, position misalignment, 644

was observed in 4 cases where the model appeared 645

to have the correct intent but drew the bounding box 646

inaccurately, either slightly off position or incor- 647

rectly sized. The third type, granularity mismatch, 648

appeared in 3 cases where the model’s attributed 649

source, such as a specific cell in a table or an item 650

in a list, did not match the ground truth granularity. 651

While these cases could potentially be considered 652

false negatives, we leave it in error analysis to em- 653

phasize the challenge in real-world use cases where 654

user preferences for granularity may differ from the 655

model’s output. 656

7 Conclusion 657

We introduced VISA, a visual source attribution 658

approach — generating answers while providing 659

bounding boxes to locate evidence — for retrieval- 660

augmented generation. Our curated datasets 661

demonstrate its effectiveness across diverse doc- 662

ument types, including complex multi-page and 663

multimodal content. Experimental results show 664

VISA bridges information retrieval and answer gen- 665

eration with finer-grained, visually grounded attri- 666

bution. We hope VISA represents a pioneering step 667

for more verifiable and user-friendly RAG systems. 668
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8 Limitations669

While VISA demonstrates promising results for670

answer generation and content grounding in vision-671

based RAG systems, it has several limitations.672

Gap between our settings and real-world sce-673

narios. Our approach focuses on generating short674

answers, which may not suffice for scenarios re-675

quiring detailed or explanatory responses, high-676

lighting the need for enhancements in generating677

richer context. Besides, our curated datasets as-678

sume that answers are derived from a single, lo-679

calized region within a document. However, in680

real-world applications, supporting evidence may681

span multiple sections or even multiple documents,682

limiting the model’s effectiveness in more complex683

retrieval scenarios. Additionally, in the Natural684

Questions dataset (converted to our Wiki-VISA),685

short answers are often extracted substring from686

the evidence section. This presents another gap, as687

real-world answers may be implied by the evidence688

rather than being an exact substring.689

Cross-domain generalization. Although our690

evaluation spans web and medical scientific pa-691

pers containing diverse content modalities (e.g.,692

passages, tables, and figures), it does not fully cap-693

ture the variability of real-world documents, such694

as scanned or handwritten content. These often695

feature more complex layouts and diverse aspect696

ratios, posing additional challenges. Our zero-shot697

evaluation shows that while the model achieves rea-698

sonable bounding box accuracy in cross-domain699

transfer, its performance still lags behind in-domain700

effectiveness. Enhancing cross-domain generaliza-701

tion would make the VISA pipeline more robust702

for vision-based RAG tasks across a broader range703

of document types.704

Trade-off between accuracy and efficiency. To705

create challenging attribution tasks, we designed706

Wiki-VISA images to contain content from four707

pages. However, increasing the candidate set fur-708

ther raises training costs and frequently leads to709

out-of-memory (OOM) issues given our limited710

computing resources. We hence the number of doc-711

ument candidates to three in our multi-candidate712

setting following previous practice (Yu et al., 2024).713

Our findings show a clear performance difference714

between single-image and multi-candidate settings,715

underscoring the challenge of scaling candidate716

size. In practical applications where VISA is in-717

tegrated with retriever, further research is needed718

to balance candidate size, accuracy, and computa-719

tional efficiency. 720

Aligning with real user expectation on visual 721

attribution As briefly discussed in Section 6.4, a 722

potential challenge lies in whether the visual attri- 723

bution provided by VISA aligns with users’ expec- 724

tations in terms of granularity. Since VISA is de- 725

signed to make answer verification more intuitive, 726

conducting user studies in real-world deployment 727

scenarios would provide deeper insights into its 728

practical utility and potential refinements. 729
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Train Data Wiki-VISA Paper-VISA
bbx ans bbx ans

Crop, Absolute 54.2 65.2 27.8 36.2
No Random Crop 58.8 65.6 1.7 36.9
Normalized Value 56.4 64.4 0.1 37.2
No Bounding Box 0 67.6 0 35.2

Table 5: Impact of bounding box target representation
and cropping strategies during training on Wiki-VISA
in the single oracle candidate setting.

A Appendix946

A.1 Dataset Licenses947

• NQ: Apache License 2.0948

• Wikipedia: Creative Commons Attribution949

Share Alike, GNU Free Documentation Li-950

cense family.951

• Fineweb-edu: Open Data Commons License952

Attribution family.953

• PubLayNet: Community Data License Agree-954

ment – Permissive, Version 1.0.955

• VISA Datasets: Our crafted datasets follow956

the same license as the source of the docu-957

ments.958

A.2 Model Backbone Licenses959

• Qwen2-VL-72B-Instruct: Qwen LICENSE960

AGREEMENT.961

• Qwen2-VL-2B-Instruct: Apache License.962

• Qwen2-VL-7B-Instruct: Apache License.963

• VISA Models: Our fine-tuned models follow964

the same licenses as the original model back-965

bone.966

A.3 Bounding Box Target967

Table 5 shows the impact of different bounding968

box target representations and cropping strategies969

during training. Training with random cropping970

and absolute coordinate values achieves a balance971

between in-domain performance on Wiki-VISA972

(54.2%) and zero-shot generalization to Paper-973

VISA (27.8%) in bounding box accuracy. Remov-974

ing random cropping slightly improves Wiki per-975

formance but drastically reduces zero-shot general-976

ization, indicating that random cropping enhances977

the model’s robustness to varied input sizes. Nor-978

malizing coordinate values achieves moderate per-979

formance on Wiki-VISA but fails on Paper-VISA,980

Model
Avg [<1] Passage [>1] Passage non-Passage

bbx ans bbx ans bbx ans bbx ans

Zeroshot Prompt
Qwen2-72B-VL 1.5 60.4 3.4 58.5 0.1 54.9 0.9 67.9
gpt4o 0.0 52.8 0.0 50.9 0.0 43.3 0.0 64.3

Fine-tune
QWen2-VL-2B 37.5 57.1 70.0 61.1 18.7 44.9 23.8 65.3
QWen2-VL-7B 54.2 65.2 75.6 66.5 50.1 56.0 36.8 73.1
Phi3-Vision 34.0 49.8 59.9 54.5 19.1 40.2 22.9 54.6

Table 6: Effectiveness of VISA prompted or finetuned
with model other than Qwen2-VL in the single oracle
candidate setting on Wiki-VISA.

suggesting that absolute bounding box values are 981

better suited to our experiments. 982

The “No Bounding Box” row represents a vanilla 983

visual retrieval-augmented generation setup with- 984

out visual source attribution, where models gen- 985

erate answers without bounding box predictions. 986

VISA enables visual source attribution capability 987

while the effectiveness of answer generation is pre- 988

served at about the same level of effectiveness. 989

A.4 Training Hyper-parameters 990

The training objective for both single-candidate 991

and multi-candidate setting are next-token predic- 992

tion with cross-entropy loss. We fine-tuned the 993

models for two epochs in the single-candidate set- 994

ting, using LoRA with a learning rate of 1e-4, a 995

batch size of 64, and 4×H100 GPUs. For the multi- 996

candidate setting, we initialized the models with 997

weights from the single-candidate setup and trained 998

for one epoch with the same learning rate. We froze 999

the image encoder to reduce GPU memory usage 1000

in the multi-candidate setting. 1001

A.5 Model Backbone Choice 1002

Beyond the QWen2-VL-Instruct series, we also 1003

explored prompt GPT4o for zero-shot visual source 1004

attribution or fine-tuning Phi3-Vision-Instruct on 1005

the single oracle candidate setting on the Wiki- 1006

VISA dataset. As shown in 6, the QWen2-VL- 1007

Instruct series performs better in the VISA task. 1008

A.6 Detailed Results of Data Effectiveness 1009

We provide the detailed results of Table 4 in Ta- 1010

ble 7. 1011

A.7 Zero-Shot Prompting 1012

In addition to the zero-shot prompt 72B Qwen2- 1013

VL-Instruct model, as in Table 2, we further ex- 1014

plored zero-shot prompt 2B and 7B variants of 1015

Qwen2-VL-Instruct model as shown in Table 8. 1016

These results indicate similar trends as seen with 1017
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Train Data Wiki-VISA Paper-VISA
Average [<1] Passage [>1] Passage Non-Passage Average Passage Non-Passage

bbx ans bbx ans bbx ans bbx ans bbx ans bbx ans bbx ans

Wiki 54.2 65.2 75.6 66.5 50.1 56.0 36.8 73.1 27.8 36.2 20.5 32.6 35.1 39.7
Paper 0.2 42.6 0 46.3 0.4 33.5 0.1 48.1 68.2 43.8 58.1 41.6 78.2 45.9
FineWeb 37.6 50.2 48.9 45.1 57.3 52.3 6.6 53.1 22.0 43.3 26.5 41.7 17.4 44.9
Wiki+Fineweb 58.2 65.3 68.7 66.6 61.7 57.1 44.1 72.1 21.0 43.1 18.5 42.2 23.4 43.9
Paper+Fineweb 36.1 48.7 51.8 49.6 49.6 44.2 6.8 52.4 66.5 44.6 56.1 42.2 76.9 47.0
Wiki+Paper+Fineweb 58.1 64.8 69.9 65.0 58.7 56.7 45.8 72.7 67.6 44.3 55.9 41.5 79.3 47.1

Table 7: Effectiveness of VISA trained on different combinations training data for bounding box accuracy (bbx) and
answer accuracy (ans) in the single oracle candidate setting.

Single Oracle Candidate
[<1] Passage [>1] Passage non-Passage

bbx ans bbx ans bbx ans

Qwen2-2B-VL (zeroshot prompt) 0.1 30.7 0.0 22.7 0.0 35.9
Qwen2-7B-VL (zeroshot prompt) 1.7 52.0 0.1 39.7 0.1 57.8

Table 8: Effectiveness of prompting Qwen2-VL-2B and
7B in zero-shot, in the single oracle candidate setting in
Wiki-VISA.

larger models: zero-shot prompting methods are1018

not ready to effectively conduct the VISA task.1019

A.8 Prompt for Single Oracle candidate VISA1020

The following prompt template was used to for-1021

mat the model’s inputs and outputs for training the1022

Single Oracle Candidate VISA.1023

Model Input:
System:
Given a document image, your task is to answer the
question and locate the source of the answer via a
bounding box.

User:
{image} Image Size: {image.size}
Question: {question}

Model Output:
Assistant:
Answer: {answer}
Bounding Box: {bounding_box}

1024

We also explored different prompting strategies that1025

swap the order of Answer and Bounding Box in1026

the above prompt template and the comparison is1027

shown in Table 9.1028

Single Oracle Candidate
[<1] Passage [>1] Passage non-Passage

bbx ans bbx ans bbx ans

VISA-7B-Single 75.6 66.5 50.1 56.0 36.8 73.1
VISA-7B-Single-Swap 72.8 65.0 44.0 53.9 34.8 69.3

Table 9: Comparision between using the above prompt
template (VISA-7B-Single) and swapping the order of
Answer and Bounding Box. (VISA-7B-Single-Swap)

A.9 Prompt for Multi-candidate VISA 1029

The following prompt template was used to for- 1030

mat the model’s inputs and outputs for training the 1031

Multi-candidate VISA. 1032

Model Input:
System:
Given document images, your task is to answer the
question and locate the source of the answer via a
bounding box.

User:
{image1} Image Size: {image1.size}
{image2} Image Size: {image2.size}
{image3} Image Size: {image3.size}
Question: {question}

Model Output:
Assistant:
Answer: {answer}
Evidence Document: {index}
Bounding Box: {bounding_box}

1033
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A.10 Prompt for synthetic data generation1034

The following prompt was used for prompting1035

QWen2-VL-72B to generate synthetic questions1036

and answers for Paper-VISA and Fineweb-VISA1037

datasets.1038

System:
Ask a question that can be specifically answered by
the content in the red bounding box area and give a
short answer. The question can be a wh- question,
a yes/no question, or a how question, that can be
answered in a few words.
Output format:

Question: <question>
Short Answer: <short answer>

Or simply return ‘Empty’ if the bounding box area is
not visible or informative.

User: {image}
1039

An example of synthetic data from Paper-VISA can1040

be found in Figure 3.1041

A.11 AI Assistant Usage1042

GPT4o is used during the writing to correct gram-1043

mar errors and format tables.1044

A.12 Additional Qualitative Examples1045

In Figure 4 and Figure 5, we provide additional1046

qualitative examples of the success and failure1047

cases of our model VISA.1048

14



Figure 3: An example of synthetic data from Paper-VISA.
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Q: Is a japanese word meaning​
change for the​ better?

Q: When is morocco playing in 
the world cup?

Q: When did the second basic 
principles committee presents 
its final report?

Ground TruthSuccess Cases VISA Output

Figure 4: Success examples of visual source attribution on Wiki-VISA by VISA-7B-single.
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Q: Is it legal to carry a gun in a 
car in Texas?

Q: How much does the second 
place winner get in the US Open?

Q: how many episodes in season 
2 of the durrells in corfu?

Ground TruthFailure Cases VISA Output

Figure 5: Failure examples of visual source attribution on Wiki-VISA by VISA-7B-single.
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