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ABSTRACT

Interference is ubiquitous when conducting causal experiments over networks.
Except for certain network structures, causal inference on the network in the pres-
ence of interference is difficult due to the entanglement between the treatment
assignments and the interference levels. In this article, we conduct causal infer-
ence under interference on an observed, sparse, but connected network, and we
propose a novel design of experiments based on an independent set. Compared to
conventional designs, the independent-set design focuses on an independent sub-
set of data and controls their interference exposures through the assignments to
the rest (auxiliary set). We provide a lower bound on the size of the independent
set from a greedy algorithm and justify the theoretical performance of estimators
under the proposed design. Our approach is capable of estimating both spillover
effects and treatment effects. We justify its superiority over conventional methods
and illustrate the empirical performance through simulations.

1 INTRODUCTION

Randomized experiments are widely regarded as the gold standard for estimating causal effects.
However, the spillover effect is ubiquitous in experiments when one unit’s treatment affects others’
outcomes, where the stable unit treatment value assumption (SUTVA) (Imbens & Rubin, 2015) is
violated. Examples include the traditional agricultural field experiments (Zaller & Köpke, 2004), ed-
ucational studies (Rosenbaum, 2007), econometric assumptions (Banerjee et al., 2013; Johari et al.,
2020), and social networks (Phan & Airoldi, 2015). The spillover effect is also called “interference”,
and the two names are used interchangeably in the literature.

Estimating causal effects in the presence of interference is usually difficult, except for certain spe-
cial cases. For instance, when the population of units can be well-partitioned into several isolated
clusters, randomized saturation design (Hudgens & Halloran, 2008) and its variations (for exam-
ple, Eckles et al. (2017), Owen & Varian (2020)) has shown success in estimating causal effects
involving interference by controlling the interference level at each cluster with a pre-determined
saturation. The difficulties in estimating spillover effects on a well-connected network are two-fold.
The first is the entanglement between the treatment assignments and the spillover effects received
by the units. Because the spillover effects received by the units are determined by the interference
relationships and the assignment of all units, one cannot achieve separate controls on the treatment
and the spillover of all units. The second difficulty comes from the collapse of the spillover effect.
A completely randomized experiment on all units anchors the spillover effect received by each unit
at its expectation for large networks because of the law of large numbers. In estimating spillover
effects or total treatment effects, where we prefer diversified interference levels for the units, the
collapse gives rise to an increase in variance and a reduction in power.

Although the individual treatment assignments and the interference received cannot be controlled
independently for the whole dataset, an approximately separate control is feasible for a subset of
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the dataset. We propose a novel design of experiments on the network, where we focus on a high-
quality subset of units. The subset contains non-interfering units and is called the “independent set”,
where we borrow the name from graph theory to emphasize that there is no edge in the independent
set. The rest of the units form the “auxiliary set”, which provides interference to the units in the
independent set. The partitioning of the independent and auxiliary sets re-gains separate controls
over the treatment and the interference on the independent set. The approach can be viewed as a
trade-off between the quantity and the quality of data. The independent set has a smaller sample size
compared to the full dataset. However, due to the possibility of separate controls of their treatments
and interference, observed outcomes from the independent set units provide more information for
the causal effect and, therefore, are more efficient for causal inference purposes.

This paper is organized as follows: Section 2 discusses related studies and summarizes our contri-
bution. We formally define the causal effect under interference and introduce the independent set
design in Section 3. Section 4 provides the theoretical foundation and quantifies the performance. In
Section 5, we evaluate the performance of our approach on simulated data. In Section 6, we discuss
and highlight potential future work. Theorem proofs are provided in the Appendix.

2 RELATED WORK AND OUR CONTRIBUTION

In classical methods for randomized experiments, a key assumption is that there is no interference
among the units, and the outcome of each unit does not depend on the treatments assigned to the
other units (SUTVA). However, this no-interference assumption is not plausible on networks. Many
approaches are proposed to address the interference problem. First, researchers improve experi-
mental designs to reduce interference, such as the cluster-based randomized design (Bland, 2004),
group-level experimental designs (Sinclair et al., 2012; Basse et al., 2019), randomized saturation
design (Hudgens & Halloran, 2008), and graph cluster randomization (Ugander et al., 2013; Eck-
les et al., 2017; Ugander & Yin, 2023). These approaches aim to reduce interference by clustering
and assume that interference only exists within units in the cluster and that there is no interference
between clusters (known as partial interference (Sobel, 2006)). However, when the isolated cluster
assumption is violated, the randomized saturation design fails to estimate effects accurately (Cai
et al., 2022). To extend the cluster-based randomized design, ego-clusters design (Saint-Jacques
et al., 2019) is proposed to estimate spillover effects, which requires non-overlapping ego-clusters.
Karwa & Airoldi (2018) introduced a simple independent set design, which only focuses on esti-
mating treatment effect and has no control of bias/variance of the estimator. Unlike graph cluster
randomization and ego-cluster randomization, which require non-overlapping clusters, our design
allows units to share neighbors. Furthermore, recent studies incorporate network structure in the
experiment based primarily on the measurement of local neighbors of units (Awan et al., 2020), and
they estimate causal effects by matching the units with similar network structures. Some studies
use special network structures in designs to relax SUTVA assumption and estimate causal effects
(Aronow & Samii, 2017; Toulis & Kao, 2013; Yuan et al., 2021). In another direction, some stud-
ies leverage inference strategies, and they conduct a variety of hypotheses under network inference
(Athey et al., 2018; Rosenbaum, 2007; Pouget-Abadie et al., 2019b; Sussman & Airoldi, 2017).
When there exists a two-sided network or two-sided market for units, for example, consumers and
suppliers, researchers proposed bipartite experiments (Pouget-Abadie et al., 2019a; Holtz et al.,
2020; Doudchenko et al., 2020; Zigler & Papadogeorgou, 2021) to mitigate spillover effects. In
bipartite experiments, two distinct groups of units are connected together and form a bipartite graph.
In contrast, our approach generates two sets from units that belong to one group in a network. In ad-
dition, an increasing number of studies focus on observational studies on networks (Liu et al., 2016;
Ogburn & VanderWeele, 2017; Forastiere et al., 2021). However, these methods require structural
models and need to identify confounders.

Our method makes several key contributions: First, we propose a novel design that partitions data
into two disjoint sets to gain separate controls on the treatment and the interference. Second, in
contrast to most previous studies, which only focus on estimating the treatment effect or spillover
effect, our design works as a general framework for network experiments involving interference
and is capable of various causal tasks (estimating both treatment and spillover effects). Third, the
treatment assignments on the two sets can be optimized directly to control the bias/variance of
the estimator. The connection between the objective function and the bias/variance is discussed
in Section 4. Fourth, we provide theoretical guarantees, including an almost-sure lower bound on
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Table 1: Comparison of designs for estimating spillover effects

Design Network Assumption Sample Size∗ Interference Control

Independent Set random, sparse (n log s)/s high
Ego-clusters random, sparse n/(s+ 1) full

Randomized Saturation isolated clusters n partial
Completely Randomized no n no

∗: number of units used for inference, n: network size, s: average degree

the sample size and the analytic bias/variance for the estimators. Finally, unlike previous studies,
which require SUTVA assumptions and no interference between units or are restricted to special
network structures to mitigate the spillover effects, our approach does not require SUTVA and could
be implemented in arbitrary networks.

In Table 1, we compare our method to a few competitive designs in terms of assumptions on net-
works, effective sample size, and the ability to control interference.

3 INDEPENDENT-SET DESIGN

3.1 POTENTIAL OUTCOMES AND CAUSAL EFFECTS UNDER INTERFERENCE

Consider a set of n experimental units labeled with i = 1, . . . , n. Each of them is assigned with
a treatment Zi ∈ {0, 1}, for which we denote Zi = 1 for treated, Zi = 0 for control, and Z :=
(Z1, . . . , Zn) for the full treatment vector. Under Rubin’s framework of potential outcomes (Imbens
& Rubin, 2015), we assume Yi(Z) is the potential outcome of unit i that would be observed if the
units were assigned with the treatment vector Z. We say ”unit i is interfered by unit j” when Yi

depends on Zj , for i ̸= j. All the pairwise interference relationships can be represented by a graph
G = (V,E), where V = {1, . . . , n} is the vertex set, and (i, j) ∈ E if units i and j interfere with
each other. Here, we assume all pairwise interference is symmetric such that G can be reduced to
an undirected graph with each undirected edge representing the original bi-directed edges. The left
panel in Figure 1 shows a diagram of 12 units and 18 interfering pairs.

Given the graph G, we write the unit i’s potential outcome as Yi(Zi,ZNi), where Ni := {j ∈ V :
(i, j) ∈ E} is the neighbor of unit i, and ZNi

:= (Zj)j∈Ni
is the neighbor treatment (sub-)vector.

Following Forastiere et al. (2021); Cai et al. (2022), we further assume that Yi depends on unit i’s
neighbor through the proportion of treated neighbors, which is defined by

ρi := |Ni|−1
∑
j∈Ni

Zj . (1)

Assumption 1 assumes the interference on the proportion of treated neighbor assumption. In this
paper, we simply write Yi(Zi, ρi) : {0, 1} × [0, 1]→ R as the potential outcome of unit i.

Assumption 1 (interference on the proportion of treated neighbors) Let z and z′ be two treat-
ment vectors, and let Yi(Z) be the potential outcome of unit i. We assume

Yi(z) = Yi(z
′) whenever zi = z′i and ρi = ρ′i,

where ρi and ρ′i are the proportion of treated neighbors induced from z and z′, correspondingly.

Furthermore, for any two tuples (z, ρ), (z′, ρ′) ∈ {0, 1}×[0, 1], we define the unit-level causal effect
as τi(z, ρ, z′, ρ′) := Yi(z, ρ)− Yi(z

′, ρ′), with certain special cases defined as

(direct effect) τ
(d)
i (ρ) := τi(1, ρ, 0, ρ),

(spillover effect) τ
(i)
i (z, ρ, ρ′) := τi(z, ρ, z, ρ

′),

(total effect) τ
(t)
i := τi(1, 1, 0, 0).

The direct effect measures the marginal effect of zi under a given level of interference. The indirect
effect relates to the effect of interference and is often called the “spillover effect”. The total treatment

3



Published as a conference paper at ICLR 2024

1

2
3

4

5

6

7

8
9

10

11

12

1

3

4

7

9

10

2

5

6

8

11

12

Independent Set Auxiliary Set

1

3

4

7

9

10

2

5

6

8

11

12

ZI ZA

Figure 1: Illustration of Independent Set design. (Left) Example graph. (Middle) The graph is
partitioned into an independent set and an auxiliary set. (Right) Conduct an experiment on the
independent set and the auxiliary set. Shaded nodes denote the treated nodes.

effect measures the change in outcome when all units are treated vs all units are controlled. Note
that the total treatment effect can be decomposed as a combination of direct and indirect effects such
that τ (t)i = τ

(d)
i (0) + τ

(i)
i (1, 1, 0).

Experimenters are usually interested in the population-level average effects, which are defined as
τ̄(z, ρ, z′, ρ′) := n−1

∑n
i=1 τi(z, ρ, z

′, ρ′). The average direct / spillover / total treatment effect is
defined in a similar way. The average total treatment effect τ̄ (t) is of particular interest because it
measures the average change in outcomes when all units are assigned to treatment. Further discus-
sions on causal effects under interference can be found in Forastiere et al. (2021).

3.2 INDEPENDENT-SET DESIGN

We disentangle the unit-level treatments and the interference by partitioning the units V into two
sets, VI and VA. Let GI = (VI , EI) be the sub-graph of G by restricting it to the vertex set VI , and
GA = (VA, EA) be the sub-graph by restricting to VA. Specifically, we require GI to be a null graph
such that EI = ∅, or equivalently, VI is an independent set of G. We call the counterpart VA as
the auxiliary set. The middle panel in Figure 1 gives one such partition for the interference graph
in the left panel. We will later see that the two sets play different roles in the inference.

Denote the treatment vectors on the independent set VI and on the auxiliary set VA by ZI and ZA,
correspondingly. Define the |VI | × |VA| interference matrix Γ between VI and VA by [Γ]ij :=

d−1
i I{(i, j) ∈ E}, for all i ∈ VI , j ∈ VA, where di is the degree of unit i in G, and I{·} is

the indicator function. The interference vector on independent set ρI := (ρi)i∈VI
is given by

ρI = ΓZA. Because Γ is a constant matrix when the graph G is observed, ρI is determined by
the auxiliary set’s treatment vector ZA. If we restrict our estimation to the independent set VI ,
the unit-level treatments ZI and the interference ρI can be separately controlled through ZI and
ZA, respectively. We call such a design ”independent set design”, which partitions the dataset into
the independent set and the auxiliary set, controls the treatment and interference separately, and
constructs an estimator based on the observed outcomes from the independent set.

The assignments for ZI and ZA can be designed to accomplish different causal inference goals. For
example, to estimate the average direct effect τ̄ (d)(ρ), one can assign ZI by completely random-
ized design and optimize ZA by minimizing ∥ΓZA − ρ∥1. To estimate the average indirect effect
τ̄(z, 1, 0), one can assign Zi = z for all i ∈ VI and optimize ZA by maximizing Var[ΓZA]. To
estimate the average total treatment effect, one can optimize ZA by maximizing Var[ΓZA] and let
Zi = 1{ρi>0.5} for all i ∈ VI . In the right panel of Figure 1, we provide one such assignment of ZI

and ZA for estimating the total treatment effect. The next sections will discuss the implementations
for different causal inference tasks.

Two aspects are compromised to improve the independent set’s data quality. The first one is the
sample size. Independent set design restricts estimation by using only observations of the indepen-
dent set, which is usually a fraction of the dataset but of higher quality in estimation. The second
aspect that is compromised is the bias from the representativity of the independent set because the
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average effect on the independent set is not necessarily identical to the one on the whole dataset.
The unbiasedness is achieved when we assume the observed interference graph is random and is
unconfounded with the potential outcomes. We discuss the assumptions in Section 4.1.

Algorithm 1: Greedy algorithm for finding independent set
Input: graph G = (V,E)
Output: independent set VI

VI ← ∅
while |V | > 0 do

Choose i from V uniformly
VI ← VI ∪ {i}
V ← V \ {j ∈ V : (i, j) ∈ E or i = j}

return VI

Before proceeding to different design implementations, we give a greedy algorithm for finding a
locally largest independent set in Algorithm 1. The independent set of a graph is not unique in
general — any subset of an independent set is another independent set. For inference purposes, one
would expect the variance of the estimator scales as O(|VI |−1). Therefore, the goal is to find the
largest independent set, which is known as NP-hard (Robson, 1986). In practice, we adopt the fast
greedy algorithm that can find the local largest independent set in linear time.

3.3 INFERENCE

In this section, we assume the two sets VI and VA have been obtained through the aforementioned
greedy algorithm and discuss the designs of the assignments on ZI and ZA for different inference
tasks. For simplicity, we denote their sizes |VI | and |VA| by nI and nA, respectively. Next, we
discuss the estimations of the direct treatment effect and spillover effect separately.

3.3.1 ESTIMATING AVERAGE DIRECT EFFECTS

To estimate the average direct effects τ̄ (d)(ρ), one wishes to find an assignment vector ZA on the
auxiliary set such that all independent units’ interference received is close to ρ. The optimal assign-
ment vector can be found by the following optimization.

min
ZA∈{0,1}nA

∥ΓZA − ρ1∥1. (2)

On the other hand, the treatment vector ZI for the independent set can be assigned randomly with
a completely randomized design such that half of the units are randomly assigned to treated. The
difference-in-means estimator on the independent set can be constructed as

τ̂ (d)(ρ) =
1

nI/2

∑
i∈VI

Y
(obs)
i Zi −

1

nI/2

∑
i∈VI

Y
(obs)
i (1− Zi), (3)

where Y
(obs)
i is the observed outcome of unit i.

The optimization in equation 2 is a convex programming on a binary/integer space with an objective
function bounded below by 0. When ρ = 0 or 1, the optimization equation 2 has a trivial but perfect
solution as ZA = ρ1 such that all the interference of independent units matches ρ exactly. However,
this lower bound is not attainable for general 0 < ρ < 1. As we will later see in Section 4.3.1, the
objective function in equation 2 is directly related to the bias of the estimator in equation 3.

3.3.2 ESTIMATING AVERAGE SPILLOVER EFFECTS AND TOTAL TREATMENT EFFECTS

When estimating the average indirect effect τ̄ (i)(z, 1, 0) or the average total treatment effect τ̄ (t),
we hope the interference received by the independent set units spreads to the two extremes: either
ρi = 0 for empty interference or ρi = 1 for saturated interference. Therefore, we propose to
maximize the variance of (ρi)i∈VI

in the following optimization:

max
ZA∈{0,1}nA

ZT
AΓ

T

[
I − 1

nI
11T

]
ΓZA. (4)
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The above optimization is a concave quadratic programming, and the support can be expanded
to its convex hull: [0, 1]nA while keeping the same solution. The objective function in equa-
tion 4 is bounded below by nI/4, the largest eigenvalue of I − n−1

I 11T , by taking ΓZA =
(1, . . . , 1, 0, . . . , 0). The optimum may not be attainable when it is outside the manifold of Γ.

Consider a linear additive structure of the potential outcomes such that

Yi(Zi, ρi) = α+ βZi + γρi + ϵi, (5)

where ϵi represents the heterogeneity in potential outcomes and we assume Var[ϵi] = σ2.

With the additive linear model in equation 5, the causal effects are written in a parametric form
such that the direct effect is β, the spillover effect is γ, and the total treatment effect is β + γ.
The coefficients can be estimated through standard linear regression estimators for the units in the
independent set. Specifically, the estimators are

(α̂, β̂, γ̂)T = (XTX)−1XTYI ,

where X = [1,ZI ,ρI ] is the design matrix and YI is the outcome vector on the independent set.

The variance of the estimators β̂ and γ̂ depend inversely on the variance of ZI and ρI , respectively.
The optimization in equation 4 minimizes the variance of linear regression estimators. Detailed
discussions on the variance of ρI and the variance of the estimator are provided in Section 4.3.2.

Notice that difference-in-means estimators can be used nonparametrically to estimate spillover or
total treatment effects. However, this results in fewer units with the required interference levels and,
therefore, a large variance.

4 THEORETICAL RESULTS

4.1 ASSUMPTIONS

We first list a few more assumptions that are necessary for subsequent analysis.

Assumption 2 (super-population perspective) We view the n units from the super-population per-
spective such that their potential outcomes are i.i.d. from some super-population distribution.

In Assumption 2, we assume the sample units are i.i.d. from a super-population such that both VI and
V can be viewed as representative finite samples. Furthermore, if we denote τ̄I as the average causal
effects on the independent set VI , then under Assumption 2, we have E[τ̄I ] = E[τ̄ ], which gives the
unbiasedness of average causal effect on VI with respect to the (full) sample average effects.

Assumption 3 (unconfoundedness of network) We assume the observed network G is a realiza-
tion of random network, which is unconfounded with the units’ potential outcomes such that G ⊥⊥ Y ,
where Y := {Yi(Zi, ρi) : i ∈ [n], Zi ∈ {0, 1}, ρi ∈ [0, 1]} is the table of potential outcomes.

Furthermore, we assume the network formation is independent of the potential outcomes in As-
sumption 3. Note that the greedy algorithm of finding the independent set in Algorithm 1, and the
optimizations of ZA as in equation 2 and equation 4 are not node-symmetric — vertices with dif-
ferent degrees have different probabilities of being assigned to VI . It gives rise to the selection bias
of the set VI . Assuming the network unconfoundedness, the selection bias from a single sample is
averaged if we consider multiple sampling repetitions and network randomization.

4.2 THE GREEDY ALGORITHM

The first question at hand is how large the set VI we can find from a random graph G. Such a graph
always exists that one can hardly find a large independent set (for example, the complete graph). Due
to the randomness of graph G, we can show such extreme cases occur with a negligible probability as
n→∞. We consider the Erdös-Rényi random graph where each pair of units independently forms
an edge with probability p = s/n. The random graph has an expected average degree of pn =
s. Note that most networks of interest (e.g., social networks) are connected and sparse networks.
Therefore, we assume s = o(n) for sparsity and assume s = Ω(log n) for connectivity. Theorem 1
gives a lower bound on the size of the independent set VI resulting from Algorithm 1.
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Theorem 1 (lower bound on the greedy algorithm) Consider an Erdös-Rényi random graph G
with n vertices and edge probability p = s/n for s ∈ Ω(log n). Then, with high probability,
the independent set VI from the greedy algorithm yields a size at least log s

s n.

Note that Algorithm 1 is a greedy approximation in finding the locally largest independent set.
Dani & Moore (2011) discussed the size of the globally largest independent set for random graphs.
The resulting independent set has a similar order of size compared to the globally optimal one. In
the egocentric design (Saint-Jacques et al., 2019), the number of ego-clusters is upper bounded by
n/(s+ 1), which is smaller than ours by a factor of log s.

4.3 ESTIMATION PERFORMANCE

In this section, we analyze the performance of the causal estimators for the tasks discussed in Sec-
tion 3.3 and provide additional insights into the optimizations in equation 2 and equation 4.

4.3.1 ESTIMATING AVERAGE DIRECT EFFECT

We first investigate the performance of the difference-in-means estimator in equation 3 for the direct
effect. Recall that in order to construct τ̂ (d)(ρ), we first determine ZA through the optimization in
equation 2, and then randomly assign half of VI to treated through a completely randomized design.
Given the sample set, including the potential outcomes Y and the graph G, for any assignment ZA

on the auxiliary set, we provide an upper bound for the (conditional) bias and variance in Theorem 2.

Theorem 2 (bias and variance for estimating direct effects) Suppose Assumptions 1, 2 and 3
hold, and the potential outcomes Yi(z, ρ) is uniformly Lipschitz in ρ such that there exists L > 0
satisfying |Yi(z, ρ1) − Yi(z, ρ2)| ≤ L|ρ1 − ρ2| , for all i ∈ [n], z ∈ {0, 1} and ρ1, ρ2 ∈ [0, 1].
Consider the estimator in equation 3. We have

E[τ̂ (d)(ρ)− τ̄ (d)(ρ) | Y,G,ZA] ≤
2L

nI
∥∆∥1, and∣∣∣∣Var[τ̂ (d)(ρ) | Y,G,ZA]−

1

nI
SI [Yi(1, ρ) + Yi(0, ρ)]

∣∣∣∣ ≤ 4

nI(nI − 1)

(
LYmax∥∆∥1 + L2∥∆∥21

)
,

where ∆ = ΓZA − ρ1 is the deviation of interference from the target ρ, SI [Yi(1, ρ) + Yi(0, ρ)] =
(nI − 1)−1

∑
i∈VI

(Yi(1, ρ)+Yi(0, ρ)− Ȳ (1, ρ)− Ȳ (0, ρ))2 with Ȳ (z, ρ) = n−1
I

∑
i∈VI

Yi(z, ρ) is
the sample variance of the potential outcomes on VI , and Ymax = maxi∈VI

|Yi(1, ρ) + Yi(0, ρ)−
Ȳ (1, ρ)− Ȳ (0, ρ)| is the maximum deviation of potential outcomes from their mean on VI .

∆ represents the distance between the interference received by the independent units and the target
value ρ. When ∆ = 0, the design is equivalent to a completely randomized experiment. In the
general case, the optimization in equation 2 minimizes the upper bound for potential bias. Theorem 2
also tells the variance of τ̂ (d) is close to the completely randomized design on VI if ∥∆∥1 is small.

4.3.2 ESTIMATING SPILLOVER EFFECT AND TOTAL TREATMENT EFFECT

This section considers the two treatment effects discussed in Section 3.3.2. We focus on the linear
additive model in equation 5 such that the effects can be estimated through linear regression. Recall
that, for estimating either the spillover effect or the total treatment effect, the assignment ZA on the
auxiliary set is determined through the variance maximization in equation 4. We set ZI to z for
estimating the spillover effect and set ZI depending on ρI for the total treatment effect.

The following theorem gives the bias and variance for the linear regression estimator for the spillover
effects. The spillover effect estimator is always unbiased, and its conditional variance depends
inversely on the variance of the interference ρI of the independent units. The optimization in 4
corresponds to the minimization of the conditional variance of the linear regression estimator.

Theorem 3 (bias and variance for estimating spillover effects) Assume Assumptions 1, 2 and 3.
Consider a linear regression over the parametric potential outcome model equation 5 with estimated
parameters β̂, γ̂. Set VI = z1 and let τ̂ (i)(z, 1, 0) = γ̂. Then we have

E[τ̂ (i)(z, 1, 0) | Y] = τ̄ (i)(z, 1, 0) and Var[τ̂ (i)(z, 1, 0) | Y,G,ZA] =
σ2

nIVar[ρI ]
.
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Theorem 4 gives the unbiasedness of the total treatment effect estimator and provides a lower bound
on the variance. Such a lower bound is, in general, not attainable in the binary support of ZA, but it
provides the reciprocal dependence on Var[ρI ], which was maximized in the optimization 4 as well.

Theorem 4 (bias and variance for estimating total treatment effects) Assume Assumptions 1, 2
and 3. Consider a linear regression over the parametric potential outcome model equation 5 with
estimated parameters β̂, γ̂. Let τ̂ (t) = β̂ + γ̂. If |Corr(ZI ,ρI)| < 1, we have

E[τ̂ (t) | Y] = τ̄ (t), and Var[τ̂ (t) | G,ZA,ZI ] =
σ2

nI

Var[ZI − ρI ]

Var[ZI ]Var[ρI ]− Cov2[ZI ,ρI ]
.

The variance is lower bounded by σ2/(nIVar[ρI ]).

5 EXPERIMENTS

In this section, we implement the independent set design and validate results empirically on synthetic
graphs. In order to evaluate the performance of the proposed design, we conduct simulations under
a variety of simulated settings. The bias and variance of estimators are compared for completely
randomized design on the independent set (CR), completely randomized design on the full graph
(Full), ego-clusters, graph cluster, and Independent Set design (IS), which optimizes the assignments
on the auxiliary set. To illustrate the benefits of IS design, we implement the design to estimate
average spillover effects and average direct effects, respectively.

5.1 ESTIMATING AVERAGE SPILLOVER EFFECTS

First, we examine the performance of estimating average spillover effects for different designs. We
run experiments on 50 Erdös-Rényi random graphs (Erdős & Rényi, 1959) with n = 60, p = 0.1,
and estimate the spillover effects. The potential outcomes are randomly generated by Yi(Zi, ρi) =
α+βZi+γρi+U+ϵi, ∀i ∈ V , and we let baseline α = 1, treatment parameter β = 20, interference
parameter γ = 5, 10, 15, 20, U ∼ Unif(0, 1) and ϵi ∼ N(0, 0.5).

Results are displayed in Figure 2. The independent-set design outperforms all other methods in
estimating the average spillover effects. At different levels of interference, IS design shows the
lowest bias and variance. We notice that the IS design is more stable than the other methods, and
the variance of the IS design stabilizes at a very low level as spillover effects increase.

(a) Bias (b) Variance

Figure 2: Bias and variance to estimate the average spillover effects. The bands around the lines
represent the errors of the estimator for each value of Gamma.

To introduce diversity, we run experiments on distinct random graphs: Erdös-Rényi (Erdős & Rényi,
1959) G(n, p) , Barabási–Albert (Barabási & Albert, 1999) G(n,m) and small-world (Watts &
Strogatz, 1998) G(n, p). The potential outcomes are based on Yi(Zi, ρi) = αi+βZi+γρi+ϵi, ∀i ∈
V , and αi = 1, β = 20, γ = 10. ϵi ∼ N(0, 0.5). Each configuration is run 2,000 times. The
results of estimating spillover effects are summarized in Tables 2. As shown in Tables 2, IS design
outperforms all other methods on distinct settings and achieves the lowest bias and variance.
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Table 2: Performance in estimating average spillover effects under distinct random graphs.

CR IS Full Graph Cluster Ego-Clusters
Graph Parameters Bias Variance Bias Variance Bias Variance Bias Variance Bias Variance

n = 100, p = 0.10 0.598 0.468 0.398 0.242 0.473 0.399 0.497 0.418 0.428 0.491
n = 200, p = 0.15 0.392 0.188 0.315 0.124 0.366 0.178 0.384 0.192 0.342 0.187Erdös-Rényi
n = 400, p = 0.15 0.246 0.096 0.225 0.067 0.266 0.094 0.242 0.089 0.239 0.091

n = 100, m = 1 0.192 0.064 0.152 0.032 0.168 0.049 0.177 0.056 0.159 0.072Barabási–Albert n = 75, m = 1 0.239 0.055 0.135 0.041 0.181 0.051 0.185 0.067 0.176 0.079

n = 80, p = 0.05 0.303 0.165 0.212 0.087 0.263 0.089 0.274 0.093 0.232 0.117Small world n = 50, p = 0.05 0.351 0.093 0.243 0.036 0.277 0.044 0.296 0.061 0.264 0.089

5.2 ESTIMATING AVERAGE DIRECT EFFECTS

We will next implement an IS design to estimate average direct effects and evaluate perfor-
mance under various settings. Here, the potential outcomes are randomly generated according to
Yi(Zi, ρi) = αi + βZi + γρi + ϵi, ∀i ∈ V , and we have αi = 1, β = 20, γ = 10. ϵi ∼ N(0, 0.5).
We run experiments 2,000 times and record the bias and variance of estimators. Table 3 shows the
results of estimating average direct effects. In the presence of spillover effects, IS design achieves
the best performance (the lowest bias and variance). When SUTVA is violated, network interference
impairs the performance of conventional approaches. In this case, estimators in classical designs are
biased in estimating average direct effects. In contrast, IS design could mitigate the spillover effects
and improve performance by controlling treatment assignments on the auxiliary set.

Table 3: Performance of designs in estimating average direct effects under distinct random graphs.

CR IS Full Graph Cluster
Graph Parameters Bias Variance Bias Variance Bias Variance Bias Variance

n = 100, p = 0.1 0.262 0.035 0.117 0.009 0.261 0.023 0.221 0.024
n = 200, p = 0.1 0.193 0.038 0.094 0.005 0.188 0.015 0.156 0.013Erdös-Rényi
n = 400, p = 0.1 0.098 0.006 0.062 0.002 0.086 0.004 0.081 0.005

n = 80, m = 1 1.145 0.851 0.237 0.034 1.130 0.949 1.031 0.815Barabási–Albert n = 100, m = 1 1.207 0.693 0.278 0.026 1.296 0.832 1.139 0.742

n = 100, p = 0.05 0.961 0.556 0.278 0.024 1.184 0.791 1.105 0.716Small world n = 50, p = 0.05 1.101 0.869 0.225 0.029 1.115 0.877 1.013 0.854

6 DISCUSSION AND CONCLUSION

Randomization experiments on networks can be biased due to interference among units, making
causal inference on units challenging. In this study, we propose a new randomized design that
separates units into independent and auxiliary sets to control interference. Our design can be applied
to any network and provides accurate estimations with good interpretability.

Whilst IS design allows us to improve the estimation of causal effects on networks, there are several
limitations. Due to the segmentation of units in a network, we can only estimate causal effects
on the independent set. The experiment’s sample size will be smaller than using the full network.
Moreover, the computational cost depends on the size of the auxiliary set, so it may take more time
to optimize the assignments on the auxiliary set. Another limitation is that our design depends on
observed networks. The performance of the proposed design on a misspecified network is unknown.
Future research includes improving the computational efficiency of the algorithm to optimize the
assignments on the auxiliary set and further extending it when the network is misspecified.
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Appendix

A PROOF OF THEOREM 1

In order to prove the lower bound, we follow the differential equation method in (Frieze & Karoński,
2016, Chapter 24).

Recall Algorithm 1, and let vt, t = 1, . . . , |VI | be the selected independent unit at step t. Denote
V (t) the set of vertices after step t in the algorithm such that V (0) = n and V (|VI |) = 0. Write
X(t) = |V (t)| as the number of remaining units after picking out t independent units. Then the
algorithm gives

X(t+ 1) = X(t)− 1− d(vt+1 | V (t)), for t = 0, . . . , |VI | − 1,

where d(vt+1 | V (t)) is the degree of vt+1 in the subgraph containing the vertex set V (t). Let
f(t, x) = −sx− (1− p) and

D =

{
(t, x) : − 1

n
< t < 1, 0 < x < 1

}
.

We now show the conditions (P1)-(P4) in (Frieze & Karoński, 2016, Chapter 24) are satisfied.

(P1): It is obvious X(t) < X(0) = n. Therefore, (P1) is satisfied with C0 = 1.
(P2): Since |X(t + 1) − X(t)| = d(vt+1 | V (t)) + 1 ≤ d(vt+1 | V0) + 1, where vt is the vertex
deleted at step t. We claim with high probability,

d(vt+1 | V0) ≤ max
v∈G

d(v | V0) ≤ 2(s+ log n)− 1.

It follows from

P
[
max
v∈G

d(v | V0) ≥ ξ

]
≤

∑
v∈G

P[d(v | V0) ≥ ξ]

(i)

≤ n exp

{
−n− 1

n
s

(
nξ

(n− 1)s
log

nξ

(n− 1)s
− nξ

(n− 1)s
+ 1

)}
≤ exp

{
log n− ξ log

ξ

s
+ ξ

}
,

where (i) follows from the Chernoff bound of binomial distributions (see, for example, Chapter 2 in
Wainwright (2019)).
By setting ξ = e2(s+ log n)− 1 > e2s, we have

P
[
max
v∈G

d(v | V0) ≥ e2(s+ log n)− 1

]
≤ ne−ξ ≤ e

ne2−1
e−e2s.

Therefore,
|X(t+ 1)−X(t)| ≤ e2(s+ log n)

is satisfied with probability at least 1− n1−e2e1−e2s ≥ 1− n−6e−6s.
(P3):Let E be the event that (P2) holds. Then,

|E(X(t+ 1)−X(t) | V (t), E)− f(t/n,X(t)/n)| = 0.

(P4): It is immediate that |f(t, x)− f(t′, x′)| = s|x− x′|.
To use Theorem 24.1 in Frieze & Karoński (2016), we set

C0 = 1

β = e2(s+ log n)

λ = nϵ−1/3(s+ log n)

γ = n−6e−6s

α = n3ϵe−6.
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Then we have X(t) = nz(t/n) +O(nϵ+2/3(s+ log n)) uniformly on 0 ≤ t ≤ σt, with probability
at least 1−O(n−6e−6s + n1/3−ϵe−n3ϵe−6

) = 1−O(n−6e−6s) ≥ 1−O(n−12).

z(t) satisfies the following ODE that:

z′(t) = f(t, z(t)) = −sz(t)− (1− p),

with initial condition that z(0) = X(0) = n. The solution is

z(t) = −1− p

s
+

(
1 +

1− p

s

)
e−st.

We have z(t) > 0 on
[
0, 1

s log
s+1−p
1−p

]
⊃

[
0, log s

s

]
. Therefore, with high probability, X(t) ≥ 0 for

t ≤ log s
s n.

In conclusion, we have at least log s
s n iterations in the greedy algorithm, resulting in an independent

set of size at least log s
s n with probability at least 1−O(n−12).

B PROOF OF THEOREM 2

We fix the potential outcomes Y , the graph G, and the assignment ZA for the auxiliary set. Recall
the difference-in-means estimator:

τ̂ (d)(ρ) =
1

nI/2

∑
i∈VI

Y
(obs)
i Zi −

1

nI/2

∑
i∈VI

Y
(obs)
i (1− Zi).

We have the expectation:

E[τ̂ (d)(ρ) | Y,G,ZA] =
1

nI

∑
i∈VI

Yi(1, ρi)−
1

nI

∑
i∈VI

Yi(0, ρi),

where we use the facts that ρi is fixed given G and ZA, and E[Zi] = 1/2. Therefore, the bias is∣∣∣E[τ̂ (d)(ρ) | Y,G,ZA]− τ̄ (d)(ρ)
∣∣∣ = ∣∣∣∣∣ 1nI

∑
i∈VI

[Yi(1, ρi)− Yi(1, ρ)]−
1

nI

∑
i∈VI

[Yi(0, ρi)− Yi(1, ρ)]

∣∣∣∣∣
≤ 2L

nI

∑
i∈Vi

|ρi − ρ|

=
2L

nI
∥ρI − ρ1∥1.

Next, we give the variance.

Var[τ̂ (d)(ρ) | Y,G,ZA]

=Var

[
1

nI/2

∑
i∈VI

[Yi(1, ρi) + Yi(0, ρi)]Zi

]

=
4

n2
I

∑
i∈VI

[Yi(1, ρi) + Yi(0, ρi)]
2Var[Zi]

+
4

n2
I

∑
i ̸=j∈VI

[Yi(1, ρi) + Yi(0, ρi)][Yj(1, ρj) + Yj(0, ρj)]Cov[Zi, Zj ]

=
1

n2
I

∑
i∈VI

[Yi(1, ρi) + Yi(0, ρi)]
2 − 1

n2
I(nI − 1)

∑
i ̸=j∈VI

[Yi(1, ρi) + Yi(0, ρi)][Yj(1, ρj) + Yj(0, ρj)]

=
1

nI
SI [Yi(1, ρi) + Yi(0, ρi)]
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Therefore, we have ∣∣∣∣Var[τ̂ (d)(ρ) | Y,G,ZA]−
1

nI
SI [Yi(1, ρ) + Yi(0, ρ)]

∣∣∣∣
=

1

nI
[2SI [Yi(1, ρi) + Yi(0, ρi)]− SI [Yi(1, ρ) + Yi(0, ρ)]]

=
1

nI
(2SI [δi, Yi(1, ρ) + Yi(0, ρ)] + SI [δi])

≤ 1

nI(nI − 1)

[
2∥δI∥1Ymax + ∥δI∥22

]
≤ 4

nI(nI − 1)

[
L∥∆I∥1Ymax + L2∥∆I∥21

]
,

where δi = Yi(1, ρi) + Yi(0, ρi)− Yi(1, ρ) + Yi(0, ρ) ≤ 2L∆i, and

Ymax = max
i∈Vi

∣∣∣∣∣Yi(1, ρ) + Yi(0, ρ)−
1

nI

∑
i∈VI

[Yi(1, ρ) + Yi(0, ρ)]

∣∣∣∣∣ .
.

C PROOF OF THEOREM 3

Consider the linear regression Yi ∼ α + βZi + γρi for i ∈ VI . When Zi is a constant as in the
design, the linear regression is equivalent to Yi ∼ α̃ + γρi, where α̃ := α + βz. By observing
τ̂ (i)(z, 1, 0) = γ̂, the result follows immediately from univariate linear regression.

D PROOF OF THEOREM 4

Let YI be the observed outcomes on the independent set such that YI = α1+βZI + γρI + ϵI . We
write the design matrix as

X = [1 ZI ρI ] =
[
1 Z̃I ρ̃I

] 1 Z̄I ρ̄I
0 1 0
0 0 1

 ,

where Z̄I and ρ̄I are sample means of ZI and ρI , correspondingly, and Z̃I and ρ̃I are de-meaned
versions of ZI and ρI , correspondingly.

Let α̂, β̂, γ̂ be the regression estimators. The unbiasedness of β̂ + γ̂ to the true value β + γ is
immediate. Now we calculate the covariance matrix such that

Cov[(α̂, β̂, γ̂)] = σ2[XTX]−1

= σ2

1 −Z̄I −ρ̄I
0 1 0
0 0 1

[
nI 0 0
0 nIVar[ZI ] nICov[ZI ,ρI ]
0 nICov[ZI ,ρI ] nIVar[ρI ]

]−1
 1 0 0
−Z̄I 1 0
−ρ̄I 0 1


=

σ2

nI

 1 −S−1(ZIρ2 − ρZIρ) S−1(ZIZIρ− ρZ2)

−S−1(ZIρ2 − ρZIρ) S−1Var[ρI ] −S−1Cov[ZI ,ρI ]

S−1(ZIZIρ− ρZ2) −S−1Cov[ZI ,ρI ] S−1Var[ZI ]

 ,

where S = Var[ZI ]Var[ρI ]− Cov2[ZI ,ρI ].
Therefore, we have

Var[β̂ + γ̂] =
σ2

nI

Var[ZI ] + Var[ρI ]− 2Cov[ZI ,ρI ]

Var[ZI ]Var[ρI ]− Cov2[ZI ,ρI ]
.

Consider the function f(λ):

λ 7→ Var[ZI ] + Var[ρI ]− 2λ

Var[ZI ]Var[ρI ]− λ2
.
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Then we have
df

dλ
= − 2(λ−Var[ZI ])(λ−Var[ρI ])

(Var[ZI ]Var[ρI ]− Cov2[ZI ,ρI ])2
.

Therefore, when λ2 < Var[ZI ]Var[ρI ], f(λ) takes its minimum at λ∗ = Var[ZI ] ∧ Var[ρI ] such
that

f(λ∗) =
1

Var[ZI ] ∧Var[ρI ]
≥ 1

Var[ρI ]
.

Therefore, we have

Var[β̂ + γ̂] ≥ σ2

nIVar[ρI ]
.

The lower bound can be obtained by choosing ZI = ρI ∈ [0, 1]nI , generally outside the binary
support for ZI .
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