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ABSTRACT

Active learning has emerged as a pivotal approach for addressing data scarcity
and annotation cost constraints in machine learning systems. However, its imple-
mentation in federated learning settings introduces unique challenges, particularly
concerning data heterogeneity across clients. Our comprehensive analysis of ex-
isting centralized and decentralized methodologies reveals that state-of-the-art
federated active learning techniques do not always outperform simpler baselines
where centralized techniques are applied independently to clients. We identify a
critical trade-off in performance: decentralized approaches excel when inter-client
data heterogeneity is minimal, while centralized methods demonstrate superior
performance under high heterogeneity conditions. Moreover, we observe a class-
dependent variance phenomenon where the efficacy of each approach strongly
correlates with the distribution variance of class samples across federated clients,
highlighting critical bounds that limit existing methods. To address these limita-
tions, we propose Adaptive Hybrid Federated Active Learning (AHFAL), a novel
framework that dynamically integrates centralized and decentralized paradigms
based on class-specific distribution characteristics. AHFAL combines enhanced
entropy-based sampling with heterogeneity mitigation strategies, adaptively select-
ing the optimal paradigm per class based on cross-client variance metrics. Experi-
ments across diverse datasets demonstrate that AHFAL outperforms state-of-the-art
methods by prioritizing heterogeneity management over traditional uncertainty
sampling, particularly in low-resource and high heterogeneity scenarios.

1 INTRODUCTION

Federated learning (FL) has emerged as a compelling paradigm for collaborative model training
across distributed clients (McMahan et al.; Konečnỳ et al., 2016). However, FL commonly assumes
access to sufficiently large labeled datasets at each client, which is often unrealistic due to annotation
costs and required expert knowledge (Litjens et al., 2017). Active learning (AL) addresses data
scarcity by iteratively selecting the most informative samples for annotation (Settles, 2009; Ren et al.,
2021). Federated active learning (FAL) combines FL and AL to enable collaborative, data-efficient,
and privacy-preserving learning when labeled data are scarce and centralized data pooling is infeasible
(Cao et al., 2023; Kim et al., 2023; Chen et al., 2024).

Classical AL methods (e.g., BADGE (Ash et al., 2019), Entropy (Holub et al., 2008), and Core-Set
(Sener & Savarese, 2018)) assume access to the complete dataset and use metrics such as representa-
tiveness or uncertainty as proxies for informativeness. In federated settings, these assumptions do
not hold: client datasets are partitioned in a non-i.i.d. manner, labeling budgets are allocated per
client, and no party has global visibility of all samples. These conditions make sample selection
considerably harder in FAL than in classical settings.

We systematically investigate centralized methods (where clients apply traditional AL methods
independently) and decentralized methods, which leverage cross-client information. Our analysis
uncovers three critical insights into how sample selection operates in FAL. First, aggregate hetero-
geneity determines which methods prevail: decentralized approaches excel when client distributions
are similar, centralized approaches dominate under strong heterogeneity. Second, the crossover
is explained at the class level: high-variance classes concentrated on a few clients benefit from
centralized querying, and low-variance classes with broad coverage gain from inter-client information
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Figure 1: Prior work in active learning divides into centralized methods (operating independently per client)
and decentralized methods (utilizing both local and global information). Our analysis reveals a crucial trade-off:
(a) decentralized methods excel when cross-client data heterogeneity is low, while (b) centralized methods
surprisingly outperform when heterogeneity is high—even surpassing methods specifically designed for federated
settings. Our approach leverages this insight by treating data heterogeneity as the key performance determinant,
enabling robust results especially for high heterogeneity levels through adaptive sampling.

sharing. Third, aligning local sampling with the global class distribution consistently improves
accuracy, showing that mitigating heterogeneity can be more impactful than refining heuristics.

To operationalize these findings, we propose Adaptive Hybrid Federated Active Learning (AHFAL),
a class-adaptive framework that dynamically toggles between centralized and decentralized sampling
methods on a per class basis. AHFAL estimates global class distribution, quantifies per-class variance
across clients, and assigns classes to either low- or high-variance regimes. For low-variance classes,
it aggregates entropy estimates from local and global models; for high-variance classes, it prioritizes
local model predictions. Sample selection is further refined through class-aware budget allocation,
prioritizing rare and underrepresented classes. Our key contributions are threefold:

1. We provide a systematic analysis of centralized and decentralized FAL methods, uncovering
three critical insights: (i) aggregate heterogeneity determines whether centralized or decentralized
methods are more effective, (ii) class-wise variance explains the performance crossover, and (iii)
global distribution knowledge outweighs fine-grained informativeness heuristics.

2. Building on these insights, we present Adaptive Hybrid Federated Active Learning (AHFAL), a
novel algorithm that adaptively selects sampling strategies based on class-wise variance.

3. We demonstrate through extensive experiments that AHFAL consistently outperforms prior FAL
methods, with the strongest gains in high-heterogeneity regimes.

These findings establish client heterogeneity, especially class-wise variance, as the primary challenge
in FAL, motivating adaptive methods that tailor sampling strategies to heterogeneity conditions.

2 RELATED WORK

2.1 ACTIVE LEARNING

Most data available for machine learning is unlabeled, and acquiring labels is costly, time-consuming,
and often requires domain expertise. AL addresses this challenge by selecting the most informative
samples for annotation (Settles, 2009; Schröder & Niekler, 2020). AL strategies can be broadly
divided into two categories: First, uncertainty-based methods (Scheffer et al., 2001; Gissin & Shalev-
Shwartz, 2019; Lewis, 1995; Ranganathan et al., 2017; Sinha et al., 2019; Ducoffe & Precioso,
2018; Mayer & Timofte, 2020) select samples where the model exhibits high predictive uncertainty,
typically near decision boundaries. Second representation- and diversity-based methods (Wu et al.,
2006; Ienco et al., 2013; Kang et al., 2004; Elhamifar et al., 2013; Hu et al., 2010; Sener & Savarese,
2017; Shui et al., 2020) exploit the structure of the unlabeled data to select samples that best capture
the structure of the input space. However, recent work demonstrates that no single AL method is
universally optimal: performance depends on dataset characteristics, task complexity, and labeling
budgets. This has motivated adaptive AL methods, which dynamically select among strategies during
training (Hacohen & Weinshall, 2023; Zhang et al., 2023; Hsu & Lin, 2015; Pang et al., 2018).
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2.2 FEDERATED ACTIVE LEARNING

FAL extends the core principles of FL (Hsu et al., 2019; Konečnỳ et al., 2016; McMahan et al.,
2017; Chen & Chao, 2021; Hsu et al., 2020; Mohri et al., 2019; Gong et al., 2021; Lin et al., 2020)
by enabling clients to query samples for annotation while models are trained collaboratively. In
FAL, decentralized methods combine local and global information to guide selection. LoGo (Kim
et al., 2023) introduced a two-stage, cluster-wise selection combining gradient embeddings from
a local model with uncertainty scoring from a global model to balance intra-client diversity and
global minority classes. FEAL (Chen et al., 2024) models aleatoric and epistemic uncertainties with
a Dirichlet evidential head. LeaDQ (Sun et al., 2025) frames active querying as a decentralized
POMDP to learn per-client policies. KAFAL (Cao et al., 2023) tackled sampling aggregation
mismatches by reweighting class-specific discrepancies to mitigate aggregation mismatches. Despite
these advances, existing decentralized methods remain constrained by predefined heuristics and fixed
global–local fusion rules. While adaptive methods have proven effective in centralized AL, extending
this perspective to federated settings (where data heterogeneity and communication constraints pose
additional challenges) remains largely unexplored. Our work addresses this gap by proposing an
adaptive framework based on data conditions.

3 PROBLEM FORMULATION

We consider a federated system with N clients. Client i has a labeled set Li = {(xj , yj)}|Li|
j=1 and an

unlabeled pool Ui = {xj}|Ui|
j=1, where xj ∈ X and yj ∈ Y = {1, . . . , C}. Each client trains a local

model fL
θi

, and the server maintains a global model fG
θ via aggregation.

At each active learning round, a budget of B queries is available across the federation. The learner
selects

S =

N⋃
i=1

Si, Si ⊆ Ui, |S| = B,

whose labels are revealed and added to the local sets. The optimal selection minimizes test error:

S⋆ = argmin
S

E(x,y)∼Ptest

[
L(fθ(S)(x), y)

]
, (1)

where θ(S) are the parameters obtained after federated training on
⋃

i(Li ∪ Si), and L(·, ·) denotes
the task loss; in our experiments we evaluate using accuracy.

Since raw data remain local, S must be chosen from local features, predictions, and aggregate statistics
broadcast by the server. We next analyze how these constraints interact with client heterogeneity.

4 EMPIRICAL ANALYSIS: ACTIVE LEARNING UNDER CLIENT
HETEROGENEITY

We present illustrative experiments to highlight how client heterogeneity affects FAL. These findings
motivate our mathematical analysis and the design of AHFAL.

4.1 EXPERIMENTAL SETUP

We conduct experiments on CIFAR-10 Krizhevsky et al. (2009). Clients are partitioned using the
Dirichlet scheme with concentration parameters α ∈ {0.05, 0.1, 0.3, 0.5, 1, 10} ranging from highly
skewed to near-IID regimes. A ResNet-8 backbone is trained locally, with updates aggregated via
FedAvg. At each round, clients acquire 5% of labels using the given sampling strategy. Performance
is measured by test accuracy as a function of the labeled-data budget. We compare against two
categories of sampling strategies:

• Centralized baselines (run locally on each client): ENTROPY (Holub et al., 2008), BADGE (Ash
et al., 2019), CORE-SET (Sener & Savarese, 2018), and NOISE STABILITY (Li et al., 2024).

• Decentralized baselines (global-aware): LOGO (Kim et al., 2023), FEAL (Chen et al., 2024) and
KAFAL (Cao et al., 2023).

3
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Figure 2: Aggregate heterogeneity tradeoff. Decen-
tralized strategies excel when client distributions are
similar (large α), while centralized methods dominate
under strong heterogeneity (small α).
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Figure 3: Class-wise variance explains the crossover.
Classes with high CVc favor centralized sampling,
while low-variance classes benefit from decentralized
selection.

4.2 KEY FINDINGS
Our analysis yields three key findings on the role of heterogeneity in FAL:

Finding 1: Aggregate heterogeneity drives the centralized–decentralized trade-off (Figure 2).
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Figure 4: Oracle experiment. Providing
each client with the target class histogram (no
raw data) yields a consistent 2–3% accuracy
lift, showing that heterogeneity reduction, not
finer heuristics, is the dominant lever.

We find that the relative effectiveness of centralized and de-
centralized method is not universal but regime-dependent.
Decentralized strategies outperform when client data is
similar (large α), whereas centralized strategies relying
only on local data dominate when heterogeneity is high
(small α). No static strategy is effective across all regimes.

Finding 2: Class-wise variance explains the crossover
(Figure 3).

We uncover that the performance crossover is driven at
the class level. To quantify how unevenly a class c is
distributed, we compute its coefficient of variation CVc =
σc

µc
, where {ni,c}Ni=1 are the client-wise counts of class c,

µc is their mean, and σc their standard deviation. High-
variance classes (large CVc), concentrated on a few clients,
benefit from centralized querying, whereas low-variance
classes (small CVc), broadly distributed across clients,
perform best using decentralized methods. This reveals
class-wise variance as the mechanism underlying the aggregate crossover.

Finding 3: Global distribution knowledge outweighs finer uncertainty estimates (Figure 4).

Finally, we test an oracle scenario where each client is provided with the true global class distribution
(but no raw data). Clients adjust their queries to narrow the divergence between their local and global
histograms. As shown in Figure 4, this simple alignment yields a consistent 2–3% accuracy gain
across sampling heuristics (e.g., entropy, typicality). This confirms that mitigating heterogeneity is
more impactful than refining uncertainty estimates.

Takeaway. Client heterogeneity, especially at the class level, is the principal obstacle in federated
active learning. A practical method must (i) detect client distribution heterogeneity (with regards to
the global distribution) as well as class-wise variance and (ii) adapt its sampling policy accordingly:
precisely the design principles embodied by AHFAL.

5 THEORETICAL INSIGHTS

To explain the empirical findings in Section 4, we study entropy estimation under client heterogeneity.
Our goal is to relate classwise performance to inter-client variance for each class c, comparing
decentralized (global-aware) and centralized (local-only) scoring.
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Two forces that determine error. We model acquisition scoring as estimating the Bayes predictive
entropy and analyze how client heterogeneity affects estimator error (details in Appendix C). Two
effects govern performance for a class c on client i: (i) the variance of the local estimator, which
decreases with the client’s class count ni,c, and (ii) the global estimator’s class bias βc, which grows
with cross-client imbalance (captured by the dispersion σc: the cross-client standard deviation of the
class-c proportions.).

Why and when to average local and global entropies as a measure of uncertainty. We consider
a convex combination of local and global entropies. The optimal weight minimizes the MSE of
the ensemble and reduces to a simple classwise decision between local (λ=1) and a fixed hybrid
(λ=1/2) estimator. Writing VL, VG for the per-class variances and ρ for their covariance (all w.r.t.
x∼Di,c), hybrid improves over local whenever

β2
c < 3VL − VG − 2 ρ,

and local is otherwise preferred (see Appendix C for the derivation). Practically, βc is unobserved;
we use σc as a proxy (monotonicity assumption).

Takeaway. For high-heterogeneity classes (large σc) on data-rich clients, local scoring dominates;
for low-heterogeneity classes or client-poor situations, the hybrid estimator reduces error. This aligns
with—and explains—the empirical crossovers reported in Section 4.

6 ADAPTIVE HYBRID FEDERATED ACTIVE LEARNING (AHFAL)

Unlabelled Pseudo-
labelled

(            +            )1/2 

Client 1

Client 2

Client 3

Class var. Estimation
Variance estimation

Local class 
distribution

Unlabeled local data

Entropy-aware labelled set

(a) Class Distribution Analysis

(b) Hybrid Uncertainty Scoring (c) Client i Sample Selection

Figure 5: AHFAL consists of 3 steps: (a) the global class
distribution, class variances and class partitioning into low
and high variance groups is calculated and broadcasted by
server; (b) the hybrid uncertainty scoring is carried out as a
function of class variance; (c) class-aware sample allocation is
carried out based on uncertainty scores for unlabeled samples.

We now present AHFAL, a class-adaptive
framework for federated active learning
that integrates centralized and decentral-
ized sample selection by leveraging class-
specific distributional statistics. Motivated
by the observed correlation between per-
class distribution variance and optimal se-
lection strategy, AHFAL explicitly quan-
tifies heterogeneity at the class level and
adjusts its sampling paradigm accordingly.
Figure 5 shows the overall AHFAL method.

6.1 AHFAL SAMPLE SELECTION

Step 1: Class Distribution Analysis

Motivated by Finding 1, AHFAL estimates
global class statistics to capture per-class
variance. Let Li ⊂ Di denote the labeled
dataset at client i, initially comprising 10%
of Di, obtained via random sampling. Each client computes its empirical class distribution vector:

pi =

[
ni,1

|Li|
, . . . ,

ni,C

|Li|

]
where ni,c is the number of labeled examples of class c in Li and C is the number of classes. Clients
transmit pi to the central server, which computes the mean class distribution p̄,

p̄c =
1

N

N∑
i=1

pi,c,

and the standard deviation vector σ, defined as σc =
√

1
N

∑N
i=1(pi,c − p̄c)2 for class c. These serve

as the target distribution and class variance estimators, respectively.

Classes are partitioned into two disjoint sets:

Clow = {c ∈ {1, . . . , C} | σc < τ}, Chigh = {1, . . . , C} \ Clow (2)

5
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where τ is a fixed variance threshold. This partitioning dictates whether sample selection for class
c should be informed by global model predictions (c ∈ Clow) or rely solely on the local model
(c ∈ Chigh).

Step 2: Hybrid Uncertainty Scoring From Finding 2, AHFAL adapts uncertainty scoring based
on class-wise variance. Each client forwards its unlabeled pool Ui through its local model fL

θi
to

generate pseudo-labels and compute predictive entropy:

HL(x) = −
C∑

c=1

fL
θi(x)c log f

L
θi(x)c

For classes c ∈ Clow, clients also query the global model fG
θ to obtain entropy HG(x). The final

uncertainty score is defined as:

H(x) =

{
HL(x), if ŷ(x) ∈ Chigh
1
2 (H

L(x) +HG(x)), if ŷ(x) ∈ Clow
(3)

where ŷ(x) = argmaxc f
L
θi
(x)c denotes the pseudo-label.

Step 3: Class-Aware Budget Allocation and Sample Selection

Motivated by Finding 3, AHFAL allocates budgets to align queries with the global distribution.
Let Bi denote the client’s sample selection budget. To reduce local-global divergence, each client
computes a target count vector b = [b1, . . . , bC ] for selecting samples by minimizing the discrepancy
between the local and global class distributions. The class-wise budget is determined by:

bc ∝

{
1, if nlabeled

i,c = 0
1

nlabeled
i,c

, otherwise (4)

subject to the constraint
∑C

c=1 bc = Bi. This encourages selecting underrepresented/missing classes.

For each class c, the client identifies the subset U (c)
i ⊂ Ui of pseudo-labeled samples with ŷ(x) = c,

ranks them by entropy H(x) in descending order, and selects the top bc samples. If U (c)
i contains

fewer than bc eligible samples, the deficit is redistributed proportionally to underrepresented classes.

6.2 TYING INTO THE FEDERATED LEARNING PIPELINE
We now describe how AHFAL fits into the broader FL pipeline. In practice, these selection steps
are interleaved with the standard federated optimization loop. Concretely, the system proceeds in
rounds. Each round comprises:

1. Local training: every client performs E epochs of training on its current labeled set Li and ships
the updated weights to the server;

2. Model aggregation: the server aggregates the weights to yield the new global model fG
θ ;

3. AHFAL selection: clients compute class statistics, partition classes into Clow/Chigh, score their
unlabeled pools withH(·), and acquire B additional labels.

An additional computational cost arises from forward passes over the unlabeled pool Ui on each
client to compute uncertainty scores, which scales linearly with the pool size, i.e., O(|Ui|). This
overhead is lightweight compared to local training and requires no extra communication. No raw data
is exchanged at any point; only model updates and aggregated class statistics are shared. Figure 6
illustrates the integration of AHFAL into the federated learning loop.

6.3 PRIVACY CONSIDERATIONS

Sharing class distributions with the server may introduce potential privacy risks.

To mitigate these risks, we consider two complementary mechanisms. First, we adopt local differ-
ential privacy, where each client perturbs its class histogram with calibrated Laplace noise before
communication (Setlur et al., 2025; Suresh, 2019). The overall privacy budget ε can be distributed
across active learning cycles, ensuring rigorous privacy guarantees. Since noise is applied to class
histograms rather than to raw data or model gradients, its effect on accuracy is only indirect.
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Figure 6: One federated learning round consists of local
training, AHFAL selection, and model aggregation.

This contrasts with differential privacy ap-
plied directly to data or gradients, which
typically has a stronger impact on util-
ity. As a result, the privacy–utility trade-
off in our setting is considerably more fa-
vorable. Second, we consider secure ag-
gregation of class histograms, in which
clients encrypt their local class statistics
such that the server only observes the ag-
gregate sum, never any individual contri-
butions. This prevents reconstruction of
single-client distributions while preserv-
ing full utility. Prior work has shown se-
cure aggregation to be highly efficient even
for high-dimensional vectors (Bonawitz
et al., 2017); in our case, the exchanged
histograms are low-dimensional, making the overhead minimal. Together, these mechanisms provide
complementary options: local DP offers provable privacy at the cost of controlled noise, while
secure aggregation eliminates per-client leakage without affecting accuracy. We defer the empirical
evaluation of local differential privacy to Section 7.3.

7 RESULTS

We now evaluate AHFAL, and compare it against baseline methods across datasets, client heterogene-
ity, model architecture as well as privacy budgets.

7.1 EXPERIMENTAL SETUP

Table 1: Test accuracy (%) comparison across methods and data hetero-
geneities on CIFAR-10.

Method α = 0.1 α = 0.3 α = 0.5 α = 1.0

Random 56.25 ± 3.73 74.00 ± 1.58 76.72 ± 0.62 77.71 ± 0.44
Entropy 64.23 ± 3.48 76.89 ± 1.22 78.99 ± 0.60 80.16 ± 0.47
BADGE 61.01 ± 1.37 75.00 ± 0.90 76.32 ± 0.77 77.87 ± 0.26
Core-Set 64.21 ± 1.20 76.40 ± 0.61 77.35 ± 0.22 79.00 ± 0.41
Noise Stability 60.04 ± 3.93 75.26 ± 1.12 77.64 ± 0.60 78.54 ± 0.17

LoGo 58.22 ± 4.98 74.95 ± 1.62 77.18 ± 0.45 79.06 ± 0.72
KAFAL 55.57 ± 4.75 74.16 ± 1.06 77.16 ± 0.91 79.25 ± 0.72
FEAL 57.08 ± 1.98 75.83 ± 1.81 77.88 ± 0.22 78.93 ± 0.40

AHFAL (Ours) 66.15 ± 0.94 77.26 ± 0.45 79.10 ± 0.47 79.82 ± 0.39

Datasets and Partition-
ing. We evaluate on
CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-
100 (Krizhevsky et al.,
2009), SVHN (Netzer et al.,
2011), and MNIST (LeCun
et al., 2010). Client data
is partitioned using the
standard Dirichlet scheme
(Hsu et al., 2019), where
the concentration parameter
α controls heterogeneity.
Small α produces highly
skewed local distribu-
tions (clients dominated by few classes), while large α yields nearly uniform, IID-like splits
(α ∈ {0.1, 0.3, 0.5, 1.0}).

Models and Training. Our primary backbone is ResNet-8, trained locally for five epochs per
communication round with aggregation via FedAvg. We also report results with MobileNetV2 to
demonstrate robustness across architectures. Each experiment begins with 10% of the training set
labeled at random. In every subsequent active learning cycle, clients add an additional 5% of labeled
data according to the sampling strategy, and train for 100 communication rounds under FedAvg
before the next cycle begins. All experiments are repeated with three random seeds, and we report
mean accuracy with standard deviation. Further dataset-specific training details and hyperparameters
are provided in the Appendix.

Baselines. We compare against eight baselines. First, centralized methods (local-only): En-
tropy (Holub et al., 2008), BADGE (Ash et al., 2019), Noise Stability (Li et al., 2024), Core-Set (Sener
& Savarese, 2018), and Random. Second, decentralized methods (global-aware): KAFAL (Cao et al.,
2023), LoGo (Kim et al., 2023), FEAL (Chen et al., 2024).

Method hyperparameters. AHFAL is implemented with the default threshold τ = 12 (this is a
threshold of class count variances standard deviation), which was found to work robustly across
datasets and heterogeneity levels. Further experiments on τ are reported in the Appendix.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Test accuracy (%) comparison across methods shows AHFAL to be best performing across a range of
experiments. (a) Across datasets with α = 0.1. (b) Across datasets with α = 1.0 (lower heterogeneity). (c)
Across model architectures with α = 0.1 on CIFAR-10.

Method CIFAR-10 SVHN MNIST

Random 56.25 65.27 75.79
Entropy 64.23 85.31 87.63
BADGE 61.01 77.50 70.78
Core-Set 64.21 82.43 89.59
Noise Stability 60.04 81.71 80.53

LoGo 58.22 80.84 90.52
KAFAL 55.57 62.32 76.68
FEAL 57.08 69.98 72.72

AHFAL (Ours) 66.15 85.61 92.83

(a) Across datasets (α = 0.1)

Method CIFAR-10 CIFAR-100

Random 77.71 ±0.44 43.32±0.25
Entropy 80.16±0.47 42.94±0.17
BADGE 77.87±0.26 41.71±0.25
Core-Set 79.00±0.41 43.98±0.30
Noise Stability 78.54±0.17 42.98±0.10

LoGo 79.06±0.72 43.93±0.91
KAFAL 79.25±0.72 43.46±0.10
FEAL 78.93±0.40 42.23±0.78

AHFAL (Ours) 79.82±0.39 44.03 ± 0.28

(b) Across datasets (α = 1.0)

Method ResNet-8 MobileNetV2

Random 56.25±3.73 66.64±0.91
Entropy 64.23±3.48 73.28±0.35
BADGE 61.01±1.37 73.27±1.33
Core-Set 64.21±1.20 76.05±0.97
Noise Stability 60.04±3.93 75.66±1.93

LoGo 58.22±4.98 70.33±2.86
KAFAL 55.57±4.75 65.38±6.35
FEAL 57.08±1.98 66.84±1.94

AHFAL (Ours) 66.15±0.94 77.68±1.35

(c) Across architectures (α = 0.1)

7.2 PERFORMANCE COMPARISON
AHFAL consistently outperforms all centralized and decentralized baselines across datasets, hetero-
geneity levels, and architectures.
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Figure 7: AHFAL offers state-of-the-art perfor-
mance over centralized and decentralized active
learning methods on CIFAR-10. For α = 0.1
(high data heterogeneity), AHFAL is clearly supe-
rior across the board, at every active learning cycle.

Across Heterogeneity Levels. Table 1 reports test
accuracy for α ∈ {0.1, 0.3, 0.5, 1.0}. Under strong
heterogeneity (α = 0.1), AHFAL achieves the high-
est accuracy (66.15%), exceeding the best centralized
method (Entropy, 64.23%) and all federated methods.
As heterogeneity decreases, baseline performance
converges, yet AHFAL maintains a consistent margin
over all competitors, demonstrating robustness across
the entire spectrum from highly skewed to near-IID
settings.

Across Datasets. Table 2(a) shows results on CIFAR-
10, SVHN, and MNIST with α = 0.1. AHFAL
achieves the best accuracy in all cases. At lower
heterogeneity (α = 1.0), shown in Table 2(b), AHFAL matches or surpasses the strongest baselines
on CIFAR-10 and on CIFAR-100. These results confirm that AHFAL adapts effectively to different
datasets, including both simple (MNIST) and more challenging (CIFAR-100) benchmarks.
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Figure 8: On the CIFAR-10 dataset in a high client
heterogeneity setting (α = 0.1), AHFAL outper-
forms prior centralized and decentralized active
learning on average, while also reducing the av-
erage performance discrepancy between high and
low variance classes.

Across architectures. Table 2(c) compares perfor-
mance on CIFAR-10 with α = 0.1 using ResNet-8
and MobileNetV2. AHFAL outperforms all base-
lines on both architectures, achieving 77.68% on Mo-
bileNetV2 compared to 76.05% for Core-Set, the
strongest baseline. This demonstrates that AHFAL’s
benefits are not architecture-specific.

Across datasets, heterogeneity regimes, we note that
AHFAL remains state-of-the-art (within error bounds)
in these low heterogeneity settings, as well as being
clearly superior in the high heterogeneity settings
as shown in the paper (Table 1). These results con-
firm the promise of adaptive class-wise sampling as a
consistent and effective strategy for federated active
learning.

Figure 7 shows the accuracy curves across active
learning rounds on the CIFAR-10 dataset, demon-
strating that AHFAL not only achieves higher final
accuracy in the high heterogeneity setting (α = 0.1) but also exhibits better performance across all
labeling budgets.

Class-Specific Performance.

Figure 8 shows results on CIFAR-10 under high client heterogeneity (α = 0.1). Existing centralized
and decentralized methods exhibit substantial performance gaps between high- and low-variance
classes, averaging 17.54% and 17.17%, respectively.
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AHFAL improves performance across both class types—with particularly strong gains for high-
variance classes—while reducing the discrepancy to 13.93%. These findings align with our moti-
vational analysis (Figures 2 and 3) and confirm that AHFAL reduces class-level disparities while
simultaneously improving overall accuracy.

7.3 PRIVACY–UTILITY TRADE-OFF

We next assess the empirical impact of the privacy mechanisms introduced in Section 6.3. Specifically,
we evaluate AHFAL under local differential privacy, where each client perturbs its histogram with
Laplace noise calibrated to different privacy budgets ε. Results in Table 3 on CIFAR-10 show that
AHFAL maintains strong performance even under strict privacy constraints. Accuracy decreases
only modestly compared to the non-private variant and consistently remains above the strongest
baselines. This favorable trade-off arises because noise is applied to class histograms, which only
indirectly affects learning, in contrast to noise injected directly into raw data or gradients. We also
note that secure aggregation (Section 6.3) will incur negligible overhead in this setting, as only
low-dimensional class histograms are exchanged. In combination, these findings demonstrate that
AHFAL can be deployed under strong privacy guarantees without sacrificing its effectiveness.

7.4 ABLATION STUDY
Table 3: AHFAL is robust across local differential privacy con-
straints. The total privacy budget ε is distributed equally across
active learning cycles.

Algorithm Total privacy budget ε Privacy budget per cycle Accuracy (%)
AHFAL 5 (strong privacy) 1 65.70
AHFAL 10 (moderate privacy) 2 65.74
AHFAL – – 66.15
Best baseline – – 64.23

To evaluate the contribution of each
component, we conduct an ablation
study of AHFAL. Table 4 presents
these results, evaluated on CIFAR-10
under α = 0.1.

The ablation results confirm that each
component contributes to AHFAL’s
performance (Table 4, row 1). Removing adaptive selection (i.e. enforcing a purely centralized
approach to uncertainty estimation using only the local model) results in a minor performance
degradation (Table 4, row 2). Removal of the class balancing scheme that focuses on reducing inter
client heterogeneity leads to further worsening of performance (Table 4, row 3). The method now
degenerates to entropy-based centralized sampling (more analysis in supplement).

8 DISCUSSION

Table 4: Ablation study on CIFAR-10 ( α = 0.1).

Method Variant Accuracy (%)
AHFAL (Full) 66.15
AHFAL w/o centralized vs decentralized toggling 65.89
AHFAL w/o toggling, w/o class balance (entropy) 64.23

We present Adaptive Hybrid Federated Active Learn-
ing (AHFAL), a framework for understand active
learning in federated settings. AHFAL introduces
the idea of leveraging client-side class histograms
to estimate inter-client variance and to guide sample
selection. This enables sampling policies that adapt
at the class level—an approach not explored in prior work.

This contribution is significant because heterogeneity in federated learning is rarely uniform: some
classes are broadly distributed, others concentrate on few clients. Existing methods ignore such
variation, applying uniform strategies across all classes. By explicitly adapting to class-specific
heterogeneity, AHFAL improves accuracy and label efficiency across datasets, heterogeneity regimes,
and model architectures. Beyond empirical gains, AHFAL reframes federated active learning around
heterogeneity management rather than sample-level heuristics. This has important implications for
domains where annotation is especially costly. In medical collaborations, for example, labeling
requires scarce expert time and is particularly limited for rare conditions. By prioritizing samples
from underrepresented classes and balancing global and local querying, AHFAL can reduce the
labeling workload for clinicians while improving overall model quality.

Limitations and Future Work The current framework assumes static distributions across active
learning rounds; extending AHFAL to handle evolving client data remains an open challenge.
Although our evaluation focuses on image classification, the principles of AHFAL could be extended
to regression, structured prediction, and sequence modeling, provided suitable variance metrics and
selection strategies are developed. Exploring these directions would further broaden the scope and
impact of AHFAL. Combining AHFAL with recent advances in self-supervised learning has the
potential to further reduce labeling requirements in collaborative settings.

9
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REPRODUCIBILITY STATEMENT

All theoretical assumptions are stated and numbered in Appendix C. The full method is specified
in Sections 6 and 7.1, with algorithmic pseudocode in Appendix G and implementation details
in Appendix H. We provide source code as supplementary material with fixed random seeds that
reproduce all reported tables and figures.
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A APPENDIX

This appendix is organized as follows:

1. Section B discusses the relevance and importance of the academic direction of this work.
2. Section C discusses the mathematical details of the theoretical analysis.
3. Section D analyzes additional context in terms of our comparision with Cao et al. (2023).
4. Section E discusses data heterogeneity and class-aware selection in further detail.
5. Section F discusses the global distribution alignment strategy.
6. Section G presents the overall proposed AHFAL algorithm.
7. Section H introduces further implementation details.
8. Section I discusses our included code.
9. Section J discusses LLM usage to write this manuscript.
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B RELEVANCE OF THIS WORK

This work introduces Adaptive Hybrid Federated Active Learning (AHFAL), a novel approach to
federated active learning that addresses critical limitations in heterogeneous data environments. While
existing FAL methods have predominantly focused on informative sample selection strategies, we
make the key observation that such approaches fundamentally fail in federated settings characterized
by significant data heterogeneity. Our analysis reveals that mitigating heterogeneity-related challenges
is more crucial than optimizing sample informativeness in these distributed environments. To address
this gap, we present a principled yet practical method that prioritizes heterogeneity mitigation as a
core component of federated active learning. We anticipate that our analysis and proposed approach
will establish heterogeneity-aware design as an essential paradigm for developing robust FAL methods
that maintain effectiveness across diverse data distribution scenarios.

We also observe that when compared to traditional baselines (other FAL methods), the proposed
method demonstrates clear superiority (see Table 1, main paper). However, our analysis reveals that
centralized methods also warrant comparison in this context. AHFAL proves to achieve state-of-
the-art performance across a comprehensive range of heterogeneity configurations, establishing its
effectiveness relative to both decentralized and centralized methods.

C THEORETICAL FOUNDATIONS

To explain the empirical findings in Section 4, we study entropy estimation under client heterogeneity.
Our goal is to relate classwise performance to inter-client variance for each class c, comparing
decentralized (global) and centralized (local) scoring.

We view acquisition scoring as estimating the Bayes predictive entropy

H⋆(x) ≜ H
(
p⋆(· | x)

)
= −

C∑
y=1

p⋆(y | x) log p⋆(y | x),

where p⋆(y | x) is the population conditional. Let ĤL
c (x) and ĤG

c (x) denote the predictive en-
tropies from the client-local model fL

θi
and the federated/global model fG

θ , respectively, when the
(pseudo)label of x is class c. We analyze mean-squared error (MSE) with respect to H⋆(x), averaging
over x ∼ Di,c (client i’s class-c pool).

C.1 ENTROPY ESTIMATION UNDER HETEROGENEITY

Fix a client i and class c. Using a bias–variance decomposition,

ĤL
c (x) = H⋆(x) + bLi,c(x) + εL,i,c(x), (5)

ĤG
c (x) = H⋆(x) + βc(x) + εG,c(x), (6)

where bLi,c(x) is the client–class specific bias (e.g., from limited local data or local optimizer noise),
βc(x) is a class-specific bias induced by cross-client imbalance, and ε· are zero-mean fluctuations.
Define

bLi,c≜Ex[Ĥ
L
c (x)−H⋆(x)], βc≜Ex[Ĥ

G
c (x)−H⋆(x)],

VL≜Varx(Ĥ
L
c ), VG≜Varx(Ĥ

G
c ), ρ≜Covx(Ĥ

L
c , Ĥ

G
c ).

Let σc be the cross-client standard deviation of the class-c proportions.

High-variance classes. When σc is large (class c concentrated on few clients), the global model
aggregates updates from many clients with sparse exposure to c, inducing a non-negligible |βc| > 0.
If client i is rich in class c (large ni,c), then bLi,c≈0 and VL is small, so MSE(ĤL

c ) ≪ MSE(ĤG
c );

local dominates.

Low-variance classes. When σc is small (class c well spread), both estimators are approximately
unbiased (bLi,c≈0, βc≈0), and combining them can reduce variance.
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Client-poor case. If client i is poor in class c (small ni,c), then bLi,c and VL can be large even if
σc is high; borrowing strength from the global estimator can still reduce MSE. This motivates using
both global σc and local ni,c (or a proxy) in the rule.

C.2 VARIANCE REDUCTION VIA OPTIMAL ENSEMBLE

Consider Ĥ(λ)
c (x) = λĤL

c (x) + (1−λ)ĤG
c (x) with λ ∈ [0, 1]. Its MSE is

MSE
(
Ĥ(λ)

c

)
=

(
λbLi,c + (1−λ)βc

)2
+ λ2VL + (1−λ)2VG + 2λ(1−λ)ρ. (7)

The minimizer is

λ⋆ =
VG − ρ+ βc(βc − bLi,c)

VL + VG − 2ρ+ (bLi,c − βc)2
clipped to [0, 1]. (8)

Special case. If both are unbiased (bLi,c=βc=0) and uncorrelated (ρ=0), then λ⋆ = VG

VL+VG
and

MSE(Ĥ
(1/2)
c ) = 1

4 (VL+VG).

Heuristically, VL decreases with the local class count (VL ∝ 1
ni,c

), while |βc| increases with cross-
client imbalance (we assume |βc| is non-decreasing in σc). Then equation 8 implies: (i) for large
|βc| (high σc), λ⋆ → 1 (favor local); (ii) for small |βc| and large VL (client-poor), λ⋆ moves toward
hybrid/federated.

C.3 CLASS PARTITIONING

AHFAL chooses between local (λ=1) and a fixed hybrid (λ=1/2). Comparing equation 7 at λ=1/2
to local (λ=1) yields the following sufficient condition for hybrid to beat local when the local
estimator is (approximately) unbiased (bLi,c≈0):

MSE
(
Ĥ(1/2)

c

)
< MSE

(
ĤL

c

)
⇐= β2

c < 3VL − VG − 2ρ. (9)

Hence, when the global bias βc (increasing with σc) is too large relative to the local–global variance
gap and covariance, pure local is optimal; otherwise, hybrid is preferable. Since βc is not directly
observable, AHFAL uses σc as a proxy via the monotonicity assumption.

Assumptions and scope. We assume predictive probabilities are bounded away from 0 and 1 (e.g.,
via temperature smoothing), ensuring continuity of H(·) and controlling variance. We also assume
|βc| is non-decreasing in σc under FedAvg-style aggregation (class imbalance skews the effective
training distribution), and treat ρ explicitly (we avoid assuming ρ≥0).

D ADDITIONAL DETAILS ON THE COMPARISON WITH CAO ET AL. (2023)

The KAFAL algorithm (Cao et al., 2023) consists of two independent modules: (1) Knowledge-
Specialized Active Sampling (KSAS), a query strategy that determines which samples to select from
the unlabeled data, and (2) Knowledge-Compensatory Federated Update (KCFU), a local update
mechanism that addresses class imbalance. To ensure a fair comparison, we isolated the effectiveness
of different query strategies by comparing only the query strategies in the main paper, since the
local update mechanism KCFU can be applied to all methods, including ours, to further enhance
performance.

To verify the complementary effect of KCFU with our AHFAL method, we additionally evaluate
KAFAL (+KCFU) and AHFAL (+KCFU). We conduct these experiments on CIFAR10 with α = 0.1.

Table 5: AHFAL with Knowledge Compensatory
Federated Update on CIFAR-10 ( α = 0.1).

Method Accuracy (%)
KAFAL Cao et al. (2023) (KSAS only) 55.57 ±2.18
KAFAL Cao et al. (2023) full (KSAS + KCFU) 70.01 ±0.91
AHFAL (ours) 66.15 ±0.97
AHFAL (ours) + KCFU 73.98 ±0.92

Table 5 reports final accuracy values and standard
deviations across three trials. Figure 9 shows re-
sults across different labeling budgets. Adding
KCFU yields consistent gains for both query strate-
gies (KAFAL: +14.44%, AHFAL: +7.83%). AH-
FAL already significantly outperforms KAFAL with-
out KCFU but still benefits from the additional
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Figure 9: Comparison of KAFAL and AHFAL both with KFCU on cifar10 with α = 0.1.

knowledge-compensatory update, confirming that our
sampling criterion and KCFU address distinct aspects of federated active learning. Even after equip-
ping both methods with KCFU, our approach remains superior, outperforming KAFAL (+KCFU) by
3.97%, demonstrating that the improvements from our AHFAL method are complementary to those
from knowledge compensation.

E DATA HETEROGENEITY AND CLASS-AWARE SELECTION

We first present a visual representation of data heterogeneity. Figure 10 depicts the class-frequency
distributions across clients under three Dirichlet concentration parameters (α = 10.0, 0.5, 0.05).
Even at a fixed α, we observe that classes are not distributed evenly—some classes exhibit high
across-client variance (i.e., most of their samples reside on a single or very few clients) while others
are low-variance and spread more evenly.

To exploit this structure, our heterogeneity-aware update first computes, for each class c, the empirical
variance across clients. We then compare the standard deviation of each class against a threshold
τ . For classes whose variance exceeds τ , we perform updates using only the local model: when a
class is concentrated on few clients, global aggregation risks diluting its unique features, so pure
local optimization avoids “noise” from unrelated data. Conversely, for classes with variance below τ ,
we combine local and global model updates, since well-distributed classes benefit from the richer,
aggregated representation. Figure 11 illustrates how τ governs per-class strategy selection under
varying heterogeneity: high-variance classes use a local-only update, while low-variance classes
employ a global-aware update. As α increases (heterogeneity decreases), more classes fall below
the threshold and adopt the hybrid strategy. Furthermore, as active learning cycles progress and
underrepresented classes accrue more labeled examples, their variances naturally decline, allowing
additional classes to transition to global-aware updates

This thresholding approach proves robust across regimes. In the high-heterogeneity setting (α = 0.1,
Figure 11), most classes exceed τ initially, so most classes start by using only the local model to
select samples. As our active learning cycles progress and more samples of underrepresented classes
are labeled, their per-class variances decrease; consequently, additional classes cross below τ and
begin to incorporate global knowledge as well. Under the near-IID regime (α = 0.5), many classes
already lie under the threshold at the outset, yielding rapid hybrid updates for the majority of classes.

The threshold τ = 12 was determined empirically, across datasets. For example, sensitivity analysis
on CIFAR-10 (α = 0.1) shows: τ = 10 (64.60%), τ = 12 (65.51%), τ = 15 (62.21%). Performance
varies by only about 3% across this range, indicating reasonable robustness to threshold selection.

As a result of the proposed approach, we find that AHFAL shows state of the art performance across
a range of data heterogeneities, ranging from high to low data heterogeneities. Table 1 (main paper)
highlights this superior performance.
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Figure 10: A visualization of a Dirichlet partition with α values of 10.0, 0.5 and 0.05, across 10 clients and 10
classes. A lower Dirichlet parameter leads to higher data heterogeneity between clients and classes.

Figure 11: Illustration of how AHFAL adaptively uses either a centralized strategy (if std. deviation > τ ) or a
decentralized strategy (if std. deviation < τ ).

F GLOBAL DISTRIBUTION ALIGNMENT

AHFAL employs a representation-ratio-based balancing strategy that prioritizes underrepresented
classes to align local client distributions with the global data distribution (See Algorithm 1). The
target global distribution Dglobal(c) represents the estimated true proportion of class c across all
clients in the federation. This serves as the ideal reference distribution toward which each client
should strive. During labeling, more budget is devoted to classes that are currently underrepresented, a
moderate share goes to those with some underrepresentation, and the remainder is used for adequately
represented classes. This dynamic allocation guides each client’s labeled set toward the global target
distribution.

To isolate the impact of class balancing, we also evaluated AHFAL without this mechanism. Figure 12
shows that removing class balancing leads to a noticeable drop in accuracy during the first round, with
performance gradually recovering over subsequent cycles. Owing to significant data heterogeneity,
there is a natural limit to how closely an individual client can match the global distribution and most
of the alignment is achieved within the initial labeling cycles in high heterogeneity settings.

G ALGORITHM

We also include an explicit algorithmic description of AHFAL in the supplement in the form of
algorithmic pseudocode in Algorithm 1. This includes the local model training, global federated
learning, as well as 3 key steps of AHFAL sampling: first, the global class distribution, class variances
and class partitioning into low and high variance groups is calculated and broadcasted by the server.
Then, the hybrid uncertainty scoring is carried out as a function of class variance. Finally, class-aware
sample allocation is carried out based on the uncertainty scores for all unlabeled samples.
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Figure 12: Comparison of AHFAL with and without Class Balancing Selection Strategy on α = 0.1, in terms of
accuracy.

Algorithm 1: AHFAL: Adaptive Hybrid Federated Active Learning

Input: Clients 1:N ; initial labelled sets {L(0)
i } (10%); unlabelled pools {U (0)

i }; initial global model θ(0);
per-round labelling budget B; local epochs E; total rounds R; variance threshold τ .

Output: Final global model θ(R).
1 for r ← 0 to R−1 do // federated rounds

/* Local training */
2 for each client i = 1:N do in parallel
3 Train fL

θi
on L(r)

i for E epochs
4 Send updated weights θi to server

5 θ(r+1) ← FEDAVG
(
{θi}Ni=1

)
6 Broadcast θ(r+1) to all clients

/* AHFAL sampling */
7 Clients compute pi locally and send to server
8 Server returns (p̄,σ)
9 Define Clow, Chigh using variance threshold τ

10 for each client i = 1:N do in parallel
11 for x ∈ U (r)

i do
12 Compute H(x) via entropy calculation

13 Determine class budgets b via budget allocation
14 Si ← top-bc samples per class (|Si| = B)
15 Query oracle for labels of Si
16 L(r+1)

i ← L(r)
i ∪ Si

17 U (r+1)
i ← U (r)

i \ Si

H IMPLEMENTATION DETAILS

We implement AHFAL with the default threshold τ = 12.0. In each communication round, every
client trains its local model for 5 epochs before model aggregation via FedAvg, repeated for 100
rounds. For MNIST, given its lower complexity, we run 10 local epochs and 10 communication
rounds. CIFAR-10 and CIFAR-100 experiments are run until 35% of samples are labeled, and 40%
for the other datasets. Training uses SGD with learning rate 0.1, batch size 128, and momentum
0.9. All results are averaged over three random seeds for statistical significance. Experiments were
executed on NVIDIA T4, A100, and H100 GPUs.
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I CODE

We include the reference code implementation, along with a README file that runs through details
on how to run the code, as part of the submission files along with the supplementary material.

J LLM USAGE

LLM assistance has been used to refine the writing of some parts of this manuscript.
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