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Abstract

Large language models (LLMs) are applied to
diverse contexts of our lives, including the im-
plementation in child education. Here, we eval-
uate the ability of an LLM to generate child-like
language by comparing an LLM-based corpus
to the Litkey Corpus, a collection of German
children’s writings based on picture stories. We
generated a parallel LLM-based corpus using
identical visual prompts and conducted a com-
parative analysis across word frequency distri-
butions, lexical richness, and semantic repre-
sentations. This study aims to explore if and
how children and LLMs differ in psycholinguis-
tic aspects of the text to evaluate the potential
influences of LLM text on child development.
The results show that, while the LLM-based
texts are longer, the vocabulary is less rich,
has more letters, and misses words in medium-
and low-frequency ranges (i.e., uses primar-
ily words that often occur). Additionally, vec-
tor space analysis using semantic word embed-
dings reveals a low semantic similarity, high-
lighting differences between the two corpora
on the level of corpus semantics. These find-
ings contribute to our understanding of LLM-
generated language and its limitations in model-
ing child language, with implications for LLM
usage in psycholinguistics and educational ap-
plications.

1 Introduction

Large Language Models (LLMs) have impacted
fields like corpus linguistics, psycholinguistics, and
natural language processing (NLP) by providing
new ways to generate text in response to prompts
(Brown, 2020; Bommasani et al., 2021; Devlin,
2018; Vaswani et al., 2017). High user-friendly us-
age of LLMs increased the use of such models in re-
search and in applied settings (e.g., as implementa-
tions in chatbots; (Dam et al., 2024; Brown, 2020)).
For example, recent developments used LLMs to
train children’s creative writing skills (Elgarf et al.,

2024). The finding is that one can boost child cre-
ative writings based on LLM output as recent inves-
tigations indicated that LL.M-generated text lacks
lexical richness (Liu and Fourtassi, 2024; Schep-
ens et al., 2023). Here, we extend this evidence
based on the latest state-of-the-art models that of-
fer image prompt capabilities, generating text from
both text and visual prompts (Tsimpoukelli et al.,
2021; Alayrac et al., 2022). These LLMs allow us
to simulate a unique yet child-specific corpus that
collects children’s writings in response to a set of
picture stories.

The study of child language and first language
acquisition is foundational in linguistics, providing
insights into cognitive development and the mech-
anisms of language learning (Tomasello, 2005;
Clark and Casillas, 2015). During early develop-
ment, children undergo significant linguistic and
interactive development, making this period crit-
ical for understanding human language acquisi-
tion. However, the representation of child lan-
guage in computational and NLP research remains
limited due to challenges such as ethical restric-
tions, difficulty in data collection, and limited
corpora availability (MacWhinney, 2000; Casillas
et al., 2017). LLMs primarily rely on large-scale
datasets dominated by adult and high-resource lan-
guage data (Luo et al., 2023). Child language re-
mains marginal in the models’ training data, espe-
cially in underrepresented languages (but see, e.g.,
(Warstadt et al., 2023; Thoma et al., 2023)). As a
result, there is limited research on whether LLMs
can efficiently generate child-like text that mim-
ics the linguistic patterns and conceptual structures
of children’s writing (but see Liu and Fourtassi
(2024); Schepens et al. (2023)).

To address this gap, this study compares an
LLM-generated corpus to the Litkey Corpus of
German children’s texts (Laarmann-Quante et al.,
2019b). This comparison offers insights into how
well LLMs simulate child language and provides a



framework for understanding the implications of us-
ing LLM-generated corpora in linguistic and NLP
contexts. Moreover, in psycholinguistic research,
corpora generated by LLMs for underrepresented
languages and groups have the potential to expand
current research beyond the predominantly stud-
ied populations and high-resource languages (Blasi
et al., 2022; Henrich et al., 2010; Gagl et al., 2022).

Our study investigates if LLMs and children gen-
erate similar descriptions of the exact same picture
stories used in the Litkey Corpus (stories can be
downloaded from: Litkey Corpus). A compara-
tive analysis examines both corpora in terms of
word frequency (Schepens et al., 2023; Brysbaert
et al., 2011; Schroeder et al., 2015), lexical diver-
sity (Schepens et al., 2023; Baayen and Baayen,
2001; Keuleers et al., 2015), and vector-based se-
mantic similarity with word embeddings (Babi¢
et al., 2020; Bojanowski et al., 2017; Giinther et al.,
2019). The study aims to determine whether LLMs
can replicate the linguistic features of child lan-
guage and assess potential risks for application
in educational settings and future challenges for
model development. By analyzing these patterns,
we expect to uncover both similarities and key dif-
ferences that provide insight into the capabilities
and limitations of LL.Ms in modeling child-like
language.

2 Methods
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Figure 1: Methodology overview: Comparative analysis
of the Litkey Corpus created from children’s descrip-
tions and the LLM-based corpus generated from the
same picture stories.

Figure 1 provides an overview of the current study.
Using identical visual stimulation (eight picture

stories, see Litkey Corpus), 251 children (i.e., the
Litkey Corpus (Laarmann-Quante et al., 2019b))
and one LLM produced 1,922 texts (i.e., GPT-4
(Achiam et al., 2023)). In addition to the image
prompts, the LLM was instructed to generate text
simulating the writing of children at the average
age from the Litkey corpus. Thus, we generated
two corpora that can be compared on the basis
of well-established psycho-linguistic concepts: (i)
word frequency (i.e., how often a word occurs in
the corpus), word length (i.e., how many letters do
words have), sentence length (i.e., number of words
per sentence), lexical diversity (i.e., as measured
by log-TTR), and semantic similarity (i.e., using
semantic vector space representations from word
embeddings).

2.1 The Litkey Corpus

The Litkey Corpus is a richly annotated collec-
tion of German children’s texts designed to high-
light the later stages of orthographic and liter-
acy development (Laarmann-Quante et al., 2019b).
The corpus enables a comprehensive analysis of
language acquisition across diverse learner back-
grounds (Laarmann-Quante et al., 2019a).

The corpus consists of texts written by 251 Ger-
man primary school students, collected between
2010 and 2012, with an average age of the partic-
ipants of 9.6 years (grades 2—4). It is based on
eight picture stories comprising six textless images
featuring three recurring characters. The corpus
consists of 1,922 texts with 212,505 tokens and
6,364 types. We focus our analysis on all ortho-
graphic corrected versions of the texts with at least
15 readable words (Laarmann-Quante et al., 2019b).
The collection process involved a 10-minute discus-
sion about the pictures between the children and 30
minutes of writing. No story details were provided
except for the main characters’ names (Lars, Lea,
Dodo). Thus, we assume that the Litkey Corpus
is a robust resource for our planned comparison
study.

2.2 Large Language Model

As LLM, we use GPT-4V for vision, a transformer
architecture that supports text and image prompts
(Achiam et al., 2023). A common problem with
high-end LLMs is that key architectural details and
model weights are not disclosed. Still, at the time
of the study (March 2024), no much preferred open-
source alternative was available. The model was
accessed via the GPT-4V API, in Python. The
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cost of using the model was approximately $0.03
per 1,000 input tokens and $0.06 per 1,000 out-
put tokens, with a token limit of 8,192 per API
call. Visual inputs, encoded as Base64, contribute
to this token limit. Larger or more complex im-
ages consume more tokens, potentially reducing
the length of generated text outputs. It was man-
ageable due to the naturally short texts in this study,
but this limit can pose challenges for research on
longer texts. Technical issues, such as a recurring
KeyError:’choices’ related to token allocation
for visual inputs, were mitigated by setting the
max_tokens parameter to 2,000. However, occa-
sional errors persisted due to API refinements.

2.3 Prompt Engineering and the LLM-based
Corpus

Prompt engineering is critical and allows us to
generate text that should replicate child-specific
text (e.g., see (Schepens et al., 2023)). Here, we
prompt the LLM to generate child-like descriptions
of the Litkey picture stories in German. In
addition, to align outputs with the original data
even more, we included the average age of the
children as a parameter (9.6 years). After we tested
different prompt structures to ensure the model
generated language replicating written descriptions
of children rather than simulating or “imagining’
how a child might write, we ended up with the
following structure that combined a visual input
(i.e., picture stories) encoded in Base64 format and
the following text:

B

“Du bist ein {age}-jahriges Kind. Wie
wirdest du dieses Bild beschreiben?”
(“You are a {age}-year-old child. How would you
describe this picture?”).

For these prompts, we adjusted the following
parameters: the max_tokens parameter was set to
2,000 to allow for sufficient text generation, while
the temperature was set to 0.7 to encourage var-
ied but coherent outputs. All other parameters (e.g.,
presence_penalty or frequency_penalty with
the default setting of 0) were not manipulated ex-
plicitly. The total cost of generating these texts, in-
cluding input and output tokens, was approximately
$33. The final LLM-based corpus contained 1,922
texts with 363,867 tokens (averaging 189 tokens
per text) and 3,855 types (see Table 1).

2.4 Data Preprocessing and Comparative
Analysis

Both corpora were tokenized using the NLTK text
mining library in Python ((Bird et al., 2009), with
the language specified as word_tokenize(text,
language="german”)). Minimal preprocessing
was applied to preserve the raw characteristics of
the child- and LLM-generated texts. Lowercasing
was avoided to retain the distinction between cap-
italized nouns (Lernen) and verbs (lernen), main-
taining the structural integrity and better compara-
bility of the German corpora (e.g., see (Schepens
et al., 2023)).

The comparative analysis covered word fre-
quency, lexical diversity, word and sentence length,
and semantic vector space comparisons. The word
frequency overview included the most frequent
words with their counts in each corpus and those
shared between them, including a list of the 10
most frequent words with > 10 characters (see Ta-
ble 3). Lexical richness was measured using the log
type-token ratio (log TTR or Herdan’s C) (Tweedie
and Baayen, 1998; Herdan, 1960), where the log
transformation accounts for text length:

log(Types)

log-TTR = ——=
°8 log(Tokens)

ey

Word frequency distributions of both corpora
were compared to Zipf’s Law to confirm natu-
ral language patterns, where a few high-frequency
words are most common while many words appear
infrequently. Additionally, we counted the letter
length of words and the word length of sentences.

2.5 Vector-Based Semantic Analysis with
Word Embeddings

The corpus comparison on the level of semantics
relies on how words are distributed in a multidi-
mensional vector space. This involves generating
word embeddings, a technique rooted in distribu-
tional semantics, where semantically similar words
are closer to each other (Elman, 1990; Firth, 1957,
Emerson, 2020). The analysis utilized vector-based
semantic analysis based on word embedding mod-
els trained using neural networks (e.g., GloVe (Pen-
nington et al., 2014), Word2Vec (Mikolov, 2013)).
Here, we use the fastText model (Bojanowski et al.,
2017) due to its ability to capture subword informa-
tion, making it particularly effective for morpho-
logically rich languages like German and smaller
corpora (Bojanowski et al., 2017). Subword infor-



mation is also valuable for analysis that include
child language because, even in the presence of
spelling or orthographic errors, fastText can still ac-
curately capture the word’s meaning (Grave et al.,
2018).

We used the preprocessed data from both cor-
pora to train a fastText model instead of using pre-
trained word embeddings. Training a model on a
specific corpus provides representations tailored
to that corpus, capturing the nuances of the text.
Thus, one set of embeddings reflected the unique
characteristics of the Litkey Corpus and a second
set of the LLM-based corpus. After training, all
words from both corpora were converted into vec-
tors (i.e., word embeddings) by the trained fastText
model. The semantic similarity between words in
both corpora was then assessed using cosine simi-
larity, a widely used method to measure semantic
similarity between vectors. Cosine similarity calcu-
lates the cosine of the angle between two vectors,
with scores ranging from -1 (completely opposite)
to 1 (identical). To compare the corpora, we cal-
culated the cosine similarity between all shared
words within each corpus. This cosine similarity
with each corpus allows us to correlate the seman-
tic relations between words across corpora since
each corpus-specific vector space is arbitrary and
cannot be compared.

3 Results
Corpus: Litkey LLM-based
Total texts 1,922 1,922
Total tokens 212,505 363,867
Avg. tokens/text 111 189
Total types 6,364 3,855
log-TTR 0.71 0.64

Table 1: Number of texts, total tokens, average tokens
per text, total types, and lexical richness measured by
log-TTR from the Litkey and the LLM-based corpora.

3.1 Frequency Distributions and Lexical
Richness

Both corpora consist of the same number of texts.
Still, the LLM-based corpus contains significantly
more tokens than the Litkey Corpus, and the Litkey
Corpus has a higher number of unique types, indi-
cating greater lexical richness due to more unique
words (see Table 1). The log-TTR is higher for
the Litkey compared to the LLM-based corpus (cp.

Litkey Litkey > 10 LLM-based LLM-based > 10
und Staubsauger und Staubsauger
Lea verschwunden Bild telefoniert
Dodo erschrocken der Kuscheltier
Lars Staubsaugerbeutel das erschrocken
ist Fensterbank ist Bildergeschichte
sie weggelaufen Im wahrscheinlich
hat Hundefutter ein Staubsaugerbeutel
der Telefonnummer Hund Klassenzimmer
die Steckbriefe sieht wiederfindet
den mitgebracht aus Comic Geschichte

Table 2: Comparison of the 10 most frequent words
overall and words with >10 characters in the Litkey
Corpus and the LLM-based corpus.

0.71 vs. 0.64), indicating a higher lexical richness
for the writings from children. Still, we found
longer texts in the LLM compared to the Litkey
corpus (mean number of tokens: 189 vs. 111 per
text).

In Table 2, the two left columns display the 10
most common words from both corpora. Words
such as und (and), ist (is), der (masculine article),
and die (feminine/plural article) appear frequently
in both corpora, reflecting their syntactic impor-
tance in German. The analysis of complex words
(two right columns in Table 2) reveals further differ-
ences. In the Litkey Corpus, words such as Staub-
sauger (vacuum cleaner), erschrocken (scared),
and Telefonnummer (phone number) are more spe-
cific and complex and indicate that children pro-
vided more detailed descriptions. In contrast, in
the LLM-based corpus, more generic words like
Kuscheltier (stuffed animal) and Comic Geschichte
(comic story) are prevalent.

Table 3 compares the 20 most frequent words
shared between the two corpora. Despite these
shared words, differences in the use of content
words are apparent. A detailed comparison showed
that approximately 24.4% of the words are shared
between the two corpora. While common function
words dominate both corpora, the Litkey Corpus
exhibits a wider variety of specific nouns, likely
due to the children’s imaginative and observational
input. In the Litkey Corpus, the high frequency of
names like Dodo, Lea, and Lars is notable, as these
characters were introduced to the children before
writing. Interestingly, the LLM-based corpus in-
cludes all three character names, even though these
names were not provided in the prompt. However,
their frequency is significantly lower compared to



Word Both corpora Count LLM Count Litkey

und 24,036 14,205 9,831
der 13,240 10,189 3,051
Bild 12,683 12,635 48

ist 11,298 7,186 3,512
das 10,450 8,632 1,818
Lea 9,058 7 9,051
Dodo 8,812 221 8,591
ein 8,708 6,552 2,156
sie 7,574 4,082 3,492
Hund 7,524 6,549 975

Im 7,509 7,490 19

die 7,471 4,496 2,975
Lars 7,413 7 7,406
aus 6,918 6,090 828

sieht 6,517 6,242 275

dem 6,274 5,340 934

auf 5,995 3,729 2,266
den 5,593 3,202 2,391
hat 5,272 2,115 3,157
mit 4,559 3,097 1,462

Table 3: The 20 most frequent words shared in the
Litkey Corpus and the LLM-based corpus.

the Litkey Corpus, possibly because the model rec-
ognized these names from a reference in the picture
stories (the pictures are available at: Litkey Cor-
pus). Two words dominate the LLLM corpus: Bild
(picture) and im (in). The difference in frequen-
cies lies in the fact that model starts almost every
description with Im ersten Bild... (In the first pic-
ture...), Im zweiten Bild... (In the second picture...),
a phrasing rarely used by children.

3.2 Detailed Comparison to the Litkey Corpus

To analyze the relationship between the two cor-
pora, the correlation between word frequencies was
computed, followed by normalization and log trans-
formation of the word frequencies. This procedure
is a long-standing standard allowing optimal in-
vestigation of word frequency measures (e.g., see
(Brysbaert and New, 2009; Schepens et al., 2023))
that reduces the dominant effect of a low number of
high-frequency words (e.g., und (and), ist (he/she/it
is), er (he)). Thus, it focuses strongly on the over-
all distribution of medium- and lower-frequency
words. A Laplace smoothing transformation was
applied to ensure all word counts were at least 1,
avoiding issues with computing the logarithm of
zero due to words present in one corpus but absent
in the other:

flog = log(fword + 1) (2)

Log Frequency Correlation

10

Log Freq LLM

Log Freq Litkey

Figure 2: Log-normalized correlation between word
frequencies in the LLM-based corpus and the Litkey
Corpus showing a correlation of r = .47.

where fyorg is the raw frequency of a word in the
corpus. To obtain the fioe, we add 1 to the raw
frequency (i.e., smoothing) and implement a loga-
rithmic transformation to normalize the distribution
and reduce the influence of high-frequency words.

After normalizing the word frequencies for cor-
pus size, the correlation is 0.51, demonstrating that
the relationship between the two corpora remains
consistent. However, the log-normalized correla-
tion (Figure 2) was slightly lower at 0.47, reflecting
the model’s difficulty in mimicking the distribution
of less frequent words and suggests that, while
the LLM can replicate common words used by
children, it struggles with more unique or context-
specific words that children use.

3.3 Alignment with the Zipf’s Law

Figure 3 illustrates the comparison between the
Litkey Corpus and the LLM-based corpus in terms
of Zipf’s law. Both corpora exhibit the expected
inverse relationship between word rank and fre-
quency, consistent with Zipf’s law, which means
that they contain a few high-frequency words and
many low-frequency words, reflecting typical natu-
ral language patterns.

The X-axis in Figure 3 represents word rank
(sorted by frequency) on a logarithmic scale, where
lower ranks correspond to more frequent words.
The Y-axis represents word frequency, also on a
logarithmic scale, with higher values indicating
more frequent words.
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Figure 3: Zipf’s law comparison for the Litkey Corpus
and the LLM-based corpus, showing the relationship be-
tween word rank and frequency on a logarithmic scale.

The LLM-based corpus shows higher frequen-
cies for the most frequent words (left side of the
graph) compared to the Litkey corpus. This sug-
gests that the LLM relies on a smaller set of high-
frequency words that have been present more often.
In contrast, the Litkey Corpus exhibits a richer dis-
tribution of less frequent words, as indicated by
its curve overtaking that of the LLM-based corpus
in the mid- and low-frequency ranges. This high-
lights the greater lexical diversity and variety of
rare words in the children’s texts compared to the
LLM-generated texts.

3.4 Word and Sentence Length Distribution

Figure 4 compares the distributions of word and
sentence lengths in the Litkey and the LLM-based
corpora.

Figure 4 (left panel) shows that children’s writ-
ing predominantly consists of short words (mean
word length in the Litkey = 3.96). The LLM-based
corpus also peaks at four characters but shows a
slightly higher word length overall (mean word
length in LLM-based corpus = 4.08), reflecting
that the model generates texts with longer words.
Figure 4 (right panel) shows the distribution of
sentence length, indicating that the LLM-based cor-
pus has longer sentences (mean sentence length
in LLM-based corpus = 16.76 vs. mean sentence
length in the Litkey = 12.59). At the same time,
the Litkey corpus has a lower variability (standard
deviation word length in LLM-based corpus = 2.41
vs. standard deviation word length Litkey = 2.06).
Sentences exceeding 50 words are rare in the Litkey
Corpus, but some outliers exist. These texts often
lacked punctuation entirely, resulting in unusually
long sentences. As only spelling errors were cor-

rected, punctuation errors remained unchanged. 29
outliers exceeded 100 words, with the longest sen-
tence having 278 tokens, and were excluded from
the graph.

3.5 Vector Space Analysis

After training fastText-based word embeddings on
both corpora, we calculated the cosine similarity be-
tween all shared words within both corpora. Based
on a similar representation (e.g., Edelman (1998);
Kriegeskorte et al. (2008)), we have a comparison
based on an abstract representation that is indepen-
dent of the original arbitrary embeddings. When
we correlate the cosine similarities from both cor-
pora, we estimate the semantic similarity between
asr=.10 (see Fig. 5).

Cosine Similarities Correlation - LLM and Litkey corpora
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Figure 5: Cosine similarity between Litkey and LLM-
based corpora (bootstrapped).

4 Discussion

This study compares written text from German chil-
dren describing picture stories to Large Language
Model-generated text prompted with the same im-
ages based on multiple established corpus- and
psycho-linguistic measures. Our analysis shows
that significant differences exist while LLMs can
partially replicate children’s writing. We found
central differences in the characteristics of words,
sentences, texts, and semantics. For words, the
LLM-based corpus involves orthographically cor-
rect, longer words and has lower lexical richness.
Obviously, LLMs are much better at producing
words with correct spelling compared to children.
Low lexical richness indicates that LLMs generate
repetitive and less detailed vocabulary than chil-
dren. Still, the LLM-generated text followed Zipf’s
law in general. However, detailed inspections in-
dicated a higher number of high-frequency words
(more words that occur often) and a lower number
of mid- to low-frequency words (less rare words).
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Figure 4: Distributions of word length (in the number of letters) and sentence length (in the number of words) of the

Litkey and the LLM-based corpora.

When correlated, the word frequency measured
from either corpus was respectable at an r of .47.
On the level of sentences and texts, we found that
the LLM generated longer sentences and texts than
children. For semantics, we found that word co-
occurrence-based semantic vector spaces differed
drastically between the two corpora, indicating sub-
stantial differences in the semantic structure trans-
ported by LLMs and children. Thus, despite gener-
ating more prolonged, syntactically more complex
texts (i.e., indexed by sentence length) replicating
general lexical patterns (i.e., Zipf’s law), the model
struggled to replicate the diverse, context-rich lan-
guage of children’s storytelling, especially on the
level of vocabulary and semantics.

A closer qualitative investigation of the LLM-
generated texts showed that the general plot was
captured (i.e., event sequence depicted in the pic-
tures). Still, the LLLM often misidentified key ob-
jects and characters, leading to inaccuracies and
hallucinations. Therefore, we interpreted these
findings as model hallucinations (e.g., fabricated
text on posters or misidentifying characters or ob-
jects; see also Weidinger et al. (2022); Ji et al.
(2023); Bender et al. (2021)). These errors stem
from the model’s tendency to process images in
isolation rather than integrating context across the
sequence. The frequent use of framing phrases
like Auf dem Bild sehe ich... (In the picture, I can
see...) contrasted with children’s more spontaneous,
narrative-focused descriptions. While applicable
in structured educational contexts, this reliance on

introductory phrases limited the model’s ability to
produce natural, flowing narratives.

This investigation is broader than previous ones
but replicates central aspects. Lower lexical rich-
ness was previously found when human face-to-
face interactions, child-book-based corpora, and
direct comparison of general adult writings were
compared to LLM-generated text (Schepens et al.,
2023; Liu and Fourtassi, 2024; Guo et al., 2023).
This evidence could be the result of a regression to
the mean phenomenon, suggesting that the model
training results in less lexical-rich outputs as a po-
tential main goal of the LLM technology is to be
comprehended by most people. In a first exper-
imental approach, Schepens et al. (2023) experi-
mented with increasing the temperature parameter,
finding a slight increase in lexical richness. This
indicates that parameter tuning of the models could
be the first step towards better-representing child
language in LLM models. Until such a set of pa-
rameters is not present and evaluated, or alternative
evaluated approaches involving fine-tuning or the
implementation of child-specific models, it is not
recommended to use LLM agents in a child educa-
tion context, as such could bias children’s language
towards a less rich vocabulary, potentially impover-
ishing development.

One goal of children’s books is to increase vo-
cabulary. A central finding in vocabulary research
is that at the onset of literacy acquisition, the vo-
cabulary increases drastically (Verhoeven et al.,
2011; Song et al., 2015). Suppose we want chil-



dren to be up to the task of recognizing language
at a high quality in adulthood. In that case, we
should present less rich, highly understandable text
in only a few contexts related to instruction-type
texts (i.e., how to implement a math problem or
how to use a fire extinguisher; i.e., see Schepens
et al. (2023) for a discussion) but not when it comes
to educational language content or creative writing
(e.g., (Elgarf et al., 2024)). We are in line with Liu
and Fourtassi (2024) that, at present, we first need
to design a set of benchmarks on which we can
evaluate LLM-generated text before we use these
models in educational or child-directed contexts.

One aspect indicated by Guo et al. (2023) is
that the use of LLM-generated text reduces lexi-
cal richness. Data shortage was proposed to be
accounted for by training on self-generated texts
(Wang et al., 2022). For children, a natural short-
age of child-produced text for training could be
one reason for the low lexical richness and the poor
performance on psycholinguistics measures for
simulating parent-child interactions (Liu and Four-
tassi, 2024), adult-written children books (Schep-
ens et al., 2023) and children writings, as shown
here.

5 Conclusions

We find that LLLM-generated descriptions of pic-
ture stories, based on prompts that should result
in child-like texts, are capable of generating ortho-
graphically correct but psycholinguistically very
different text. We found fundamental differences
between text produced by children and LLMs in
response to the same picture stories on the level of
words (e.g., lexical richness), sentences (i.e., num-
ber of words), texts (i.e., text length), and seman-
tics (i.e., semantic vector spaces similarity). While
large language models show promise in replicating
certain linguistic features of children’s language,
they lack the full range of expressive and descrip-
tive abilities. These findings highlight the need to
continue exploring LLMs’ capabilities and limita-
tions to provide beneficial benchmarks for future
developments.

6 Limitations

A significant limitation of this study lies in the
lack of transparency of the used proprietary LLM
(GPT-4v). Thus, we cannot evaluate details about
training data, model parameters, and architectural
parameters that could be relevant to the outcome of

the study. With the spike in available open-access
models, other open LLM models with image in-
put available can be used here. We started to test
the DeepSeek model (Bi et al., 2024) which, at
the early stage of testing, seems to be a promis-
ing alternative in replicating child language (for an
example description of one of the picture stories,
see: A). In addition, closed-source models have
opaque updates and modifications, drastically af-
fecting performance (e.g., see Maslej et al. (2024);
Chen et al. (2023); Schepens et al. (2023). Without
this information, proprietary model outputs’ repli-
cability and reproducibility rates will stay low. So,
to resolve these issues, we need more multimodal
LLMs that are open to investigation in detail, and
that can be frozen in a particular version.

Another limitation is that we have not covered
syntactic (Liu and Fourtassi, 2024) and readability
scores yet (Crossley et al., 2023). Broadening the
benchmarking measures will allow a more holistic
inspection of the generated LLM-generated text.
Further, German as the main language might can
pose a challenge here in relation to the amount
of training data available for underrepresented
languages, a similar issue to the lack of train-
ing resources for children’s language development.
Nonetheless the findings from a conversational cor-
pus in English showed similar differences (Liu and
Fourtassi, 2024) indicate that this issue is likely
language in general. Still, future research should in-
clude a more holistic set of measures that includes
all major aspects of language and, at the same time,
investigate these issues across languages within
one study.
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A Appendix

Description of picture story “Jenga” by DeepSeek
model: Das Bild zeigt Lea, Lars und Dodo, die
zusammen Jenga spielen. Lea, das Mddchen mit
den Zipfen, zieht vorsichtig einen Holzblock aus
dem Turm. Lars, der Junge mit dem Basecap,
beobachtet gespannt, wihrend Dodo, der blaue
Vogel mit der Brille, aufgeregt daneben steht. Der
Jenga-Turm steht auf einem Tisch und sieht schon
ziemlich wackelig aus! Im Hintergrund sieht man
ein Regal mit Spielen und Biichern. Die Wiinde
sind bunt und es hdangen gemalte Bilder. Alle sehen
sehr konzentriert und ein bisschen nervos aus, weil
der Turm gleich umfallen konnte. Es sieht nach
viel Spaf3 aus! (The picture shows Lea, Lars, and
Dodo playing Jenga together. Lea, the girl with the
braids, is carefully pulling a wooden block from
the tower. Lars, the boy with the baseball cap, is
watching intently, while Dodo, the blue bird with
glasses, is standing excitedly beside them. The
Jenga tower is on a table and already looks quite
wobbly! In the background, you can see a shelf
with games and books. The walls are colorful and
there are painted pictures hanging. Everyone looks
very focused and a bit nervous because the tower
might fall over any second. It looks like a lot of
fun!).
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