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ABSTRACT

In this paper, we introduce DiffusionTrend, a pioneering approach for virtual
fashion try-on that forgoes the need for training diffusion models, thereby offer-
ing simple, conventional pose virtual try-on services with significantly reduced
computational overhead. By leveraging advanced diffusion models, Diffusion-
Trend harnesses latents rich with prior information to capture the nuances of
garment details. Throughout the diffusion denoising process, these details are
seamlessly integrated into the model image generation, expertly directed by a
precise garment mask crafted by a lightweight and compact CNN. Although our
DiffusionTrend model initially demonstrates suboptimal metric performance, our
exploratory approach offers several significant advantages: (1) It circumvents the
need for resource-intensive training of diffusion models on large datasets. (2) It
eliminates the necessity for various complex and user-unfriendly model inputs.
(3) It delivers a visually compelling virtual try-on experience, underscoring the
potential of training-free diffusion models for future research within the commu-
nity. Overall, this initial foray into the application of untrained diffusion models
in virtual try-on technology potentially paves the way for further exploration and
refinement in this industrially and academically valuable field.

1 INTRODUCTION

Virtual try-on technology (Song et al., 2023; Islam et al., 2024), which digitally superimposes
images of models wearing various outfits, represents a pivotal innovation in the fashion sector. This
advancement offers consumers an immersive and interactive experience with garments, allowing
them to preview how clothing might look on them without physically visiting stores. This not only
bolsters consumer confidence in their purchasing decisions but also conserves considerable time and
effort. The shopping experience might be elevated due to convenience and efficiency. For retailers,
virtual try-on technology streamlines their operations by obviating the need to employ live models
for merchandise display. It also circumvents the financial burdens associated with traditional product
photography, leading to a marked improvement in operational efficiency. From the perspective of
commercial platforms, virtual try-on technology serves as a magnet for attracting a larger user base
and fostering user loyalty. Moreover, it facilitates accurate market forecasting and trend analysis
through data-driven insights, which in turn, stimulates the commercial growth of the entire platform.
Collectively, virtual try-on is reshaping the landscape of the apparel retail industry, propelling the
fashion sector towards a future characterized by heightened efficiency and customization.

Traditional virtual try-on solutions (Choi et al., 2021; Lee et al., 2022; Ge et al., 2021; Xie et al., 2023)
are predicated on a two-stage pipeline utilizing Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014). The initial stage in this framework involves the application of an explicit warp module
to deform the clothing to the desired area on the body. The subsequent stage integrates the deformed
clothing using a GAN-based try-on generator. To attain accurate clothing deformation, earlier
methodologies (Bai et al., 2022; Ge et al., 2021; Han et al., 2019; Lee et al., 2022; Xie et al., 2023)
have employed a trainable network designed to estimate a dense flow map (Zhou et al., 2016), thereby
facilitating the mapping of the clothing onto the human form. In parallel, various approaches (Choi
et al., 2021; Ge et al., 2021; Xie et al., 2023; Lee et al., 2022; Yang et al., 2020; Issenhuth et al.,
2020), have been proposed to address the misalignment issues between the warped clothing and the
human body. Techniques such as normalization (Choi et al., 2021) and distillation (Ge et al., 2021;
Issenhuth et al., 2020) have been implemented to mitigate these discrepancies. Recent advancements
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Table 1: Comparison of input requirements for previous virtual try-on models. A checkmark (!)
indicates that the input modality is required, while a dash (-) indicates that it is not or not mentioned.

Method Clothes Mask Densepose Segment Map Clothes-Agnostic Keypoint

TryOnDiffusion (Zhu et al., 2023) - - ! ! !

DCI-VTON (Gou et al., 2023) ! ! ! ! -
LaDI-VTON (Morelli et al., 2023) ! ! - ! -

WarpDiffusion (Li et al., 2023) ! - - ! -
OOTDiffusion (Xu et al., 2024) ! - ! - !

StableVITON (Kim et al., 2023) ! ! - ! -
IDM-VTON (Choi et al., 2024) ! ! - ! -

Wear-Any-Way (Chen et al., 2024) ! - - ! !

DiffusionTrend (Ours) ! - - - -

in the field of diffusion models (Ho et al., 2020) have led to a notable enhancement in the quality of
multiple of image synthesis tasks, with a particular emphasis on the domain of virtual try-on. In this
context, contemporary research endeavors have leveraged pre-trained text-to-image diffusion models
to produce high-fidelity results for virtual try-on applications. The TryOnDiffusion model (Zhu et al.,
2023), for instance, employs a dual U-Net architecture to adeptly perform the try-on task. LADI-
VTON (Morelli et al., 2023) and DCI-VTON (Gou et al., 2023) either conceptualize clothing items
as pseudo-words or integrate garments through the use of warping networks into existing pre-trained
diffusion models. These innovative techniques have collectively contributed to the evolution of virtual
try-on technology, offering more sophisticated and realistic outcomes.

Despite these advancements, a review of existing studies reveals that the high precision and realism
achieved by current methods require training on extensive try-on datasets (Morelli et al., 2022), partic-
ularly in diffusion-based approaches (Zhu et al., 2023; Morelli et al., 2023; Gou et al., 2023). Indeed,
diffusion models contain up to 800 million parameters and simulate the data generation process
by iteratively modeling the diffusion and reverse diffusion steps. Each iteration involves complex
probability distribution calculations and requires substantial computational resources, leading to
considerable overall training costs. In the words, current methods rely on resource-intensive network
training. While intensive training is well-suited for generating complex poses and capturing fine
image details, the substantial computational costs can make it an unattractive option. This is particu-
larly true since, in most cases, consumers make purchase decisions after a simple try-on with regular
poses. Besides, as shown in Table 1, these methods often demand multiple types of model inputs,
such as densepose (Güler et al., 2018), segmentation maps (Gong et al., 2017), clothes-agnostic
images/masks/representations (Han et al., 2018) and keypoints (Cao et al., 2017), which can be
daunting for non-professional users. It becomes clear that there is a pressing need for the community
to explore more accessible and less resource-intensive methods, with the effort of less compromise
on the quality of image generation—a domain that, to our knowledge, remains uncharted to date.

In marked contrast, our proposed DiffusionTrend offers a streamlined, lightweight training approach
that circumvents the need to train a diffusion model, thus liberating it from the reliance on expen-
sive and resource-intensive computational infrastructure. This technique simplifies the workflow
by dispensing with the requirement for intricate segmentation, pose extraction, and other prelimi-
nary processing steps for the input images, leading to a more accessible and economical solution.
Specifically, a lightweight, compact CNN is utilized to outline the clothing in both the model and
garment images. It harmonizes image and textual features and conducts clustering at the feature
level to produce effective masks. Subsequently, we make full use of the latents derived from DDIM
inversion (Song et al., 2020), which are replete with prior information and act as superior conduits
for the detailed features of the garment. During the early stages of the diffusion denoising process,
the seamless integration of the target garment into the model’s image reconstruction is achieved by
blending the latent representations of both the model and the garment. In the subsequent stages of
denoising, leveraging the self-repairing capabilities of the pre-trained latent diffusion model, we
maintain the model’s identity and background coherence by selectively replacing the latents in the
background areas. This approach ensures that the garment is harmoniously merged into the overall
image, preserving the integrity of the original scene. Figure 1 shows several examples.
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几张更好看
的，不用限
制于数据集

Figure 1: Images generated by the proposed DiffusionTrend model, given an input target model and
a try-on clothing item both from DressCode dataset (Morelli et al., 2022).

Despite its suboptimal metric performance, our initial exploration with DiffusionTrend has yielded
several valuable contributions that could indeed pave the way for further research and refinement in
the realm of untrained diffusion models for virtual try-on technology:

• It eliminates the necessity for resource-intensive training of diffusion models on extensive
datasets, thereby reducing the computational demands.

• It removes the need for cumbersome and user-unfriendly model inputs, streamlining the
process for non-professional end-users.

• It delivers a visually appealing virtual try-on experience, highlighting the potential of
diffusion models that do not require training for future research within the community.

These contributions underscore the significance of our DiffusionTrend model as a foundation for
future advancements in virtual try-on technology, emphasizing the benefits of a training-free approach.

2 RELATED WORK

2.1 IMAGE EDITING THROUGH DIFFUSION PROCESSES

The practice of integrating specific content into a base image to produce realistic composites is preva-
lent in image editing leveraging diffusion processes. Initially, the field was dominated by text-based
models for image editing (Brooks et al., 2023; Kawar et al., 2023). InstructPix2Pix (Brooks et al.,
2023) employed paired data to train diffusion models capable of generating an edited image from an
input image and a textual instruction. Conversely, Imagic (Kawar et al., 2023) harnessed a pre-trained
text-to-image diffusion model to generate text embeddings that align with both the input image and
the target text. The abstract nature of text poses a limitation in accurately delineating the subtleties of
objects, therefore, image conditioning was introduced to offer more concrete and precise descriptions.
DCFF (Xue et al., 2022) pioneered the use of pyramid filters for image composition, which was
subsequently advanced by Paint by Example (Yang et al., 2023), employing CLIP embeddings of
the reference image to condition the diffusion model. The majority of contemporary methodologies,
such as Dreambooth (Ruiz et al., 2023) (all model parameters), Textual Inversion (Gal et al., 2022)
(a word vector for novel concepts), and Custom-Diffusion (Kumari et al., 2023) (cross-attention
parameters), relied heavily on fine-tuning techniques. In contrast, a handful of approaches (Hertz
et al., 2022; Cao et al., 2023) adopted a training-free paradigm. Prompt-to-prompt (Hertz et al.,
2022) modified the input text prompt to steer the cross-attention mechanism for nuanced image
editing, while MasaCtrl (Cao et al., 2023) employed a mask-guided mutual attention strategy for
non-rigid image synthesis and editing. These training-free methods offer a cost-effective alternative,
eliminating extensive training while still delivering commendable generative outcomes.

2.2 VIRTUAL TRY-ON WITH DIFFUSION MODELS

Diffusion models have demonstrated remarkable efficacy in the domain of image editing, with
image-based virtual try-on representing a specialized subset of these tasks, contingent upon a specific
garment image. Adapting text-to-image diffusion models to accommodate images as conditions, is
straightforward, but the spatial discrepancies between the garment and the subject’s pose challenge
the fidelity of texture details in the virtual try-on outcomes (Li et al., 2023; Gou et al., 2023; Morelli
et al., 2023). Methodologies such as WarpDiffusion (Li et al., 2023), DCI-VTON (Gou et al., 2023),
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and LADI-VTON (Morelli et al., 2023) conceptualize clothing as pseudo-words, employing warping
techniques through CNN networks to adjust clothing to various poses, yielding satisfactory results.
TryOnDiffusion (Zhu et al., 2023) employs a dual U-Net architecture for the virtual try-on task,
implicitly conducting garment warping through the interplay between cross-attention layers. This
approach effectively resolves the issue of texture misalignment without the need for a dedicated
warp module. Similarly, the StableVITON (Kim et al., 2023) incorporates zero cross-attention
blocks to condition the intermediate feature maps of a spatial encoder, thereby circumventing the
requirement for a warp module. The Wear-Any-Way (Chen et al., 2024) enhances the process of
virtual garment alteration, providing more adaptable control over the manner in which clothing is
depicted. The IDM-VTON (Choi et al., 2024) enhances the virtual try-on process by integrating
attention mechanisms and high-level semantic encoding into the diffusion model framework, ensuring
an authentic clothing representation in virtual environments.

3 METHODOLOGY

3.1 PRELIMINARIES

Latent Diffusion Models. Latent diffusion models (LDMs) use an encoder E to convert an input
image x0 ∈ RH×W×3 into a lower-dimensional z0 = E(x0) ∈ Rh×w×c. Here, the downsampling
ratio is f = H/h = W/w, and c is the channel number. The forward diffusion process is:

zt =
√
ᾱtz0 +

√
1− αtϵ, ϵ ∼ N (0, I), (1)

where {αt}Tt=1 denotes variance schedules, with ᾱt =
∏t

i=1 αi. A U-Net ϵθ refines noise estimation.
This is crucial for reconstructing the latent representation z0 from the initial noisy state zT ∼ N (0, I):

zt−1 =

√
αt−1

αt
zt +

(√
1

αt−1
− 1−

√
1

αt
− 1

)
· ϵθ
(
zt, t, τθ(P)

)
. (2)

The text encoder τθ(P) converts text prompt P into an embedding that is integrated with the U-Net’s
intermediate noise representation using cross-attention mechanisms. At time step t = 0, the decoder
D transforms the latent space representation z0 back into the original image domain x0 = D(z0).

DDIM Inversion. DDIM inversion uses DDIM sampling (Song et al., 2020) to ensure deterministic
sampling by setting the variance in Eq. (2). It assumes the reversibility of the ordinary differential
equation (Chen et al., 2018) through incremental steps. This ensures a controlled transition from
initial state z0 to final noise zT :

z∗t =

√
αt

αt−1
z∗t−1 −

√
αt

αt−1

(√
1

αt−1
− 1−

√
1

αt
− 1

)
· ϵθ
(
z∗t−1, t− 1, τθ(P)

)
, (3)

We start with the noisy latent state z∗T and proceed with denoising as outlined in Eq. (2). This
method approximates z∗0 , which closely resembles the original latent representation z0. Our goal is to
incorporate information from a garment image Ig into the reconstruction of the model image Im,
depicting the model wearing the garment from Ig .

To address the challenge of extensive training overhead and various model inputs, we choose not
to alter any weights or structures of the pre-trained diffusion model. Instead, we introduce a lite-
training visual try-on method called “DiffusionTrend”. Our methodology consists of three stages. 1)
A lightweight and compact CNN accurately delineates the apparel in both the model and garment
images. 2) At an appropriate point in the process, garment details are integrated into the reconstruction
phase of the model image. 3) To ensure the coherence of the generated background with the model,
we use a latent substitution technique to restore the background, leveraging the diffusion model’s
restorative properties to blend it seamlessly with the newly rendered apparel. A comprehensive
discussion of the first stage is in Sec. 3.2, while the latter two stages are discussed in Sec. 3.3.

3.2 PRECISE APPAREL LOCALIZATION

In conventional GAN-based (Lee et al., 2022; Ge et al., 2021; Xie et al., 2023) or current Diffusion-
based (Zhu et al., 2023; Gou et al., 2023; Morelli et al., 2023) try-on methods, a precise clothing
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Apparel Localization Network 

(Ours)
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(Ours)
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U-Net
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Reference 
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(a) (b)

Figure 2: Visual comparison of mask generation and try-on results. (a) Precision of apparel
localization masks generated by our network compared to masks from attention maps. (b) Quality
comparison of generation results: Reference U-Net method vs. DiffusionTrend.

mask is crucial. This mask ensures correct apparel placement on the model and accurate extraction of
garment features while avoiding interference from non-garment regions. Traditional segmentation
models (He et al., 2017; Kirillov et al., 2023) are typically employed to generate masks. However, in
environments where numerous users engage in online consultations simultaneously, computational
efficiency becomes crucial. For instance, Segment Anything (Kirillov et al., 2023), while effective,
incurs a significant computational cost (93.74M parameters, 372 GFLOPs per 768×1024 image, 2.7G
GPU memory), which can be impractical for real-world applications, especially when scalability and
cost-effectiveness are paramount. Also, in our previous experiments, we attempted to extract masks
using the intermediate attention map of a diffusion U-Net. During the inversion process, we utilized
the concept of “clothes” to interact with image features via cross-attention. However, the masks
extracted did not meet the precision requirements for virtual try-on tasks. As shown in Figure 2(a),
the attention map roughly identifies the garment region but often includes extraneous parts.

Therefore, in consideration of balancing accuracy and saving computational resources, we have
engineered a compact CNN in Figure 3(a) for precise apparel localization. By combining textual and
visual features, we minimize manual intervention. Users only need to specify the target category
(e.g., upper garments, lower garments, or dresses), and the model automatically generates precise
mask outputs. Our network accepts a model image I0 as input and processes it through three 3× 3
Conv3×3

i layers with ReLU activation, culminating in the image features I3, as:

Ii = ReLU
(
Conv3×3

i (Ii−1)
)
, i = 1, 2, 3. (4)

An apparel-related prompt P is transformed into a text embedding T0 = Clip(P) by a Clip (Radford
et al., 2021) text encoder with fixed parameters. The text embedding T0 is then advanced through two
FCi layers with a ReLU function in between, to produce the text-derived features T2 as:

T2 = FC2

(
ReLU

(
FC1(T0)

))
. (5)

Next, we amalgamate the image feature I3 with the text feature T2 using a 1 × 1 Conv1×1 layer,
followed by Sigmoid and Upsample functions as:

M = Upsample
(
Sigmoid

(
Conv1×1(I3 · T2)

))
. (6)

For the training, we compute the ℓ1 norm between M and ground-truth mask MGT , employing this
as the loss function to refine the network’s parameters. Note that the predicted M serves as a mask
for all clothing items on the model, which may encompass both upper and lower garments.

To delineate between the upper and lower garments and to extract their respective masks, we perform
2-clustering upon the masked features M· I3, which allows us to discern the top and bottom masks:

Mup, Mlow = Cluster(M · I3). (7)

It should be noted that for models adorned in addresses or when processing a garment image, M is
utilized directly as the mask, thereby obviating the need for clustering.
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Figure 3: DiffusionTrend framework. (a) A lightweight apparel localization network to predict
precise garment masks. (b) The network inference. (c) The reconstruction of the virtual try-on image.

Our apparel localization network is notably lightweight, making the training process highly cost-
effective when compared to methods (Li et al., 2023; Kim et al., 2023; Gou et al., 2023) that require
training a diffusion model. It takes us only 20 hours to process the entire DressCode dataset (Morelli
et al., 2022) using two RTX 3090 GPUs. The localization network in Figure 3(b) operates fully
automatically with only 2.00 GFLOPs and 0.15G of memory, and its accuracy analysis can be found
in Sec. C of the Appendix.

3.3 VIRTUAL TRY-ON IMAGE RECONSTRUCTION

Initially, we adhered to MasaCtrl (Cao et al., 2023), using a reference U-Net to extract garment
features and facilitating key-value exchange with the main U-Net during the attention stage, all
without the need for additional training. Despite employing a dual-branch U-Net and attempting
to guide the attention interaction with masks derived from our apparel localization network, the
outcomes were less than satisfactory. This was especially true when it came to the accurate rendering
of fine-grained garment details, as depicted in Figure 2(b). We surmise that this direct feature injection,
while adept at generating content at the semantic level, falls short in capturing the fine-grained clothing
details essential for virtual try-on applications.

Moreover, recent studies (Choi et al., 2024; Xu et al., 2024) indicate that employing U-Net for feature
extraction necessitates treating it as a high-parameter module, which entails considerable training
expenses. This is counterintuitive to our objective of achieving a solution that does not require
training of the diffusion model. Consequently, we have been refining our methodology iteratively. As
illustrated in Figure 3(c), our virtual try-on image reconstruction process encompasses two critical
stages: the infusion of garment latents and the restoration of the background.

Garment Latent Infusion. Given a model image Im and a garment image Ig, we utilize the
apparel localization network from Sec. 3.2 to acquire the masks Mm and Mg , respectively. Next, we
compute the bounding boxes Bm and Bg for Mm and Mg, respectively. By reshaping the contents
of Bg to the size of Bm and applying appropriate perspective transformations to simulate image
rotation, we align the target garment with the position and size of the clothing in the model image.

The model image Im and the aligned garment image Ig are then transformed into the latent repre-
sentations zm0 = E(Im) and zg0 = E(Ig). These latents are then subjected to the DDIM Inversion
process as outlined in Eq. (3), yielding noisy latent sets {z∗mt }Tt=0 and {z∗gt }Tt=0.

6
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Initiating from z∗mT , we progressively reconstruct the model image using Eq. (2) where the latent at
the t-th time step is zmt . Our goal is to decode an image of the model wearing the garment shown
in image Ig, achieving a harmonious fusion of the model’s appearance with the desired attire. A
literature review (Wu et al., 2023) has shown that the latent derived from the inversion process is rich
in prior information, making it ideal for capturing the intricate features of the target garment. An
effective strategy is to integrate the garment latent z∗gt1 , preserved during the inversion stage, into the
core of the garment mask Mg at time step t1. This occurs early in the denoising process as:

z∗t1 = zmt1 · (1−Mg) + z∗gt1 · Mg. (8)

The denoising then continues with the infused latent. This step ensures the seamless information
transfer from the garment image to the model image, achieving a precise attire on the model.

Background Restoration. While the garment latent infusion yields significant results, it negatively
impacts the generation of background content in subsequent denoising steps. As shown in Sec. B
of the Appendix, issues such as altered background color, distorted facial features, and unintended
changes to other parts of the model’s attire occur. To address this, we must implement strategies to
restore the background and preserve the model’s identity and background information.

Motivated by this, we inject the model latent zmt2 into the regions outside the model clothing mask
Mm at time step t2, a later stage in the diffusion denoising process focused on generating detailed
information. Leveraging the diffusion model’s inherent repair capability, a few subsequent denoising
steps integrate the background latents with the target garment. This process can be formalized as:

z∗t2 = zmt2 · Mm + z∗mt2 · (1−Mm). (9)

After extensive experiments, we found that using Mm to differentiate between the foreground and
background is not optimal. As shown in the Sec. B of the Appendix, if the original model is wearing
a short-sleeved garment and the target garment is long-sleeved, the sleeve in the generated image
is incorrectly marked as background and replaced with the arm from the original model image Im,
causing a style mismatch. To solve this, we use the union of the model clothing mask Mm and the
garment mask Mg , and the complement as the background mask Mbg , as expressed below:

Mbg = 1− (Mm ∪Mg). (10)

Consequently, Eq. (9) is revised to the following:

z∗t2 = zmt2 · (1−Mbg) + z∗mt2 · Mbg. (11)

The subsequent denoising steps proceed on z∗t2 until the latent z0 is reached according to Eq. (2).
Ultimately, by decoding z0, we obtain the generated try-on result image Ir.

4 EXPERIMENTATION

4.1 EXPERIMENTAL SETUP

Dataset. We conduct extensive experiments on two high-resolution datasets from the VITON
benchmark: VITON-HD (Choi et al., 2021) and DressCode (Morelli et al., 2022). The VITON-HD
dataset includes 13,679 pairs of images, each featuring a front-view upper-body shot of women
alongside corresponding in-store garments, split into 11,647 training pairs and 2,032 testing pairs. The
DressCode dataset is larger, with 48,392 training pairs and 5,400 testing pairs, featuring front-view
full-body images of individuals with corresponding in-store garments, categorized into upper-body,
lower-body, and dresses.

To train the apparel localization network, we use model images from all DressCode. We extract
relevant clothing portions from the DressCode training set label maps as our ground truth, MGT . We
also integrate in-store garment images and their masks from the VITON-HD training set into MGT .
For evaluation, we use the test sets from DressCode and VITON-HD to assess our method.

Evaluation Metrics. We assess outcomes in both paired and unpaired scenarios. In the paired
scenario, the target human image and its corresponding garment image are used for reconstruction.
In the unpaired scenario, different garment images are used for the virtual try-on experience. To
evaluate the quality of images generated in the paired scenario, we use LPIPS (Zhang et al., 2018)

7
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Table 2: Quantitative results on the VITON-HD and DressCode datasets.

Method
VITON-HD DressCode

LPIPS↓ SSIM↑ FID↓ KID↓ LPIPS↓ SSIM↑ FID↓ KID↓

TryOnDiffusion (Zhu et al., 2023) - - 13.447 6.964 - - - -
DCI-VTON (Gou et al., 2023) 0.0530 0.8920 9.130 0.870 0.0443 - 11.800 -

LaDI-VTON (Morelli et al., 2023) 0.0910 0.8760 9.410 0.160 0.0640 0.9060 6.480 0.220
WarpDiffusion (Li et al., 2023) 0.0880 0.9850 8.610 - 0.0890 0.9010 9.187 -
OOTDiffusion (Xu et al., 2024) 0.0710 0.8780 8.810 0.820 0.0450 0.9270 4.200 0.370
StableVITON (Kim et al., 2023) 0.0732 0.8880 8.233 0.490 0.0388 0.9370 9.940 0.120
IDM-VTON (Choi et al., 2024) 0.1020 0.8700 6.290 - 0.0620 0.9200 8.640 -

Wear-Any-Way (Chen et al., 2024) 0.0780 0.8770 8.155 0.780 0.0409 0.9340 11.720 0.330
DiffusionTrend (Ours) 0.0919 0.8575 10.864 0.540 0.0721 0.9170 9.856 0.430

and SSIM (Wang et al., 2004) metrics to measure resemblance to the original image. In the unpaired
scenario, we use FID (Heusel et al., 2017) and KID (Bińkowski et al., 2018) metrics to gauge the
realism and fidelity of the synthesized images.

Implementation Details. We use the Adam optimizer (Kingma & Ba, 2014) for the apparel
localization network with a learning rate of 1e-4, halving it every 10 epochs. The network is trained
for 35 epochs on two RTX 3090 GPUs. We set the apparel-related prompt to “clothes” and apply
our method to Stable Diffusion XL (SDXL) (Podell et al., 2023). For the inversion phase, we use
an empty prompt, and for model image generation, the prompt is “model wearing clothes.” We
conduct DDIM sampling (Song et al., 2020) with 50 steps and set the classifier-free guidance to 7.5.
Garment latent infusion occurs at time step t1 = 10, and background restoration at t2 = 35. The
entire generation process is carried out on a single RTX 3090 GPU.

4.2 EXPERIMENTAL RESULTS

Quantitative Results. Table 2 shows the quantitative comparisons between DiffusionTrend and
other methods on VITON-HD (Choi et al., 2021) and DressCode (Morelli et al., 2022) test datasets.
The results on DressCode of DCI-VTON (Gou et al., 2023) and StableVITON (Kim et al., 2023)
contain our implementation because no usable codes are given. Despite relying solely on pre-
trained models for tasks like garment latent infusion and background restoration, our performance
lags behind the state-of-the-art (SOTA) models. Past methods incur high training costs to ensure
generated try-on images remain realistic and natural under various complex poses, as confirmed by
evaluation metrics. In contrast, DiffusionTrend aims to provide a resource-efficient, user-friendly
tool for quickly confirming purchase intentions under simple try-on poses. Without training the
diffusion model on large datasets, our basic operations fall short in handling complex poses, leading
to suboptimal performance. As the first visual try-on model without training on diffusion models, our
approach differs from traditional methods in motivation and technical approaches, making traditional
try-on dataset evaluations insufficient for comprehensively measuring our method’s effectiveness.
Thus, quantitative experiments serve only as a reference, while qualitative experiments will further
demonstrate our superiority.

Qualitative Results. Figure 4 provides the qualitative comparison of DiffusionTrend with the state-
of-the-art baselines on the VITON-HD (Choi et al., 2021) and DressCode (Morelli et al., 2022)
datasets. The results indicate that our DiffusionTrend performs as well as baseline methods under
simple poses.

First, most baseline methods fail to generate realistic wrinkles after applying warp techniques, simply
transferring wrinkles from in-store garment images.

Second, our approach extracts richer detail features from noise latent, allowing for more accurate
detail reconstruction in complex garment patterns. For instance, in the first row of Figure 4, the
cartoon pattern on the garments reconstructed by our method more closely resembles the original
image compared to other baseline methods. In the third row, while most methods erroneously
reconstruct the garment as a short skirt, our approach accurately captures the appropriate skirt length
and intricately details the metallic embellishments at the waist.

Finally, our method is not limited by the training dataset and works well on different types of images.
Additional results are provided in Sec. A of the Appendix due to space constraints.
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DCI-VTON LaDI-VTON OOTDiffusionStableVITONIDM-VTON DiffusionTrend (Ours)

Figure 4: Qualitative comparisons on VITON-HD (Choi et al., 2021)(1st row) and DressCode (Morelli
et al., 2022) (2nd ∼ 4th row).

4.3 ABLATION STUDY

In this section, we examine the optimality of our method’s components and experimental settings,
including background restoration and the timestep for latent infusion or replacement in Sec. 3.3.
Quantitative results and qualitative results are presented in Table 3 and Figure 5, respectively.

t1 for Garment Latent Infusion. The upper part of Table 3 shows that incorporating clothing
information too early tends to lower the LPIPS, SSIM, and FID scores. Specifically, as observed
in the top row of Figure 5, prematurely incorporating garment information results in a deficiency
of integration between the model and the garment, effectively reconstructing their respective latent
representations in disparate areas without any interaction. This issue is clearly visible, as there
are pronounced boundaries between the clothing and the human figure, creating an impression of
disjunction rather than a cohesive unity. On the other hand, introducing the information at a later
stage impedes the development and enhancement of the garment’s finer details. This is observable in
the figure, where the cartoon patterns are prone to becoming indistinct, thereby compromising the
overall quality of the image.

Table 3: Quantitative ablations for t1 in Garment Latent Infusion and t2 in Background Restoration.
Timesteps Metrics

t1 t2 LPIPS↓ SSIM↑ FID↓ KID↓

0

35

0.0804 0.9018 10.1231 0.44
5 0.0763 0.9036 9.9633 0.44

10 (Ours) 0.0731 0.9049 9.9322 0.44
15 0.0722 0.9053 10.0390 0.46
20 0.0709 0.9060 10.2479 0.47
25 0.0701 0.9064 10.4147 0.48

10

25 0.0765 0.9024 9.4499 0.41
30 0.0748 0.9037 9.6527 0.43

35 (Ours) 0.0731 0.9049 9.9322 0.44
40 0.0735 0.9050 10.2813 0.46
45 0.0736 0.9050 10.9275 0.51
50 0.1697 0.8404 16.1841 0.76
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𝑡1 = 0 𝑡1 = 5 𝑡1 = 10(Ours) 𝑡1 = 15 𝑡1 = 20 𝑡1 = 25

𝑡2 = 25 𝑡2 = 30 𝑡2 = 35(Ours) 𝑡2 = 40 𝑡2 = 45 𝑡2 = 50

Figure 5: Visual ablations for t1 in Garment Latent Infusion and t2 in Background Restoration.

t2 for Background Restoration. Although the quantitative results in Table 3 show that the FID and
KID scores are higher at t2 = 25 and 30, it can be observed from the second row of Figure 5 that,
performing background restoration too early can negatively impact the generation of garment details.
For instance, at t2 = 25, the waist’s metallic embellishments are lost during the reconstruction
process; at t2 = 30, the situation improves slightly, but the metallic dots on either side are still
missing. In contrast, performing it too late creates a distinct boundary between the background and
the foreground, resulting in unnatural outcomes, and leads to the over-rendering of details. In the
figure at t2 = 45, there are small red artifacts visible around the metallic dots.

5 LIMITATIONS AND FUTURE WORK

Our DiffusionTrend model encounters several challenges: (1) The refinement in clothing generation
is not always optimal, occasionally leading to minor color variations and the presence of unnatural
textures and patterns; (2) It encounters difficulties in generating complex poses, especially in rendering
body parts that are not visible in the original model image, due to limitations inherent in the pre-
trained model. For instance, if the original model is depicted wearing a long-sleeved shirt and the
target garment is a short-sleeved one, the model is unable to convincingly render the exposed arms.

These limitations suggest that future research should prioritize enhancing the recovery of fine-
grained details in clothing and strengthening the model’s ability to generate previously unseen body
parts. Moreover, further exploration into managing more complex poses and refining the quality of
background restoration are areas that merit deeper investigation.

Despite these shortcomings, DiffusionTrend offers a low-cost, lightweight paradigm for the virtual
try-on field that circumvents the need for extensive diffusion model training. Optimism remains high
that this approach will continue to evolve as the field advances. We respectfully ask the academic
community to recognize the value of this exploratory work and extend the necessary patience and
support for its further development.

6 CONCLUSION

In this paper, we have introduced DiffusionTrend, a novel try-on methodology that forgoes the need
for training diffusion models, thereby offering straightforward, conventional pose virtual try-on
services with minimal computational demands. Capitalizing on sophisticated diffusion models,
DiffusionTrend harnesses latents brimming with prior information to encapsulate the nuances of
garment details. Throughout the diffusion denoising process, these details are effortlessly merged into
the model image generation, expertly directed by a precise garment mask generated by a lightweight
and compact CNN. Differing from other approaches, DiffusionTrend sidesteps the necessity for
labor-intensive training of diffusion models on extensive datasets. It also dispenses the need for
various types of user-unfriendly model inputs. Our experiments demonstrate that, despite lower
metric performance, DiffusionTrend delivers a visually convincing virtual try-on experience, all while
maintaining the quality and richness of fashion presentation.
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APPENDIX

A ADDITIONAL QUANTITATIVE RESULTS

DCI-VTON LaDI-VTON OOTDiffusionStableVITONIDM-VTON DiffusionTrend (Ours)

Figure 6: Qualitative comparisons on VITON-HD (Choi et al., 2021)(1st row) and Dress-
Code (Morelli et al., 2022) (2nd ∼ 4th row) datasets.

B ABLATION STUDIES ON Mbg AND BACKGROUND RESTORATION

w/o Background

Restoration
w/o 

w/o Background

Restoration
w/o 

Figure 7: Ablation studies on Mbg and background restoration are presented. Omitting Mbg results
in inaccuracies such as the reconstruction of long skirts as short skirts and long sleeves as short
sleeves. Without background restoration, various issues arise, including altered background colors,
distorted facial features, and unintended changes to other parts of the model’s attire.
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C ACCURACY OF THE PRECISE APPAREL LOCALIZATION NETWORK

Table 4: Quantitative metrics on virtual try-on datasets for validating mask prediction accuracy.

Metrics
DressCode

VITON-HD
upper body lower body dresses

IoU 0.7213 0.7138 0.7969 0.7357
Dice 0.8162 0.8038 0.8538 0.8194

To verify the effectiveness of our proposed precise apparel localization network, we conduct ex-
periments on the test sets of the DressCode and VITON-HD datasets. For the DressCode dataset,
we utilize label maps to extract ground truth masks, while for the VITON-HD dataset, we use
image-parse-v3. In both cases, we extracted specific colored pixels and converted them into binary
masks. We then use our apparel localization network to extract clothing masks and evaluated the
performance using IoU (Intersection over Union) and Dice (Dice Coefficient) metrics. Generally, a
model with an IoU above 0.5 and a Dice score above 0.7 is considered applicable in the research field.

Our results, as presented in Table 4, demonstrate that our compact CNN achieves high accuracy in
mask extraction tasks, with IoU scores reaching 0.7 and Dice scores exceeding 0.8. These results
validate the effectiveness and practicality of our approach.

D ANALYSIS OF DDIM INVERSION

Our proposed DiffusionTrend’s performance is significantly influenced by DDIM inversion results.
In our experiments, we find that the evolution of more powerful diffusion models is expected to
yield better results with the same inversion method, as shown in the figure below. Moreover, we
are encouraged by the ongoing research and development in the field of inversion methods, such as
NULL-Text Inversion (Mokady et al., 2023), ReNoise (Garibi et al., 2024), Fixed-Point Iteration (Pan
et al., 2023) and EasyInv (Zhang et al., 2024).

We believe that the emergence of better diffusion models and the potential for improvement in
inversion methods will expand the application space for our training-free try-on paradigm.

DDIM Inversion Fixed-Point Iteration

S
D

-X
L

S
D

-V
1
.4

EasyInv

Figure 8: Improved inversion results achieved by SD-XL and advanced inversion methods.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E DISCUSSION ON WARPING GARMENTS USING PERSPECTIVE
TRANSFORMATIONS

How to warp garments from their in-store flat state to a specific human pose is a critical part of the
virtual try-on task. A natural thought is to use the current mature explicit warp module, which is also
the initial direction of our approach.

We attempt to use the warp module from DCI-VTON (Gou et al., 2023) for pre-processing garment
images but achieve poor results, as shown in Figure 9. The warped garment images are incomplete,
leading to poor inversion and severely distorted reconstructions.

Explicit Warping Perspective Transformations (Ours)

Figure 9: Comparison of results using explicit warping methods and perspective transformations.
Left: garment with warped / perspective transformation; Right: results generated using the processed
garment.

We believe DCI-VTON’s success relies on training the diffusion model on a large dataset, improving
the compatibility between the warp module and the trained U-Net. In contrast, in our training-free
method, using an independent warp module with an untrained U-Net does not produce satisfac-
tory results. Additionally, starting the inversion process with incomplete warped images hinders
reconstruction quality, further damaging the entire pipeline’s output.

Therefore, we opt for perspective transformations to handle simple rotations and deformations, which
can simulate basic poses. We acknowledge that perspective transformations cannot simulate the
complex deformations that clothing undergoes in real try-on scenarios, as mentioned in our limitations
section.

However, we believe this limitation does not negate our contribution to the field, which is the
introduction of a training-free paradigm for virtual try-on, not requiring large-scale diffusion model
training. In the future, we will explore other methods to improve garment deformation effects and
enhance the usability of diffusion models for complex poses. For now, we call for the community to
be open to innovative approaches and grant us patience and time for further development.
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F MITIGATING POTENTIAL COLOR DISCREPANCIES

Some experimental results indicate a slight color discrepancy between the garment in our visual
outputs and the original garment image. After extensive experimentation, we suggest mitigating this
effect by appropriately reducing the sampling steps.

As demonstrated in Figure 10, when the sampling steps are set to 46, the generated clothing colors
more closely match the original garment image. This adjustment significantly improves the visual
fidelity of the results. However, we do not recommend reducing the sampling steps too much, as we
also discover that excessive reduction introduces new issues. For instance, when the steps are reduced
to 44, we observe distortion and inconsistency in the details of both the person and the background,
which degrades the overall visual quality.

steps = 50

steps = 49

steps = 48

steps = 47

steps = 46

steps = 45

steps = 44 garment

Figure 10: Color oversaturation issue can be alleviated by reducing the sampling steps.

Additionally, some studies suggest that the color of generated images may be influenced by the
classifier-free guidance scale. However, our attempts does not yield any significant improvements.
Nevertheless, we will continue to explore other methods to further enhance the robustness of Diffu-
sionTrend.
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