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Abstract

In this study, we explore the sophisticated domain of task planning for robust
household embodied agents, with a particular emphasis on the intricate task of
selecting substitute objects. We introduce the CommonSense Object Affordance
Task (COAT), a novel framework designed to analyze reasoning capabilities in com-
monsense scenarios. This approach is centered on understanding how these agents
can effectively identify and utilize alternative objects when executing household
tasks, thereby offering insights into the complexities of practical decision-making in
real-world environments. Drawing inspiration from factors affecting human decision-
making, we explore how large language models tackle this challenge through three
meticulously crafted commonsense question-and-answer datasets featuring refined
rules and human annotations. Our evaluation of state-of-the-art language models on
these datasets sheds light on three pivotal considerations: 1) aligning an object’s in-
herent utility with the task at hand, 2) navigating contextual dependencies (societal
norms, safety, appropriateness, and efficiency), and 3) accounting for the current
physical state of the object. To maintain accessibility, we introduce five abstract
variables reflecting an object’s physical condition, modulated by human insights, to
simulate diverse household scenarios. Our contributions include insightful Object-
Utility mappings addressing the first consideration and three extensive QA datasets
(15k, 70k, 60K questions) probing the intricacies of contextual dependencies and
object physical states. The datasets, along with our findings, are accessible at:
https://github.com/com-phy-affordance/COAT. This research not only advances
our understanding of physical commonsense reasoning in language models but also
paves the way for future improvements in household agent intelligence.

1 Introduction

Humans, as beings innately attuned to their surroundings, traverse a world where conversations,
decisions, behaviors, and understanding are deeply embedded in the underlying fabric of a sit-
uation. Their engagement with the world entails commonsense (background) knowledge about
entities—properties, spatial relations, events, causes and effects, and other social norms ((McCarthy),
1959); (Winograd [1972)); (Davis & Marcus, [2015))). The importance of situational awareness is
starkly evident in our daily tasks, where choosing objects for specific activities showcases our
adaptability to different settings. Consider the straightforward task of cutting a cake—how do
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we determine which object is suitable for this task? When a person needs to select an object to
accomplish this task, there can be an array of factors that might affect our choice. For example, we
must choose something that is capable of cutting (Utilz'tyﬂ suitable for cutting a cake (contextual
appropriateness), and likely in an appropriate physical condition to be used (physical state). These
considerations would be to ensure the appropriateness, ease, and safety of those cutting the cake as
well as who will eat the cake. Although these considerations might seem trivial and intuitive to
us humans, they are still an important aspect to consider when developing embodied household
agents. Such reasoning capabilities can be potentially leveraged by embodied agents to generate
action plans for human requirements represented in natural language. In this work, we propose a
CommonSense Object Affordance Task: a textual physical commonsense task to evaluate most
appropriate object selection capabilities in the presence of various alternative objects.
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Figure 1: We divide the whole decision-making process into 2 broad phases. Pruning out options
firstly based on Object Level then Physical State. Within the Object level, we further divide in
2 sub-steps: Utility and Contextual Appropriateness. We highlight this method’s adeptness in
comparing appropriateness across an array of factors and coming up with a substitute object even
in the absence of the ideal object [Cake Knife]. Our work provides QA datasets about this type of
commonsense reasoning

Recent advancements in large language models (LLMs) (Zhu et al., [2023; [Peng et al., [2023; |Zhang
et al 2023} Brown et al., 2020; (Chowdhery et al., 2022} Touvron et al., 2023; OpenAl, 2023) have
significantly enhanced our ability to extract rich commonsense knowledge from extensive web data.
To analyze this task and evaluate the current capabilities of Language Models across such human
commonsense-oriented reasoning, we develop this task as a decision-making process spanning 3

major aspects: Utility: The concept of Utility, a focal point in previous research

LThis shouldn’t be confused with the overall objective of choosing an object that maximizes the utility. This could
be comprehended as "function" or "aspect" in the focus of the given task
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, elucidates our understanding of an object’s functionality in a variety of situations. Although
ConceptNet (Speer et al.l [2017)) has been a crucial tool for identifying object-utility relationships,
its nature as a human-compiled knowledge graph has led to the pursuit of more dynamic sources.
We curate Object-Utility mappings pertaining to this aspect and use this to further evaluate
decision-making across both remaining aspects. Context: Our decision-making extends beyond
mere utility. To account for the various situational factors such as safety, social norms adherence,
effort optimization, efficiency, and situational appropriateness, we introduce the second aspect as:
contextual appropriateness This adeptness in judgment arises from our ingrained commonsense,
sculpted by experience and intuitive physical understanding. To evaluate the reasoning capabilities
of various language models across this aspect, we generate Object-Utility-Task mappings and curate
1 QA dataset consisting of 15K MCQ question-answer pairs. Physical State: Previous work
has shown how object choice depends on various physical variables. In order to
make this aspect more human commonsense-oriented, we add a layer of abstraction and introduce
5 abstract variables to depict the current physical state of the object of interest. To observe how
the object usability evolves with various abstract physical state variations, we generate human
preference mappings and curate 2 QA datasets (specifically focused on analyzing object usability
and physical state). These two physical state datasets summed up to 130K MCQ question-answer
pairs combined. Thus, overall, we have 3 QA datasets.

To illustrate an example of using these 3 aspects to select the best feasible object, let’s continue with
the task of cutting a cake where the following objects are available: a Broken Knife, Clean Scissors,
a Clean Pillow, and a Clean Knife. As we begin, we subconsciously evaluate each object’s utility for
the task and thus shift our focus primarily on Knife and Scissors. Further analysis typically leads to
the dismissal of Scissors as a suitable tool for cake cutting. Finally, upon considering the physical
state of Knives, the Clean Knife emerges as the obvious choice. This scenario highlights the three
key factors humans prioritize when selecting an object for a task: the utility of the object, its
contextual appropriateness, and its current physical state.

Such commonsense reasoning capabilities not only allow us to judge the appropriateness of an object
in the context of the given task but also help us in successfully coming up with an appropriate
substitute object in the absence of the most ideal object(Here: Cake Knife). Such skills, if equipped
with embodied agents, will enhance their reasoning capabilities and make them adept in planning
tasks in scenarios where the ideal object is not available. .

Main Contributions: In this study, we made the following contributions:

e Creation and provision of human-preference mappings across all 3 aspects of the
CommonSense Object Affordance Task(COAT)

e Introduction of three major novel CommonSense-based QA Datasets, facilitating an in-depth
analysis of how object usability evolves under different contextual scenarios and physical
states

e Evaluation of Large Language Model baselines on these datasets, accompanied by a detailed
analysis of their performance in multi-step abstract reasoning scenarios.
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2 Dataset Creation

To systematically investigate the capacity of LLM to conduct human-style physical commonsense
reasoning and preferences across three crucial factors, we have devised an experimental framework
centered around 75 household tasks, carefully curated to span 22 distinct utilities. The experiment
involves a diverse inventory of 100 objects sourced from the AI2Thor Simulator (Speer et al.l 2017)),
ensuring relevance and diversity within a household context.

1. Tasks: are high-level household activities that could be accomplished by a human or
embodied agent. Example: Cutting a Cake. See Task List

2. Utilities: are different aspects of a high level task. A task can comprise of 1 or more
utilities. For the example of Cutting Cake, the utility could be Cutting. While for the task
of Making an Omelette, utilities could be Mixing, Heating etc. See Table 23]

3. Objects: are a subset of objects available in AI2Thor (Kolve et al. 2022) Simulator. See

Table RH
Utilities Objects

Carrying Comfort Heating(vessel) Bowl Bed Pan
Cleaning Washing Mixing(tool) DishSponge  SinkBasin Spoon
Disposing  Cutting Mixing (vessel) GarbageCan  Knife Cup
Storage Entertainment Heating(source) Fridge Laptop Microwave
Reading Breaking Increasing Height =~ Newspaper BaseballBat  Chair
Eating Writing Physical Activity Apple Pen Dumbell
Decoration Light Source Surface Support Statue Floor Lamp CounterTop
(a) A representational subset of utilized Utilities (b) A representational subset of utilized Objects

The following section gives an overview of the annotation tasks and the process of creating Com-
monSense Reasoning Datasets.

2.1 Human Preference Collection

2.1.1 Utility

Incorporating GPT3.5-turbo (Brown et al., [2020) along with human commonsense annotations, we
meticulously established a mapping between utilities and objects. These are called Utility Objects.
Notably, each object may be associated with multiple utilities, and conversely, a single utility can
be linked to various objects. Table [7] provides an overview of the utilities along with their associated
objects utilized in our experiments. More Information about the annotation process can be found in

Appendix
2.1.2 Contextual Appropriateness

In evaluating object utility, it is crucial to recognize that suitability for specific tasks can vary
significantly. Take, for example, the multifaceted use of a candle. While it possesses the inherent
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ability to generate heat, employing a candle for the purpose of heating soup introduces a range of
practical limitations. This observation underscores the complexity of human preference and decision-
making in the context of object utility. Key factors influencing these choices include efficiency (as
illustrated by the impracticality of using a candle for heating soup), safety considerations (such as
the risks associated with standing on an armchair), social norms and constructs (exemplified by the
unconventional choice of serving wine in a bowl), and the overall appropriateness of an action (e.g.,
the disposal of eggshells in a sink basin). To systematically explore these dynamics, we engaged
human annotators in a study designed to assess the selection of appropriate objects for specified
tasks and utilities

2.1.3 Physical State

The selection of objects for specific tasks is influenced not only by intangible factors such as safety
and social constructs but also by the object’s current physical state. Prior research, including
the works of |Li et al.| (2023) and |Gao et al.| (2023), has employed various physical parameters to
examine Large Language Models’ (LLMs) comprehension of an object’s physical attributes. In
our study, we shift the focus to task planning under non-ideal conditions, necessitating reasoning
about potential substitute objects. To this end, we have developed five distinct variables, each
represented by abstract symbolic terms. These variables have been derived directly from the AI2Thor
Simulator, facilitating their broader applicability and potential integration into the burgeoning field
of Embodied AL Table [I] delineates these variables and their corresponding abstract values. Here,
Already In Use variable is used to represent the availability of an object for use. Some examples of
an object in reversible-using state are the object getting recharged, a wet object, or an object in a
reversible state (meaning it will need time to get back to the ideal state or is temporarily being used
by someone else). Whereas in an irreversible-using state, the object could be broken, depleted,
out of stock, and thus is in an irreversible state of use. Further details about the chosen physical
variables are elaborated in Appendix [A]

Variables Abstract Values

material Metal, Wood, Plastic, Glass, Ceramic, Stone, Wax, Fabric, Rubber, Food, Paper Sponge,
Organic, Soap

mass Light, Medium, Heavy, Super-Heavy

temperature Cold, RoomTemp, Hot
already in use  Free, Reversible-Using , Irreversible-Using
condition Dirty, Clean, Broken

Table 1: Abstract Values for Various Variables

Gathering Common Object Configuration In the context of this study, a Configuration
denotes the physical state of an object characterized by five variables. While a wax chair might be
conceivable in the realm of Madame Tussauds, it remains highly improbable in everyday household
scenarios. Thus, to ensure the relevance of configurations to common household scenes, human
annotators were tasked with selecting plausible and frequently occurring variable values for each
object. (See Appendix @
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Ranking Object Configurations In our study, we not only provided configurations that occur
commonly but also tasked the annotators with categorizing the configurations of an object into three
distinct classes: Ideal, Moderate, and Bad. This classification was predicated on their assessment of
the anticipated time required for an agent to commence the task with a given object configuration.
Utilizing these categorizations, we constructed two comprehensive datasets comprising 130,000
questions specifically designed to assess the physical commonsense reasoning capabilities of Large
Language Models. Further details on this process are elaborated in Appendix

2.2 CommonSense QnA Datasets

Based on Contextual Appropriateness and Physical State. We created 3 CommonSense QA
datasets.

1. Task-dﬂ This experiment was based on pruning Objects based on utility and contextual
factors affecting the appropriateness of an object for a particular task. We utilized Object
Level Dataset for its evaluation. While we limit our discussion to Context here, we guide
readers to discussions on Utility based appropriateness in Appendix

2. Task-1 & Task-2: These experiments were based on pruning out Object Configurations
(Physical State) represented by 5 symbolic variables. We utilized Variable Level Datasets
for its evaluation.

~
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Figure 3: A mapping created between Tasks and Concepts was utilized to sample out <Task,Utility>
combination to frame a question for all 3 datasets (1 Object Level, 2 Variable Level)

2.2.1 Object Level Dataset

To evaluate the reasoning capabilities of LLM when choosing objects over contextual factors, we
curate an Object Level QA dataset. Here, previously recorded Context Mappings were kept as
Ground Truth. (See Annotation Task . Here, we specified no information about the physical
state, thus assuming every object to be an ideal configuration. This was done to create QnA datasets
focused solely on object selection capabilities on the basis of Contextual factors

2These are different from the tasks(activities) used to curate datasets
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Question Every question can be assigned a <Task, Utility> combination and was framed in the
way shown below:

Question

What object would you be choosing for <utility> when you are tasked to <task>?

Options Based on the sampling strategy and the number of options in the prompt, we created 4
variations of object level dataset. An example of such variation is shown below.

1. Variation-1 : For each question, we randomly sampled 1 context object and 1 utility
object both belonging to the same utilityE]

Example Task O Variation 1

Question ID: 1,
Utility: heating(source),
Question: Which of the following objects would be best suited for the purpose of "heating(source)”
when tasked to "reheating coffee”?
Options:
(A) Toaster
(B) StoveBurner

Correct Answer: B

\. J

2.2.2 Physical Configuration Level Dataset

Based on Common Configurations generated in the annotation task , we create 2 Variable
Level QA datasets to analyze the reasoning capabilities of Language Models on pruning out options
based on their current physical state. The 2 datasets differ in the level of difficulty and the level
of reasoning required to answer the questions correctly. We describe the creation process in this
section. The question in both datasets remains the same as that of Object Level Dataset However,
unlike the first dataset where the options were objects, this time we give various Configurations of
Context Objects as options. This was done to evaluate the object selection capabilities solely on
the basis of physical state, thus precluding the possibility of wrong answers due to a wrong object
being selected.

Configuration

object name: Microwave, mass: super-heavy, temperature: RoomTemp, material: Metal already in use:
free condition: clean

Here, a distinct approach is employed compared to the Object level Dataset, where Context
Objects were previously sampled randomly based on a combination of the question’s Task and

3Details about other variations for Task 0,1,2 can be found here Appendix
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Utility. In this study, we have classified the configurations of Context Objects into three broad
categories: "Ideal," "Moderate," and "Bad." Each category is defined by specific annotation variables
that delineate their characteristics. The "Ideal" category represents configurations in their optimal
states, facilitating the specified task without additional adjustments. In contrast, the "Moderate"
category includes configurations that deviate from these ideal states, resulting in both time and
material costs for their utilization. The models assess these options based on their estimated
penalties. Lastly, the "Bad" category comprises configurations that render the Context Objects
ineffective, even when considering potential penalties. Both "Moderate" and "Bad" configurations
are grouped under Sub-Optimal Configurations, offering a nuanced understanding of the varying
degrees of object usability.

By sampling options from these 3 sets of configurations [2.1.3], we divide our effort into 2 datasets:

A. Ideal Configuration Dataset In alignment with its name, the "Ideal Configuration' dataset
involves questions with the correct answer as Ideal Configuration of Context Object of the
question’s associated <Task,Utility> combination. To systematically analyze the behavior of
models, we introduce 12 distinct variations of this dataset. The creation of these variations is
designed to progressively augment the complexity of the datasets, facilitating a comprehensive
analysis of model behaviors. Each of the 12 variations comprises approximately 5,000 question-answer
pairs, with differing counts of options—ranging from 5 options to 2 options per question. Along
with the varying number of options, we also ablated on various sampling techniques. This deliberate
variation in the number of options aims to evaluate the impact on success rates of Large Language
Models (LLMs) as the level of reasoning complexity increases. Whereas the different sampling
techniques help us study their behavior concerning different object distributions.

Process: To create these 12 variation datasets, we sampled a Task for n number of times, where n
is proportional to the total count of all Commonly Occurring Configurations of its Utility Objects.
[Annotation Task For a given Question’s <Task, Utility> Combination, we randomly sample
a Context Object from the pool of Context objects. (obtained from . An example of sampling
the remaining options is explained below:

For 5 option datasets:

1. Variation-1 : randomly selected Context Object’s Ideal Configuration 4+ 4 randomly
sampled sub-optimal configurations of the same Context Object

2. Variation-2 : randomly selected Context Object’s Ideal Configuration + 2 randomly
sampled sub-optimal configurations of the same Context Object + 2 randomly sampled sub-
optimal configurations of different Context Object belonging to the same <Task,Utility>
combination [

4The remaining variations in sampling techniques and option count can be found in Appendix
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Example for Task 1 Variation 1

Question ID: 1,
Utility: heating(source),
Question: Which of the following objects would be best suited for the purpose of "heating(source)”
when tasked to "reheating coffee”?
Options:
(A) object name: Microwave, mass: super-heavy, temperature: RoomTemp, material: Metal,
already in use: free, condition: clean

(B) object name: StoveBurner, mass: super-heavy, temperature: RoomTemp, material: Metal
already in use: irreversible-using, condition: dirty

(C) object name: CoffeeMachine, mass: heavy, temperature: RoomTemp, material: Metal
already in use: irreversible-using, condition: dirty

(D) object name: Microwave, mass: super-heavy, temperature: RoomTemp, material: Metal
already in use: reversible-using, condition: clean

(E) object name: Microwave, mass: super-heavy, temperature: RoomTemp, material: Metal,
already in use: irreversible-using, condition: broken

Correct Answer: A

B. Sub-Optimal Configuration Dataset The process of selecting an ideal configuration,
while challenging for language models, typically does not require intricate multi-step reasoning
or the consideration of a wide range of factors. To more rigorously evaluate their reasoning
abilities, particularly when faced with only sub-optimal options, we have intentionally excluded all
ideal configurations from our sampling methodology. This deliberate exclusion necessitates that
the models engage in more sophisticated reasoning, considering various physical state variables,
thereby highlighting their capacity for abstract reasoning. By focusing exclusively on sub-optimal
configurations, this methodological shift enables a more thorough investigation into the language
models’ ability to navigate and reason through complex scenarios in the absence of clear-cut ideal
solutions.

Process: To comprehensively assess language models’ abstract reasoning capabilities when con-
fronted with sub-optimal configurations, we create another Variable Level QA dataset and
introduce 14 variations of this dataset. Like the previous dataset, each dataset is constructed using
distinct sampling strategies and by varying number of options. Across all 14 datasets, we maintain
a consistent structure of nearly 5,000 questions.

Each question in this dataset variation is associated with a Task and Utility combination. While
the set of questions remains consistent with previous datasets, the sampling of each task is now
proportional to the count of "Moderate Configurations + Bad Configurations" (i.e., the count of
Sub-Optimal Configurations for that question’s associated <Task, Utility> combination). An
example of 2 sampling techniques used for generating variation datasets is explained below:

For 5 option dataset

1. Variation-1: We sample all 5 options from Moderate Configurations of the Context object
of the question’s associated <Task,Utility> combination.
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2. Variation-2: We sample 4 options from Moderate Configurations and 1 option from the
Bad Configurations of the Context object of the question’s associated <Task,Utility>
combination. [

Example Task 2 Variation 1

Question ID: 1,
Utility: heating(source),
Question: Which of the following objects would be best suited for the purpose of "heating(source)”
when tasked to "reheating coffee”?
Options:
(A) object name: CoffeeMachine, mass: heavy, temperature: RoomTemp, material: Metal,
already in use: reversible-using, condition: dirty

(B) object name: StoveBurner, mass: heavy, temperature: RoomTemp, material: Metal,
already in use: reversible-using, condition: clean

(C) object name: StoveBurner, mass: heavy, temperature: RoomTemp, material: Metal,
already in use: free, condition: dirty

(D) object name: CoffeeMachine, mass: heavy, temperature: RoomTemp, material: Metal,
already in use: reversible-using, condition: clean

(E) object name: Microwave, mass: heavy, temperature: RoomTemp, material: Metal,
already in use: reversible-using, condition: clean

Correct Answer: C

3 Experimental Setup & Results

Upon curation of Datasets, we evaluate various Large Language Models to benchmark their perfor-
mance on:

1. R1: Object-level Commonsense Reasoning (performance on various contextual factors
including: social constructs, feasibility aspects, etc.)

2. R2: Physical State level Commonsense Reasoning (performance on commonsense under-
standing of various physical variables and how they affect decision making)

We evaluate and compare the performances of various large Language Models on the following
metrics:

1. Accuracy: The fraction of a number of questions answered correctly by the Language
Model.

2. Bad Rate: The fraction of questions in which the chosen answer belonged to the "Bad"
configuration pool.

5The remaining variations in sampling techniques and option count can be found in Appendix

10
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3.1 Dataset Summary

Task #Variation #Q Av Options GT
0 4 155K 3.8K Utility Objects Context Objects [O]
1 12 58, 7K 49K O’s Configurations O’s Ideal Configurations
2 14 68.9K 4.9K O’s SuboptConfigurations O’s BestSubopt Configurations
Table 2: Summary of Datasets Used for Experiments
3.2 Glossary
Term Definition
objects a set of 100 household objects
utilities a set of 22 abstract utilities
tasks a set of 75 household activities
question a <Task,Utility> combination indicating the specific task aspect to emphasize
variable a symbolic variable used to explain an object’s physical state
configuration complete description of an object using 5 symbolic variables

utility-mapping
context-mapping
ideal-configuration
moderate-configuration

bad-configuration

sub-optimal configuration

mapping between utility and object; facilitates Utility-Objects

mapping between task and object; facilitates Context-Objects

A state where an object is ready to perform a task without requiring

additional time or effort

marked by the simultaneous occurrence of all ideal variable values in its description
A state requiring additional effort to reach an ideal condition for task performance,
marked by the presence of moderate variable values.

An inoperative state of an object with irreparable issues, marked by the presence of
"Bad Variable" values.

group of "Moderate" and "Bad" configurations

5#Q=question count; Av=average question count

11
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3.3 Results

Task 0 Analysis: We observe from Table [3| that the performance of GPT3.5-Turbo and PaLM
outperform other models with a much smaller number of parameters. This may be attributed to their
size as well as the amount of internet data they’ve been trained on. They both showcased similar
performance, suggesting similar object-level reasoning capabilities. Even though the performance of
every model was observed to be impressive, Mistral-7B outshone all other models of similar size
as well as both 13B models. Upon analyzing the trend of average accuracy across various datasets
for Task-O[Figure , we note an important trend implying a drop in accuracy as we increase the
number of options. This suggests degradation in reasoning capabilities as the number of comparisons
increases. This trend was observed in Task 1 and Task 2 as well®l Table [and Figure [] provide
a fair evaluation of the reasoning capabilities of Language Models over Object Level Affordance
Reasoning tasks. [R1]

Task-0 Variations

Model
2-opt 3-opt 4-opt 5-opt
vl v2 v3 v4 m2-opt ®3-opt m4-opt = 5-opt
100
PaLM 90.0 74.2 68.3 65.0

GPT3.5-Turbo 88.8 719 683 66.9

vicunal3B 71.0 54.5 493 46.2
LLama2-13B 76.5 58.2 50.9 46.9
Vicuna7b 51.0 34.5 28.5 26.5 20
Mistral-7B 76.2 57.9 50.2 47.2 0

7777777777777 PaLM GPT3.5-Turbo  vicunal3B  LLama2-13B  Vicuna7b Mistral-7B  ChatGLM-6B ChatGLM2-6B

ChatGLM-6B 62.0 420 342 276 Model
ChatGLM2-6B 62.9 44.6 34.3 35.4

o
o

FN
o

Accuracy (%)

Figure 4: Average Accuracy of Various models on Task 0
Table 3: Accuracies for Different Models as we increase option count

when evaluated on Task-0 : Object Level

QA Dataset

Task 1 Analysis: Table 4] summarizes the performance accuracy of different models on Task-1
Datasets where models were tasked to reason based on Physical Configuration of Objects (using
Ideal Configuration Datasets). This task was aimed at judging if language models have an
understanding of the difference between Ideal Configuration and Sub-Optimal Configurations.
Here as well we witness the superior reasoning capabilities of GPT3.5-Turbo and PaLLM, with the
latter outperforming the former on each dataset by an average of 8.8%. Amongst the smaller
models, we see Mistral7B dominating all other 7B and 6B models, with Vicuna7B and ChatGLM-6B
performing very close to random performances. For 13B models, LLama2-13B showcased its superior
reasoning capabilities and was on average 7.6% more accurate than Vicunal3B. Here, apart from
the falling average accuracy with increasing options, we also notice some interesting behaviors when
we increased the Object Diversity (i.e an increase in the number of sub-optimal configurations of

6See Figure for trends in Task:1 and Task:2 Average Accuracies for each dataset type

12
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different context object (of same <Task, Utility> Combination) other than the object who'’s
Ideal Configuration is already in the options as the correct answer).
Figure [9] illustrates the decreasing performance of all small models as we increase the Object

Model Accuracy for Task__1 Variations{

5-option 4-option 3-option 2-option
vl v2 v3 v4 v5 v6 v7 v8 v9 v10 vll v12
85.9 T74.6 81.4 89.4 80.0 80.5 84.8 92.0 84.6 88.5 95.0 91.7

PaLLM (Chowdhery et al.

GPT3.5-Turbo (Brown et al.|
Vicunal3B(Chiang et al.|[2023) 445 440 364 532 509 533 429 606 599 541 678 66.6
LLama2-13B(Touvron et al.[2023) 49.1 48.2 46.9 54.2 54.0 56.5 54.3 70.6 67.3 70.2 78.96 75.5

Vicuna7B(Chiang et al.] [2023) 240 246 245 317 328 32 322 405 392 410 568 56.8
Mistral-7B(Jiang et al.|[2023 37.2 34.6 30.7 44.4 424 44.2 39 53.6 51.9 47.0 74.2 69.7
ChatGLM-6B(Du et al.|[2022b) 258 256 21.7 312 304 316 283 388 395 360 534 52.0
ChatGLM2-6B(Du et al.|[2022a 31.8 31.4 30.0 39.4 40.9 40.6 40.5 54.0 53.4 51.2 68.0 66.0

Table 4: Performance Accuracy for Various Models when evaluated on Task 1 (Ideal Configuration
Dataset)

5-Options 4-Options 3-Options 2-Options
"

A —a

o

Accuracy Trends For Each Model

1 2 3 1 2 3 4 1 2 3 1 2
Diversity of Objects —

#PaLM #GPT3.5-Turbo # Vicunal3B LLama2-13B
#Vicuna7B = Mistral-7B #ChatGLM-6B #ChatGLM2-6B

Figure 5: Comparative Plot showcasing the variations in Task:1 performances as we keep increasing
the Object Diversity in Options from left to right.

Diversity in the options. This sheds light on the existing bias towards using a commonly used
object rather than choosing an object after reasoning over every object’s complete physical state.
However, for big models like PaLM and GPT3.5-Turbo, we notice an improvement in accuracy with
the Object Diversity at the extreme. Thus, we could conclude that even though there was a drop
in accuracy with more diverse options in PaLM and GPT3.5-Turbo, unlike the small models, they
were not answering excessively based on their bias towards the commonly used object.

Task 2 Analysis: Table |p| summarizes the performance of various models on Task-2, where the
models were asked to reason over the best choice of object configurations from the Sub-Optimal
Configuration Datasets. This task could be interpreted as finding the option that would be the

13
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Model Accuracy for Task__2 Variations {}

5-option 4-option 3-option 2-option

vl v2 v3 v4 v5 v6 vT7 v8 v9 v10 v1ll v12 v1l3 v14

PaLM 32.4 38.0 46.3 55.3 64.1 40.8 47.6 57.7 63.2 524 64.8 690 70.2 80.7
GPT3.5-Turbo 283 306 375 464 61.6 346 40.1 50.72 612 46.1 56.7 71.3 61.1 80.2
vicunal3B 225 239 280 320 328 27.7 31.0 353 442 373 429 500 548 68.4
LLama2-13B 23.0 24.4 33.5 42.2 449 31.6 32.0 43.4 53.9 399 505 66.2 574 757
Mistral-7B 20.7 22.4 27.8 258 278 25.8 290 323 37.6 350 40.6 477 526 63.7
ChatGLM2-6B  21.6 222 265 28.2 29.0 256 30.6 33.6 363 36.5 41.9 50.7 53.7 614
Vicuna-7B 20.3 216 216 217 227 26.4 259 276 282 33.3 35.6 383 485 508

ChatGLM-6B 21.5 224 226 239 23.5 250 27.3 29.2 29.2 331 348 363 482 53.6

Table 5: Performance Accuracy for Various Models when evaluated on Task 2 (Suboptimal Configu-
ration Dataset)

least time-consuming and most appropriate amongst a variety of Sub-optimal Configurations of
Context Objects of the question’s <Task,Utility> combination. Here, we sampled some moderate
configurations (neither Ideal nor Bad) and some Bad Configurations. The best amongst the
moderate ones was kept as the Ground Truth. [Refer Appendix @ Our observations reveal consistent
superiority of GPT-3.5-Turbo and PaLM across all models. Notably, GPT-3.5-Turbo consistently lags
behind PaLLM by an average margin of 3.7%. Despite their commendable comparative performance,
both models exhibit limitations in comparing various physical variables of moderate configurations,
resulting in a significant performance downturn. Even this time, we observed Vicuna7B and
ChatGLM-6B exhibiting erratic behaviors reflected in their consistent random outputs. While
LLama2-13B performed superior to all other small-scale models, the general observed order was
ChatGLM2-6B ~ Mistral-7B < Vicunal3B < LLama2-13B < GPT3.5-Turbo < PaLM. In addition

5-Options 4-Options 3-Options 2-Options

Iy

Accuracy Trends For Each Model

1 2 3 4 0 1 2 3 0 1 2 0 1
No. of Bad Configurations —

o 4

#PalM2 #GPT3.5-Turbo vicunal3B +LLama2-13B #Mistral-7B -#ChatGLM2-6B

Figure 6: Comparative Plot showcasing the variations in Task:2 performances as we keep increasing
the Count of Bad Configurations in Options from left to right.

to the drop in average accuracy with increasing options, Figure [] shows the trend of enhanced
performance as we increase the count of Bad Configurations within a type of dataset. This could be
attributed to the ability of models to differentiate bad configurations from moderate configurations.
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To delve deeper and analyze what fraction of the responses were correct and what fraction was from
the "Bad Configurations", we make use of another metric: Bad Rate.

Table [6] shows the percentage of questions where a "Bad Configuration" was predicted as the correct
answer. In our evaluations, this would mean the model went wrong with the reasoning in these
questions. To probe LLM reasoning when presented with a varied amount of "bad configurations', we
went on to increase the fraction of bad configurations present in each question’s options as we moved
from left to right([vl—v5], [v6—v9], [v10—v12]). With an increased fraction of options belonging to
"bad configurations', we expected an increase in the bad rate. A good model would have a smaller
magnitude of the bad rate as well as a larger gap between the fraction of the bad options line (dotted
line) and their bad rate value. Figure further showcases the trend of observed bad rates and
the trend of the increase of the fraction of bad options we inserted in the prompt. While PaLM
and GPT2.5-Turbo showed the least rise in bad rates, we observed LLama2-13B outperforming all
other models and consistently trying to achieve PaLM and GPT3.5-Turbo’s performance. Based
on these figures and analyses, we can safely conclude that most models had a sense of what a bad
configuration is but showed limited reasoning capabilities to evaluate moderate configurations based
on abstract physical variables. Thus, through Task 1 and Task 2, we were able to evaluate and
analyze commonsense reasoning capabilities of Language Models over physical state variables [R2]

Model Bad Rate For Task__2 Variations |}

5-option 4-option 3-option 2-option

vl v2 v3 v4 vb v6 v7 v8 v9 vio vl1l vli2 v13 vl14

PaLM - 4.2 103 21.2 35.9 - 6.0 15.3 36.8 - 8.8 31 - 19.3
GPT3.5-Turbo - 5.5 125 244 384 - 7.7 175 388 - 9.7  28.7 - 19.8
vicunal3B - 112 232 390 67.2 - 15.0 33.3 55.8 - 18.7 50 - 31.6
LLama2-13B - 7.2 18.8 29.3 55.1 - 9.6 24.6 46.1 - 13.0 33.8 - 24.3
Mistral-7B - 15.8 28.7 48.2 722 - 17.0 357 624 - 19.5 523 - 36.3
ChatGLM2-6B - 15.0 315 486 T71.0 - 17.0 34.6 63.7 - 204 49.3 - 38.6

Table 6: Bad Rate for various models when evaluated on Task 2 (Suboptimal Configuration Dataset).
It signifies what fraction of the chosen options were Bad choices. (-) is used for datasets where there
were no Bad options

4 Conclusion & Future Work

Accurately reasoning over an object’s current physical state is an important aspect of developing
robust embodied agents that can accomplish tasks even if the ideal objects are not available. We
created a 3 step framework to break the decision-making process that humans go through mentally
while choosing an object for task completion. We created 3 major datasets to evaluate object-level
and physical state-level reasoning capabilities in Large Language Models. Regarding Object Level
Reasoning Capabilities(R1): We found that small models performed decently when evaluated on
tasks judging their object-level reasoning capabilities [task-0]. However, their performance dropped
as we increased the number of options in the question. For large LLMs like PaLM and GPT3.5-Turbo,
we observed very impressive object-level selection capabilities. Here, as well, we saw a drop in
accuracy as we increased the number of options in each question.
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mPalLM = GPT3.5-Turbo = LLama2-13B =vicunal3B = Mistral-7B = ChatGLM2-6B

70

482 486

Bad rates(%)

v2 v3 v4 v5

Model

Figure 7: Bad rates for various 5 option datasets as we increase the count of bad options from left
to right. Dotted Lines represent a fraction of bad options, while the difference tells us their ability
to avoid confusion
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Figure 8: Bad rates for various 4(left) and 3(right) option datasets as we increase the count
of bad options. While the dotted line represents the fractions of bad options in each dataset, the
difference between the dotted lines and bars depicts the model’s ability not to get confused as we
increase the count of bad options from left to right on the x-axis

Regarding Physical State-Level Reasoning Capabilities(R2): While evaluating commonsense
reasoning over an object’s physical state, we noticed that all Language Model displayed impressive
abilities to identify Ideal Configurations on task-1. For small models, we noticed a decreasing
accuracy within each fixed count option dataset(task-1) as we increased the object diversity. This
brings forth the internal bias of these small models to stick to an object commonly used for a task,
even if it is not in an Ideal State or a condition to be readily used. However, for larger models, we
observed a lesser degradation in such accuracy. However, there was a stark difference in how Large and
Small LLMs behaved when tasked to choose the most appropriate moderate configuration. While all
LLMs displayed an increase in accuracy as we increased the fraction of Bad Configurations in each
question (task-2), not all LLMs were able to avoid confusion between Moderate Configurations
and Bad Configurations. This ability to identify and choose Moderate Configurations amongst
a mixture of Bad and Moderate Configurations decreased as we decreased the size of LLMs. (as
shown by bad rate plots). Similar to task-0, even in task-1 and task-2, we observed a decrease in
accuracy rates as we kept increasing the number of options in each question.

16



Under review as submission to TMLR

In view of these observations, we can safely conclude that Language Models like GPT3.5-Turbo,
PaLM, and Llama2-13B can prune out appropriate Objects [Task 0] and Extremes (Ideal and Bad
Configurations) to an impressive extent. However, they face a certain level of difficulty in comparing
Moderate Configurations with each other (as this requires a certain amount of abstract reasoning
equipped with a commonsense understanding of the world around them) [R2]. Smaller language
models showcase sub-optimal behavior over [R1] and very poor behavior over [R2]

Our work opens up an avenue for improving the language model’s abstract multi-step reasoning
for estimating the physical affordance of everyday objects used in household activities. Future
efforts would be directed towards integrating these datasets to train Embodied Language agents and
proving their competence of our 3-step architecture in successful task completion when situations
aren’t ideal. Judging the variable values in the real world could be a tricky affair; thus, although the
current work focused on handcrafted variables, calculating these variables and learning new latent
variables from multi-modal inputs for effective analysis and reasoning about an object’s applicability
seems a foreseeable domain to explore.

Limitations

This work focuses on dealing with contextual connotations associated with an object when deciding
whether to use it as a substitute for task execution. We further considered abstract physical variable
level analysis to highlight the evolution of usability with various physical abstractions. While
determining the values of these variables may appear straightforward in the Ai2Thor Simulator,
achieving the same in real-life scenarios requires a resilient model. Even if we are able to calculate
the variables, there is a limitation to which an object’s state could be represented using abstract
physical variables. When comparing objects, sometimes we need to understand their exact situation
to make a decision about their usability. To develop robust embodied agents capable of dealing with
such explicit reasoning along with abstract commonsense reasoning capabilities, further work needs
to be directed along with integrating multi-modal reasoning capabilities in addition to commonsense
reasoning. In addition, in this study, we assumed that all the objects were allowed to be used by the
agent. In some cases, it might be possible that the human companion of the agent might have kept
an object in a certain way and didn’t want it disturbed. Thus, the agent might need to re-calculate
the object use preference in accordance with this newly imposed human preference. Further works
along this line would enable us to move an inch closer toward Embodied agents capable of such
constrained planning capabilities in addition to multi-modal commonsense reasoning.

5 Related Works

Previous work has been done in the domains related to the scope of this paper. In this section, we
summarize some of them:

Probing Language Models Understanding what LMs know after large-scale pre-training is an
active research area (Rogers et al.,2020)). Various probing methods have been developed (Tenney
et al., 2019b); (Petroni et all, |2019)), and investigations show that LMs capture linguistic (Tenney
et al 2019a)); (Liu et all 2019), factual (Petroni et al., 2019); (Roberts et all 2020); (Dai et al.,
2022), commonsense knowledge (Wang et al.,|2019); (Forbes et al.,|2019), and even acquire grounded
concepts (Patel & Pavlickl [2021]).

17



Under review as submission to TMLR

CommonSense QA Datasets Evaluating to what level commonsense world understanding
LMs possess has been explored by many. analyses mental models of LLMs and
aligns them with improved models about everyday things; consisted of questions
requiring physical commonsense reasoning. Recently, there has been a lot of work in NLP to utilize
commonsense for QA, NLI, etc. (Sap et al., 2019)); (Talmor et al., [2019). Many of these approaches
seek to effectively utilize ConceptNet by reducing the noise retrieved from it
(Kapanipathi et al., 2020) There have been several other QA Datasets to benchmark CommonSense
Reasoning abilities in Language Models. Some of them include: (Geva et all [2021)); (Yang et al.l
[2018)); (Mihaylov et all, |2018);

Reasoning in LLMs Reasoning is a crucial aspect of intelligence, influencing decision-making,
problem-solving, and other cognitive abilities. (Huang & Chang}, 2023)) presents the current state of
research on LLMs’ reasoning abilities, exploring approaches to improve and evaluate their reasoning
skills. (Dziri et al.| [2023)) investigates problems associated with multistep reasoning with LLMs
Some of the works dealing with tackling reasoning in small models are: (Magister et al. [2023)
et al} [2023)) (Shridhar et al., |2023))
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A Appendix

A.1 Dataset Specifics

Utilities

2 4 10 2 14 o 2 a 10 2 1

5 g 3 g
Number Of Objects Number Of Tasks

(a) Plot showing number of objects(x) for each util{b) Plot showing number of tasks(x) for each utility(y)
ity(y), as obtained after Utility based pruning

A.2 Variables

Here we describe the variables used to describe an object’s physical state. We kept it at an abstract
level to judge basic commonsense reasoning capabilities.

1. mass: Based on an estimate of the weight of an object: (i) light[0,1 Kg] (ii) medium|[1,5
Kg] (iii) heavy[5,10 Kg] (iv) super-heavy[> 10 Kg]

2. material: what material is used to make that object
3. temperature: the surface temperature of the object: Cold/Hot/RoomTemp

4. already in use: tells us about the availability of the object: reversible-using/irreversible-
using/free

5. condition: tells us about the condition of the object: broken/clean/dirty

A.3 Human Annotations: Object-Utility Mappings

Table summarizes the collected and refined Object-Utility pairings. Throughout this work, we
have referred to these as Utility Mappings.

B Dataset Creation

In addition to the variations explained in we further create 3 more types of datasets for each
of the 3 tasks. These would be each consisting of 4, 3, and 2 options. The method we choose for
sampling these options enables us to analyze the performance and reasoning capabilities of LLMs in
zero-shot commonsense reasoning. The datasets are:
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B.1 Task 0

1.

Variation-2: For each question, we sampled 1 context object and 2 utility objects belonging
to the same utility.

. Variation-3: For each question, we sampled 1 context object and 3 utility objects belonging

to the same utility.

Variation-4: For each question, we sampled 1 context object and 4 utility objects belonging
to the same utility.

B.2 Task 1

5 option datasets

1.

Variation-3: Random context object’s Ideal Configuration + 4 randomly sampled sub-
optimal configurations of same Task and Utility’s different context object

4 option datasets

. Variation-4 : Random context object’s Ideal Configuration + 3 randomly sampled sub-

optimal configurations of the same context object

Variation-5: Random context Object’s Ideal Configuration + 2 randomly sampled sub-
optimal configurations of the same context object + 1 randomly sampled sub-optimal
configurations of different context object belonging to the same <Task,Utility> combination

Variation-6: Random context Object’s Ideal Configuration + 1 randomly sampled sub-
optimal configurations of the same context object + 2 randomly sampled sub-optimal
configurations of different context object belonging to the same <Task,Utility> combination

Variation-7: Random context object’s Ideal Configuration + 3 randomly sampled sub-
optimal configurations of the different context object belonging to the same <Task,Utility>
combination

3 option datasets

1.

Variation-8 : Random context object’s Ideal Configuration 4+ 2 randomly sampled sub-
optimal configurations of the same context object

Variation-9: Random context object’s Ideal Configuration + 1 randomly sampled sub-
optimal configuration of the same context object + 1 randomly sampled sub-optimal
configuration of different context object belonging to the same <Task,Utility> combination

Variation-10: Random context object’s Ideal Configuration + 2 randomly sampled sub-
optimal configurations of the different context object belonging to the same <Task,Utility>
combination
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2 option dataset

1. Variation-11: Random context object’s Ideal Configuration + 1 randomly sampled sub-
optimal configurations of the same context object.

2. Variation-12: Random context object’s Ideal Configuration + 1 randomly sampled sub-
optimal configurations of the different context object belonging to the same <Task,Utility>
combination

B.3 Task 2
5 option dataset

1. Variation-3: We sample 3 options from the Moderate Configurations and 2 options from
the Bad Configurations of the same <Task, Utility> combination’s context objects

2. Variation-4: We sample 2 options from the Moderate Configurations and 3 options from
the Bad Configurations of the same <Task, Utility> combination’s context objects

3. Variation-5: We sample 1 option from the Moderate Configurations of the context objects
of that particular <Task, Utility> combination, we allow sampling equivalent options as
long as either of them is not the correct answer. We also sample 4 options from the Bad
Configurations of context objects of that particular <Task, Utility> combination

4 option dataset

1. Variation-6: We sample 4 options from the Moderate Configurations of the context objects
of that particular <Task, Utility> combination. Here we allow sampling equivalent options
as long as either is not the correct answer.

2. Variation-7: We sample 3 options from the Moderate Configurations of the context object
of that particular <Task,Utility> combination. We allow sampling equivalent options as
long as either is not the correct answer. We also sample 1 option from the Bad Configurations
of the random context objects of that particular <Task, Utility> combination

3. Variation-8: We sample 2 options from the Moderate Configurations of the context object of
that particular <Task,Utility> combination. We allow sampling equivalent options as long
as either is not the correct answer. We also sample 2 options from the Bad Configurations
of the random context objects of that particular <Task, Utility> combination

4. Variation-9: We sample 1 option from the Moderate Configurations of the context objects
of that particular <Task, Utility> combination. Here, we allow sampling equivalent
options as long as either is not the correct answer. We also sample 3 options from the Bad
Configurations of context objects of that particular <Task, Utility> combination

3 option dataset
1. Variation-10: We sample 3 options from the Moderate Configurations of the context objects

of that particular <Task, Utility> combination. Here, we allow sampling equivalent options
as long as either is not the correct answer.
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2. Variation-11: We sample 2 options from the Moderate Configurations of the context
objects of that particular <Task, Utility> combination. Here, we allow sampling equivalent
options as long as either is not the correct answer. We also sample 1 option from the Bad
Configurations of context objects of that particular <Task,Utility> combination

3. Variation-12: We sample 1 option from the Moderate Configurations of the context
object of that particular <Task,Utility> combination. We also sample 2 options from

the Bad Configurations of the random context objects of that particular <Task, Utility>
combination

2 option dataset

1. Variation-13: We sample 2 options from the Moderate Configurations of the context
objects of that particular <Task, Utility> combination, here we allow sampling equivalent
options as long as either of them is not the correct answer.

2. Variation-14: We sample 1 option from the Moderate Configurations of the context
object of that particular <Task,Utility> combination. We also sample 1 option from

the Bad Configurations of the random context objects of that particular <Task, Utility>
combination

C Results
m2-Options = 3-Options ®4-options = 5-Options
100
90 m2-Options ™ 3-Options ®4-Options * 5-Options
80 80
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PaLM  GPT35-Turbo Vicunal3B LLama2-13B  Vicuna7B  Mistral- 7B ChatGLM-6B ChatGLM2-6B PaLM GPT35Turbo  vicuna 138 LLama2-13B, Mistral- 7B ChatGLM2-6B

Model Model

(a) Average Accuracy of Various models on Task 1 as(b) Average Accuracy of Various models on Task 2 as

we increase option count we increase option count

D Annotation Process

The entire annotation process was text-based and was executed by circulating a text-based ques-
tionnaire. Participant demographic spanned various university-level academic departments and
consisted of students and researchers who volunteered for such annotations. Figure [11] summarizes
the entire annotation process for generating Ground Truths for all 3 datasets.

D.1 Human Annotations: Utility-Object Mappings

Creation of utility-object mappings that were further used as the backbone for all the tasks and
datasets involved the use of GPT3.5-Turbo and Human Annotation. This was done by using
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Figure 11: Figure summarizing our annotation process

GPT3.5-Turbo to output Utilities for the 100 selected AI2Thor objects. From this, we then selected
a random subset (after cross-checking it) and used it to create options while generating QnA to
gather human annotation for Utility-Object Mappings. The annotators were asked to label 100
objects with utilities from a list of 22 utilities. The inter-annotator agreement was calculated by
formulating this as a multi-annotator-multi-label scenario where each annotator could annotate a
variable number of labels per object. The annotator agreement was 89.2%, suggesting a high degree
of agreement within the annotators. The consolidated utility-object mappings are found Link

D.2 Human Annotations: Task-Object Mappings

To curate ground truth task-object mappings, also called Context Mappings; we ask the annotators
to choose objects appropriate for a <Task, Utility> combination amongst the utility objects. As
one question can have more than 1 possible correct object, we calculated inter-annotator agreement
by modeling this as a process similar to the previous annotation task. The annotator agreement was
observed to be: 81.0%, suggesting a high degree of agreement amongst the annotators. The question
posed to the annotators was similar to the ones used to curate Task 0 (Object Level Dataset), and
the obtained responses were used as Ground Truth for Task 0 Dataset. The processed GT can be
found here: [Link

D.3 Human Annotations: Common Object-Variables Mappings

To get the common variable values for all the objects, we further ask the annotators to provide all
commonly occurring variable values of each object. Using these, we created all possible configurations.
Upon calculating the inter-annotator agreement as earlier annotation tasks, we observed an inter-
annotator agreement of 89.9 when averaged across all 5 variables. The processed output can be
found here: Link
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D.4 Human Annotations: Ideal Object Configurations

Further, we ask the annotators to categorize variable values into 3 categories: Ideal, Moderate, and
Bad. "Ideal" refers to an ideal state of the object; "moderate" means you have to spend some time
getting the object in an ideal state before it can be used, whereas "bad" means the object is unusable.
Some variable values are obvious, such as "free", which would be ideal, whereas; "reversible-using"
would be moderate, and "irreversible-using" would be bad. So we only ask them to give preference
for variables like Material. The observed Krippendorfl’s reliability alpha (Krippendorff, 2011)) among
the raters for classifying material variable values into categorical variables: "Ideal", "Moderate",
and "Bad" was 0.87, suggesting a high degree of agreement amongst the annotators. The Ideal
Configurations can be found [Link.

D.5 Human Annotations: Moderate Configurations

After classifying the variable values into these 3 categories, we asked them to arrange the values in
increasing order of their appropriateness for a given <Task,Utility> combination. For ranks as
ordinal variables, we observed Krippendorfl’s alpha value to be 0.89, showing a high agreement
amongst the annotators. Further, we set a penalty for each moderate variable value and consequently
generate 2 penalty scores for each configuration: material penalty and time penalty. It is using these
penalties we further arrange the configurations based on a time penalty and then a material penalty.
This helps us create a relative ranking within the moderate configurations and enables us to sample
"moderate" options when curating Task 2 Dataset.

D.6 Human Annotations: Bad Configurations

For the Bad Configurations, we set abnormally high values for material and time penalties. These
configurations help us sample "bad" options when curating Task 2 Dataset. The sub-optimal
configurations, including "moderate" and "bad" configurations, can be found here: Link

E Prompts used

Prompts used for various models can be found at this link. Link
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F Example Responses

Task O

Question ID: 1,

Utility: heating(source),

Question: Which of the following objects would be best suited for the purpose of
"heating(source)” when tasked to "reheating coffee"”?

Options:

(A) object name: Toaster,
(B) object name: StoveBurner

Correct Answer: B

PaLM

7
.

Answer: B
Reason: Stove burners are safe and feasible, require minimal effort, and reheat coffee in a minimal amount
of time.

GPT3.5-Turbo

Answer: B

Reason: Option B, StoveBurner, would be best suited for the purpose of reheating coffee in terms of safety,
feasibility, minimum effort, and minimum time. Using a stove burner allows for precise control of heat,
enabling a gradual and controlled reheating of the coffee. It’s a common method for reheating liquids and is
safer than using a toaster, which is not designed for reheating liquids and could pose a safety risk or result in
spillage or damage to the toaster.

LLama2-13B

Answer: A

Reason: Toaster is the best option for reheating coffee as it is designed specifically for heating bread and
other toastable items, and it can heat up quickly and evenly. Using a stove burner would require more effort
and time to heat the coffee, and it may not heat it evenly. Additionally, using a toaster is generally safer
than using an open flame on a stove burner, as it has built-in safety features such as a cool-touch exterior
and automatic shut-off.

Answer: B

Reason: Option B, a stove burner, is the best choice for reheating coffee as it is a safe and efficient heating
source that requires minimal effort and time. It allows for precise temperature control and can be easily used
to reheat coffee without causing any damage to the coffee or creating any safety hazards.
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Vicuna-13B

Answer: B

Reason: A stove burner would be the best option for reheating coffee as it provides precise temperature
control, allowing for easy adjustment to the desired temperature. This ensures that the coffee is heated
evenly and efficiently, without the risk of burning or over-heating. Additionally, a stove burner is a
convenient and easily accessible option, requiring minimal effort and time to use. On the other hand, a
toaster may not be the best option as it is not designed for heating liquids and may not provide consistent or
accurate temperature control.

r
\

Mistral7B

Answer: B

Reason: While a toaster is a convenient option, a stove burner would be the best suited for heating coffee as
it provides more control over the temperature and the amount of heat being applied. It also allows for a
larger surface area to be heated, which can be beneficial in reheating coffee. Additionally, using a stove
burner is safer and more energy-efficient than using a toaster

,
\.

ChatGLM-6B

Answer: A
Reason: Toaster is a more convenient and efficient option for reheating coffee compared to a stove burner.

ChatGLM2-6B

Answer: A

Reason: Toaster is a device that heats up food items such as coffee. It is a more convenient and safer option
compared to a stove burner. The toaster has a simple operation, low maintenance and can be used to heat
up a single serving of coffee at a time. The time it takes to heat up the coffee is minimal and there is no need
for additional effort to operate it.

,
\.

Task 1

Question ID: 1,
Utility: heating(source),
Question: Which of the following objects would be best suited for the purpose of "heating(source)”
when tasked to "reheating coffee"?,
Options:
(A) object name: Microwave, mass: super-heavy, temperature: RoomTemp, material: Metal, al-
ready in use: free, condition: clean

(B) object name: StoveBurner, mass: super-heavy, temperature: RoomTemp, material: Metal al-
ready in use: irreversible-using, condition: dirty

(C) object name: CoffeeMachine, mass: heavy, temperature: RoomTemp, material: Metal al-
ready in use: irreversible-using, condition: dirty

(D) object name: Microwave, mass: super-heavy, temperature: RoomTemp, material: Metal al-
ready in use: reversible-using, condition: clean

(E) object name: Microwave, mass: super-heavy, temperature: RoomTemp, material: Metal, al-
ready in use: irreversible-using, condition: broken

Correct Answer: A

.
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Answer: A
Reason: Microwaves are safe and easy to use, and they can heat coffee quickly and evenly. They are also
relatively lightweight and easy to move, so they can be used in a variety of settings.

Answer: D

Reason: Microwave (option D) is the best choice as it is available (reversible-using), in clean
condition, and suitable for reheating coffee. It is not irreversibly occupied and can be used
for the task without a time penalty.

LLama2-13B

Answer: A

Reason: Microwaves are designed specifically for heating and cooking, making them a
safer choice compared to stovetop burners or coffee machines. Additionally, microwaves are
generally made of durable materials and have a more delicate design, which makes them less
fragile than stovetop burners or coffee machines. Furthermore, microwaves are quick and
efficient when it comes to heating up liquids, taking less time than stovetop burners or coffee
machines. Finally, option A has already been used (already in use: "free") and its condition
is clean, which suggests that it is ready for immediate use.

Vicuna7B

| r

Answer: D

Reason: This is because a microwave is a common and convenient appliance for reheating
coffee quickly and efficiently, and it can be used multiple times without any issues. Addition-
ally, a microwave is generally safe and easy to use, and it does not require any time penalty
or additional setup to get started with the task.

Vicunal3B

Answer: A

Reason: A microwave is the best suited object for the purpose of reheating coffee as it is a
fast and efficient way to heat liquids. It is also a reversible use object as it can be used again
after the task is completed. Additionally, a microwave is a safe and convenient option as it
eliminates the need for hot surfaces or open flames, which can be hazardous. The mass and
material properties of a microwave also make it a safe and practical choice for this task.
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Mistral-7B

Answer: A

Reason: Based on the given physical variables, object A (Microwave) would be the best
suited for the purpose of heating(source) when tasked to reheating coffee. The microwave is
readily available and clean, which means it can be used immediately without any additional
time required for cleaning or preparation. Additionally, microwaves are generally safe for
use in heating food and are less likely to break down compared to other materials. The
microwave temperature is also at a safe level for heating food. While other options such as
stove burners and coffee machines may also be suitable for heating coffee, they may require
additional time and effort to clean and prepare for use, and their availability may be limited
due to current use or maintenance requirements. Therefore, the microwave is the best choice
for reheating coffee in a household setting.

ChatGLM-6B

Answer: D

Reason: The best option for reheating coffee would be the Microwave object with id 5,
which has already been mentioned to be reversible and in use, but also has a lower mass
compared to other options, making it easier to handle and transport. Additionally, it is a
metal microwave, which can provide better heating efficiency compared to other options
made of different materials.

ChatGLM2-6B

Answer: B
Reason: The stove burner is suitable for heating coffee as it has a high temperature and is made of metal,

which is conductive and can efficiently transfer heat. Additionally, it is in a state of reversible using, which
means it is temporarily unavailable but can be used after some time. The condition is dirty, which is not
relevant to the task of reheating coffee.
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Question ID: 1,
Utility: heating(source),
Question: Which of the following objects would be best suited for the purpose of "heating(source)”
when tasked to "reheating coffee"?,
Options:
(A) object name: CoffeeMachine, mass: heavy, temperature: RoomTemp, material: Metal,
already in use: reversible-using, condition: dirty

(B) object name: CoffeeMachine, mass: heavy, temperature: RoomTemp, material: Metal,
already in use: irreversible-using, condition: clean

(C) object name: CoffeeMachine, mass: heavy, temperature: RoomTemp, material: Metal,
already in use: free, condition: dirty

(D) object name:Microwave, mass: super-heavy, temperature: RoomTemp, material: Metal,
already in use: reversible-using, condition: dirty

(E) object name:StoveBurner, mass: super-heavy, temperature: RoomTemp, material: Metal,
already in use: irreversible-using, condition: clean

Correct Answer: C

Answer: A
Reason: The coffee machine is the most efficient way to reheat coffee, and it is also the safest option.

Answer: E

Reason: StoveBurner is available, clean, and can be used without time penalty (reversible-using). It is
suitable for heating and reheating tasks and is generally quick to heat up.

LLama2-13B

Answer: C

Reason: The Coffee Machine is the best configuration for reheating coffee because it is the least
time-consuming and most reliable option. Although it is currently dirty, it can be cleaned after use, making
it a more reliable choice than the Microwave or StoveBurner, which may have permanent damage if used
with dirty or wet objects. Additionally, the Coffee Machine is already available and does not require any
time to "get started" like the Microwave or StoveBurner, which need time to heat up. Therefore, the Coffee
Machine is the best option for reheating coffee based on commonsense reasoning related to the provided
physical variables.

Answer: C

Reason: The Coffee Machine is the best option for the purpose of "heating(source)" when tasked to
"reheating coffee" because it is already available and not in use, and it is also in a dirty condition. Therefore,
it is the most suitable option to use for this task.
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Vicuna-13B

Answer: A

Reason: The best option for reheating coffee is the ’Coffee Machine’ because it is specifically designed for
making and heating coffee. It has a ’reversible-using’ availability status, meaning it can be used after some
time. It is also made of metal, which is a safe and durable material for heating purposes. Additionally, it is
already dirty, which means it can be cleaned after use without any extra time penalty. Overall, the 'Coffee
Machine’ is the most suitable option for reheating coffee.

Mistral-7B

Answer: A
Reason: The Coffee Machine with already in use = reversible using and condition = dirty is the best option
for reheating coffee. It is readily available and can be easily cleaned before use, making it safe and efficient

ChatGLM-6B

Answer: A

Reason: The Coffee Machine is the best suited for the purpose of heating(source) when tasked to reheating
coffee, as it is lightweight, easy to handle and can be used multiple times without any loss of heat.
Additionally, it is metal and can be easily heated to a high temperature, making it suitable for heating coffee.

ChatGLM2-6B

Answer: C

Reason: The Coffee Machine has a free state which means it can be readily used without time penalty.
Additionally, it has a dirty condition which is temporary and can be overcome. It is also made of metal which
may not be safe for food contact. It is also a heavy object which may be difficult to move.
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Utility

Objects

Heating (source)

Microwave, Stove Burner, Toaster, Oven, Coffee Ma-
chine, Candle

Wine Bottle, Watering Can, Vase, Bottle, Cup, Mug,

Carrying Pot, Kettle, Bowl, Plate, Spray Bottle
Dish Sponge, Scrub Brush, Plunger, Paper Towel
Cleaning Roll, Soap Bar, Soap Bottle, Towel, Newspaper, Toi-
let Paper, Cloth, Hand Towel, Tissue Box, Vacuum
Cleaner
Washing Bathtub Basin, Sink Basin, Toilet
Cutting Butter Knife, Knife, Fork, Spatula, Spoon
Disposing Garbage Can, Bathtub Basin, Sink Basin, Toilet

Mixing (tool)

Ladle, Fork, Spoon, Spatula, Butter Knife, Knife

Mixing (vessel)

Pan, Bowl, Kettle, Cup, Plate, Pot, Mug

Heating (vessel)

Pan, Bowl, Kettle, Cup, Plate, Pot, Mug

Drawer, Cabinet, Dresser, Fridge, Laundry Hamper,

Storage Safe, Shelf, Shelving Unit, Desk, Box
. Television, CD, Remote Control, Cell Phone, Laptop,
Entertainment
Desktop
Comfort Bed, Armchair, Chair, Dog Bed, Sofa, Ottoman
Reading Book, Newspaper, Desktop, Laptop, Cell Phone

Increasing Height

Desk, Armchair, Chair, Coffee Table, Footstool, Din-
ing Table, Countertop, Stool, Ottoman, Sofa, Side
Table, Dresser, Bed

Time

Watch, Alarm Clock, Cell Phone, Desktop, Laptop

Eating

Apple, Bread, Potato, Lettuce, Egg, Coffee, Tomato,
Salt

Physical Exercise

Basketball, Baseball Bat, Dumbell, Tennis Racket

Writing

Pen, Pencil, Cell Phone, Laptop, Desktop

Surface Support

Coffee Table, Countertop, Desk, Dining Table, Dog
Bed, Dresser, Floor, Footstool, Ottoman, Side Table,
Sofa, Stool, Chair, Armchair, Bed

Light Source

Light Switch, Window, Desk Lamp, Blinds, Curtains,
Candle, Floor Lamp

Statue, House Plant, Room Decor, Teddy Bear, Table-

Decoration top Decor, Poster, Painting
Butter Knife, Knife, Fork, Spatula, Plate, Ladle, Bas-
Breaking ketball, Tennis Racket, Dumbbell, Remote Control,

Baseball Bat, Spoon

Table 7: Utilities and Objects
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F.1 Utility Based Evaluations

As the first step in evaluating the object selection capabilities of language models, we conducted
quantitative and qualitative experiments to estimate the object-utility mappings in language models.

F.1.1 Quantitative Experiments

To measure the accuracy of language models when asked about the utility of an object, we curated
an MCQ dataset with 2K QnA pairs.

Example Question of Utility Task

Question: Which of the following objects would be best suited for the purpose of "heating(source)”?
Options:

(A) Toaster
(B) StoveBurner

Correct Answer: B

Here, unlike the context phase, we didn’t specify the task and also didn’t include any physical state
descriptions (like we did in physical state-based tasks(1,2) )

Model Accuracy

2-opt 3-opt 4-opt 5-opt

PaLM 98.60 96.80 96.20 92.70
GPT3.5-Turbo 97.30 96.20 94.90 92.10

Table 8: Here, as we move from left to right,
the number of options increases in the dataset
(from 2 options to 5 options). The findings
suggest a near-perfect alignment in objects
and their associated utilities. This allowed
us to concentrate our experiments on investi-
gating solely the object selection capabilities
across contextual factors and physical state-
based variations.

Figure 12: Image captured when GPT3.5-Turbo lan-
guage model was prompted to output 2 most com-
mon utilities associated with the object category names
present in view. The agent was spawned in the AI2Thor
environment, and ground truth segmentation was uti-
lized. Qualitative Analysis
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F.2 Fine-tuning Results

Upon fine-tuning a language model with a subset of various datasets that we curated, we expected
to see an increase in the accuracy of the model. Below, we present the results obtained after we
fine-tuned a PaLLM model on Vertex Al

F.2.1 Task-0 Fine-tuning: Model for Object Level Selection

Due to the limitation of computational resources, we selected a slice of 400 examples of 5-option
variation dataset and fine-tuned the PaLM language model for 40 training steps. In Table [0] we
present the comparison of the results before fine-tuning and after such minimal fine-tuning. Owing
to the increase in accuracy across all variations after fine-tuning just 450 examples of the 5-option
datasets for 40 training steps, we can safely expect a substantial increase when fine-tuned on a larger
split of datasets for a larger number of training steps.

F.2.2 Task-1,2 Fine-tuning: Model for Physical State Level Selection

Due to the limitation of computational resources, we selected a slice of 1200 examples which
included 450 examples from all 3 variations of task-1’s 5-option variation dataset[see Table
and 750 examples from all 5 variations of task-2’s 5-option variation dataset[see Table . We
further fine-tuned a single PaLM language model for 40 training steps. Table [I0] presents the result
comparison before fine-tuning and after such minimal fine-tuning.

We note some common observations observed after fine-tuning both these models:

1. Even with fine-tuning them on a small subset of 5 variation datasets, we got an increase in
accuracy in all datasets.

2. We got impressive results with minimal fine-tuning for 40 training_ steps. We can safely
expect a substantial increase when fine-tuned on a larger split of datasets for a larger number
of training steps.

F.3 Full Pipeline Evaluations

Comments on Previous Experiments

Previously, we designed task-0 and (task-1 and task-2) to evaluate object level and physical state level
choosing capabilities, respectively. For this, we ensured that while evaluating one factor, the other factor was
kept ideal. For example, while evaluating object-level selection capabilities, we didn’t specify the physical
state in question and instructed the model to assume them in perfectly usable conditions. Whereas, while
evaluating physical state level-based selection capabilities, we only provided the context (best suitable)
objects corresponding to the <utility, task> combination, thus eliminating any errors arising from selecting
the wrong objects. These were designed with the aim of evaluating the object-level reasoning and physical
state-level reasoning abilities of LLMs **individually**.

\ J

To evaluate the performance of language models when tasked to employ both these reasoning abilities
(object level and physical state level), we designed 2 new datasets consisting of options where either
the object could be inappropriate, the physical state could be inappropriate, or both.
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Model Physical Level Accuracy

2-opt 3-opt 4-opt 5-opt
2-opt 3-opt 4-opt 5-opt t1 t2 t1 t2 t1 t2 t1 t2

PalM 900 742 633 650  PalM 92.5 86.9 88.7 75.2 80.4 66.9 71.3 60.4
PaIM FT 915 75.6 70.9 68.2  PaLMFT 99.288.894.979.392.572.689.366.0

Obj. Level Accuracy

Model

Table 10: [Task-1,2]Here, we compare the average ac-
curacy of the PaLM language model before and after
fore and after fine-tuning when evaluated on fine-tuning when evaluated on 500 questions of each
various types of fixed option-count datasets variation of t-ask—l and task-2 dataset. (from Table
for task-0 (as in Table _ We can observe @ from various types of fixed-count dataset.s. .For
each value, we averaged the accuracy of all variations
that were a part of that fixed count dataset. We can
observe a substantial increase in accuracy for both
task-1 and task-2 performances even by fine-tuning on
such a small subset of our data (1200 examples with
task-1:task-2 ratio was 3:5) for just 40 training steps.

Table 9: [Task-0]Here we compare the aver-
age accuracy of the PaLM language model be-

a substantial increase in accuracy for task-0
performance even by fine-tuning on such a
small subset of our data (400 examples for
just 40 training_ steps)

F.3.1 Fulljge,; Dataset

In this dataset, the correct answer would be the ideal configuration of the context object.
Meanwhile, the other present options could include sub-optimal configurations of context objects,
any configurations (ideal, sub-optimal) of utility, and any unrelated random object. We created
around 30 variations of 15K QnA Pairs with varying option counts as well as ratios of different
objects.

Example Question of Full;,.,; Dataset

Question ID: 1,
Utility: heating(source),
Question: Which of the following objects would be best suited for the purpose of "heating(source)”?
Options:
(A) object name: Toaster, mass: medium, temperature: RoomTemp, material: Metal,
already in use: reversible-using, condition: dirty

(B) object name: CoffeeMachine, mass: heavy, temperature: RoomTemp, material: Metal
already in use: free, condition: clean

(C) object name: CoffeeMachine, mass: heavy, temperature: RoomTemp, material: Metal
already in use: irreversible-using, condition: clean

(D) object name: ButterKnife, mass: light, temperature: RoomTemp, material: Metal,
already in use: free, condition: clean

Correct Answer: B

F.3.2 Fullyogerate Dataset

This dataset consisted of 30 variations of 15K QnA pairs with varying option counts as well as varying
ratios of objects. Here, the correct answer would be the most appropriate moderate configuration
of the context object. The other options could include context objects(worse moderate and bad
configurations), any configuration of utility, and unrelated random objects (ideal, moderate, bad).
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Example Question of Full, . .:c Dataset

Question ID: 1,

Utility: heating(source),

Question: Which of the following objects would be best suited for the purpose of "heating(source)”?
Options:

(A) object name: Toaster, mass: medium, temperature: RoomTemp, material: Metal,
already in use: reversible-using, condition: dirty

(B) object name: CoffeeMachine, mass: heavy, temperature: RoomTemp, material: Metal
already in use: reversible-using, condition: clean

(C) object name: CoffeeMachine, mass: heavy, temperature: RoomTemp, material: Metal
already in use: irreversible-using, condition: clean

(D) object name: ButterKnife, mass: light, temperature: RoomTemp, material: Metal,
already in use: free, condition: clean

Correct Answer: B

F.3.3 Observations

PaLM Av. Accuracy

Dataset

2-opt 3-opt 4-opt 5-opt
Ideal 95.67 91.7 86.83 83.04
Moderate 77.83 62.08 55.03 48.68

Table 11: Average accuracy for single prompt evaluations in PaLM across variations of Full QA
Dataset, i.e., accuracy averaged across various dataset variations for each fixed count dataset. The
impressive performance of PaLM on Fjge, dataset is no anomaly; we also saw its prowess in figuring
out Ideal configurations of appropriate context objects even in Task-1[] Further, we also observed
in Task 2 how all language models (including PaLM) suffered when they were tasked to figure out
suitable sub-optimal configurations. The same poor performance is witnessed once through PaLM’s
accuracy on Fogerate dataset.

-a-Ideal -a-Moderate Figure 13: Variation Level analysis

T of PalLM model’s accuracy across
\/ all variations of Full QA Dataset.
For each dataset, 1 context ob-

ject was set as the correct answer

while (Context, Utility, Random)

| denote the count of each such ob-
ject in other sampled options for

each particular dataset variation.
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Figure plots the trend in accuracy as we vary the count of <utility+random> objects in the
dataset options while increasing the context objects, thus increasing the level of difficulty. As
expected (owing to the impressive utility level pruning capabilities), the peak accuracy for each fixed
option count dataset occurs at maximum random objects, whereas the worst accuracy was obtained
when all the objects in options were set as context options. We also observe improvement in accuracy
whenever we increase the random object count or concept object count, supporting our previous
conclusion of commendable object-utility mappings in language models like PaLM. In addition, the
Ideal dataset’s performance is again found to be superior to Moderate Dataset performance, just
like we saw in task-1 and task-2 previously. Also, the observation of poor performance on Fogerate
dataset when all context objects are present aligned with our previous observations of our Task-2
ablations. (finding a suitable sub-optimal configuration amongst various sub-optimal configurations
of context objects Here, we could notice that each fixed count dataset is marked by a constant
trend of accuracy drop whenever we move towards increasing the context objects - from left to right.

F.4 Modular Setup

Owing to the below par performance of the PaLLM language model on Fiogerate dataset, we experi-
mented with a modular approach of breaking the question down into 2 levels as introduced in this
work; Object Level and Physical State Level. This method consists of 2 parts:

1. Object Selector: We slice out the object names of the options and pass them as a separate
question to the LLM. From here, we expect a list of objects(remember we could have
multiple options consisting of configurations of context objects?) appropriate for the given
<Utility, Task> combination.

2. Selecting Physical States of Selected Objects: On the basis of the object names
received from stage-1, we slice out the options whose name belongs to that list and again
call an LLM and ask it to analyze which option amongst those has a configuration that
would be most suitable for the given <Utility, Task> combination. |Z|

"To evaluate the merits of such technique, we test it out on Fpegerate dataset (as it had a wide margin for
improvement, as shown in Figure@ and Table@
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PaLM Av. Accuracy Fioderate

Prompt

2-opt 3-opt 4-opt 5-opt
Single 77.83 62.08 55.03 48.68
Modular 81.96 70.11 61.52 54.37

Table 12: Average accuracy for single prompt and modular prompt evaluations in PaLLM across
variations of Fyogerate Dataset. Here, a single prompt means providing all option configurations in a
single prompt to the language model for evaluation. We clearly notice the increase in performance
when we switch to a modular prompt regime across all fixed object count variations.

~e-single prompt ~#-modular

5.0pt ~e-single prompt ~#-modular
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Figure 14: Comparative performance of single Figure 15: Comparative performance of single
prompt method and modular prompt method Prompt method and modular prompt method
implemented using PaLM and evaluated on 5- implemented using PaLM and evaluated on 4-

option variation of Fyogerate Dataset option variation of Fpegerate Dataset
=8-single prompt -@-modular 2-Opt
~e-single prompt ~#~modular 1
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Figure 16: Comparative performance of single
prompt method and modular prompt method
implemented using PaLM and evaluated on 3-
option variation of Fogerate Dataset

Figure 17: Comparative performance of single
prompt method and modular prompt method
implemented using PaLM and evaluated on 2-
ﬂ)tion variation of Fiogerate Dataset
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F.5 Observations

Figure and [I7] nightlight the improvement in performance across all variations except a
few. The increase in the average accuracy for each type of fixed count dataset adds substance to
our work’s argument of breaking an object selection task into 2 broad phases (object selection and
physical state selection). While the performance of PaLM was enhanced across nearly all variations,
we also witnessed a few cases where there was a drop in accuracy(or no improvement). This was
observed in datasets where only context objects were present in options, and thus, for such variations,
modular categorization couldn’t lead to performance gain. This is not a new observation; we had
previously seen similar cases in single prompt technique (where evaluating such variations led to
poor performance [See Orange plot in Figure ) and task-2 evaluations. However, an interesting
thing observed when analyzing object selector LLM’s responses was the confusion and random
behavior it sometimes exhibited when tasked to output a list of correct objects in the presence
of more than 1 correct object(context objects). For example, in the case of Figear and Froderate
experiments shown in Figure or like even in task-1 or task-2 dataset questions - all these tasks
could have options which contain multiple context objects corresponding to that <Utility, Task>
combination. Thus, to tackle such cases, we need to always prompt our object-level selector LLM to
output us all the objects it considers appropriate for the given <Utility, Task> combination. Due to
the random behavior of language models, we observed cases where one or more appropriate objects
were discarded in the object level stage, leading to discarding the most appropriate sub-optimal
configuration without evaluating its configuration but instead just rejecting the object name.

F.6 Future Work

The next steps in this thread of work would be pointed towards fine-tuning the physical state
selector LLM with task-1 and task-2 datasets so as to enhance its capabilities in judging object
affordance given the physical state variables. In addition to this, fine-tuning the object level
selector LLM with task-0 dataset and a multiple correct MCQ QnA (with outputs as lists of
correct object names) would allow the object level responses to be more human behavior aligned and
would reduce the number of cases in modular approach where the pipeline failed due to the failure
of object level selector LLM. Future works would be aimed at comparing the modular approach
consisting of such finetuned LLMs with single prompting method and modular approach
employing off-the-shelf LLMs.
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