
One-Shot Imitation Learning:
A Pose Estimation Perspective

Pietro Vitiello∗
The Robot Learning Lab
Imperial College London

pv2017@ic.ac.uk

Kamil Dreczkowski∗
The Robot Learning Lab
Imperial College London

krd115@ic.ac.uk

Edward Johns
The Robot Learning Lab
Imperial College London

e.johns@imperial.ac.uk

Section 4.1 and 4.2:
Effect of Pose Estimation Errors

on Task Success Rates

Section 4.3:
Benchmarking on Real-World Tasks

Section 4.4:
Spatial Generalisation

Section 4.1:
Effect of Calibration Errors

on Task Success Rates

𝑇𝛿

Figure 1: We model one-shot imitation learning as trajectory transfer, where we use unseen
object pose estimation to adapt an end-effector trajectory from a single demonstration, to a new
scene where the object is in a novel pose. In this paper, we are going to study this formulation
through a series of four investigations shown in the above boxes.

Abstract: In this paper, we study imitation learning under the challenging setting
of: (1) only a single demonstration, (2) no further data collection, and (3) no prior
task or object knowledge. We show how, with these constraints, imitation learning
can be formulated as a combination of trajectory transfer and unseen object pose
estimation. To explore this idea, we provide an in-depth study on how state-of-the-
art unseen object pose estimators perform for one-shot imitation learning on ten
real-world tasks, and we take a deep dive into the effects that camera calibration,
pose estimation error, and spatial generalisation have on task success rates. For
videos, please visit www.robot-learning.uk/pose-estimation-perspective.

Keywords: One-Shot Imitation Learning, Unseen Object Pose Estimation, Robot
Manipulation

1 Introduction
Imitation Learning (IL) can be a convenient and intuitive approach for teaching a robot how to
perform a task. However, many of today’s methods for learning vision-based policies require tens
to hundreds of demonstrations per task [1, 2, 3, 4, 5, 6]. Whilst combining with reinforcement
learning [7, 8, 9] or pre-training on similar tasks [10, 11, 12] can help, in this paper we take a look
at one-shot imitation learning, where we assume: (1) only a single demonstration, (2) no further
data collection following the demonstration, and (3) no prior task or object knowledge.

*Joint First Author Contribution

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://www.robot-learning.uk/pose-estimation-perspective

With only a single demonstration and no prior knowledge about the task or the object(s) the robot is
interacting with, the optimal imitation is one where the robot and object(s) are aligned in the same
way as during the demonstration. For example, imitating a “scoop the egg” task (see Figure 1) could
be achieved by aligning the spatula and the egg with the same sequence of relative poses as was
provided during the demonstration.

But without any prior knowledge about the object(s), such as 3D object models, the reasoning re-
quired by the robot now distils down to an unseen object pose estimation problem: the robot must
infer the relative pose between its current observation of the object(s) and its observation during the
demonstration, in order to perform this trajectory transfer [13] (see Figure 2). Unseen object pose
estimation is already a challenging field within the computer vision community [14, 15, 16, 17],
and these challenges are further compounded in a robotics setting.

From this standpoint, we are the first to study the utility of unseen object pose estimation for tra-
jectory transfer in the context of one-shot IL, and we reveal new insights into the characteristics of
such a formulation and how to mitigate its challenges. We begin our study by analysing how camera
calibration and pose estimation errors affect the success rates of ten diverse real-world manipulation
tasks, such as inserting a plug into a socket or placing a plate in a dishwasher rack.

Following this, we estimate the pose estimation errors of eight different unseen object pose estima-
tors in simulation, including one based on NOPE [18], a state-of-the-art unseen object orientation
estimation method, and one based on ASpanFormer [19], a state-of-the-art correspondence estima-
tion method. We then benchmark trajectory transfer using these eight unseen object pose estimators
against DOME [20], a state-of-the-art one-shot IL method, on the same ten real-world tasks as
mentioned above. Our results not only show that the unseen object pose estimation formulation of
one-shot IL is capable of outperforming DOME by 22% on average, but it is also applicable to a
much wider range of tasks, including those for which a third-person perspective is necessary [21].

Finally, we evaluate the robustness of this formulation to changes in lighting conditions, and con-
clude our study by investigating how well it generalises spatially, as an object’s pose differs to its
pose during the demonstration.

2 Related Work
Whilst there are many methods that study imitation learning with multiple demonstrations per
task [3, 22, 23], in this section, we set our paper within the context of existing one-shot IL methods.

Trajectory Transfer. Trajectory transfer refers to adapting a demonstrated trajectory to a new
test scene. Previous work has considered how to warp a trajectory from the geometry during the
demonstration to the geometry at test time [13], focusing on non-rigid registration for manipulating
deformable objects. However, when relying on only a single demonstration, they displayed very
local generalisation to changes in object poses, suggesting the need for multiple demonstrations in
order to achieve greater spatial generalisation [13, 24, 25]. In contrast, we are the first to study
unseen object pose estimation for trajectory transfer, which enables spatial generalisation from only
a single demonstration.

Methods that require further data collection. Since one demonstration often does not provide
sufficient information to satisfactorily learn a task, some methods rely on further data collection.
For instance, Coarse-to-Fine approaches [26, 27] train a visual servoing policy by collecting data
around the object in a self-supervised manner. On the other hand, FISH [9] fine-tunes a base policy
learned with IL using reinforcement learning and interactions with the environment. While these
approaches have their strengths, the additional environment interactions require time and sometimes
human supervision. In contrast, modelling one-shot IL as unseen object pose estimation avoids the
need for real-world data collection, hence enabling scalable learning.

Methods that require prior knowledge. Another way of compensating for the lack of demonstra-
tion data is to leverage prior task knowledge. For instance, many IL methods require access to object
poses [28, 29, 30] or knowledge of the manipulated object categories [31], which is often impracti-
cal in everyday scenarios. Another approach that assumes prior knowledge for learning tasks from
a single demonstration is meta-learning [10, 11, 12, 32, 33, 34, 35]. In this paradigm, a policy is
pre-trained on a set of related tasks in order to infer actions for similar tasks from a single demon-
stration. However, the applicability of the learned policy is limited to tasks closely related to the
meta-training dataset. Contrary to the meta-learning formulation of one-shot IL, we approach it as
unseen object pose estimation, which assumes no prior knowledge and thus increases its generality.

2

?
Trajectory

Deployment

What should the
end-effector trajectory be?

Trajectory Transfer

Unseen Object
Pose Estimation

Task
Execution

Demonstration

Observation

RGB-D Image

1 2 3

4

5

Trajectory

RGB-D Image

𝑇𝛿

𝑇𝛿

𝑇𝛿

Figure 2: Overview of our formulation for one-shot IL: (1) The robot receives a demonstration as
an RGB-D image and an end-effector trajectory. (2) At deployment, the robot sees the object in a
new pose and must adapt the demonstrated trajectory accordingly. (3) To do so, the robot uses unseen
object pose estimation to estimate the object transformation between demonstration and deployment.
(4) It then applies this transformation to the demonstrated trajectory. (5) Ultimately, this aligns the
end-effector with the same object-centric poses as experienced during the demonstration.

Methods which do not require further training or prior knowledge. DOME [20] and FlowCon-
trol [36] are one-shot IL algorithms that assume no prior knowledge. The effectiveness of these
methods hinges on their reliance on a wrist-mounted camera, limiting their applicability to tasks
where hand-centric observability is sufficient [21] and in which hand-held objects do not occlude
the wrist-mounted camera. In contrast, the one-shot IL formulation explored in this paper applies to
a much wider spectrum of tasks, including those for which a third-person perspective is necessary
[21], such as the dishwasher task considered in our experiments (Section 4).

3 One-shot Imitation Learning for Robotic Manipulation
In this work, we study one-shot IL under the challenging setting when there is: (1) only a single
demonstration, (2) no further data collection, and (3) no prior task or object knowledge. This is an
appealing setting to aim for, since it encourages the design of a general and efficient method. In this
section, we explore this from the perspective of object pose estimation. First, we provide a formu-
lation of IL. Then, we model one-shot IL for manipulation as a trajectory transfer problem. Finally,
we introduce unseen object pose estimation, which underpins the trajectory transfer problem.

Trajectory transfer, illustrated in Figure 2, involves the robot adapting a demonstrated end-effector
(EEF) trajectory for deployment. This is done by estimating the relative object pose using unseen
object pose estimation from a pair of RGB-D images captured at the beginning of the demonstration
and deployment phases, allowing for spatial generalisation of the demonstrated trajectory.

3.1 Imitation Learning Formulation

We observe demonstrations as trajectories τ = ({xt}Tt=1, s), where x represents the state of the
system, T a finite horizon, and s the context vector. The state x encompasses various measurements
relevant to the task and should include sufficient information for inferring optimal actions. In the
context of robotic manipulation, the state could be the EEF and/or object(s) pose(s). Similarly,
the context vector s captures various information regarding the conditions the demonstration was
recorded under, and can assume different forms, ranging from an image of the task space captured
before the demonstration to a task identifier in a multi-task setting.

Given a dataset of demonstrated trajectories D = {τi}Ni=1, IL aims to learn a policy π∗ that satisfies
the objective:

π∗ = argminD(q(x), p(x)), (1)
where q(x) and p(x) are the distributions of states induced by the demonstrator and policy respec-
tively, and D(q, p) is a distance measure between q and p.

3

3.2 Modelling One-Shot Imitation Learning as Trajectory Transfer
In this section, we model one-shot IL as trajectory transfer (see Figure 2), which we define as the
process at test time of moving the EEF, or a grasped object, to the same set of relative poses, with
respect to a target object, that it had during the demonstration. LetR define the frame of the robot and
Et that of the EEF at time step t. A homogeneous transformation matrix TAB represents frame B
expressed in frame A. During demonstrations, the robot receives instructions through teleoperation
or kinesthetic teaching, which are defined as:

τDemo =
(
XDemo
R , IDemo

)
, (2)

and comprise of an RGB-D image IDemo of the task space captured before the demonstration using
an external camera, and a sequence of EEF poses from the demonstration,XDemo

R = {TDemoREt
}Tt=1,

expressed in the robot frame.

With only a single demonstration and no prior knowledge about the object the robot is interacting
with, the optimal imitation can be considered to be where the robot and object(s) are aligned in the
same way as during the demonstration, throughout the task. For example, imitating grasping a mug
(see Figure 2), could be achieved by aligning the EEF in such a way that the relative pose between
the EEF and mug are the same as during the demonstration. Note that this also holds for more
complex trajectories beyond grasping, such as insertion or twisting manoeuvres. Moreover, if the
task involves a grasped object, assuming that the latter is fixed and rigidly attached to the gripper,
aligning the EEF will also align the grasped object.

Now, consider Equation 1 in the context of manipulation, where the optimal policy π∗ should result
in replicating the demonstrated task state, x = TOE , where O is the object frame, at every timestep
during deployment. This demonstrated sequence of EEF poses, expressed in the object frame, is
defined asXDemo

O = {TDemoOEt
}Tt=1, where

TDemoOEt
= TDemoOR TDemoREt

=
(
TDemoRO

)−1
TDemoREt

, (3)

and TDemoRO is the unknown object pose during the demonstration. During deployment, for op-
timal imitation, π∗ should replicate XDemo

O given a novel unknown object pose T TestRO , i.e. we
would like T TestOE = TDemoOE during every timestep of the interaction. Hence, the sequence of
EEF poses (expressed in the robot frame) that aligns with the demonstration can be defined as
XTest
R = {T TestREt

}Tt=1, where
T TestREt

= T TestRO TDemoOEt
. (4)

Substituting Equation 3 into Equation 4 yields

T TestREt
= T TestRO TDemoOR TDemoREt

= RTδT
Demo
REi

, (5)

where we define
RTδ = T

Test
RO TDemoOR , (6)

which represents the transformation of the object between the demonstration and deployment scenes,
where we use the superscript R to indicate that RTδ is expressed in the robot frame R.

This then leads to the crux of our investigation: the trajectory transfer problem, i.e. computing
XTest
R fromXDemo

R , distils down to the problem of estimating the relative object pose between the
demonstration and deployment scenes, given a single image from each. Once this pose is estimated,
controlling the EEF to follow this trajectory can simply make use of inverse kinematics. And given
that we assume no prior object knowledge, the challenge becomes one of one-shot unseen object
pose estimation, an active field in the computer vision community [14, 15, 16, 17, 18].

3.3 One-shot Unseen Object Pose Estimation for Trajectory Transfer
One-shot unseen object pose estimation is concerned with estimating the relative pose of a novel
object visible in two images. Formally, letC denote the frame of reference of a camera, and consider
one image IDemo, taken when a novel object was at a pose TDemoCO , and a second image ITest, taken
when that same object was at a pose T TestCO . One-shot unseen object pose estimation aims to estimate
the relative transformation between the two object poses, CTδ , that satisfies T TestCO = CTδT

Demo
CO ,

where we use the superscript to indicate that CTδ is expressed in the camera frame C. Rearranging
this equation yields

CTδ = T
Test
CO

(
TDemoCO

)−1
= T TestCO TDemoOC . (7)

4

Comparing Equations 6 and 7 reveals that CTδ and RTδ both represent the relative object pose, but
are expressed in different frames of reference. In fact, after estimating CTδ using one-shot unseen
object pose estimation, we can find RTδ from the following relationship derived in Appendix A:

RTδ = TRC
CTδ (TRC)

−1
= TRC

CTδTCR, (8)

where TRC is the pose of the camera in the robot frame. Hence, the trajectory transfer problem can
now be solved by using one-shot unseen object pose estimation to calculate the value of CTδ .

Examining Equation 8 reveals that there are two potential sources of error that could degrade the
accuracy of RTδ and compromise performance during deployment. The first source of error is
the error in extrinsic camera calibration TRC , and the second is the error in unseen object pose
estimation itself CTδ , both of which we discuss and study in the following sections.

4 Experiments

Put plate in
Dishwasher

Insert Cap
into bottle

Stack Bowls Insert Plug
into socket Grasp Mug Scoop an

Egg
Insert bread
into Toaster

Pour Tea
from kettle Grasp Can Place Lid on

pot

Figure 3: The 10 real-world tasks we use for evaluation.

We now introduce ten represen-
tative everyday robotics tasks
that span a broad range of
complexities. As depicted
in Figure 3, these tasks are:
placing one bowl into another
(Bowls), inserting a plug into a
socket (Plug), grasping a mug
by the handle (Mug), scoop-
ing an egg from a pan (Egg),
inserting bread into a toaster
(Toaster), inserting a plate into
a specific slot in a dish rack
(Dishwasher), inserting a cap
into a bottle (Cap), pouring a
marble from a kettle into a mug
(Tea), grasping a can (Can), and
placing a lid onto a pot (Lid).

We begin this section by studying the effect of calibration and pose estimation errors on the suc-
cess rate for each of these tasks (Section 4.1). We then consider eight unseen object pose estimation
methods and estimate their pose estimation errors in simulation (Section 4.2). And finally, we bench-
mark these pose estimation methods when used for trajectory transfer on the discussed real-world
tasks (Section 4.3), we study the robustness to changes in lighting (Section 4.3) and distractors (Ap-
pendix G.2), and we examine the spatial generalisation capabilities of trajectory transfer (Section
4.4). For videos of our experiments, please visit our website.

4.1 Sensitivity Analysis of Task Success Rates to Calibration and Pose Estimation Errors
Correlating task success rates with calibration and pose estimation errors in the real world is chal-
lenging. To establish a relationship between these errors and task success rates, we begin by pro-
viding a single demonstration via kinesthetic teaching from a last-inch setting. We then measure the
correlation between the task success rate and the starting EEF position error prior to imitating the
demonstration (see Appendix F.2). Finally, we map starting EEF position errors to either calibration
or pose estimation errors using an empirically defined mapping (see Appendix B).

Specifically, for each considered task, we reset the object position, add a position error to the starting
EEF pose, replay the demonstration, and note if the task execution is successful. This is repeated 10
times for each position noise magnitude, with noise magnitudes starting from 0 mm and increasing in
2 mm increments until the success rate is 0% over three consecutive noise magnitudes. This resulted
in a total of approximately 1,500 real-world trajectories in order to establish the relationship between
EEF position errors and task success rates for the considered tasks.

Then, to empirically map calibration errors or pose estimation errors to these starting EEF position
errors, only one potential source of error was considered at a time. For example, when mapping
translation errors in calibration to starting EEF position errors, we assumed that rotation errors in
calibration as well as rotation and translation errors in pose estimation are all zero, which isolates
the effect of translation errors in calibration on task success rates.

5

https://www.robot-learning.uk/pose-estimation-perspective

Figure 4: Correlation between error magnitudes in either cali-
bration or pose estimation, and task success rates, assuming a
distance of 80 cm between the camera and the task space.

The results for this experiment
are shown in Figure 4, where
each of the x-axes corresponds
to a different type of error in
calibration or pose estimation.
The shape of the graph is iden-
tical for each error type, be-
cause there is a linear relation-
ship between each of these er-
rors and the error in starting EEF
position. From these results,
we can draw two main conclu-
sions. Firstly, the task success
rate for all tasks is more sen-
sitive to errors in pose estima-
tion than errors in camera cali-
bration (for both translation and
rotation errors), highlighting the
importance of good pose esti-
mation methods for this frame-

work. Secondly, given typical performance of pose estimation and calibration methods, rotation
errors are more problematic than position errors. For example, considering that rotation errors < 4◦

are more probable than position errors > 2 cm with today’s methods, we can see that a mere ∼4◦
error in calibration or ∼2◦ in pose estimation leads to an average success rate of ∼50%, whereas
this same success rate would require a ∼7 cm error in calibration or ∼2 cm in pose estimation.

4.2 Pose Estimation Errors of One-Shot Unseen Object Pose Estimation Methods

Translation
Error [cm]

Rotation
Error [deg]

Class. 5.9 ± 11.2 4.3 ± 10.1
ASpan. (FT) 6.0± 13.0 6.1± 13.4
Reg. 9.8± 15.3 9.4± 15.3
DINO 11.3± 18.2 11.6± 18.9
ASpan. 11.5± 17.4 11.7± 18.8
NOPE 18.8± 17.4 18.4± 17.2
ICP 14.3± 30.8 14.4± 32.4
GMFlow 28.4± 24.6 27.6± 24.5

Table 1: Simulation pose estimation errors and stan-
dard deviations for eight different methods.

We now consider eight different unseen ob-
ject pose estimation methods and evaluate
their pose estimation errors in simulation.
To this end, we generate a simulated dataset
consisting of 1100 image pairs of 55 differ-
ent objects from Google Scan Object [37],
using Blender [38] (see Appendix D.2).

The considered methods are: 1) ICP: We use
the Open3D [39] implementation of point-
to-point ICP [40]. ICP is given a total of
5 seconds to make each estimate, giving it
enough time to try 50− 150 different initial-
isations. 2) GMFlow: We use GMFlow [41]
to estimate correspondences between two RGB images and solve for the relative object pose CTδ
with Singular Value Decomposition (SVD) [42] using the depth image. 3) DINO: We use DINO [43]
to extract descriptors for pixels in the two RGB images, and use the SciPy [44] implementation of
the Hungarian algorithm to establish correspondences. Again, the relative pose CTδ is obtained
using SVD. 4) ASpan.: We use the pre-trained ASpanFormer [19] to establish correspondences be-
tween two RGB images and estimate CTδ using SVD. 5) ASpan. (FT): The ASpan. baseline, with
model weights fine-tuned on a custom object-centric dataset generated in Blender using ShapeNet
and Google Scan Objects [37]. 6) NOPE: We use the pre-trained NOPE [18] model to estimate
the relative object rotation from two images, and a heuristic that centres two partial point clouds
to predict the relative translation. 7) Reg.: We train an object-agnostic PointNet++ to regress rela-
tive object orientations around the world’s vertical axis from two coloured point clouds, using data
generated in simulation and domain randomisation. We solve for the relative translation using a
heuristic that centres two partial point clouds. 8) Class.: This is equivalent to the Reg. baseline with
the exception that PointNet++ is trained to classify the relative object orientation.

We also experimented with predicting the relative object translation from pairs of RGB-D images
for the NOPE, Reg. and the Class. baselines. However, we found that a simple heuristic that centres
partial point clouds for translation prediction had a similar performance, and thus used this during
inference. We refer the reader to Appendix C for a more detailed description of all of these methods.

6

Plug Pot Toaster Dishwasher Mug Egg Bottle Tea Bowls Can Mean
TT (GMFlow) 10 40 0 20 40 20 20 20 60 60 29
TT (ASpanFormer (FT)) 0 10 10 50 60 50 50 30 30 50 34
TT (ASpanFormer) 0 10 0 20 50 50 50 40 60 70 35
TT (DINO) 0 20 10 30 50 60 40 40 80 70 40
TT (NOPE) 0 10 0 50 0 70 90 100 70 100 49
DOME 0 10 80 0 100 70 40 90 70 100 56
TT (ICP) 10 70 80 40 60 80 100 100 100 100 74
TT (Class.) 20 10 90 70 100 90 100 100 80 100 76
TT (Reg.) 20 30 90 70 100 90 100 100 80 100 78
Mean 6.7 23.3 40 46.7 62.2 64.4 65.6 68.9 70 83.3

Table 2: Real-world success rates (%), from ten trials for each combination of method and task. TT
(Trajectory Transfer) is used to distinguish all the previously discussed baselines from DOME [20].

The results for this experiment are shown in Table 1 (see Appendix E for an error definition and
a discussion of these results). Although directly comparing these results to Figure 4 suggests that
none of these baselines would be suitable for learning the considered tasks, in practice we found that
translation and rotation errors in pose estimates are often coupled and partially cancel each other out,
while Figure 4 only considers isolated errors. These observations are further reinforced by the strong
performance we found with these baselines in our real-world experiments.

4.3 Real-World Evaluation

We now investigate if the trajectory transfer formulation of one-shot IL can learn real-world, every-
day tasks, of varying tolerances.

Implementation Details For trajectory transfer, we use a given unseen object pose estimator to
estimate CTδ , and Equations 8 and 5 alongside inverse kinematics to align the robot with the first
state of the demonstration. From this state, we align the full robot trajectory with the demonstrated
trajectory, following Appendix F.2. In order to isolate the object of interest from the background,
we segment it from the RGB-D image captured before the demonstration and deployment using a
combination of OWL-ViT [45] and SAM [46]. Both segmented RGB-D images are subsequently
downsampled to ensure compatibility with a given method. See Appendix F for further details.

Experimental Procedure We conduct experiments using a 7-DoF Sawyer robot operating at 30 Hz.
The robot is equipped with a head-mounted camera capturing 640-by-480 RGB-D images. The task
space is defined as a 30 × 75 cm region on a table in front of the robot, which is further divided
into 10 quadrants measuring 15 × 15 cm each. During the demonstration phase, all objects are
positioned in approximately the same location near the middle of the task space (see Figure 5), and
a single demonstration is provided for each task via kinesthetic teaching from a last-inch setting.
In the testing phase, the object is randomly placed within each quadrant with a random orientation
difference of up to ±45◦ relative to the demonstration orientation. We test each method on a single
object pose within each of the quadrants, resulting in 10 evaluations per method.

Results. The results for this experiment are shown in Table 2, with tasks ordered by mean success
rate across methods and methods ordered by mean success rate across tasks. These results also
include a comparison against DOME [20], a state-of-the-art one-shot IL method. We observe that
for DOME, the majority of failure cases are caused by its inaccurate segmentation of target objects.
Its poor performance on the dishwasher task is attributed to the fact that the demonstration had to
be started from further away, as DOME requires the object to be fully visible from a wrist-mounted
camera. As a result, DOME was beaten on average by three of the baselines.

The Reg. and Class. baselines had the best performance on average, likely due to the fact that
their training data was tailored to object manipulation (see Appendix D.1). ICP’s performance
was affected by the partial nature of the point clouds, which sometimes caused it to converge to
local optimums. NOPE found itself out of its training distribution. Being trained on images with
the object in the centre, NOPE can confuse a relative translation for a rotation when an object is
displaced from the image centre. DINO uses semantic descriptors, which cause keypoints to be
locally similar, translating into matches that are coarse and not precise. ASpanFormer was trained
on images of entire scenes with many objects, hence expecting scenes rich with features. Therefore,
predicting correspondences for a single segmented object causes this method to perform poorly.
Meanwhile, we note that the fine-tuned ASpanFormer’s performance drops significantly more with
the sim-to-real gap than that of the Reg. and Class. methods. Lastly, GMFlow was found to poorly
estimate rotations as the predicted flow tended to be smooth and consistent across pixels.

7

Robustness to Changes in Lighting Conditions. We now focus on trajectory transfer using re-
gression, the best-performing method in our real-world experiments, and analyse its robustness to
changes in lighting conditions. To this end, we rerun the real-world experiment for this method while
additionally randomising the position, luminosity, and colour temperature of an external LED light
source before each rollout. The results from this experiment indicate that trajectory transfer using
regression remains strong, with an average decrease in performance of only 8% when the lighting
conditions are randomised significantly between the demonstration and test scene. We attribute this
strong performance to the fact that the dataset used to train this baseline randomises lighting condi-
tions between the two input images as part of domain randomisation. For full details regarding this
experiment and its results, we refer the reader to Appendix G.1.

4.4 Spatial Generalisation

DEMO

58 %

65 %64 %

60 %50 %

44 %

44 % 44 %

47 %50 %

Figure 5: The correlation between success rate and displacement
from the place where the demonstration was given.

Another insight that emerged
from the real-world experi-
ments is the impact of the
relative object pose between
the demonstration and deploy-
ment on the average perfor-
mance of trajectory transfer.
When we aggregate the suc-
cess rates across all baselines,
tasks and poses within each of
the quadrants, we notice a decline in the success rate of trajectory transfer as the object pose deviates
from the demonstration pose. In Figure 5, we display a mug at the approximate location where all
objects were placed during demonstrations (labelled as DEMO), as well as a mug at the centre of
each of the quadrants. The opacity of the mugs located in the different quadrants is proportional to
the average success rate for those quadrants, which is also displayed in white text. Note that whilst
in this figure the orientation of the mug is fixed, experiments did randomise the orientations.

The cause of this behaviour lies in the camera perspective. Specifically, even when kept at a fixed
orientation, simply changing the position of an object will result in changes to its visual appearance.
Moreover, contrary to the effect of errors in camera calibration (see Appendix B.1), the changes in
the visual appearance lessen as the camera is placed further away from the task space. These insights
might seem intuitive, but for this same reason, they could be easily overlooked by researchers in the
field. As a result, for optimal spatial generalisation, we recommend providing demonstrations at the
centre of the task space, as this minimises the variations in the object appearance when the object’s
pose deviates from the demonstration pose.

5 Discussion and Limitations
By formulating one-shot IL using unseen object pose estimation, we are able to learn new tasks with-
out prior knowledge, from a single demonstration and no further data collection. We demonstrate
this from a theoretical perspective and show its potential when applied to real-world tasks.

One limitation of this method is that we do not address generalisation to intra-class instances. Us-
ing semantic visual correspondences [47] is a promising future direction here. Another limitation
is the reliance on camera calibration. However, our analysis of calibration errors and real-world
experiments do indicate good performance given typical calibration errors.

Although the proposed method has demonstrated to be very versatile in the types of tasks it can
learn, in our setup it required a static scene. This is because the robot arm often occludes the task
space given the head-mounted camera on our Sawyer robot, making it not possible to continuously
estimate the object pose during deployment. However, this is a limitation of the hardware setup
and not a fundamental limitation of the method. By optimising the camera placement for minimum
occlusions, trajectory transfer could be deployed in a closed-loop and in dynamic scenes.

Finally, the current formulation is unsuitable for tasks that depend on the relative pose between two
objects, where neither of them is rigidly attached to the EEF. For instance, pushing an object close
to another cannot rely on the rigid transfer of the trajectory, because the latter needs to be adapted
according to the relative pose of the two objects. However, such tasks are fundamentally ambiguous
with only a single demonstration, and multiple demonstrations would be required.

8

Acknowledgments

We would like to thank all reviewers for their thorough and insightful feedback, which had a signif-
icant impact on our paper.

References
[1] S. Young, D. Gandhi, S. Tulsiani, A. Gupta, P. Abbeel, and L. Pinto. Visual imitation

made easy. In J. Kober, F. Ramos, and C. Tomlin, editors, Proceedings of the 2020 Confer-
ence on Robot Learning, volume 155 of Proceedings of Machine Learning Research, pages
1992–2005. PMLR, 16–18 Nov 2021. URL https://proceedings.mlr.press/v155/
young21a.html.

[2] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-z:
Zero-shot task generalization with robotic imitation learning. In 5th Annual Conference on
Robot Learning, 2021. URL https://openreview.net/forum?id=8kbp23tSGYv.

[3] A. Brohan et al. RT-1: Robotics Transformer for Real-World Control at Scale. In Proceedings
of Robotics: Science and Systems, Daegu, Republic of Korea, July 2023. doi:10.15607/RSS.
2023.XIX.025.

[4] T. Yu, T. Xiao, J. Tompson, A. Stone, S. Wang, A. Brohan, J. Singh, C. Tan, D. M, J. Peralta,
K. Hausman, B. Ichter, and F. Xia. Scaling Robot Learning with Semantically Imagined Ex-
perience. In Proceedings of Robotics: Science and Systems, Daegu, Republic of Korea, July
2023. doi:10.15607/RSS.2023.XIX.027.

[5] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong, P. Wohlhart, S. Kirmani,
B. Zitkovich, F. Xia, C. Finn, and K. Hausman. Open-world object manipulation using pre-
trained vision-language models. In 7th Annual Conference on Robot Learning, 2023. URL
https://openreview.net/forum?id=9al6taqfTzr.

[6] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. In K. E. Bekris, K. Hauser, S. L. Herbert, and J. Yu, editors, Robotics:
Science and Systems XIX, Daegu, Republic of Korea, July 10-14, 2023, 2023. doi:10.15607/
RSS.2023.XIX.016. URL https://doi.org/10.15607/RSS.2023.XIX.016.

[7] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. KramÃ¡r, R. Had-
sell, N. de Freitas, and N. Heess. Reinforcement and imitation learning for diverse visuomotor
skills. In Proceedings of Robotics: Science and Systems, Pittsburgh, Pennsylvania, June 2018.
doi:10.15607/RSS.2018.XIV.009.

[8] N. Das, S. Bechtle, T. Davchev, D. Jayaraman, A. Rai, and F. Meier. Model-based inverse
reinforcement learning from visual demonstrations. In J. Kober, F. Ramos, and C. Tomlin,
editors, Proceedings of the 2020 Conference on Robot Learning, volume 155 of Proceedings
of Machine Learning Research, pages 1930–1942. PMLR, 16–18 Nov 2021. URL https:
//proceedings.mlr.press/v155/das21a.html.

[9] S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a Robot to FISH: Versatile Imitation from One
Minute of Demonstrations. In Proceedings of Robotics: Science and Systems, Daegu, Republic
of Korea, July 2023. doi:10.15607/RSS.2023.XIX.009.

[10] Y. Duan, M. Andrychowicz, B. Stadie, O. Jonathan Ho, J. Schneider, I. Sutskever,
P. Abbeel, and W. Zaremba. One-shot imitation learning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
ba3866600c3540f67c1e9575e213be0a-Paper.pdf.

[11] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via meta-
learning. In S. Levine, V. Vanhoucke, and K. Goldberg, editors, Proceedings of the 1st Annual
Conference on Robot Learning, volume 78 of Proceedings of Machine Learning Research,
pages 357–368. PMLR, 13–15 Nov 2017. URL https://proceedings.mlr.press/v78/
finn17a.html.

9

https://proceedings.mlr.press/v155/young21a.html
https://proceedings.mlr.press/v155/young21a.html
https://openreview.net/forum?id=8kbp23tSGYv
http://dx.doi.org/10.15607/RSS.2023.XIX.025
http://dx.doi.org/10.15607/RSS.2023.XIX.025
http://dx.doi.org/10.15607/RSS.2023.XIX.027
https://openreview.net/forum?id=9al6taqfTzr
http://dx.doi.org/10.15607/RSS.2023.XIX.016
http://dx.doi.org/10.15607/RSS.2023.XIX.016
https://doi.org/10.15607/RSS.2023.XIX.016
http://dx.doi.org/10.15607/RSS.2018.XIV.009
https://proceedings.mlr.press/v155/das21a.html
https://proceedings.mlr.press/v155/das21a.html
http://dx.doi.org/10.15607/RSS.2023.XIX.009
https://proceedings.neurips.cc/paper_files/paper/2017/file/ba3866600c3540f67c1e9575e213be0a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/ba3866600c3540f67c1e9575e213be0a-Paper.pdf
https://proceedings.mlr.press/v78/finn17a.html
https://proceedings.mlr.press/v78/finn17a.html

[12] T. Yu, C. Finn, S. Dasari, A. Xie, T. Zhang, P. Abbeel, and S. Levine. One-shot imitation
from observing humans via domain-adaptive meta-learning. In H. Kress-Gazit, S. S. Srinivasa,
T. Howard, and N. Atanasov, editors, Robotics: Science and Systems XIV, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA, June 26-30, 2018, 2018. doi:10.15607/RSS.2018.
XIV.002. URL http://www.roboticsproceedings.org/rss14/p02.html.

[13] J. Schulman, J. Ho, C. Lee, and P. Abbeel. Learning from Demonstrations Through the Use of
Non-rigid Registration, pages 339–354. Springer International Publishing, Robotics Research:
The 16th International Symposium ISRR, Cham, 2016. ISBN 978-3-319-28872-7. doi:10.
1007/978-3-319-28872-7 20. URL https://doi.org/10.1007/978-3-319-28872-7_
20.

[14] G. Pitteri, A. Bugeau, S. Ilic, and V. Lepetit. 3D Object Detection and Pose Estimation of
Unseen Objects in Color Images with Local Surface Embeddings. In Asian Conference on
Computer Vision, 2020.

[15] M. Gou, H. Pan, H. Fang, Z. Liu, C. Lu, and P. Tan. Unseen Object 6D Pose Estimation: A
Benchmark and Baselines. ArXiv, abs/2206.11808, 2022.

[16] J. Wu, Y. Wang, and R. Xiong. Unseen object pose estimation via registration. In 2021
IEEE International Conference on Real-time Computing and Robotics (RCAR), pages 974–
979, 2021. doi:10.1109/RCAR52367.2021.9517491.

[17] K. Park, A. Mousavian, Y. Xiang, and D. Fox. LatentFusion: End-to-End Differentiable Re-
construction and Rendering for Unseen Object Pose Estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2020.

[18] V. N. Nguyen, T. Groueix, Y. Hu, M. Salzmann, and V. Lepetit. NOPE: Novel Object Pose
Estimation from a Single Image. arXiv preprint arXiv:2303.13612, 2023.

[19] H. Chen, Z. Luo, L. Zhou, Y. Tian, M. Zhen, T. Fang, D. McKinnon, Y. Tsin, and L. Quan.
Aspanformer: Detector-free image matching with adaptive span transformer. European Con-
ference on Computer Vision (ECCV), 2022.

[20] E. Valassakis, G. Papagiannis, N. Di Palo, and E. Johns. Demonstrate Once, Imitate Imme-
diately (DOME): Learning Visual Servoing for One-Shot Imitation Learning. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2022.

[21] K. Hsu, M. J. Kim, R. Rafailov, J. Wu, and C. Finn. Vision-based manipulators need to also
see from their hands. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=RJkAHKp7kNZ.

[22] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-maron, M. Giménez,
Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess,
Y. Chen, R. Hadsell, O. Vinyals, M. Bordbar, and N. de Freitas. A generalist agent. Transac-
tions on Machine Learning Research, 2022. ISSN 2835-8856. URL https://openreview.
net/forum?id=1ikK0kHjvj. Featured Certification, Outstanding Certification.

[23] V. Vosylius and E. Johns. Few-shot in-context imitation learning via implicit graph align-
ment. In 7th Annual Conference on Robot Learning, 2023. URL https://openreview.
net/forum?id=CnKf9TyYtf2.

[24] A. X. Lee, A. Gupta, H. Lu, S. Levine, and P. Abbeel. Learning from multiple demonstrations
using trajectory-aware non-rigid registration with applications to deformable object manip-
ulation. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5265–5272, 2015. URL https://api.semanticscholar.org/CorpusID:7736763.

[25] A. X. Lee, S. H. Huang, D. Hadfield-Menell, E. Tzeng, and P. Abbeel. Unifying scene registra-
tion and trajectory optimization for learning from demonstrations with application to manipula-
tion of deformable objects. 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4402–4407, 2014. URL https://api.semanticscholar.org/CorpusID:
16120912.

10

http://dx.doi.org/10.15607/RSS.2018.XIV.002
http://dx.doi.org/10.15607/RSS.2018.XIV.002
http://www.roboticsproceedings.org/rss14/p02.html
http://dx.doi.org/10.1007/978-3-319-28872-7_20
http://dx.doi.org/10.1007/978-3-319-28872-7_20
https://doi.org/10.1007/978-3-319-28872-7_20
https://doi.org/10.1007/978-3-319-28872-7_20
http://dx.doi.org/10.1109/RCAR52367.2021.9517491
https://openreview.net/forum?id=RJkAHKp7kNZ
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=CnKf9TyYtf2
https://openreview.net/forum?id=CnKf9TyYtf2
https://api.semanticscholar.org/CorpusID:7736763
https://api.semanticscholar.org/CorpusID:16120912
https://api.semanticscholar.org/CorpusID:16120912

[26] E. Johns. Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demonstra-
tion. In IEEE International Conference on Robotics and Automation (ICRA), 2021.

[27] N. Di Palo and E. Johns. Learning Multi-Stage Tasks with One Demonstration via Self-Replay.
In Conference on Robot Learning (CoRL), 2021.

[28] Y. Huang, J. Silvério, L. Rozo, and D. G. Caldwell. Generalized Task-Parameterized Skill
Learning. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
5667–5474, 2018. doi:10.1109/ICRA.2018.8461079.

[29] J. Li, M. Cong, D. Liu, and Y. Du. Enhanced task parameterized dynamic movement primitives
by gmm to solve manipulation tasks. Robotic Intelligence and Automation, 43(2):85–95, 2023.

[30] Y. Hu, M. Cui, J. Duan, W. Liu, D. Huang, A. Knoll, and G. Chen. Model predictive opti-
mization for imitation learning from demonstrations. Robotics and Autonomous Systems, 163:
104381, 2023.

[31] B. Wen, W. Lian, K. Bekris, and S. Schaal. You Only Demonstrate Once: Category-Level
Manipulation from Single Visual Demonstration. In Proceedings of Robotics: Science and
Systems, New York City, NY, USA, June 2022. doi:10.15607/RSS.2022.XVIII.044.

[32] A. Bonardi, S. James, and A. J. Davison. Learning one-shot imitation from humans without
humans. IEEE Robotics and Automation Letters, 5(2):3533–3539, 2020. doi:10.1109/LRA.
2020.2977835.

[33] X. Yang, Y. Peng, W. Li, J. Z. Wen, and D. Zhou. Vision-based one-shot imitation
learning supplemented with target recognition via meta learning. In 2021 IEEE Interna-
tional Conference on Mechatronics and Automation (ICMA), pages 1008–1013, 2021. doi:
10.1109/ICMA52036.2021.9512607.

[34] Z. Mandi, F. Liu, K. Lee, and P. Abbeel. Towards more generalizable one-shot visual imitation
learning. In 2022 International Conference on Robotics and Automation (ICRA), pages 2434–
2444, 2022. doi:10.1109/ICRA46639.2022.9812450.

[35] M. Sieb, Z. Xian, A. Huang, O. Kroemer, and K. Fragkiadaki. Graph-structured visual imita-
tion. In L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, Proceedings of the Conference on
Robot Learning, volume 100 of Proceedings of Machine Learning Research, pages 979–989.
PMLR, 30 Oct–01 Nov 2020. URL https://proceedings.mlr.press/v100/sieb20a.
html.

[36] M. Argus, L. Hermann, J. Long, and T. Brox. Flowcontrol: Optical flow based visual servoing.
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
7534–7541, 2020. doi:10.1109/IROS45743.2020.9340942.

[37] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T. B. McHugh,
and V. Vanhoucke. Google Scanned Objects: A High-Quality Dataset of 3D Scanned
Household Items. In 2022 International Conference on Robotics and Automation (ICRA),
page 2553–2560. IEEE Press, 2022. doi:10.1109/ICRA46639.2022.9811809. URL https:
//doi.org/10.1109/ICRA46639.2022.9811809.

[38] B. O. Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2018. URL http://www.blender.org.

[39] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D data processing.
arXiv:1801.09847, 2018.

[40] P. Besl et al. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14(2):239–256, 1992. doi:10.1109/34.121791.

[41] H. Xu, J. Zhang, J. Cai, H. Rezatofighi, and D. Tao. Gmflow: Learning optical flow via
global matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8121–8130, 2022.

11

http://dx.doi.org/10.1109/ICRA.2018.8461079
http://dx.doi.org/10.15607/RSS.2022.XVIII.044
http://dx.doi.org/10.1109/LRA.2020.2977835
http://dx.doi.org/10.1109/LRA.2020.2977835
http://dx.doi.org/10.1109/ICMA52036.2021.9512607
http://dx.doi.org/10.1109/ICMA52036.2021.9512607
http://dx.doi.org/10.1109/ICRA46639.2022.9812450
https://proceedings.mlr.press/v100/sieb20a.html
https://proceedings.mlr.press/v100/sieb20a.html
http://dx.doi.org/10.1109/IROS45743.2020.9340942
http://dx.doi.org/10.1109/ICRA46639.2022.9811809
https://doi.org/10.1109/ICRA46639.2022.9811809
https://doi.org/10.1109/ICRA46639.2022.9811809
http://www.blender.org
http://dx.doi.org/10.1109/34.121791

[42] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d point sets. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5):698–700, 1987. doi:
10.1109/TPAMI.1987.4767965.

[43] S. Amir, Y. Gandelsman, S. Bagon, and T. Dekel. Deep ViT Features as Dense Visual Descrip-
tors. ECCVW What is Motion For?, 2022.

[44] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi:10.1038/s41592-019-0686-2.

[45] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn, A. Dosovitskiy, A. Ma-
hendran, A. Arnab, M. Dehghani, Z. Shen, X. Wang, X. Zhai, T. Kipf, and N. Houlsby. Simple
open-vocabulary object detection with vision transformers. ECCV, 2022.

[46] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, P. Dollar, and R. Girshick. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pages 4015–4026, October
2023.

[47] D. Hadjivelichkov, S. Zwane, M. Deisenroth, L. Agapito, and D. Kanoulas. One-Shot Transfer
of Affordance Regions? AffCorrs! In K. Liu, D. Kulic, and J. Ichnowski, editors, Proceedings
of The 6th Conference on Robot Learning (CoRL), volume 205 of Proceedings of Machine
Learning Research, pages 550–560, 14–18 Dec 2023.

[48] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm. Usac: A universal frame-
work for random sample consensus. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):2022–2038, 2013. doi:10.1109/TPAMI.2012.257.

[49] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. In M. A. Fis-
chler and O. Firschein, editors, Readings in Computer Vision, pages 726–740. Morgan
Kaufmann, San Francisco (CA), 1987. ISBN 978-0-08-051581-6. doi:https://doi.org/10.
1016/B978-0-08-051581-6.50070-2. URL https://www.sciencedirect.com/science/
article/pii/B9780080515816500702.

[50] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[51] H. W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Research Logistics
Quarterly, 2(1–2):83–97, March 1955. doi:10.1002/nav.3800020109.

[52] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf.

[53] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 23–30, 2017. doi:
10.1109/IROS.2017.8202133.

[54] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich 3D Model Reposi-
tory. Technical Report arXiv:1512.03012 [cs.GR], Stanford University — Princeton University
— Toyota Technological Institute at Chicago, 2015.

12

http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1109/TPAMI.2012.257
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-051581-6.50070-2
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-051581-6.50070-2
https://www.sciencedirect.com/science/article/pii/B9780080515816500702
https://www.sciencedirect.com/science/article/pii/B9780080515816500702
http://dx.doi.org/10.1002/nav.3800020109
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
http://dx.doi.org/10.1109/IROS.2017.8202133
http://dx.doi.org/10.1109/IROS.2017.8202133

[55] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and
Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

[56] P. Heave, 2023. URL https://polyhaven.com/.

[57] E. Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE International
Conference on Robotics and Automation, pages 3400–3407, 2011. doi:10.1109/ICRA.2011.
5979561.

13

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://polyhaven.com/
http://dx.doi.org/10.1109/ICRA.2011.5979561
http://dx.doi.org/10.1109/ICRA.2011.5979561

Appendix A Changing the Coordinate Frame of Tδ

In the main paper, we state that the equation below changes the frame of reference of Tδ from the
camera’s frame C to the robot’s frame R:

RTδ = TRC
CTδTCR = TRC

CTδ (TRC)
−1
, (9)

where TRC is the pose of the camera in the robot frame. To derive this relationship, we begin by
referring to the definition of CTδ presented in Equation 7 of the main paper:

CTδ = T
Test
CO TDemoOC = T TestCO

(
TDemoCO

)−1
.

Rearranging this equation yields:

T TestCO = CTδT
Demo
CO . (10)

Additionally, we know that
T TestRO = TRCT

Test
CO . (11)

By substituting Equation 10 into Equation 11, we obtain:

T TestRO = TRCT
Test
CO

= TRC
CTδT

Demo
CO (12)

However,
TDemoCO = TCRT

Demo
RO = (TRC)

−1
TDemoRO .

By substitute this relationship into Equation 12 we obtain

T TestRO = TRC
CTδTCRT

Demo
RO ,

which can be rearranged to obtain

TRC
CTδTCR = T TestRO TDemoOR = T TestRO

(
TDemoRO

)−1
.

Since the right-hand side of this equation is consistent with the definition of RTδ presented in Equa-
tion 6 of the main paper, we conclude that

RTδ = TRC
CTδTCR.

Appendix B Mapping End-effector Errors to Calibration and Pose
Estimation Errors

In Section 4.1 of the main paper, we detail our experimental procedure to derive the correlation
between task success rates and starting end-effector position errors prior to replaying a last-inch
demonstration. We then mention that we map these end-effector position errors to the correspond-
ing calibration or pose estimation errors. In this section, we describe our procedure for deriving
the empirical mapping between end-effector position errors and the corresponding calibration (Ap-
pendix B.1) and pose estimation errors (Appendix B.2).

B.1 Errors in Camera Calibration
We derive the empirical relationship between end-effector position errors and camera calibration
errors using an experiment in which we repeatedly (1) sample a starting end-effector pose for a
demonstration, TDemoRE , (2) sample a relative object pose between the demonstration and deploy-
ment, CTδ , and (3) compute the accuracy with which we can calculate the corresponding starting
end-effector pose for deployment, T TestRE , using trajectory transfer, after injecting controlled amounts
of noise to the camera calibration matrix TRC .

Experimental Procedure We begin by calibrating a head-mounted camera to a Sawyer robot in the
real world, obtaining an estimate of the camera pose:

TRC = [RRC |tRC] ,

where RRC ∈ SO(3) is a rotation matrix and tRC ∈ R3 is a translation vector. We then sample a
random end-effector pose TDemoRE , which can be interpreted as the end-effector pose at the beginning

14

of a demonstration. Further, we sample a random relative object movement expressed in the camera
frame,

CTδ =
[
CRδ|Ctδ

]
,

where CRδ ∈ SO(3) is a rotation matrix obtained from a randomly sampled rotation vector with a
rotation magnitude sampled from the interval [0, 45]◦, and Ctδ ∈ R3 is a randomly sampled trans-
lation vector with a magnitude sampled from the interval [0, 0.4]m. The interval [0, 45]◦ was chosen
for consistency with our real-world experiments, while the maximum magnitude of the translation
is equal to half of the longest side of our workspace, and corresponds to the maximum translation
that is allowable between a demonstration and deployment when the demonstration is given with the
object at the centre of the workspace.

After sampling the hypothetical end-effector pose TDemoRE and the relative object pose CTδ , we use
them together with the camera extrinsic matrix TRC to calculate the desired end-effector pose at test
time,

T TestRE =
[
RTest
RE |tTestRE

]
,

using trajectory transfer (see Equations 5 and 8 in the main paper).

Once we compute the desired end-effector pose via trajectory transfer, we either perturb the rotation
matrix of the camera calibration matrix, resulting in

T̄RC = [RεRRC |tRC] ,

where Rε ∈ SO(3) is a rotation matrix obtained from a randomly sampled rotation vector with a
predetermined rotation magnitude, or perturb the translation vector of the camera calibration matrix,
resulting in

T̄RC = [RRC |tRC + tε] ,

where tε ∈ R3 is a randomly sampled vector with a predetermined magnitude.

After perturbing the camera pose, we estimate the desired end-effector pose,

T̄ TestRE =
[
R̄Test
RE |t̄TestRE

]
,

using trajectory transfer and the noisy camera calibration matrix T̄RC . Finally, we calculate the error
between the ground truth and estimated end-effector pose, T TestRE and T̄ TestRE , using the following
equations:

terror =
∣∣∣∣tTestRE − t̄TestRE

∣∣∣∣
2

Rerror =
∣∣∣∣∣∣log

(
RTest
RE

(
R̄Test
RE

)T)∣∣∣∣∣∣
2

We repeat this procedure for 1000 different randomly sampled relative object poses CTδ , for hy-
pothetical end-effector poses TDemoRE with end-effector-to-camera distances ranging from 0.2m to
1.2m, increasing in increments of 0.1m.

We present the results from this experiment in Figure 6. The first two graphs focus on translation
errors in camera calibration and their impact on trajectory transfer. The bottom two graphs examine
rotation errors in camera calibration and their influence on trajectory transfer.

Interesting Findings The top graph of Figure 6 reveals that translation errors in camera calibration
lead to proportional errors in trajectory transfer. However, it is important to note that the magnitude
of the errors in the starting end-effector positions are smaller compared to the magnitude of the
calibration errors. Additionally, from the second graph we find that translation errors in camera
calibration do not affect rotation errors in trajectory transfer, which aligns with our expectations.

Moving on to rotation errors in camera calibration (third graph in Figure 6), we notice that the
translation error in trajectory transfer depends not only on the rotation error but also on the distance
between the end-effector and the camera. This relationship is logical since rotations occur around
the camera frame, and the resulting translation induced by an error in rotation is proportional to
the distance from the frame of rotation. Hence, a camera should be placed as close as possible to
the robot’s workspace to attenuate the effects of rotation errors in camera calibration on trajectory
transfer. Furthermore, we observe that rotation errors in camera calibration (last graph in Figure 6)
correspond to proportional rotation errors in trajectory transfer, although the latter are consistently
smaller in magnitude.

15

Figure 6: The relationship between the end-effector-to-camera distance, the magnitude of the error
in camera calibration, and the error in trajectory transfer (i.e. the error in the calculated starting pose
of the end-effector prior to replaying a demonstration during deployment).

16

Mapping starting end-effector errors to calibration errors To map starting end-effector position
errors to translation errors in extrinsic calibration, we fit a first-order bivariate spline* to map end-
effector-to-camera distances and end-effector position errors to corresponding camera calibration
translation errors (topmost graph of Figure 6). Similarly, to map starting end-effector position errors
to rotation errors in camera calibration, we fit a first-order bivariate spline to map end-effector-to-
camera distances and end-effector position errors to corresponding camera calibration rotation errors
(third graph of Figure 6).

B.2 Errors in Pose Estimation
The empirical relationship between end-effector position errors and pose estimation errors is derived
using a very similar experimental procedure to that outlined above. However, instead of injecting
controlled amounts of noise to the camera calibration matrix TRC , we now instead inject noise to
the relative object pose CTδ .

Experimental Procedure Just like in the previous experiment, we begin by calibrating a head-
mounted camera to a Sawyer robot in the real world, obtaining an estimate of the camera pose TRC .
We then sample a random starting end-effector pose for a demonstration, TDemoRE , and a relative
object movement expressed in the camera frame, CTδ , using the same procedure as in the previous
experiment. After sampling the starting end-effector pose TDemoRE and relative object pose CTδ ,
we use them and the camera extrinsic matrix TRC to calculate the desired end-effector pose during
deployment, T TestRE , using trajectory transfer (see Equation 5 and 8 in the main paper).

Once we compute the desired end-effector pose via trajectory transfer, we either perturb the rotation
matrix of the relative object pose CTδ , resulting in

C T̄δ =
[
Rε

CRδ|Ctδ
]
,

where Rε ∈ SO(3) is a rotation matrix obtained from a randomly sampled rotation vector with
a predetermined rotation magnitude, or perturb the translation vector of the relative object pose,
resulting in

C T̄δ =
[
CRδ|Ctδ + tε

]
where tε ∈ R3 is a randomly sampled vector with a fixed magnitude.

We then estimate the desired end-effector pose,

T̄ TestRE =
[
R̄Test
RE |t̄TestRE

]
,

using trajectory transfer and the noisy relative object pose C T̄δ , and calculate the error between
the ground truth and estimated end-effector poses, T TestRE and T̄ TestRE , using the same procedure as
in the previous experiment. We repeat this for 1000 different randomly sampled relative object
poses CTδ , for hypothetical demonstrated end-effector poses TDemoRE with end-effector-to-camera
distances ranging from 0.2m to 1.2m in increments of 0.1m.

We present the results from this experiment in Figure 7. Just like in Figure 6, the first two graphs
focus on translation errors in pose estimation and their impact on trajectory transfer, and the bottom
two graphs focus on rotation errors in pose estimation and their influence on trajectory transfer.

Interesting Findings The top graph of Figure 7 reveals that translation errors in pose estimates lead
to equal errors in trajectory transfer. Additionally, from the second graph of Figure 7 we find that
translation errors in pose estimates do not affect rotation errors in trajectory transfer, which aligns
with our expectations.

Moving on to rotation errors in pose estimation (third graph of Figure 7), we notice that the trans-
lation error in trajectory transfer depends not only on the rotation error but also on the distance
between the end-effector and the camera. This relationship is expected since rotations occur around
the camera frame, and the resulting translation induced by an error in rotation is proportional to the
distance from the frame of rotation. Furthermore, we observe that rotation errors in pose estimates
equal rotation errors in trajectory transfer (bottom graph of Figure 7). Finally, we note that the errors
in trajectory transfer induced by errors in pose estimation are far greater in magnitude than those
induced by errors in calibration.

*We have experimented with fitting higher order bivariate splines. However, we have found the first-order
spline to result in the lowest root mean squared error on a validation set.

17

Figure 7: The relationship between the end-effector-to-camera distance, the magnitude of the error
in pose estimation, and the error in trajectory transfer (i.e. the error in the calculated starting pose
of the end-effector prior to replaying a demonstration during deployment).

18

Mapping starting end-effector errors to pose estimation errors To map starting end-effector
position errors to translation errors in pose estimation, we fit a first-order bivariate spline* to map
end-effector-to-camera distances and end-effector position errors to corresponding pose estimation
translation errors (topmost graph of Figure 7). Similarly, to map starting end-effector position errors
to rotation errors in pose estimation, we fit a first-order bivariate spline to map end-effector-to-
camera distances and end-effector position errors to corresponding pose estimation rotation errors
(third graph of Figure 7).

Appendix C Unseen Object Pose Estimation Baselines

C.1 Iterative Closest Point

We use the Open3D [39] implementation of point-to-point ICP [40] to directly estimate CTδ . We set
the maximum distance between correspondences to 10cm, the maximum number of ICP iterations
to 10, and allow ICP to try as many random initialisations as possible within 5 seconds. This typi-
cally resulted in ICP trying approximately 100 random initialisations. We have tried increasing the
maximum number of ICP iterations, but observed that it is better to try more random initialisations
than to have more ICP iterations per initialisation.

To initialise ICP, we first sample a random rotation around the z-axis in the robot frame, and map
this rotation to the camera frame using the camera extrinsic matrix. Sampling rotations in this way
exploits the prior knowledge that objects are translated in 3DoF while being rotated only around
the robot’s z-axis between the demonstration and deployment, which is the case for the majority of
manipulation tasks. To obtain the initialisation for translation, we first rotate the first partial point
cloud using the sampled rotation, and then centre the two partial point clouds. Finally, we add
Gaussian noise to the translation component with a standard deviation equal to 1cm.

C.2 Correspondence-Estimation-Based Methods

We explore four different methods for estimating correspondences:

DINO: We use Deep ViT features [43] to establish correspondences between two RGB images.

GMFlow: We use the pre-trained GMFlow [41] model to predict optical flow, which is used to
establish correspondences between two RGB images.

ASpanFormer: We use the pre-trained ASpanFormer [19] model to directly predict correspon-
dences between two RGB images.

ASpanFormer (FT): We fine-tune the pre-trained ASpanFormer model using an object-centric
dataset generated in simulation (see Appendix D.1), and use it to directly predict correspondences.

After establishing correspondences using any of these methods, we apply a filtering step to re-
move outliers. To accomplish this, we leverage the Universal Sample Consensus (USAC) algo-
rithm [48], which is an extension and generalisation of the Random Sample Consensus (RANSAC)
algorithm [49]. Specifically, we utilise the OpenCV [50] implementation of USAC and set the
RANSAC reprojection threshold to 5 pixels.

Once correspondences are established and outliers have been removed, all methods rely on Singular
Value Decomposition (SVD) [42] to predict the relative object pose CTδ using correspondences and
their depth values.

C.2.1 DINO

Our implementation of the DINO correspondence estimator begins by cropping segmented RGB
images around their segmentation masks, and resizing them so that their longest side measures 224
pixels, while maintaining their original aspect ratio. Next, we extract DINO features from both seg-
mented image crops using the pre-trained dino vit8 model [43] with a stride of 4. To establish corre-
spondences, we compute the cosine similarity between the descriptors of all patches and employ the
Hungarian Algorithm [51]. Once correspondences are established, we discard all correspondences
with a cosine similarity lower than 0.1.

*We attempted fitting higher order splines but found the first-order spline to result in the lowest root mean
squared error on a validation set.

19

C.2.2 GMFlow

Our implementation of the GMFlow correspondence estimator begins by cropping the two (non-
segmented) RGB images around their segmentation masks, and resizing them so that the width of
the wider image measures 128 pixels, while preserving the original aspect ratio of both images.
Then, the pre-trained GMFlow [41] model is used to predict the optical flow between the two image
crops, which we segment using the segmentation mask and map to correspondences.

C.2.3 ASpanFormer

AspanFormer [19] is a Transformer-based detector-free model for correspondence estimation. It
uses estimated flow maps to adaptively determine the size of the regions within which to perform
attention. The latter is done via their proposed Global-Local Attention (GLA) block, which allows
them to achieve state-of-the-art performance on a variety of matching benchmarks.

In this project, we use the pre-trained indoor model [19] that has been open-sourced by the authors
of the paper. The correspondence estimation pipeline begins by cropping segmented RGB images
around the segmentation masks. Both cropped images are then resized so that their longer side
measures 320 pixels, while preserving the original aspect ratio. For compatibility with the pre-
trained model the shorter size is then padded with zeros, resulting in 320 × 320 images. Both
resized RGB crops are then converted to grayscale images, which are then passed directly as input
to the pre-trained model.

C.2.4 ASpanFormer (FT)

We further fine-tune the pre-trained weights of the ASpanFormer model on an object-centric dataset
which we have generated in simulation (see Appendix D.1). We have chosen to do this, as fine-
tuning on an object-centric dataset should allow the model to be more in-distribution when dealing
with a robot manipulation setting compared to the original ASpanFormer model that was trained on
feature-rich scenes with multiple objects.

C.3 Relative Orientation Estimation Methods
We consider three different methods for predicting the relative object orientation, around the robot’s
z-axis, from a pair of RGB-D images. These methods include NOPE [18], a recently proposed un-
seen object relative orientation estimator, and a PointNet++ [52]-based regression and classification
models, that we have trained on an object-centric dataset generated in simulation (see Appendix
D.1), relying on domain randomisation and data augmentation techniques for sim-to-real transfer
[53].

We note that we have tried using NOPE, and training both the regression and classification models
to predict full 3DoF relative orientations, but found this to be not very accurate, leading to a poor
performance of the final implementation in the real world. Hence, we leverage the prior knowledge
that objects are going to be rotated only around the robot’s z-axis between the demonstration and
deployment to make the problem tractable.

Once a model predicts the relative object orientation, we use a heuristic that applies this rotation
to the first partial point cloud and then centres the two partial point clouds to predict the relative
translation. We have also experimented with training another PointNet++ [52] for learning a residual
correction to this heuristic but did not find this to bring significant improvements.

C.3.1 NOPE

NOPE is a recently proposed unseen object relative orientation estimator. We use the pre-trained
weights provided by the author, trained on 1000 random object instances from each of the following
13 categories from the ShapeNet dataset [54]: airplane, bench, cabinet, car, chair, display, lamp,
loudspeaker, rifle, sofa, table, telephone, vessel. During training, NOPE trains a U-Net to predict
the embedding of a novel view of an object, given a reference image and a relative pose. Then at
inference, it first takes as input a support image of an object and predicts the embedding of that object
under many relative orientations, effectively creating templates for template matching. Then given a
query image of that same object, NOPE first computes its embedding and then finds the embedding’s
distance to all the templates, giving a distribution over the possible relative orientations between the
query and the support image. The predicted orientation will correspond to the most similar template.

20

To use NOPE to only predict the relative orientation around the robot’s z-axis, we only sample
rotation matrices that correspond to relative orientations around the robot’s z-axis (which has the
same direction as the object’s z-axis). To be specific, we create 90 templates corresponding to
rotations ranging from −44.5◦ to 44.5◦ spaced 1◦ apart. NOPE then encodes all of the templates
as well as the query object orientation and selects the rotation whose encoding is most similar to
that of the query according to the root mean squared error. Once we have the orientation predicted
by NOPE, we use the heuristic described at the beginning of this Subsection to estimate the relative
translation, completing the process of pose estimation using NOPE.

C.3.2 Regression

We implement both the regression and the classification baselines to compare simpler approaches
trained on an object-centric dataset (see Appendix D.1) to more sophisticated baselines trained on
more general datasets, such as DINO, GMFlow and the ASpanFormer. To this end, we implement
a Siamese PointNet++ [52] encoder made of three set-abstraction layers and three linear layers,
for a total of ∼1.8 M parameters. The encoder independently encodes the point clouds of a target
object obtained from the demonstration and the test scene. The two output embeddings are then
concatenated into a single 512-dimensional vector that we feed as input into a 3-layer perceptron to
fuse the information together and regress the object’s rotation magnitude around the robot’s z-axis.
More specifically, the network returns a normalised rotation, where −1 and 1 correspond to −45◦
and 45◦ respectively. This multilayer perceptron is composed of layers with 256, 128 and 1 hidden
node respectively, summing up to ∼0.2 M parameters, for a total model size of ∼2 M parameters.
The model was trained with the ADAM [55] optimiser and the mean squared error loss.

The input point clouds to the Siamese PointNet++ are expressed in the robot’s frame, have a zero
mean, and are downsampled to 2048 points. The features of each of the points include the point po-
sition and colour. Since point positions are used as point coordinates in the PoinNet++ architecture,
including them as additional features may seem like including redundant information. However, we
have found that doing so improves performance in practice. The most likely reason for this is that
PoinNet++ uses point coordinates to cluster points and aggregates features for the different clusters.
Without including point positions as features, this information would not be explicitly used to derive
the global point cloud feature vector.

C.3.3 Classification

This baseline is equivalent to the regression method described above, with the exception that the
last layer of the 3-layer perceptron does not regress the rotation but instead outputs a probability
distribution over 90 possible classes, where each class represents an angle between −44.5◦ and
44.5◦, equally spaced 1◦ apart. This model has ∼2 M parameters and was trained with the ADAM
[55] optimiser using the binary cross entropy loss.

Appendix D Datasets
We begin this section by describing the object-centric dataset we have generated to train the regres-
sion and classification models, and to fine-tune the ASpanFormer model (Appendix D.1). We then
describe the dataset we have generated to benchmark all considered unseen object pose estimation
methods in simulation (Appendix D.2). Finally, we describe the real-world dataset we used to de-
termine when to stop training the regression and classification models to bridge the sim-to-real gap
(Appendix D.3).

D.1 Training Dataset

The object-centric dataset used to train the regression and classification models, and to fine-tune
the ASpanFormer model, was generated using Blender [38] and consists of ∼ 226K image pairs.
For each image pair, we first create a scene and import a random object from either the ShapeNet
dataset [54] or the Google Scan Objects dataset [37] The object is imported at a random pose and
there is a 90% probability that its texture will also be randomised, by changing its colour and material
properties, such as reflectivity. We then randomise the number, position, energy and strength of
external light sources and render an RGB-D image and segmentation mask of the object.

After that, we perturb the object by rotating it around the world’s z-axis (perpendicular to the floor)
by a maximum of 45◦ either clockwise or counterclockwise and randomly displacing it somewhere

21

within the visible scene. Finally, we again randomise the position, energy and strength of the external
light sources, and render another RGB-D image and segmentation mask. We conclude by recording
the relative object pose between the two scenes. Additional data generation details are summarised
in Table 3 and some examples of generated image pairs can be seen in Figure 8.

Characteristic Randomisation

Camera Extrinsic In simulation, we set the camera extrinsic matrix equal to that for
our real-world setup. However, to account for possible calibra-
tion errors, for each scene in simulation, we randomly perturb
the extrinsic matrix by a maximum of 1cm in translation and 2◦

in orientation.

Object Type Objects are chosen from ShapeNet with a probability of 85% and
from Google Scan with 15% probability. Within these two fam-
ilies, the objects are sampled uniformly, but avoiding categories
that were excessively out of distribution for object manipulation,
such as airplanes, pistols or watercrafts.

Object Position The object position is randomised by an arbitrary magnitude as
long as the object remains fully visible to the camera. We use
rejection sampling to ensure this.

Object Orientation Once a random object pose is generated to capture the first im-
age, the object’s orientation is changed by a random rotation be-
tween −45◦ and 45◦ around the world’s z-axis.

Object Texture The appearance of each different component of the object’s
model gets randomised with a 10% probability. In particular,
if randomised, in 20% of cases, the component’s colour is set
to be monochromatic and the colour could be any of the follow-
ing, according to these probabilities: normal (35%), dark (15%),
very dark (5%), bright (15%), very bright (5%), pale (15%), dark
pale (5%), bright pale (5%). If not monochromatic, with 20%
probability the randomisation is applied as a texture, where the
latter is sampled uniformly from either the Haven [56] or MIL
[11] texture datasets. Additionally, the material properties get
randomised as well. More specifically with 50% probability the
roughness of the material gets changed, with 30% probability the
metallic properties get altered, with 30% probability the specu-
larity properties, with 30% probability the material’s anisotropy,
with 15% probability its sheen, and finally with 5% probability
the clearcoat property of the material is varied.

Lighting When generating a scene, the lighting conditions get ran-
domised. There are three main modes the light can be in, whose
parameters get further randomised. More specifically, the five
modalities with their probabilities are: mostly ambient (5%),
strong top shadow (30%), generic shadow (30%), very bright
(5%), very dim (30%). Once the modality has been sampled,
aside from the ”strong top shadow” mode, either one or two
light sources get placed in the scene. The light location, energy
and ambient strength get then randomised for each of the light
sources independently, creating very diverse lighting conditions.

Table 3: Detailed explanation of the various randomisation strategies applied for the process of data
generation.

22

Figure 8: Eight examples of image pairs generated in simulation. Each row contains two image pairs,
showing the same object with a random texture and colour. The object position and orientation,
as well as lighting conditions are randomised between the two images. The background is not
randomised as the objects will later be segmented out, making the choice of background irrelevant.

D.2 Evaluation Dataset
In Section 4.2 of the main paper, we evaluate the performance of eight different one-shot unseen
object pose estimation methods in simulation. To evaluate these methods, we generated a separate
dataset to that used for training, using objects that the ASpanFormer, regression and classification
models were not trained on. We divided these objects into five categories, briefly explained hereafter.
Examples for each of the categories can be found in Figure 9

1. Non-Symmetrical (Non-Sym.) are objects that are not symmetric around any of their axes.
This category has 25 objects.

2. ∞-Symmetrical (∞-Sym.) are objects that have an infinite degree of symmetry around
their z-axis. This category has 10 objects.

3. ∞-Symmetrical Geometry (∞-Sym. Geo.) are objects whose geometry has an infinite
degree of symmetry around the object’s z-axis, but have a non-symmetric texture.

4. N -Symmetrical (N -Sym.) are objects which have a finite degree of symmetry around their
z-axis. This category has 10 objects. For instance, a cube has a rotation symmetry of order
4 around its z-axis.

5. N -Symmetrical Geometry (N -Sym. Geo.) are objects which have a non-symmetrical
texture but whose geometry has a finite degree of symmetry around the object’s z-axis.
This category has 5 objects.

Examples of the objects that could be found in each category are the following. 1) Non-
Symmetrical: kettles, mugs, shoes, caps, etc. 2) ∞-Symmetrical: ramekins, bowls, vases,
cups, etc. 3) ∞-Symmetrical Geometry: cans, tape, cylindrical medicine packages, etc. 4) N -
Symmetrical: square plates, square bowls, boxes, chests, etc. 5) Lastly N -Symmetrical Geome-
try: non-uniform boxes, sponges, cylindrical speakers, etc.

Overall, for each different object, we generated 20 image pairs, resulting in a total dataset size of
1, 100 image pairs.

23

Figure 9: Examples of image pairs generated for the evaluation dataset. The top row shows two
image pairs for non-symmetric objects. Second row shows image pairs for (left) an∞-Symmetrical
object and (right) an∞-Symmetrical Geometry object. Bottom row shows image pairs for (left) an
N -Symmetrical object and (right) an N -Symmetrical Geometry object.

D.3 Real-World Validation Dataset

We collect a real-world validation dataset to obtain a criteria for early stopping when training the
regression and classification models. To this end, we collect 71 image pairs of 7 different everyday
objects, including two different toasters, one pan, one pot, a wooden box, a small black box and a
rigid plastic container. We collect the images mimicking the data generation process in simulation.
We firstly place an object on the table along with a removable AprilTag [57], which allows us to
initially record the ground truth pose and then remove the tag to collect the desired RGB-D image
without the tag being visible. Subsequently, we perturb the object’s pose following the same strategy
as with the simulated scenes, and we record another pose and RGB-D image. Examples of the
collected data can be found in Figure 10. When training a model, we monitor its pose estimation
error on this dataset to determine when to stop the training.

Figure 10: The left and right double columns show pairs of images for a wooden box and a red
toaster respectively. Within one image pair, to go from one picture to the other the object has been
randomly translated and then randomly rotated. The first row illustrates how the ground truth relative
pose has been determined, that is through the use of AprilTags. These were carefully placed so that
they could be hidden without affecting the pose of the object, allowing for the capture of the images
shown in the second row.

24

Non-Sym. ∞-Sym. ∞-Sym. Geo. N -Sym. N -Sym. Geo. Mean
Class. 8.4± 14.5 1.6 ± 0.8 1.9± 1.8 6.7 ± 12.3 3.9± 4.8 5.9± 11.2
ASpan. (FT) 8.1 ± 16.3 3.9± 6.4 3.2± 3.9 6.9± 13.8 2.0 ± 4.7 6.0± 13.0
Reg. 13.7± 17.8 1.5± 2.8 1.2 ± 0.8 12.2± 15.3 9.7± 14.7 9.8± 15.3
DINO 15.1± 21.5 6.8± 7.9 3.7± 3.7 13.3± 20.2 5.9± 13.3 11.3± 18.2
Aspan. 15.3± 21.5 7.2± 8.7 5.5± 6.4 12.6± 16.9 6.5± 11.0 11.5± 17.4
NOPE 25.3± 16.9 1.8± 3.9 1.9± 1.7 24.5± 15.4 23.1± 15.8 18.8± 17.4
ICP 22.6± 40.1 3.7± 6.2 3.8± 14.2 9.4± 17.3 14.3± 29.3 14.3± 30.8
GMFlow 30.9± 23.7 21.7± 26.1 20.9± 15.5 30± 26.2 31.5± 25.2 28.4± 24.6
Mean 16.6 4.4 3.9 13.5 10.3

Table 4: Full results for the simulation benchmarking experiments regarding translation errors in
pose estimation, expressed in centimetres.

Non-Sym. ∞-Sym. ∞-Sym. Geo. N -Sym. N -Sym. Geo. Mean
Class. 6.7 ± 13.1 0.2 ± 0.1 0.4± 1.4 5.4 ± 10.7 2.1 ± 6.3 4.3± 10.1
ASpan. (FT) 8.6± 17.1 3.3± 5.8 2.6± 3.1 6.7± 13.3 2.2± 6.2 6.1± 13.4
Reg. 13.7± 18.0 0.7± 2.9 0.3 ± 0.1 11.4± 13.9 9.3± 14.1 9.4± 15.3
DINO 16.4± 22.9 5.7± 7.0 3.1± 3.0 13.2± 19.6 5.8± 12.4 11.6± 18.9
ASpan 16.8± 24.2 5.7± 6.7 4.6± 5.4 11.5± 15.5 6.5± 11.1 11.7± 18.8
NOPE 25.4± 16.1 0.9± 3.9 0.4± 1.4 23.8± 14.4 23.2± 15.7 18.4± 17.2
ICP 24.1± 43.4 2.6± 3.9 3.2± 11.8 8.4± 16.0 13.1± 25.9 14.4± 32.4
GMFlow 33.3± 27.7 17.0± 18.9 17.9± 13.2 28.1± 22.3 27.8± 21 27.6± 24.5
Mean 16.4 4.2 3.7 13.3 10.05

Table 5: Full results for simulation benchmarking experiments regarding rotation errors in pose
estimation, expressed in degrees.

Appendix E Benchmarking One-Shot Unseen Object Pose Estimators
In Section 4.2 of our main paper, we benchmark the eight unseen object pose estimation baselines
introduced in Appendix C, on the simulated dataset described in Appendix D.2.

Error Definition Consider a ground truth relative object pose between a pair of images, RTδ , and
a pose estimate RT̄δ . We begin by calculating the transformation Tε = [Rε|tε] that maps the pose
estimate to the ground truth pose, i.e.

RTδ = Tε
RT̄δ

→ Tε =
RTδ

(
RT̄δ

)−1
.

We then define the translation and rotation error as

terror = ||tε||2 Rerror = ||log (Rε)||2
where log is the logarithmic map for the SO(3) group.

In practice, for object categories with an order of symmetry> 1 (see Appendix D.2), there is always
more than a single ground truth pose Tδ for each image pair. In those cases, we independently
compute the translation and rotation error between the pose estimate and each of the valid relative
object poses, and consider the pair of errors corresponding to the ground truth pose that gives rise to
the smallest rotation error.

For objects with an infinite degree of symmetry around the z-axis, we create 360 ground truth relative
object poses for each image pair. That is, we discretise the possible rotations around the z-axis into
360 bins, and find a relative object pose corresponding to each possible relative rotation. For objects
with a degree of symmetry of 4 around the z-axis, we create 4 possible relative object poses per
image pair. Finally, for objects with a degree of symmetry of 2 around the z-axis, we create 2
possible relative object poses per image pair.

Results In Table 4 we show the full results concerning the translation error in pose estimation for
the individual object categories discussed in Appendix D.2. Similarly, we do the same for rotation
errors in Table 5.

Discussion From Tables 4 and 5, we can clearly see that on average, the higher the degree of sym-
metry of an object, the lower the error in the predictions of all methods. This is intuitive, as the
larger the order of symmetry of an object, the larger the possible set of correct relative pose labels.

25

Surprisingly, predicting the rotation for the symmetrical geometry categories has turned out to be
easier than for the corresponding categories where the visual textures are symmetric as well. How-
ever, as we have only considered 5 and 10 objects each for these categories, these results may not be
statistically significant.

Appendix F Trajectory Transfer Implementation Details
F.1 Incorporating an Inductive Bias
As mentioned in Appendix C.3, when training the regression and classification models, and when
using NOPE [18] to predict 3DoF relative orientations, we found high pose estimation errors that
compromised real-world performance. Hence, we have chosen to train the regression and classifica-
tion networks, and to use the pre-trained NOPE model, only to predict the relative object orientation
around the robot’s z-axis. This design choice is motivated by the fact that for most manipulation
tasks, a test object translates in 3DoF while being rotated only around the world’s z-axis between
the demonstration and deployment, and the world’s and robot’s z-axes are aligned.

To ensure a fair comparison between regression, classification, NOPE, and the remaining considered
baselines, we also incorporate this predictive bias into their predictions. Specifically, consider a
relative pose estimate expressed in the robot frame (see Appendix A):

RTδ =
[
RRδ|Rtδ

]
,

where RRδ ∈ SO(3) is the relative orientation prediction and Rtδ ∈ R3 is the relative translation
prediction. To incorporate the inductive bias that the object only rotates around the robot’s z-axis
into such an estimate, we first convert RRδ to Euler angles, set rotations around the non-z axes to
zero, and convert back to a rotation matrix RR̃δ . Now, given RR̃δ and an end-effector pose TDemoRE
that we would like to align with an object at test time via trajectory transfer (see Equation 5 of the
main paper), we adjust the translation component of RTδ to account for the modification of RRδ

using the equation:
Rt̃δ =

RRδt
Demo
RE − RR̃δt

Demo
RE +R tδ,

where Rt̃δ is the adjusted relative translation, and tDemoRE is the translation component of TDemoRE .
The intuition behind this equation is that it ensures that the position of the end-effector after trajec-
tory transfer with a modified pose estimate RT̃δ = [RR̃δ|Rt̃δ] is the same as the position that would
have been obtained when using the non-modified pose estimate RTδ .

F.2 Aligning the Full Trajectory
In theory, we could use trajectory transfer (see Equation 5 of the main paper) to solve for the full
end-effector trajectory aligned with the object at the deployment pose and could track this trajectory
using trajectory tracking. However, in practice, we have found that this resulted in very jerky tra-
jectories. Hence, instead, we use trajectory transfer to only align the first end-effector pose of the
demonstration with the deployment scene, and send the robot to that pose using inverse kinematics.
From there, we align the full end-effector trajectory with the demonstrated trajectory by replaying
the demonstrated end-effector velocities expressed in the end-effector frame. Although the robot
does not realise these velocities instantaneously, in practice, we have found this to work sufficiently
well and to perform better than using a trajectory tracking system.

Appendix G Sensitivity to Non-Geometric Noise
In this section, we focus on trajectory transfer using regression for unseen object pose estimation,
which was the best-performing method in our real-world experiments (see Section 4.3 of our main
paper), and analyse its sensitivity to distractors and changes in lighting conditions and backgrounds.

G.1 Sensitivity to Changes in Lighting Conditions
To investigate the robustness of trajectory transfer to changes in lighting conditions, we follow the
same experimental procedure as described in Section 4.3 of our main paper. That is, we divide a
30×75cm region on a table in front of the robot into ten quadrants measuring 15×15cm and use the
demonstrations collected when carrying out the main experiment to facilitate a direct comparison to
the remaining results presented in the main paper.

At test time, for each quadrant, we randomly perturb the position, luminosity and colour temperature
of an external LED light source (see Figure 11 for examples), and randomly place the test object

26

Figure 11: Examples of how the position, luminosity and colour temperature of an external LED
light source have been randomly perturbed between different evaluations to study the robustness of
trajectory transfer using regression for unseen object pose estimation to changes in lighting condi-
tions.

within that quadrant with a random orientation between ±45◦ of the demonstrated orientation. This
results in ten evaluations per task.

Plug Pot Toaster Dishwasher Mug Egg Bottle Tea Bowls Can Mean
Fixed Lighting 20 30 90 70 100 90 100 100 80 100 78
Changes in Lighting 10 20 60 70 100 70 80 100 90 100 70

Table 6: Real-world success rates (%) of TT (Reg.) averaged over ten trials under fixed lighting
conditions and changes in lighting conditions.

The results from this experiment are shown in Table 6. For reference, this table also includes the
results for trajectory transfer using regression under fixed lighting conditions from our main exper-
iment which is described in Section 4.3 of our main paper. As these results illustrate, trajectory
transfer using regression displays a strong performance as lighting conditions are randomised be-
tween the demonstration and test scene, with an average decrease in performance of only 8%. We
attribute the strong performance of this baseline under changes in lighting conditions to the fact that
the dataset used to train this baseline randomises lighting conditions between the two input images,
alongside the hue, value and saturation of the two images, as part of domain randomisation (see
Appendix C.3 and D.1).

G.2 Sensitivity to Distractors and Changes in Background

Figure 12: Example of the combined performance of Owl-ViT and SAM when segmenting a toaster
in cluttered scenes with different backgrounds. By isolating only the object of interest, the chosen
unseen object pose estimator is unaffected by the mentioned changes.

27

Our formulation of trajectory transfer using unseen object pose estimation assumes segmented input
RGB-D images. Hence, the robustness of the framework to distractors and changes in the back-
ground is only dependent on the used segmentation pipeline and not on the backbone pose estimator
itself. In our implementation, we use a combination of OWL-ViT [45] and SAM [46] for the seg-
mentation pipeline. That is, we first query OWL-ViT for a bounding box of the test object using a
language prompt “An image of a X”, where X is the category of the considered test object (e.g.
can, mug, toaster, plug etc.). We then crop the RGB-D image using the output bounding box and
pass the cropped RGB image to SAM to obtain a segmentation mask of the target object. With this
pipeline, we have observed consistent good performance even under clutter. Examples of segmen-
tations of the toaster in three different cluttered scenes with three different backgrounds can be seen
in Figure 12.

28

	Introduction
	Related Work
	One-shot Imitation Learning for Robotic Manipulation
	Imitation Learning Formulation
	Modelling One-Shot Imitation Learning as Trajectory Transfer
	One-shot Unseen Object Pose Estimation for Trajectory Transfer

	Experiments
	Sensitivity Analysis of Task Success Rates to Calibration and Pose Estimation Errors
	Pose Estimation Errors of One-Shot Unseen Object Pose Estimation Methods
	Real-World Evaluation
	Spatial Generalisation

	Discussion and Limitations
	Changing the Coordinate Frame of TEXT
	Mapping End-effector Errors to Calibration and Pose Estimation Errors
	Errors in Camera Calibration
	Errors in Pose Estimation

	Unseen Object Pose Estimation Baselines
	Iterative Closest Point
	Correspondence-Estimation-Based Methods
	DINO
	GMFlow
	ASpanFormer
	ASpanFormer (FT)

	Relative Orientation Estimation Methods
	NOPE
	Regression
	Classification

	Datasets
	Training Dataset
	Evaluation Dataset
	Real-World Validation Dataset

	Benchmarking One-Shot Unseen Object Pose Estimators
	Trajectory Transfer Implementation Details
	Incorporating an Inductive Bias
	Aligning the Full Trajectory

	Sensitivity to Non-Geometric Noise
	Sensitivity to Changes in Lighting Conditions
	Sensitivity to Distractors and Changes in Background

