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Abstract 

Background: Assigning chromatin states genome-wide (e.g. promoters, enhancers, 
etc.) is commonly performed to improve functional interpretation of these states. How-
ever, computational methods to assign chromatin state suffer from the following draw-
backs: they typically require data from multiple assays, which may not be practically 
feasible to obtain, and they depend on peak calling algorithms, which require careful 
parameterization and often exclude the majority of the genome. To address these 
drawbacks, we propose a novel learning technique built upon the Self-Organizing Map 
(SOM), Self-Organizing Map with Variable Neighborhoods (SOM-VN), to learn a set of 
representative shapes from a single, genome-wide, chromatin accessibility dataset to 
associate with a chromatin state assignment in which a particular RE is prevalent. These 
shapes can then be used to assign chromatin state using our workflow.

Results: We validate the performance of the SOM-VN workflow on 14 different sam-
ples of varying quality, namely one assay each of A549 and GM12878 cell lines and two 
each of H1 and HeLa cell lines, primary B-cells, and brain, heart, and stomach tissue. We 
show that SOM-VN learns shapes that are (1) non-random, (2) associated with known 
chromatin states, (3) generalizable across sets of chromosomes, and (4) associated 
with magnitude and multimodality. We compare the accuracy of SOM-VN chromatin 
states against the Clustering Aggregation Tool (CAGT), an unsupervised method that 
learns chromatin accessibility signal shapes but does not associate these shapes with 
REs, and we show that overall precision and recall is increased when learning shapes 
using SOM-VN as compared to CAGT. We further compare enhancer state assignments 
from SOM-VN in signals above a set threshold to enhancer state assignments from 
Predicting Enhancers from ATAC-seq Data (PEAS), a deep learning method that assigns 
enhancer chromatin states to peaks. We show that the precision-recall area under the 
curve for the assignment of enhancer states is comparable to PEAS.

Conclusions: Our work shows that the SOM-VN workflow can learn relationships 
between REs and chromatin accessibility signal shape, which is an important step 
toward the goal of assigning and comparing enhancer state across multiple experi-
ments and phenotypic states.

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi 
cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Eicher et al. BMC Bioinformatics           (2021) 22:35  
https://doi.org/10.1186/s12859‑021‑03976‑1

*Correspondence:   
Machiraju.1@osu.edu; ewy.
mathe@nih.gov 
1 Department of Biomedical 
Informatics, The Ohio 
State University College 
of Medicine, 370 W. 9th 
Avenue, Columbus, OH 
43210, USA
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0003-1809-4458
http://orcid.org/0000-0003-0901-0777
http://orcid.org/0000-0002-8101-8119
http://orcid.org/0000-0003-4491-8107
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-03976-1&domain=pdf


Page 2 of 16Eicher et al. BMC Bioinformatics           (2021) 22:35 

Keywords: Chromatin accessibility, Self-organizing maps, Regulatory elements, 
DNase-seq, ATAC-seq, Promoters, Enhancers, Chromatin state assignment, RPKM signal 
shape, Machine learning

Background
Regulatory elements (REs) denote regions of chromatin that promote, enhance, repress, 
or insulate transcription [1, 2]. Genetic variants or epigenetic modifications in REs are 
associated with many diseases, including migraines [3–5], cancer [6–8], coronary artery 
aneurism [9, 10], and spinal muscular atrophy [11, 12]. However, globally associating 
regions of the human genome with REs is experimentally expensive in that it typically 
requires multiple assays.

The location of REs can be measured genome-wide using chromatin-accessibility-
based methods, such as FAIRE-seq [13], DNase-Seq [14], ATAC-seq [15], NicE-seq [16], 
MNase-seq [17], and NOMe-seq [18], as reviewed in [19]. In addition, machine learning 
methods have been developed to assign chromatin state, including Spectacle [20], CoSBI 
[21], Segway [22], and ChromHMM [23]. However, assigning enhancer, promoter, or 
other chromatin states requires evaluation of histone modifications or transcription fac-
tors [2, 24, 25]. This is typically done using multiple ChIP-seq assays, which require 1–20 
million cells per assay [26] or specialized protocols and antibodies [27].

Thus, new computational methods are needed to assign chromatin state at the genome 
scale from a single chromatin accessibility experiment. Ideally, these computational 
methods should include signal shape rather than peak location alone. Traditional peak 
caller performance in DNase-seq assays is heavily dependent on method and parame-
ter choice [28] and may therefore miss variations in chromatin accessibility signal that 
are relevant to the task of assigning chromatin state. Signal shape, on the other hand, 
captures the richness of these variations and has been leveraged successfully in related 
tasks, such as identifying peaks missed by traditional peak callers [29, 30], clustering 
regions in ChIP-seq assays [21], and characterizing transcriptional regulation and gene 
expression [31].

Currently, only 2 methods, Predicting Enhancers from ATAC-Seq Data (PEAS) and 
the Clustering Aggregation Tool (CAGT), can assign chromatin state genome-wide 
using chromatin accessibility data alone [32]. PEAS uses peak shape characteristics and 
optional genomic features including GC content and sequence motif to assign chromatin 
state to peaks after promoters have been removed. While PEAS achieves high accuracy, 
it (1) only assigns chromatin state within peaks, not the entire genome; (2) is limited 
to differentiating enhancer states from other REs after promoters have been removed; 
and (3) uses deep learning and thus has limited interpretability in terms of the func-
tion by which shape and genomic features predict chromatin state assignment. CAGT 
uses a combination of k-means clustering and hierarchical clustering to associate chro-
matin accessibility signal shape (i.e. variation of signal intensities across a region) with 
other epigenetic factors (e.g. transcription factor binding sites, nucleosome positioning, 
and sequence content), which yields more interpretable results. Unlike PEAS, CAGT 
makes use of signal shape across the genome rather than peaks alone. However, CAGT 
is normally used to study transcription start sites (TSS) rather than whole chromo-
somes and has not been applied to chromatin state assignment. This makes applicability 
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to genome-scale assignments unclear, as only 5% of chromatin accessibility peaks are 
located within 2.5 kb of TSS [33].

Here, we present an improvement on the Self-Organizing Map (SOM), which we call 
SOM with Variable Neighborhoods (SOM-VN), by incorporating a signal-dependent 
calculation of neighborhood sizes when learning chromatin accessibility signal shapes 
from regions segmented across entire chromosomes. A SOM is a single-layer neural net-
work where each node and weight corresponds to a shape from a chromosomal region 
and its signal intensity, respectively [34]. In our implementation, we enabled variation 
of a key parameter, neighborhood size, according to criteria based on signal intensity 
within a learned shape (Fig. 1). This enhancement allowed us to address imbalances in 
chromatin accessibility data where the majority of the genome is largely inaccessible (or 
below the floor) [35]. We then associated the set of shapes learned with ChromHMM 
annotations from the Roadmap Epigenomics Project, which incorporate experimental 
annotations such as CpG islands, GENCODE transcription start sites, and transcription 
factor binding sites [36].

Results
We tested SOM-VN using 14 publicly available DNase-seq assays representing diverse 
cell types, data quality, and read count (Supplementary Table 1 in Additional file 1) from 
ENCODE. These included 4 cell lines, 1 primary cell culture, and 3 tissue samples. We 
determined the quality of each sample using the Signal Portion of Tags (SPOT) score 
defined by ENCODE, which approximates signal to noise ratio using the percentage of 
reads falling into peaks. We obtained samples with SPOT scores below and above the 
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Fig. 1 The SOM-VN workflow learns chromatin accessibility signal shapes and associates them with REs. 
a SOM-VN learns signal shapes from input DNase-seq signal which are then assigned to RE-associated 
chromatin states (e.g. promoter, enhancer, weak). b To learn shapes on each chromosome, SOM-VN uses an 
iterative training process which operates on a grid of nodes, where each node comprises one shape. Dotted 
circles represent the neighborhood of each node in an iteration. c Normalized DNase-seq signal segmented 
into regions is used as input to the SOM-VN training process. The learned shapes are then associated with 
ChromHMM annotations from Roadmap Epigenomics
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recommended threshold set by ENCODE (0.4) [37] for all cell types except A549 and 
GM12878, for which samples above the recommended SPOT scores were unavailable. 
With the exception of the GM12878 and H1 cell types, all samples with low SPOT scores 
also had read depths below the recommended threshold set by ENCODE (50 million) 
[37]. For the remainder of this manuscript, we denote high SPOT samples with (H) and 
low spot samples with (L).

We concatenated reads for isogenic replicates in GM12878 and A549 cell types, and 
we concatenated reads for biological replicates in brain tissue (H). The percentage 
of peaks passing an Irreproducible Discovery Rate cutoff of 0.05 across replicates was 
greater than 50% in all samples. Likewise, when we learned shapes on each replicate sep-
arately using SOM-VN and used these to assign chromatin state, we found between 20 
and 80% overlap for all REs in all cell types (Supplementary Table 2 in Additional file 1).

Validation of model

We tested SOM-VN against 2 null models. To evaluate the extent to which shapes were 
representative of the variations in signal across regions in a chromosome, we computed 
the cross-correlation between regions and their matching shapes and compared these 
against the cross-correlation between regions and matching shapes learned using per-
muted signal. To evaluate the veracity of associations between shapes and chromatin 
states as represented by REs, we permuted the ChromHMM annotation file for each cell 
type, associated shapes with REs using the permuted annotations, and validated that the 
count and variety of associations learned were lower than using the original annotation 
file.

We used the Wilcoxon Rank-Sum Test to validate that the difference between cross-
correlation distributions for permuted and unpermuted signal differed significantly. 
For all REs and all samples, the difference was statistically significant at a Bonferroni-
adjusted cutoff of p = 0.05 (Supplementary Table 3 in Additional file 1). Distributions are 
shown in Fig. 2 and in Supplementary Fig. 1 in Additional file 2.

This result suggests that the shapes learned are more reflective of signal variations in 
the input than are randomized shapes. We note that, in a minority of samples, shapes 
that were associated with enhancer annotations were not uncovered: namely, H1 (L, H) 
and GM12878.

Notably, all shapes learned using permuted signal were associated with weak REs or 
had no association, suggesting that the shapes associated with enhancers and promoters 
are only recoverable in the original signal. In brain tissue (H), the distribution of cross-
correlations skews higher than in other samples, which may reflect lower signal-to-noise 
ratio in brain tissue (H) and the high read counts of the replicates in this sample (Supple-
mentary Table 4 in Additional file 1).

In the second null model, the permuted annotation model, only a single enhancer-
associated shape was found in 1 sample (i.e. A549), and no promoter-associated shapes 
were found in any sample. In contrast, the associations between unpermuted REs and 
shape included 60 promoter-associated shapes and 3 enhancer-associated shapes. All 
other associations in the permuted annotation model were with weak REs. This result 
is expected because of the imbalance in RE type coverage, as weak REs cover a higher 
percentage of the genome than promoter or enhancer REs (Supplementary Table  4 in 
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Additional file 1). We conclude that SOM-VN identifies non-arbitrary linkages between 
shape and annotation using chromatin accessibility experiments alone.

Peak coverage of SOM‑VN chromatin states

Because SOM-VN learns shapes without depending on peak callers, we evaluated 
whether there was any relationship between peaks and chromatin state assignments 
made by SOM-VN. We computed the percentage of promoter, enhancer, and weak 
assigned regions overlapping peaks (Supplementary Table  5 in Additional file  1). We 
found that between 86 and 100% of promoter-assigned regions overlapped peaks, com-
pared to between 36 and 100% of enhancer-assigned regions and between 3 and 60% 
of weak-assigned regions. This result supports the association between open chromatin 
and promoters, and to a lesser extent, open chromatin and enhancers.

Robustness of model across chromosomes

To evaluate whether SOM-VN yielded generalizable results across chromosomes, we 
calculated the precision and recall values obtained when training on 100 randomized 
subsets of 11 autosomes and testing on the remaining autosomes for the A549 sample, 
the H1 (L) sample, and the brain tissue (H) sample. Within cell types, precision and 
recall calculated in the test autosomes did not vary greatly for different sets of auto-
somes chosen for training (Fig.  3). All RE and cell types exhibited some consistency. 
Notably, chromatin state assignment performance was most consistent across iterations 
in H1 and A549 weak REs and in A549 and brain tissue promoters. Overall, brain tissue 
(H) had higher enhancer recall on average (0.53) than H1 (L) (0.01) and A549 (0.03) and 
lower promoter recall on average (0.28) than H1 (L) (0.67) and A549 (0.73), suggesting 
that chromatin state assignment performance exhibits some tradeoff between promoter 

Fig. 2 Regions exhibited higher cross-correlation with their matching shapes than with randomly learned 
shapes. The density plots indicate the distribution of cross-correlations between regions and their matching 
shapes for all regions, and the color denotes the RE annotation (red—weak, blue—enhancer, green—
promoter). Statistically higher cross-correlations were found between shapes learned using the original, 
unpermuted signal and their matching regions than between shapes learned using permuted signal and 
their matching regions. In all samples, the permuted shapes were associated with only weak or unknown REs
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and enhancer recall. In addition, precision values between 0.65 and 0.88 and recall val-
ues between 0.77 and 0.81 were found in weak REs for all samples. We note that weak RE 
states representing areas of heterochromatin could contribute to gene regulation [38].

Characteristics of shapes

We visualized a subset of shapes learned by SOM-VN on all chromosomes from brain 
tissue (H) (Fig. 4). A notable result was that promoter-associated shapes had the high-
est summits. This result was consistent with existing knowledge that chromatin is more 
accessible in regions proximal to TSS than in distal regions [33]. Intriguingly, some 

Fig. 3 The selection of chromosomes used for learning had little impact on precision and recall. Precision 
and recall were evaluated across 100 cross-chromosome runs, in which shapes were learned on 11 
randomly-selected autosomes and used to assign RE annotations to the remaining 11 autosomes. The 
tightness of the contours represents the spread of precision and recall values for each RE type across all 
runs, and the colors of the contours correspond to RE (red—weak, blue—enhancer, green—promoter). As 
exhibited by the low spread of precision and recall indicated by the contours, the choice of chromosomes 
did not significantly impact precision and recall, indicating generalizability of the workflow across 
chromosome subsets in a A549, b brain tissue, and c H1

Fig. 4 Example shapes learned on brain tissue exhibited differences in magnitude and multimodality by RE. 
In selected example shapes from brain tissue, differences in summit height and bimodality were apparent 
between promoter (green), enhancer (blue), and weak REs (red), where the name annotated near each 
shape’s summit is in Cell-type_chromosome_SOM-VN-node format
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enhancer-associated shapes shown in Fig.  4 were bimodal or multimodal, suggesting 
that these characteristics could be used to identify enhancer regions.

To evaluate whether these patterns were observable in other cell types, we computed 
the range of maxima for each RE and cell type, and we visually determined the percent-
age which were bimodal or multimodal. We found that, in general, promoter-associated 
shape maxima were higher than enhancer-associated shape maxima, which were higher 
than weak-associated shape maxima; however, some overlap existed between the groups 
(Supplementary Table 6 in Additional file 1). Additionally, we found that the percentage 
of enhancer-associated shapes that were multimodal was larger than the percentage of 
promoter-associated shapes that were multimodal in high SPOT data, which provided 
additional support for the relationships between multimodality and enhancers (Supple-
mentary Table 6 in Additional file 1). We note that additional characteristics of shape 
could also be explored in future studies.

Generalization of shapes across cell type

Because the shapes learned using SOM-VN were applicable across chromosomes and 
exhibited visual characteristics, we next tested whether these shapes were generalizable 
across cell type. We learned shapes using SOM-VN on chromosomes of one sample and 
used them to assign chromatin state in another sample. To evaluate the generalization 
across cell type, we evaluated the following pairs: A549 to brain tissue (H) and H1 (L), 
brain tissue (H) to A549 and H1 (L), and H1 (L) to A549 and brain tissue (H). We indi-
cate the mean values across all chromosomes in Table 1.

Specific types of shapes learned using SOM-VN were generalizable between 2 cell 
types. For example, enhancer-associated shapes learned on brain tissue were generaliz-
able to A549. Similarly, when shapes learned on H1 were applied to brain tissue, weak 
RE precision and recall did not differ considerably from when the same shapes were 
applied back to H1 itself. Interestingly, even though no enhancer-associated shapes were 
learned on H1, enhancer-associated shapes learned on brain tissue were generalizable to 
H1. These results indicate that enhancer and weak RE associated shapes learned using 
SOM-VN can generalize across some cell types.

Table 1 Generalization of shapes across cell type was cell type dependent

a N/A values indicate that no shapes were learned for the corresponding RE in the corresponding sample

Training sample Testing sample Promoter Enhancer Weak

Precision Recall Precision Recall Precision Recall

A549 A549 0.39 0.84 0.31 0.06 0.88 0.76

Brain (H) 0.16 0.79 0.38 0.05 0.89 0.62

H1 (L) 0.19 0.91 0.28 0.10 0.90 0.26

Brain (H) Brain (H) 0.45 0.26 0.33 0.34 0.75 0.80

A549 0.72 0.25 0.24 0.30 0.66 0.83

H1 (L) 0.74 0.13 0.26 0.33 0.80 0.86

H1 (L) H1 (L) 0.37 0.72 N/Aa N/A 0.81 0.90

A549 0.47 0.69 N/A N/A 0.66 0.77

Brain (H) 0.20 0.62 N/A N/A 0.74 0.75
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Comparison to baselines

While only SOM-VN is designed to learn chromatin accessibility signal shapes across 
whole chromosomes to assign chromatin to RE-associated states, CAGT was designed 
for a similar task. We therefore compared the performance of SOM-VN to this method. 
To compare against CAGT, we learned shapes using the default parameters for CAGT 
and then associated them with REs (see Methods). For each sample, we evaluated the 
precision and recall of chromatin state assignment for each chromosome using shapes 
learned on all chromosomes (Table 2).

Because the k-means procedure used by CAGT was unable to converge on a set of 
shapes for brain tissue (H), we did not include that evaluation. We also did not include 
brain tissue (L) because neither SOM-VN nor CAGT learned any shapes associated 
with promoters or enhancers. Notably, CAGT did not learn any promoter shapes in 
GM12878, B-cells, H1 (H), heart tissue (H, L), HeLa (L), or stomach tissue (L), whereas 
SOM-VN learned promoter-associated shapes for all samples in this evaluation. Fur-
thermore, CAGT did not learn any enhancer-associated shapes in GM12878, H1, HeLa, 
or stomach tissue (L), whereas SOM-VN learned enhancer-associated shapes in all 
cell types but H1 and GM12878. Finally, in samples where CAGT learned promoter or 
enhancer associated shapes, SOM-VN exhibited considerable improvement. SOM-VN 
improved A549 promoter precision by 0.05 and recall by 0.33, B-cell (L) enhancer preci-
sion by 0.13 and recall by 0.10, heart tissue (L) enhancer precision by 0.03 and recall by 
0.40, HeLa (H) promoter precision by 0.17 and recall by 0.61, and stomach tissue (H) 
promoter precision by 0.39, promoter recall by 0.17, enhancer precision by 0.38, and 
enhancer recall by 0.08. Weak precision and recall were also improved in these samples, 
with the exception of a 0.07 drop in recall for heart tissue (L) and a 0.18 drop in recall for 
HeLa (H).

To verify that the associations found with REs were due to shape and not to magni-
tude alone, we also learned associations between REs and maximum signal within a 
region. We then used these associations to assign chromatin state to GM12878, B-cells, 
H1 (H), heart tissue, HeLa cells, and stomach tissue. We found that not only did shapes 
learned on SOM-VN yield markedly better precision and recall than magnitude alone 
for enhancers and promoters in the majority of cases, but that using magnitude alone 
did not result in promoter or enhancer associations being made for the majority of cell 
types (Table  2). This suggests that shapes provide better chromatin state assignments 
than magnitude alone.

Comparison to PEAS for enhancer state assignment

Although PEAS performs a task similar to SOM-VN, it is markedly different in the fol-
lowing ways: (1) PEAS assigns chromatin state to peaks only, rather than assigning chro-
matin states to the entire genome, and (2) PEAS distinguishes enhancers from other 
REs after removing promoters, rather than assigning chromatin states that distinguish 
between multiple types of REs. To compare SOM-VN to PEAS, we adapted SOM-VN 
to distinguish enhancers from non-enhancers after removing promoters. We evaluated 
the performance of the SOM-VN workflow on the GM12878 cell line in order to directly 
compare to the published results for PEAS [32]. In this evaluation, we used the ground 
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truth chromatin state assignments provided by the authors of PEAS and removed pro-
moters within this ground truth. To emulate the evaluation of peaks only, as done by 
PEAS, we restricted our evaluations of precision and recall to bins above a 5 RPKM 
threshold. We chose this height because it corresponded to a typical peak height in 

Table 2 SOM-VN improved precision and recall over CAGT and magnitude-based models

a N/A values indicate that no shapes were learned for the corresponding RE in the corresponding sample

Sample Method Promoter Enhancer Weak

Precision Recall Precision Recall Precision Recall

A549 CAGT 0.14 0.53 0.24 0.10 0.77 0.58

Magnitude 0.15 1.00 N/A N/A 0.05 0.00

SOM-VN 0.19 0.86 0.29 0.05 0.90 0.67

GM12878 CAGT N/Aa N/A N/A N/A 0.76 1.00

Magnitude N/A N/A N/A N/A 0.82 1.00

SOM-VN 0.60 0.50 N/A N/A 0.82 0.97

B-Cell (L) CAGT N/A N/A 0.12 0.18 0.81 0.76

Magnitude 0.07 0.94 0.60 0.15 0.05 0.00

SOM-VN 0.63 0.13 0.25 0.28 0.83 0.88

B-Cell (H) CAGT N/A N/A 0.27 1.00 0.22 0.00

Magnitude 0.06 0.99 0.11 0.00 0.14 0.00

SOM-VN 0.58 0.36 0.43 0.88 0.93 0.72

Brain (L) Magnitude N/A N/A N/A N/A 0.84 1.00

SOM-VN N/A N/A N/A N/A 0.83 1.00

Brain (H) Magnitude 0.12 1.00 N/A N/A N/A N/A

SOM-VN 0.50 0.33 0.37 0.32 0.81 0.89

H1 (L) CAGT 0.05 0.71 N/A N/A 0.64 0.10

Magnitude 0.09 1.00 N/A N/A 0.05 0.00

SOM-VN 0.22 0.80 N/A N/A 0.89 0.86

H1 (H) CAGT N/A N/A N/A N/A 0.68 1.00

Magnitude N/A N/A N/A N/A 0.78 1.00

SOM-VN 0.57 0.57 N/A N/A 0.76 0.96

Heart (L) CAGT N/A N/A 0.42 0.05 0.76 0.99

Magnitude N/A N/A 0.14 0.00 0.76 1.00

SOM-VN 0.73 0.04 0.45 0.45 0.84 0.92

Heart (H) CAGT N/A N/A 0.36 0.94 0.78 0.20

Magnitude N/A N/A 0.02 0.00 0.72 1.00

SOM-VN 0.25 0.01 0.43 0.96 0.96 0.52

HeLa (L) CAGT N/A N/A N/A N/A 0.74 1.00

Magnitude N/A N/A N/A N/A 0.78 1.00

SOM-VN 0.41 0.66 0.30 0.00 0.84 0.92

HeLa (H) CAGT 0.25 0.12 N/A N/A 0.65 0.94

Magnitude N/A N/A N/A N/A 0.76 1.00

SOM-VN 0.32 0.73 0.35 0.04 0.81 0.76

Stomach (L) CAGT N/A N/A N/A N/A 0.69 1.00

Magnitude N/A N/A 0.05 0.00 0.74 1.00

SOM-VN 0.60 0.22 0.41 0.11 0.77 0.97

Stomach (H) CAGT 0.22 0.14 0.30 0.80 0.65 0.18

Magnitude 0.14 0.00 N/A N/A 0.70 1.00

SOM-VN 0.61 0.31 0.38 0.88 0.91 0.62
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DNase-seq data in line with our previous work (data not shown). We found that SOM-
VN had consistent precision and recall performance across chromosomes.

The precision-recall (PR) area under the curve (AUC) score approached the PR AUC 
scores reported in [32] with genomic features included and improved upon perfor-
mance reported in [32] when using peak features alone (Table 3). These data indicated 
that SOM-VN can annotate enhancers with similar accuracy to PEAS if the evaluation of 
state is constrained by signal intensity.

To determine whether thresholding by signal intensity also increased precision and 
recall in the general case (i.e. when associating regions with promoters, enhancers, 
and weak RE), we also evaluated precision and recall on only signal above 5 RPKM for 
the general case and compared the resulting precision and recall to that of the general 
case without this cutoff. We found that this cutoff increased B-cell (L), A549, H1 (L), 
GM12878, and stomach tissue (L) promoter precision by more than 0.10 and H1 (H) 
promoter recall by more than 0.10, but did not find any changes of this magnitude in 
enhancers, weak REs, or promoters of other samples (Supplementary Table 7 in Addi-
tional file 1). This result suggests that using a signal intensity cutoff improves PR AUC of 
enhancer assignment when promoters are removed.

Discussion
SOM-VN is the first workflow that supports chromatin state assignment using chroma-
tin accessibility signal shapes from segmented regions spanning entire chromosomes, 
allowing for a reduced number of assays and richness of signal information without reli-
ance on traditional peak calling. The ability to isolate shapes with a range of signal inten-
sities in imbalanced chromatin accessibility signal is made possible by adding variable 
neighborhood sizing to SOM. Our experiments showed that there exists a relationship 
between REs and chromatin accessibility signal shape that can be generalized across 
chromosomes and across some cell types. Characteristics specific to REs also emerged. 
For example, enhancer-associated shapes in high SPOT samples tended to have multiple 
summits, in comparison to promoter-associated shapes which tended to have one tall 
summit. Finally, while no other method has attempted to associate segmented chroma-
tin accessibility signal shape with multiple types of REs, CAGT and PEAS are the most 
similar methods of which we are aware. We showed that SOM-VN improved precision 
and recall beyond CAGT [39] and performed similarly to PEAS when applied to the task 
for which PEAS was designed [32].

We note that performance can also be cell-type specific or influenced by data quality 
(as measured using SPOT score). For instance, in B-cells, brain tissue, heart tissue, and 
stomach tissue, SOM-VN learned more enhancer-associated shapes in high SPOT sam-
ples than in low SPOT samples and also exhibited better overall enhancer precision and 

Table 3 Precision-Recall AUC was comparable to PEAS results in GM12878

RPKM cutoff SOM‑VN (5 RPKM) PEAS (all features) PEAS (shape only)

Enhancer PR AUC 0.81 0.85 0.75
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recall. However, in H1 cells, no enhancer-associated shapes were learned for either the 
high SPOT sample or the low SPOT sample.

We note that SOM-VN has some limitations that could be improved upon in future 
iterations. First, we selected a 4 kb region size by evaluating the Davies–Bouldin cluster-
ing index [40] for a range of region sizes in high SPOT brain tissue (see Additional file 2) 
to measure the separability of clusters. We considered a range from 2 kb (the maximum 
size of most CTCF, H3K4me3, and H3K27ac markers [40]) to 32 kb (a region size capa-
ble of encompassing intergenic regions [41], stretch enhancers [1] and super-enhancers 
[42]). A systematic evaluation of Davies–Bouldin on other cell types is an area of future 
work, as is incorporating additional region sizes, such as those in [1, 43, 44]. Notably, 
because promoters and enhancers are often smaller than 2 kb, the evaluation of smaller 
regions could reveal new insights. Second, we set the parameters (such as association 
cutoff, grid size, learning rate, and scaling factor) manually using observations of shape 
variability in the output. A future direction is thus to optimize the parameters using a 
grid search or other optimization technique.

Conclusions
Assignment of chromatin state is a challenge due to the limitations of experimental vali-
dation on a large scale and the number of assays needed to computationally assign states 
associated with REs using histone modifications. For this reason, assigning chromatin 
state using chromatin accessibility signal alone would provide a less resource-intensive 
option for researchers. To this end, we developed SOM-VN to learn shapes and asso-
ciate them with REs (weak REs, promoters, enhancers). We found that learned shapes 
were non-random and consistent across chromosomes and that using these shapes to 
assign chromatin state could improve precision and recall over existing methods. Our 
work is thus an important step toward expanding the utility of chromatin accessibility 
signal shape alone to assign chromatin state associated with REs.

Methods
Chromatin accessibility data

We used publicly available chromatin accessibility data aligned to hg38 from 8 differ-
ent cell types with variations in SPOT score. These included cell lines A549 (low SPOT 
score), H1 (low and high SPOT scores), HeLa (low and high SPOT scores), and GM12878 
(low SPOT score), primary B-cells from a 21-year-old adult male (high SPOT score) and 
a 37-year-old adult male (low SPOT score), and the following tissue samples: brain tis-
sue from 1 male embryo at 58  days gestation and 1 embryo at 56  days gestation (sex 
not collected, high SPOT score), brain tissue from 1 male embryo at 105 days gestation 
(low SPOT score), heart tissue from 1 embryo at 96 days gestation (sex not collected, 
high SPOT score), heart tissue from a 3-year-old male (low SPOT score), stomach tissue 
from a female embryo at 98 days gestation (low SPOT score), and stomach tissue from 
a female embryo at 108  days gestation (high SPOT score). The function gosr binbam 
(available from https ://githu b.com/wresc h/gosr) was used to compute RPKM signal and 
smooth the signal into 50 bp bins. We segmented this signal into 4 kb training regions.

https://github.com/wresch/gosr
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Chromatin state assignment

We used publicly available ChromHMM annotations in hg38 as ground truth. We down-
loaded annotations for the following Roadmap epigenome ID’s: E114 (A549), E081 (male 
fetal brain tissue), E003 (H1), E116 (GM12878), E083 (fetal heart tissue), E117 (HeLa), 
E032 (primary B-cells from peripheral blood), and E092 (fetal stomach tissue). These 
annotations were based on a 15-state ChromHMM model from the Roadmap Epig-
enomics Project (https ://egg2.wustl .edu/roadm ap/web_porta l/chr_state _learn ing.html).

Training SOM‑VN

SOM-VN is a modified version of SOM, a type of single-layer neural network where 
nodes are laid out in a grid. Each segmented 4 kb region in the input is mapped to its 
best matching node using a similarity metric computed on node weights during training, 
and the nodes in its neighborhood are then updated to reflect the region’s shape [34]. We 
modified SOM to include variable neighborhood sizing, in which each node’s neighbor-
hood size is dependent on a scaling factor λ, determined by the maximum weight of the 
node. Because each node’s weights reflect a shape, variable neighborhood sizing boosts 
the influence of shapes with high maxima to mitigate the imbalance of the input signal 
towards low chromatin accessibility. We used a mini-batch variant of SOM [45] in SOM-
VN to balance the tradeoff between memory and runtime [46]. For the details of the 
SOM-VN training algorithm, please see Additional file 2.

Merging learned shapes

Some of the shapes learned using SOM-VN may be shifted versions of one another. 
To mitigate this, we performed a merging procedure across all pairs of shapes learned, 
which made use of cross-correlation as described in [47] and applied in [21]. For the 
details of this process, please see Additional file 2.

Associating shapes with chromatin states

We used an overlapping procedure to associate shapes with ChromHMM annotations. 
We first matched each training region to its best matching shape using cross-correla-
tion, then computed the overlap between these matched regions and the ChromHMM 
annotations. In this manner, we obtained the distribution of bins across annotations for 
regions matched to each shape. Because the original ChromHMM annotations sepa-
rated each RE type into categories by epigenetic state (e.g. poised and active promoters), 
which was not the focus of our work, we simplified the chromatin state space to include 
the following:

Promoter Active, flanking active, bivalent, poised, and flanking bivalent transcription 
start sites
Enhancer Genic enhancers, enhancers, and bivalent enhancers
Weak Heterochromatin and quiescent regions

Additional details are available in Additional file 2.

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
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Associating magnitudes with chromatin states

To find associations between REs and the maximum magnitude of a region, we first 
computed the maximum RPKM signal of each 4 kb region in each chromosome. We 
then computed the overlap between these regions and the ChromHMM annotations 
to find associations. Additional steps were conducted in the same manner as when 
associating shape with REs and are described in Additional file 2.

Assigning chromatin state to new regions

To assign chromatin state to new chromosomes or cell types not used to learn shape 
(i.e. the testing data), we segmented the testing data into 8  kb regions overlapping 
each other by 4  kb. In this manner, we evaluated containment of shape rather than 
exact match, thereby avoiding mis-assignment due to signal shift. We then com-
puted an ambiguity metric on each region: the ratio of the cross-correlation between 
a region and its matching shape, and the cross-correlation between the region and 
its second-best matching shape. To consolidate overlap, we used a dynamic program-
ming approach that minimized the sum of ambiguities. This assignment process 
resulted in a BED file containing the start and end points of each 8 kb region as well 
as the RE most associated with its chromatin state.

Precision and recall

We used the true positive rate (TPR), false positive rate (FPR), true negative rate 
(TNR), and false negative rate (FNR) to evaluate the precision (TPR/(TPR + FPR)) 
and recall (TPR/(TPR + FNR)) on chromatin state assignments made using the SOM-
VN workflow with respect to each RE. We defined a true positive for a given RE type 
A as a region which was both matched to A and for which its percentage of coverage 
in ChromHMM across all RE types was maximized in A. Likewise, we defined a false 
positive as a region that was matched to A but for which its percentage of coverage in 
ChromHMM across all RE types was not maximized in A, a true negative as a region 
that was not matched to A and for which its percentage of coverage in ChromHMM 
across all RE types was not maximized in A, and a false negative as a region that was 
not matched to A but for which its percentage of coverage in ChromHMM across all 
RE types was maximized in A.

Null models

We included 2 types of null models in our analysis: the permuted signal model, which 
represented shapes learned randomly assuming no pattern of variations in the sig-
nal, and the permuted ChromHMM model, which represented a case where no true 
associations between shape and annotation existed. To build the permuted signal 
model, we permuted signal intensities in the 50 bp bins of the RPKM signal file before 
segmenting the signal into 4  kb regions and learning shapes using these permuted 
signal regions. We then associated these shapes with REs from ChromHMM annota-
tions to obtain associations between random signal and chromatin state. To build the 
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permuted ChromHMM model, we permuted the positions of ChromHMM annota-
tions without modifying the annotation sizes.
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/coreM arks/joint Model /final /E032_15_coreM arks_hg38l ift_mnemo nics.bed.gz). GM12878 chromatin state assignments 
were obtained directly from the authors of PEAS. Our code is available from https ://githu b.com/tarae icher /SOM_VN. 
Scripts are written in Python and Bash for the Unix environment.
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