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Abstract

Large language models (LLMs) are applied to001
diverse contexts of our lives, including the im-002
plementation in child education. Here, we eval-003
uate the ability of an LLM to generate child-like004
language by comparing an LLM-based corpus005
to the Litkey Corpus, a collection of German006
children’s writings based on picture stories. We007
generated a parallel LLM-based corpus using008
identical visual prompts and conducted a com-009
parative analysis across word frequency distri-010
butions, lexical richness, and semantic repre-011
sentations. This study aims to explore if and012
how children and LLMs differ in psycholinguis-013
tic aspects of the text to evaluate the potential014
influences of LLM text on child development.015
The results show that, while the LLM-based016
texts are longer, the vocabulary is less rich,017
has more letters, and misses words in medium-018
and low-frequency ranges (i.e., uses primar-019
ily words that often occur). Additionally, vec-020
tor space analysis using semantic word embed-021
dings reveals a low semantic similarity, high-022
lighting differences between the two corpora023
on the level of corpus semantics. These find-024
ings contribute to our understanding of LLM-025
generated language and its limitations in model-026
ing child language, with implications for LLM027
usage in psycholinguistics and educational ap-028
plications.029

1 Introduction030

Large Language Models (LLMs) have impacted031

fields like corpus linguistics, psycholinguistics, and032

natural language processing (NLP) by providing033

new ways to generate text in response to prompts034

(Brown, 2020; Bommasani et al., 2021; Devlin,035

2018; Vaswani et al., 2017). High user-friendly us-036

age of LLMs increased the use of such models in re-037

search and in applied settings (e.g., as implementa-038

tions in chatbots; (Dam et al., 2024; Brown, 2020)).039

For example, recent developments used LLMs to040

train children’s creative writing skills (Elgarf et al.,041

2024). The finding is that one can boost child cre- 042

ative writings based on LLM output as recent inves- 043

tigations indicated that LLM-generated text lacks 044

lexical richness (Liu and Fourtassi, 2024; Schep- 045

ens et al., 2023). Here, we extend this evidence 046

based on the latest state-of-the-art models that of- 047

fer image prompt capabilities, generating text from 048

both text and visual prompts (Tsimpoukelli et al., 049

2021; Alayrac et al., 2022). These LLMs allow us 050

to simulate a unique yet child-specific corpus that 051

collects children’s writings in response to a set of 052

picture stories. 053

The study of child language and first language 054

acquisition is foundational in linguistics, providing 055

insights into cognitive development and the mech- 056

anisms of language learning (Tomasello, 2005; 057

Clark and Casillas, 2015). During early develop- 058

ment, children undergo significant linguistic and 059

interactive development, making this period crit- 060

ical for understanding human language acquisi- 061

tion. However, the representation of child lan- 062

guage in computational and NLP research remains 063

limited due to challenges such as ethical restric- 064

tions, difficulty in data collection, and limited 065

corpora availability (MacWhinney, 2000; Casillas 066

et al., 2017). LLMs primarily rely on large-scale 067

datasets dominated by adult and high-resource lan- 068

guage data (Luo et al., 2023). Child language re- 069

mains marginal in the models’ training data, espe- 070

cially in underrepresented languages (but see, e.g., 071

(Warstadt et al., 2023; Thoma et al., 2023)). As a 072

result, there is limited research on whether LLMs 073

can efficiently generate child-like text that mim- 074

ics the linguistic patterns and conceptual structures 075

of children’s writing (but see Liu and Fourtassi 076

(2024); Schepens et al. (2023)). 077

To address this gap, this study compares an 078

LLM-generated corpus to the Litkey Corpus of 079

German children’s texts (Laarmann-Quante et al., 080

2019b). This comparison offers insights into how 081

well LLMs simulate child language and provides a 082
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framework for understanding the implications of us-083

ing LLM-generated corpora in linguistic and NLP084

contexts. Moreover, in psycholinguistic research,085

corpora generated by LLMs for underrepresented086

languages and groups have the potential to expand087

current research beyond the predominantly stud-088

ied populations and high-resource languages (Blasi089

et al., 2022; Henrich et al., 2010; Gagl et al., 2022).090

Our study investigates if LLMs and children gen-091

erate similar descriptions of the exact same picture092

stories used in the Litkey Corpus (stories can be093

downloaded from: Litkey Corpus). A compara-094

tive analysis examines both corpora in terms of095

word frequency (Schepens et al., 2023; Brysbaert096

et al., 2011; Schroeder et al., 2015), lexical diver-097

sity (Schepens et al., 2023; Baayen and Baayen,098

2001; Keuleers et al., 2015), and vector-based se-099

mantic similarity with word embeddings (Babić100

et al., 2020; Bojanowski et al., 2017; Günther et al.,101

2019). The study aims to determine whether LLMs102

can replicate the linguistic features of child lan-103

guage and assess potential risks for application104

in educational settings and future challenges for105

model development. By analyzing these patterns,106

we expect to uncover both similarities and key dif-107

ferences that provide insight into the capabilities108

and limitations of LLMs in modeling child-like109

language.110

2 Methods111

Figure 1: Methodology overview: Comparative analysis
of the Litkey Corpus created from children’s descrip-
tions and the LLM-based corpus generated from the
same picture stories.

Figure 1 provides an overview of the current study.112

Using identical visual stimulation (eight picture113

stories, see Litkey Corpus), 251 children (i.e., the 114

Litkey Corpus (Laarmann-Quante et al., 2019b)) 115

and one LLM produced 1,922 texts (i.e., GPT-4 116

(Achiam et al., 2023)). In addition to the image 117

prompts, the LLM was instructed to generate text 118

simulating the writing of children at the average 119

age from the Litkey corpus. Thus, we generated 120

two corpora that can be compared on the basis 121

of well-established psycho-linguistic concepts: (i) 122

word frequency (i.e., how often a word occurs in 123

the corpus), word length (i.e., how many letters do 124

words have), sentence length (i.e., number of words 125

per sentence), lexical diversity (i.e., as measured 126

by log-TTR), and semantic similarity (i.e., using 127

semantic vector space representations from word 128

embeddings). 129

2.1 The Litkey Corpus 130

The Litkey Corpus is a richly annotated collec- 131

tion of German children’s texts designed to high- 132

light the later stages of orthographic and liter- 133

acy development (Laarmann-Quante et al., 2019b). 134

The corpus enables a comprehensive analysis of 135

language acquisition across diverse learner back- 136

grounds (Laarmann-Quante et al., 2019a). 137

The corpus consists of texts written by 251 Ger- 138

man primary school students, collected between 139

2010 and 2012, with an average age of the partic- 140

ipants of 9.6 years (grades 2–4). It is based on 141

eight picture stories comprising six textless images 142

featuring three recurring characters. The corpus 143

consists of 1,922 texts with 212,505 tokens and 144

6,364 types. We focus our analysis on all ortho- 145

graphic corrected versions of the texts with at least 146

15 readable words (Laarmann-Quante et al., 2019b). 147

The collection process involved a 10-minute discus- 148

sion about the pictures between the children and 30 149

minutes of writing. No story details were provided 150

except for the main characters’ names (Lars, Lea, 151

Dodo). Thus, we assume that the Litkey Corpus 152

is a robust resource for our planned comparison 153

study. 154

2.2 Large Language Model 155

As LLM, we use GPT-4V for vision, a transformer 156

architecture that supports text and image prompts 157

(Achiam et al., 2023). A common problem with 158

high-end LLMs is that key architectural details and 159

model weights are not disclosed. Still, at the time 160

of the study (March 2024), no much preferred open- 161

source alternative was available. The model was 162

accessed via the GPT-4V API, in Python. The 163
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cost of using the model was approximately $0.03164

per 1,000 input tokens and $0.06 per 1,000 out-165

put tokens, with a token limit of 8,192 per API166

call. Visual inputs, encoded as Base64, contribute167

to this token limit. Larger or more complex im-168

ages consume more tokens, potentially reducing169

the length of generated text outputs. It was man-170

ageable due to the naturally short texts in this study,171

but this limit can pose challenges for research on172

longer texts. Technical issues, such as a recurring173

KeyError:’choices’ related to token allocation174

for visual inputs, were mitigated by setting the175

max_tokens parameter to 2,000. However, occa-176

sional errors persisted due to API refinements.177

2.3 Prompt Engineering and the LLM-based178

Corpus179

Prompt engineering is critical and allows us to180

generate text that should replicate child-specific181

text (e.g., see (Schepens et al., 2023)). Here, we182

prompt the LLM to generate child-like descriptions183

of the Litkey picture stories in German. In184

addition, to align outputs with the original data185

even more, we included the average age of the186

children as a parameter (9.6 years). After we tested187

different prompt structures to ensure the model188

generated language replicating written descriptions189

of children rather than simulating or “imagining”190

how a child might write, we ended up with the191

following structure that combined a visual input192

(i.e., picture stories) encoded in Base64 format and193

the following text:194

195

“Du bist ein {age}-jähriges Kind. Wie196

würdest du dieses Bild beschreiben?”197

(“You are a {age}-year-old child. How would you198

describe this picture?”).199

200

For these prompts, we adjusted the following201

parameters: the max_tokens parameter was set to202

2,000 to allow for sufficient text generation, while203

the temperature was set to 0.7 to encourage var-204

ied but coherent outputs. All other parameters (e.g.,205

presence_penalty or frequency_penalty with206

the default setting of 0) were not manipulated ex-207

plicitly. The total cost of generating these texts, in-208

cluding input and output tokens, was approximately209

$33. The final LLM-based corpus contained 1,922210

texts with 363,867 tokens (averaging 189 tokens211

per text) and 3,855 types (see Table 1).212

2.4 Data Preprocessing and Comparative 213

Analysis 214

Both corpora were tokenized using the NLTK text 215

mining library in Python ((Bird et al., 2009), with 216

the language specified as word_tokenize(text, 217

language="german")). Minimal preprocessing 218

was applied to preserve the raw characteristics of 219

the child- and LLM-generated texts. Lowercasing 220

was avoided to retain the distinction between cap- 221

italized nouns (Lernen) and verbs (lernen), main- 222

taining the structural integrity and better compara- 223

bility of the German corpora (e.g., see (Schepens 224

et al., 2023)). 225

The comparative analysis covered word fre- 226

quency, lexical diversity, word and sentence length, 227

and semantic vector space comparisons. The word 228

frequency overview included the most frequent 229

words with their counts in each corpus and those 230

shared between them, including a list of the 10 231

most frequent words with > 10 characters (see Ta- 232

ble 3). Lexical richness was measured using the log 233

type-token ratio (log TTR or Herdan’s C) (Tweedie 234

and Baayen, 1998; Herdan, 1960), where the log 235

transformation accounts for text length: 236

log-TTR =
log(Types)
log(Tokens)

(1) 237

Word frequency distributions of both corpora 238

were compared to Zipf’s Law to confirm natu- 239

ral language patterns, where a few high-frequency 240

words are most common while many words appear 241

infrequently. Additionally, we counted the letter 242

length of words and the word length of sentences. 243

2.5 Vector-Based Semantic Analysis with 244

Word Embeddings 245

The corpus comparison on the level of semantics 246

relies on how words are distributed in a multidi- 247

mensional vector space. This involves generating 248

word embeddings, a technique rooted in distribu- 249

tional semantics, where semantically similar words 250

are closer to each other (Elman, 1990; Firth, 1957; 251

Emerson, 2020). The analysis utilized vector-based 252

semantic analysis based on word embedding mod- 253

els trained using neural networks (e.g., GloVe (Pen- 254

nington et al., 2014), Word2Vec (Mikolov, 2013)). 255

Here, we use the fastText model (Bojanowski et al., 256

2017) due to its ability to capture subword informa- 257

tion, making it particularly effective for morpho- 258

logically rich languages like German and smaller 259

corpora (Bojanowski et al., 2017). Subword infor- 260
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mation is also valuable for analysis that include261

child language because, even in the presence of262

spelling or orthographic errors, fastText can still ac-263

curately capture the word’s meaning (Grave et al.,264

2018).265

We used the preprocessed data from both cor-266

pora to train a fastText model instead of using pre-267

trained word embeddings. Training a model on a268

specific corpus provides representations tailored269

to that corpus, capturing the nuances of the text.270

Thus, one set of embeddings reflected the unique271

characteristics of the Litkey Corpus and a second272

set of the LLM-based corpus. After training, all273

words from both corpora were converted into vec-274

tors (i.e., word embeddings) by the trained fastText275

model. The semantic similarity between words in276

both corpora was then assessed using cosine simi-277

larity, a widely used method to measure semantic278

similarity between vectors. Cosine similarity calcu-279

lates the cosine of the angle between two vectors,280

with scores ranging from -1 (completely opposite)281

to 1 (identical). To compare the corpora, we cal-282

culated the cosine similarity between all shared283

words within each corpus. This cosine similarity284

with each corpus allows us to correlate the seman-285

tic relations between words across corpora since286

each corpus-specific vector space is arbitrary and287

cannot be compared.288

3 Results289

Corpus: Litkey LLM-based
Total texts 1,922 1,922
Total tokens 212,505 363,867
Avg. tokens/text 111 189
Total types 6,364 3,855
log-TTR 0.71 0.64

Table 1: Number of texts, total tokens, average tokens
per text, total types, and lexical richness measured by
log-TTR from the Litkey and the LLM-based corpora.

3.1 Frequency Distributions and Lexical290

Richness291

Both corpora consist of the same number of texts.292

Still, the LLM-based corpus contains significantly293

more tokens than the Litkey Corpus, and the Litkey294

Corpus has a higher number of unique types, indi-295

cating greater lexical richness due to more unique296

words (see Table 1). The log-TTR is higher for297

the Litkey compared to the LLM-based corpus (cp.298

Litkey Litkey > 10 LLM-based LLM-based > 10

und Staubsauger und Staubsauger

Lea verschwunden Bild telefoniert

Dodo erschrocken der Kuscheltier

Lars Staubsaugerbeutel das erschrocken

ist Fensterbank ist Bildergeschichte

sie weggelaufen Im wahrscheinlich

hat Hundefutter ein Staubsaugerbeutel

der Telefonnummer Hund Klassenzimmer

die Steckbriefe sieht wiederfindet

den mitgebracht aus Comic Geschichte

Table 2: Comparison of the 10 most frequent words
overall and words with >10 characters in the Litkey
Corpus and the LLM-based corpus.

0.71 vs. 0.64), indicating a higher lexical richness 299

for the writings from children. Still, we found 300

longer texts in the LLM compared to the Litkey 301

corpus (mean number of tokens: 189 vs. 111 per 302

text). 303

In Table 2, the two left columns display the 10 304

most common words from both corpora. Words 305

such as und (and), ist (is), der (masculine article), 306

and die (feminine/plural article) appear frequently 307

in both corpora, reflecting their syntactic impor- 308

tance in German. The analysis of complex words 309

(two right columns in Table 2) reveals further differ- 310

ences. In the Litkey Corpus, words such as Staub- 311

sauger (vacuum cleaner), erschrocken (scared), 312

and Telefonnummer (phone number) are more spe- 313

cific and complex and indicate that children pro- 314

vided more detailed descriptions. In contrast, in 315

the LLM-based corpus, more generic words like 316

Kuscheltier (stuffed animal) and Comic Geschichte 317

(comic story) are prevalent. 318

Table 3 compares the 20 most frequent words 319

shared between the two corpora. Despite these 320

shared words, differences in the use of content 321

words are apparent. A detailed comparison showed 322

that approximately 24.4% of the words are shared 323

between the two corpora. While common function 324

words dominate both corpora, the Litkey Corpus 325

exhibits a wider variety of specific nouns, likely 326

due to the children’s imaginative and observational 327

input. In the Litkey Corpus, the high frequency of 328

names like Dodo, Lea, and Lars is notable, as these 329

characters were introduced to the children before 330

writing. Interestingly, the LLM-based corpus in- 331

cludes all three character names, even though these 332

names were not provided in the prompt. However, 333

their frequency is significantly lower compared to 334
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Word Both corpora Count LLM Count Litkey
und 24,036 14,205 9,831
der 13,240 10,189 3,051
Bild 12,683 12,635 48
ist 11,298 7,786 3,512
das 10,450 8,632 1,818
Lea 9,058 7 9,051
Dodo 8,812 221 8,591
ein 8,708 6,552 2,156
sie 7,574 4,082 3,492
Hund 7,524 6,549 975
Im 7,509 7,490 19
die 7,471 4,496 2,975
Lars 7,413 7 7,406
aus 6,918 6,090 828
sieht 6,517 6,242 275
dem 6,274 5,340 934
auf 5,995 3,729 2,266
den 5,593 3,202 2,391
hat 5,272 2,115 3,157
mit 4,559 3,097 1,462

Table 3: The 20 most frequent words shared in the
Litkey Corpus and the LLM-based corpus.

the Litkey Corpus, possibly because the model rec-335

ognized these names from a reference in the picture336

stories (the pictures are available at: Litkey Cor-337

pus). Two words dominate the LLM corpus: Bild338

(picture) and im (in). The difference in frequen-339

cies lies in the fact that model starts almost every340

description with Im ersten Bild... (In the first pic-341

ture...), Im zweiten Bild... (In the second picture...),342

a phrasing rarely used by children.343

3.2 Detailed Comparison to the Litkey Corpus344

To analyze the relationship between the two cor-345

pora, the correlation between word frequencies was346

computed, followed by normalization and log trans-347

formation of the word frequencies. This procedure348

is a long-standing standard allowing optimal in-349

vestigation of word frequency measures (e.g., see350

(Brysbaert and New, 2009; Schepens et al., 2023))351

that reduces the dominant effect of a low number of352

high-frequency words (e.g., und (and), ist (he/she/it353

is), er (he)). Thus, it focuses strongly on the over-354

all distribution of medium- and lower-frequency355

words. A Laplace smoothing transformation was356

applied to ensure all word counts were at least 1,357

avoiding issues with computing the logarithm of358

zero due to words present in one corpus but absent359

in the other:360

flog = log(fword + 1) (2)361

Figure 2: Log-normalized correlation between word
frequencies in the LLM-based corpus and the Litkey
Corpus showing a correlation of r = .47.

where fword is the raw frequency of a word in the 362

corpus. To obtain the flog, we add 1 to the raw 363

frequency (i.e., smoothing) and implement a loga- 364

rithmic transformation to normalize the distribution 365

and reduce the influence of high-frequency words. 366

After normalizing the word frequencies for cor- 367

pus size, the correlation is 0.51, demonstrating that 368

the relationship between the two corpora remains 369

consistent. However, the log-normalized correla- 370

tion (Figure 2) was slightly lower at 0.47, reflecting 371

the model’s difficulty in mimicking the distribution 372

of less frequent words and suggests that, while 373

the LLM can replicate common words used by 374

children, it struggles with more unique or context- 375

specific words that children use. 376

3.3 Alignment with the Zipf’s Law 377

Figure 3 illustrates the comparison between the 378

Litkey Corpus and the LLM-based corpus in terms 379

of Zipf’s law. Both corpora exhibit the expected 380

inverse relationship between word rank and fre- 381

quency, consistent with Zipf’s law, which means 382

that they contain a few high-frequency words and 383

many low-frequency words, reflecting typical natu- 384

ral language patterns. 385

The X-axis in Figure 3 represents word rank 386

(sorted by frequency) on a logarithmic scale, where 387

lower ranks correspond to more frequent words. 388

The Y-axis represents word frequency, also on a 389

logarithmic scale, with higher values indicating 390

more frequent words. 391
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Figure 3: Zipf’s law comparison for the Litkey Corpus
and the LLM-based corpus, showing the relationship be-
tween word rank and frequency on a logarithmic scale.

The LLM-based corpus shows higher frequen-392

cies for the most frequent words (left side of the393

graph) compared to the Litkey corpus. This sug-394

gests that the LLM relies on a smaller set of high-395

frequency words that have been present more often.396

In contrast, the Litkey Corpus exhibits a richer dis-397

tribution of less frequent words, as indicated by398

its curve overtaking that of the LLM-based corpus399

in the mid- and low-frequency ranges. This high-400

lights the greater lexical diversity and variety of401

rare words in the children’s texts compared to the402

LLM-generated texts.403

3.4 Word and Sentence Length Distribution404

Figure 4 compares the distributions of word and405

sentence lengths in the Litkey and the LLM-based406

corpora.407

Figure 4 (left panel) shows that children’s writ-408

ing predominantly consists of short words (mean409

word length in the Litkey = 3.96). The LLM-based410

corpus also peaks at four characters but shows a411

slightly higher word length overall (mean word412

length in LLM-based corpus = 4.08), reflecting413

that the model generates texts with longer words.414

Figure 4 (right panel) shows the distribution of415

sentence length, indicating that the LLM-based cor-416

pus has longer sentences (mean sentence length417

in LLM-based corpus = 16.76 vs. mean sentence418

length in the Litkey = 12.59). At the same time,419

the Litkey corpus has a lower variability (standard420

deviation word length in LLM-based corpus = 2.41421

vs. standard deviation word length Litkey = 2.06).422

Sentences exceeding 50 words are rare in the Litkey423

Corpus, but some outliers exist. These texts often424

lacked punctuation entirely, resulting in unusually425

long sentences. As only spelling errors were cor-426

rected, punctuation errors remained unchanged. 29 427

outliers exceeded 100 words, with the longest sen- 428

tence having 278 tokens, and were excluded from 429

the graph. 430

3.5 Vector Space Analysis 431

After training fastText-based word embeddings on 432

both corpora, we calculated the cosine similarity be- 433

tween all shared words within both corpora. Based 434

on a similar representation (e.g., Edelman (1998); 435

Kriegeskorte et al. (2008)), we have a comparison 436

based on an abstract representation that is indepen- 437

dent of the original arbitrary embeddings. When 438

we correlate the cosine similarities from both cor- 439

pora, we estimate the semantic similarity between 440

as r = .10 (see Fig. 5). 441

Figure 5: Cosine similarity between Litkey and LLM-
based corpora (bootstrapped).

4 Discussion 442

This study compares written text from German chil- 443

dren describing picture stories to Large Language 444

Model-generated text prompted with the same im- 445

ages based on multiple established corpus- and 446

psycho-linguistic measures. Our analysis shows 447

that significant differences exist while LLMs can 448

partially replicate children’s writing. We found 449

central differences in the characteristics of words, 450

sentences, texts, and semantics. For words, the 451

LLM-based corpus involves orthographically cor- 452

rect, longer words and has lower lexical richness. 453

Obviously, LLMs are much better at producing 454

words with correct spelling compared to children. 455

Low lexical richness indicates that LLMs generate 456

repetitive and less detailed vocabulary than chil- 457

dren. Still, the LLM-generated text followed Zipf’s 458

law in general. However, detailed inspections in- 459

dicated a higher number of high-frequency words 460

(more words that occur often) and a lower number 461

of mid- to low-frequency words (less rare words). 462
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Figure 4: Distributions of word length (in the number of letters) and sentence length (in the number of words) of the
Litkey and the LLM-based corpora.

When correlated, the word frequency measured463

from either corpus was respectable at an r of .47.464

On the level of sentences and texts, we found that465

the LLM generated longer sentences and texts than466

children. For semantics, we found that word co-467

occurrence-based semantic vector spaces differed468

drastically between the two corpora, indicating sub-469

stantial differences in the semantic structure trans-470

ported by LLMs and children. Thus, despite gener-471

ating more prolonged, syntactically more complex472

texts (i.e., indexed by sentence length) replicating473

general lexical patterns (i.e., Zipf’s law), the model474

struggled to replicate the diverse, context-rich lan-475

guage of children’s storytelling, especially on the476

level of vocabulary and semantics.477

A closer qualitative investigation of the LLM-478

generated texts showed that the general plot was479

captured (i.e., event sequence depicted in the pic-480

tures). Still, the LLM often misidentified key ob-481

jects and characters, leading to inaccuracies and482

hallucinations. Therefore, we interpreted these483

findings as model hallucinations (e.g., fabricated484

text on posters or misidentifying characters or ob-485

jects; see also Weidinger et al. (2022); Ji et al.486

(2023); Bender et al. (2021)). These errors stem487

from the model’s tendency to process images in488

isolation rather than integrating context across the489

sequence. The frequent use of framing phrases490

like Auf dem Bild sehe ich... (In the picture, I can491

see...) contrasted with children’s more spontaneous,492

narrative-focused descriptions. While applicable493

in structured educational contexts, this reliance on494

introductory phrases limited the model’s ability to 495

produce natural, flowing narratives. 496

This investigation is broader than previous ones 497

but replicates central aspects. Lower lexical rich- 498

ness was previously found when human face-to- 499

face interactions, child-book-based corpora, and 500

direct comparison of general adult writings were 501

compared to LLM-generated text (Schepens et al., 502

2023; Liu and Fourtassi, 2024; Guo et al., 2023). 503

This evidence could be the result of a regression to 504

the mean phenomenon, suggesting that the model 505

training results in less lexical-rich outputs as a po- 506

tential main goal of the LLM technology is to be 507

comprehended by most people. In a first exper- 508

imental approach, Schepens et al. (2023) experi- 509

mented with increasing the temperature parameter, 510

finding a slight increase in lexical richness. This 511

indicates that parameter tuning of the models could 512

be the first step towards better-representing child 513

language in LLM models. Until such a set of pa- 514

rameters is not present and evaluated, or alternative 515

evaluated approaches involving fine-tuning or the 516

implementation of child-specific models, it is not 517

recommended to use LLM agents in a child educa- 518

tion context, as such could bias children’s language 519

towards a less rich vocabulary, potentially impover- 520

ishing development. 521

One goal of children’s books is to increase vo- 522

cabulary. A central finding in vocabulary research 523

is that at the onset of literacy acquisition, the vo- 524

cabulary increases drastically (Verhoeven et al., 525

2011; Song et al., 2015). Suppose we want chil- 526
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dren to be up to the task of recognizing language527

at a high quality in adulthood. In that case, we528

should present less rich, highly understandable text529

in only a few contexts related to instruction-type530

texts (i.e., how to implement a math problem or531

how to use a fire extinguisher; i.e., see Schepens532

et al. (2023) for a discussion) but not when it comes533

to educational language content or creative writing534

(e.g., (Elgarf et al., 2024)). We are in line with Liu535

and Fourtassi (2024) that, at present, we first need536

to design a set of benchmarks on which we can537

evaluate LLM-generated text before we use these538

models in educational or child-directed contexts.539

One aspect indicated by Guo et al. (2023) is540

that the use of LLM-generated text reduces lexi-541

cal richness. Data shortage was proposed to be542

accounted for by training on self-generated texts543

(Wang et al., 2022). For children, a natural short-544

age of child-produced text for training could be545

one reason for the low lexical richness and the poor546

performance on psycholinguistics measures for547

simulating parent-child interactions (Liu and Four-548

tassi, 2024), adult-written children books (Schep-549

ens et al., 2023) and children writings, as shown550

here.551

5 Conclusions552

We find that LLM-generated descriptions of pic-553

ture stories, based on prompts that should result554

in child-like texts, are capable of generating ortho-555

graphically correct but psycholinguistically very556

different text. We found fundamental differences557

between text produced by children and LLMs in558

response to the same picture stories on the level of559

words (e.g., lexical richness), sentences (i.e., num-560

ber of words), texts (i.e., text length), and seman-561

tics (i.e., semantic vector spaces similarity). While562

large language models show promise in replicating563

certain linguistic features of children’s language,564

they lack the full range of expressive and descrip-565

tive abilities. These findings highlight the need to566

continue exploring LLMs’ capabilities and limita-567

tions to provide beneficial benchmarks for future568

developments.569

6 Limitations570

A significant limitation of this study lies in the571

lack of transparency of the used proprietary LLM572

(GPT-4v). Thus, we cannot evaluate details about573

training data, model parameters, and architectural574

parameters that could be relevant to the outcome of575

the study. With the spike in available open-access 576

models, other open LLM models with image in- 577

put available can be used here. We started to test 578

the DeepSeek model (Bi et al., 2024) which, at 579

the early stage of testing, seems to be a promis- 580

ing alternative in replicating child language (for an 581

example description of one of the picture stories, 582

see: A). In addition, closed-source models have 583

opaque updates and modifications, drastically af- 584

fecting performance (e.g., see Maslej et al. (2024); 585

Chen et al. (2023); Schepens et al. (2023). Without 586

this information, proprietary model outputs’ repli- 587

cability and reproducibility rates will stay low. So, 588

to resolve these issues, we need more multimodal 589

LLMs that are open to investigation in detail, and 590

that can be frozen in a particular version. 591

Another limitation is that we have not covered 592

syntactic (Liu and Fourtassi, 2024) and readability 593

scores yet (Crossley et al., 2023). Broadening the 594

benchmarking measures will allow a more holistic 595

inspection of the generated LLM-generated text. 596

Further, German as the main language might can 597

pose a challenge here in relation to the amount 598

of training data available for underrepresented 599

languages, a similar issue to the lack of train- 600

ing resources for children’s language development. 601

Nonetheless the findings from a conversational cor- 602

pus in English showed similar differences (Liu and 603

Fourtassi, 2024) indicate that this issue is likely 604

language in general. Still, future research should in- 605

clude a more holistic set of measures that includes 606

all major aspects of language and, at the same time, 607

investigate these issues across languages within 608

one study. 609
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A Appendix850

Description of picture story “Jenga” by DeepSeek851

model: Das Bild zeigt Lea, Lars und Dodo, die852

zusammen Jenga spielen. Lea, das Mädchen mit853

den Zöpfen, zieht vorsichtig einen Holzblock aus854

dem Turm. Lars, der Junge mit dem Basecap,855

beobachtet gespannt, während Dodo, der blaue856

Vogel mit der Brille, aufgeregt daneben steht. Der857

Jenga-Turm steht auf einem Tisch und sieht schon858

ziemlich wackelig aus! Im Hintergrund sieht man859

ein Regal mit Spielen und Büchern. Die Wände860

sind bunt und es hängen gemalte Bilder. Alle sehen861

sehr konzentriert und ein bisschen nervös aus, weil862

der Turm gleich umfallen könnte. Es sieht nach863

viel Spaß aus! (The picture shows Lea, Lars, and864

Dodo playing Jenga together. Lea, the girl with the865

braids, is carefully pulling a wooden block from866

the tower. Lars, the boy with the baseball cap, is867

watching intently, while Dodo, the blue bird with868

glasses, is standing excitedly beside them. The869

Jenga tower is on a table and already looks quite870

wobbly! In the background, you can see a shelf871

with games and books. The walls are colorful and872

there are painted pictures hanging. Everyone looks873

very focused and a bit nervous because the tower874

might fall over any second. It looks like a lot of875

fun!).876
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