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Abstract

The Spiking Neural Network (SNN), a biologi-
cally inspired neural network infrastructure, has
garnered significant attention recently. SNNs uti-
lize binary spike activations for efficient informa-
tion transmission, replacing multiplications with
additions, thereby enhancing energy efficiency.
However, binary spike activation maps often fail
to capture sufficient data information, resulting in
reduced accuracy. To address this challenge, we
advocate reversing the bit of the weight and acti-
vation for SNNs, called ReverB-SNN, inspired
by recent findings that highlight greater accuracy
degradation from quantizing activations compared
to weights. Specifically, our method employs real-
valued spike activations alongside binary weights
in SNNs. This preserves the event-driven and
multiplication-free advantages of standard SNNs
while enhancing the information capacity of acti-
vations. Additionally, we introduce a trainable fac-
tor within binary weights to adaptively learn suit-
able weight amplitudes during training, thereby
increasing network capacity. To maintain effi-
ciency akin to vanilla ReverB-SNN, our trainable
binary weight SNNs are converted back to stan-
dard form using a re-parameterization technique
during inference. Extensive experiments across
various network architectures and datasets, both
static and dynamic, demonstrate that our approach
consistently outperforms state-of-the-art methods.

1. Introduction
Artificial Neural Networks (ANNs) are currently extensively
applied across various fields such as object recognition (He
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et al., 2016; Ming et al., 2023), object segmentation (Ron-
neberger et al., 2015), and object tracking (Bewley et al.,
2016). However, to achieve enhanced performance, network
architectures are becoming increasingly complex (Huang
et al., 2017; Devlin et al., 2018). Several techniques have
been proposed to tackle this complexity, including quantiza-
tion (Gong et al., 2019), pruning (He et al., 2017), knowl-
edge distillation (Hinton et al., 2015; Polino et al., 2018;
Zhang et al., 2022), and the emergence of spiking neural
networks (SNNs) (Maass, 1997; Li et al., 2021a; Xiao et al.,
2021; Wang et al., 2022; Bohnstingl et al., 2022; Yu et al.,
2025; Guo et al., 2025; Yao et al., 2023; Guo et al., 2023a).
SNNs, touted as the next-generation neural networks, re-
duce energy consumption by emulating brain-like informa-
tion processing through spike-based communication, which
translates weight and activation multiplications into addi-
tions, facilitating multiplication-free inference. Moreover,
their event-driven computational model demonstrates su-
perior energy efficiency on neuromorphic hardware plat-
forms (Ma et al., 2017; Akopyan et al., 2015; Davies et al.,
2018; Pei et al., 2019).

However, it has been observed that SNNs’ binary spike
activation maps suffer from limited information capacity,
failing to adequately capture membrane potential informa-
tion during quantization, thereby diminishing accuracy (Guo
et al., 2022d;a; Wang et al., 2023; Sun et al., 2022). To ad-
dress this, some studies have explored alternatives such
as ternary spikes (Sun et al., 2022), integer spikes (Wang
et al., 2023; Fang et al., 2021b; Feng et al., 2022), and
even real-valued spikes (Guo et al., 2024c;d; 2025), how-
ever these approaches often come at the cost of increased
energy consumption due to the inability to convert weight
and activation multiplications into additions.

Recent research (Gong et al., 2019; Qin et al., 2024) in-
dicates that using low-bit weights in ANNs can achieve
higher accuracy compared to low-bit activations. Motivated
by these findings, this paper proposes a novel approach
to enhance spike activation’s information capacity while
preserving the advantages of multiplication-free and event-
driven SNNs. Specifically, unlike the conventional binary
spike activation approach, we advocate for real-valued spike
activations similar to EGRU (Subramoney et al., 2023) to
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Figure 1. The difference between our SNN and the vanilla SNN. Our SNN differs significantly from the vanilla SNN. The vanilla SNN
employs binary spikes, leading to significant information loss of the activations. In contrast, our SNN utilizes real-valued spikes alongside
binary weights, thereby enhancing the neuron’s information capacity. This approach retains the benefits of event-driven processing and
multiplication-addition transformations.

increase information capacity. Correspondingly, we adapt
real-valued weights to binary weights {−1, 1}, ensuring
retention of multiplication-free and event-driven benefits.
Recognizing that binary weights may limit network capac-
ity, we extend them to a learnable form {−α, α}, where α
is a learnable parameter. During inference, we introduce a
re-parameterization technique to integrate the α factor into
the activation process, thereby preserving the multiplication-
free inference capability still.

The distinction between our SNN and the conventional SNN
is illustrated in Fig. 1. In summary, our contributions can be
summarized as follows:

• We advocate enhancing the information capacity of
spike activations by employing real-valued spikes
alongside binary weights in SNNs. This approach
preserves the multiplication-free and event-driven ad-
vantages of standard SNNs while introducing a novel
paradigm with real-valued spike neurons and binary
weights.

• Additionally, we propose a variant with learnable bi-
nary weights and a re-parameterization technique. Dur-
ing training, the weight magnitude α is learned, and
during inference, this magnitude is folded into the
activation via re-parameterization. This ensures that
the binary weights {−α, α} revert to standard binary
weights {−1, 1}, maintaining the addition-only advan-
tage.

• We evaluate our methods on both static datasets
(CIFAR-10 (Krizhevsky et al., 2010), CIFAR-
100 (Krizhevsky et al., 2010), ImageNet (Deng et al.,
2009)) and spiking datasets (CIFAR10-DVS (Li et al.,
2017)) using widely adopted backbones. Results
demonstrate the effectiveness and efficiency of our
approach. For instance, using ResNet34 with only 4
timesteps, our method achieves a top-1 accuracy of
70.91% on ImageNet, representing a 3.22% improve-
ment over other state-of-the-art SNN models.

2. Related Work
In this section, we provide a brief overview of recent ad-
vancements in SNNs focusing on two key aspects: learning
methods and information loss reduction techniques.

2.1. Learning Methods of Spiking Neural Networks

There are primarily two approaches to achieving high-
performance deep SNNs. The first approach involves con-
verting a well-trained ANN into an SNN, known as ANN-
SNN conversion (Han & Roy, 2020; Kim et al., 2020; Han
et al., 2020; Liu et al., 2022; Yu et al., 2021). This method
maps parameters from a pretrained ANN to its SNN counter-
part by aligning ANN activation values with SNN average
firing rates. Despite its widespread use due to the resource
efficiency compared to training SNNs from scratch, ANN-
SNN conversion has inherent limitations. It is constrained
by rate-coding schemes and overlooks the temporal dynam-
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ics unique to SNNs, limiting its efficacy with neuromor-
phic datasets. Moreover, achieving comparable accuracy
to ANNs typically requires numerous timesteps, increasing
energy consumption contrary to SNN’s low-power design
intent. Additionally, SNN accuracy often falls short of ANN
accuracy, constraining SNN’s potential and research value.

Training SNNs directly from scratch, particularly suited for
neuromorphic datasets, has gained attention for its efficiency
in reducing timesteps, sometimes to fewer than 5 (Guo et al.,
2022d; Fang et al., 2021a; Wu et al., 2018; Rathi & Roy,
2020; Wu et al., 2019; Neftci et al., 2019; Ren et al., 2023).
Another emerging approach is hybrid learning, which blends
the benefits of ANN-SNN conversion and direct training
methods (Rathi & Roy, 2020; Wu et al., 2021a; Zhang et al.,
2024; Guo et al., 2023b; 2024d). This approach has also
garnered significant interest. In this paper, we focus on
enhancing the performance of directly trained SNNs by ad-
dressing information loss, an area underexplored in existing
literature.

2.2. Information Loss Reducing Methods of Spiking
Neural Networks

Several methods aim to mitigate information loss of the ac-
tivation in SNNs by altering spike activation precision (Guo
et al., 2022c;a;b; Wang et al., 2023). For instance, a ternary
spike neuron transmitting information via {0, 1, 2} spikes
was proposed in (Sun et al., 2022), which enhances infor-
mation capacity but lacks the multiplication-addition trans-
formation advantage. Then, a new method was improved
upon this with a ternary spike using {−1, 0, 1} values, main-
taining both improved activation information capacity and
the multiplication-addition advantage (Guo et al., 2024b).
In MT-SNN (Wang et al., 2023) and DS-ResNet (Feng
et al., 2022), a multiple threshold (MT) algorithm was in-
troduced for Leak-Integrate-Fire (LIF) neurons, allowing
omission of integer spikes to enhance information transfer.
SEWNet (Fang et al., 2021b) proposed an integer spike
format by modifying the position of the shortcut module.
Some approaches employ real-valued spikes directly to sig-
nificantly boost information capacity (Guo et al., 2024c;
2025). Nevertheless, these above works all are albeit at the
cost of increased energy consumption.

This paper explores the adoption of real-valued spike activa-
tion while preserving a multiplication-free advantage using
binary weights.

3. Methodology
In this section, we begin by introducing the fundamentals of
SNN to illustrate its method of information processing and
its inherent limitations in information loss. Subsequently,
we introduce our ReverB-SNN method as a solution to

overcome the challenge. Finally, we propose a variant with
learnable binary weights aimed at further enhancing network
capacity.

3.1. Preliminary

The spike neuron, inspired by the brain’s functionality,
serves as the fundamental and distinctive computing unit
within SNNs. It closely mimics the behavior of biological
neurons, characterized by the interplay between membrane
potential and input current dynamics. In this paper, we focus
on the widely used Leaky-Integrate-and-Fire (LIF) neuron
model, which is governed by the iterative equation (Wu
et al., 2019):

U t
l = τU t−1

l +WlO
t
l−1, U t

l < Vth. (1)

Here, U t
l represents the membrane potential at time-step t

for the l-th layer, Ot
l−1 denotes the spike output from the

preceding layer, Wl denotes the weight matrix at the l-th
layer, Vth is the firing threshold, and τ is the time constant
governing the leak in the membrane potential. When the
membrane potential surpasses the firing threshold, the neu-
ron emits a spike and resets to its resting state, characterized
by:

Ot
l =

{
1, if U t

l ≥ Vth

0, otherwise
. (2)

While the binary spike-based processing paradigm is energy-
efficient, it suffers from suboptimal task performance due
to limitations in information representation. This motivates
our exploration of alternative approaches to enhance the
information capacity of SNNs.

Classifier in SNNs. In a classification model, the final
output is typically processed using the Softmax function
to predict the desired class object. In the context of SNN
models, a common approach, as seen in recent studies (Guo
et al., 2022c;d; Fang et al., 2021c), involves aggregating the
outputs from all time steps to obtain the final output:

Oout =
1

T

T∑
t=1

Ot
out. (3)

Subsequently, the cross-entropy loss is computed using the
true label and Softmax(Oout).

3.2. ReverB: Reversing the Bit of Weight and Activation

To address the issue of information loss in activation, we
introduce the ReverB-SNN method, inspired by recent re-
search highlighting greater accuracy degradation from quan-
tizing activations compared to weights (Gong et al., 2019;
Qin et al., 2024). Specifically, we employ real-valued spike
activations, where the output spike at time t for the l-th layer
is defined as follows:

Ot
l =

{
U t
l , if U t

l ≥ Vth

0, otherwise
. (4)
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Meanwhile, to maintain the multiplication-free and event-
driven advantages of standard SNNs, the real-valued
weights are converted to binary weights. Consequently,
the membrane potential dynamics are updated as:

U t
l = τU t−1

l +Wb
lO

t
l−1, U t

l < Vth, (5)

where Wb = sign(W) =

{
+1, if W ≥ 0
−1, otherwise

. This ap-

proach ensures that activations remain real-valued while
leveraging binary weights for computational efficiency,
thereby mitigating accuracy loss in SNNs.

Event-driven Advantage Retaining. The event-driven sig-
nal processing characteristic of SNNs significantly enhances
energy efficiency. Specifically, a spiking neuron will only
emit a signal and initiate subsequent computations if its
membrane potential exceeds the firing threshold, Vth; oth-
erwise, it remains inactive. Similarly, our real-valued spike
neuron also benefits from this event-driven property. It acti-
vates and emits a real-valued spike to initiate computations
only when its membrane potential exceeds Vth.

Addition-only Advantage Retaining. The ability of SNNs
to use addition instead of multiplication contributes signifi-
cantly to their energy efficiency. In a standard binary spike
neuron, when a spike is fired, it traditionally multiplies a
weight, w, connected to another neuron to transmit informa-
tion, expressed as:

x = 1× w, (6)

where w ∈ R. Given the spike amplitude is 1, this multipli-
cation simplifies to an addition:

x = 0 + w. (7)

In our real-valued spike neuron, although the spike o is real-
valued, the weight wb ∈ B is binary, and the multiplication
of o and wb can be represented as:

x = o× 1, or, o×−1. (8)

This too can be simplified to an addition operation:

x = 0 + o, or, 0− o. (9)

In summary, our proposed method enhances the activation
expression capability of SNNs while preserving the event-
driven and addition-only advantages of traditional SNNs.

Surrogate Gradient for Weight Binarization. In vanilla
SNNs, the firing behavior of spiking neurons is non-
differentiable, necessitating the use of surrogate gradient
(SG) methods in many studies (Rathi & Roy, 2020; Guo
et al., 2022c) to address this issue. In our SNN framework,
while the firing activity of spiking neurons becomes differ-
entiable, the process of weight binarization poses a non-
differentiability challenge. Therefore, similar to other SG

methods used for managing firing activity, we adopt Straight
Through Estimator (STE) (Rathi & Roy, 2020; Guo et al.,
2022c) gradients to tackle this problem. Mathematically,
STE surrogate gradients are defined as:

dWb

dW
=

{
1, if − 1 ≤W ≤ 1
0, otherwise

. (10)

This approach allows us to manage the non-differentiability
inherent in weight binarization within our SNN framework
effectively.

Training of Our Method. In our study, we employ the
spatial-temporal backpropagation (STBP) algorithm (Wu
et al., 2019) to effectively train our SNN models. STBP
treats the SNN as a self-recurrent neural network, facilitating
error backpropagation akin to principles used in Convolu-
tional Neural Networks (CNNs). The gradient at layer l,
derived through the chain rule, is expressed as:

∂L

∂Wl
=

∑
t

(
∂L

∂Ot
l

∂Ot
l

∂U t
l

+
∂L

∂U t+1
l

∂U t+1
l

∂U t
l

)
∂U t

l

∂Wb
l

∂Wb
l

∂Wl
,

(11)
where ∂Wb

l

∂Wl
is surrogate gradient for the binarization of the

weight in l-th layer. This approach enables us to train SNNs
effectively by propagating errors through time and across
network layers, leveraging the benefits of both temporal and
spatial information in neural processing.

3.3. Learnable Binary Weight Variant

As mentioned earlier, while real-valued activations increase
information capacity, binary weights can decrease network
capacity. To address this issue, we extend binary weights
to a learnable form, not restricted to {−1, 1}, but rather
{−α, α} where α is a learnable parameter defined as:

Wb
trainable = α · sign(W) =

{
+1 · α, if W ≥ 0
−1 · α, otherwise

.

(12)
Introducing α allows weights to adapt their amplitude. This
parameter α is applied in a channel-wise manner across
our SNN models. Consequently, the membrane potential
dynamics are adjusted to:

U t
l = τU t−1

l +Wb
l,trainableO

t
l−1, U t

l < Vth. (13)

Regarding gradients, the gradient of Wl at the layer l is
given by:

∂L

∂Wl
=

∑
t

(
∂L

∂Ot
l

∂Ot
l

∂U t
l

+
∂L

∂U t+1
l

∂U t+1
l

∂U t
l

)
∂U t

l

∂Wb
l

∂Wb
l

∂Wl
.

(14)
While the gradient of αl at the layer l is:

∂L

∂αl
=

∑
t

(
∂L

∂Ot
l

∂Ot
l

∂U t
l

+
∂L

∂U t+1
l

∂U t+1
l

∂U t
l

)
∂U t

l

∂αl
. (15)
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Algorithm 1 Training and inference of our SNN.
Training
Input: An SNN to be trained where the precision of weights
and activations was reversed; training dataset; total training
iteration: Itrain.
Output: The trained SNN.

1: for all i = 1, 2, . . . , Itrain iteration do
2: Get mini-batch training data, xin(i) and class label,

y(i);
3: Feed the xin(i) into the SNN and calculate the SNN

output, Oout(i) by Eq. 3 ;
4: Compute classification loss LCE =

LCE(Oout(i),y(i));
5: Calculate the gradient w.r.t. W by Eq. 14 and the

gradient w.r.t. α by Eq. 15;
6: Update W: (W ←W − η ∂L

∂W ) and α: (α ← α −
η ∂L
∂α ) where η is learning rate.

7: end for
Re-parameterization
Input: The trained SNN with trainable weights and
real-valued spikes ; total layer of SNN: l.
Output: The re-parameterized trained SNN with-
out normalized binary weight and real-valued
spikes.

1: for all i = 1, 2, . . . , l number do
2: Fold the parameters of αi into i− 1 firing function

by Eq. 18;
3: end for

Inference
Input: The re-parameterized trained SNN; test dataset; total
test iteration: Itest.
Output: The output.

1: for all i = 1, 2, . . . , Itest iteration do
2: Get mini-batch test data, xin(i) and class label, y(i)

in test dataset;
3: Feed the xin(i) into the reparameterized SNN and

calculate the SNN output, Oout(i) by Eq. 3 ;
4: Compare the classification factor Oout(i) and y(i)

for classification.
5: end for

Since the Wb
trainble and O are both real-valued in our SNN,

using trainable weights introduces the challenge that the
multiplication of weight and activation cannot be trans-
formed into an addition, potentially losing the computa-
tional efficiency advantages of SNNs. To address this, we
propose a training-inference decoupling technique. This
method converts different amplitude weights into a nor-
malized binary form during the inference phase through
re-parameterization, ensuring retention of the multiplication-
free efficiency advantages.

Dataset Method Time-step Accuracy

CIFAR-10

Vanilla SNN 2 92.80%
ReverB 2 94.14%
Learnable variant 2 94.45%
Vanilla SNN 4 93.85%
ReverB 4 94.55%
Learnable variant 4 94.96%

CIFAR-100

Vanilla SNN 2 70.18%
ReverB 2 72.54%
Learnable variant 2 72.95%
Vanilla SNN 4 71.77%
ReverB 4 72.93%
Learnable variant 4 73.28%

Table 1. Ablation study for the ternary spike on CIFAR.

Re-parameterization Technique. To maintain computa-
tional efficiency in SNNs during inference, we propose a
re-parameterization technique. Obviously, the Eq.16 can be
further written as

U t
l = τU t−1

l + αlW
b
lO

t
l−1, U t

l < Vth. (16)

To convert the real-valued weight W b
l back to binary ef-

fectively during inference, we fold the α into the out-
put Ot

l−1 of the previous layer as a new output, defining
Ot

new,l−1 = αlO
t
l−1. This adjustment simplifies Eq.16 to:

U t
l = τU t−1

l +Wb
lO

t
new,l−1, U t

l < Vth. (17)

Thus the real-valued weight will be converted to the binary
weight again. In this way, the output spike at time t for l− 1
layer is updated as follows:

Ot
new,l−1 =

{
αU t

l−1, if U t
l−1 ≥ Vth

0, otherwise
. (18)

Thereby, the multiplication of the weight and the activation
could be converted to addition again in the inference.

In summary, by embedding a learnable factor α into the
weight during training, we enhance the network capacity.
During inference, we extract this factor from the weight
and fold it into the output spike of the previous layer. This
approach allows us to maintain the advantages of normalized
binary weights and real-valued spikes in the trained SNN,
without altering the neuron’s update process.

For a detailed outline of the training and inference processes
of our SNN, refer to Algorithm 1.

4. Experiments
We conducted comprehensive experiments to assess the
effectiveness of the proposed ReverB-SNN method and

5



Reversing Bit of the Weight and Activation for Spiking Neural Networks

Dataset Method Type Architecture Timestep Accuracy
C

IF
A

R
-1

0
SpikeNorm (Sengupta et al., 2019) ANN2SNN VGG16 2500 91.55%
Hybrid-Train (Rathi et al., 2020) Hybrid training VGG16 200 92.02%
TSSL-BP (Zhang & Li, 2020) SNN training CIFARNet 5 91.41%
TL (Wu et al., 2021b) Tandem Learning CIFARNet 8 89.04%
PTL (Wu et al., 2021c) Tandem Learning VGG11 16 91.24%
PLIF (Fang et al., 2021c) SNN training PLIFNet 8 93.50%
DSR (Meng et al., 2022) SNN training ResNet18 20 95.40%
KDSNN (Xu et al., 2023) SNN training ResNet18 4 93.41%

Diet-SNN (Rathi & Roy, 2020) SNN training ResNet20 5 91.78%
10 92.54%

Dspike (Li et al., 2021b) SNN training ResNet20 2 93.13%
4 93.66%

STBP-tdBN (Zheng et al., 2021) SNN training ResNet19 2 92.34%
4 92.92%

TET (Deng et al., 2022) SNN training ResNet19 2 94.16%
4 94.44%

RecDis-SNN (Guo et al., 2022c) SNN training ResNet19 2 93.64%
4 95.53%

Real Spike (Guo et al., 2022d) SNN training ResNet19 2 95.31%
4 95.51%

ResNet20 4 91.89%

ReverB SNN training
ResNet19 1 95.97%±0.08

2 96.39%±0.11

ResNet20 2 94.14%±0.08
4 94.55%±0.08

Learnable variant SNN training
ResNet19 1 96.22%±0.12

2 96.62%±0.11

ResNet20 2 94.45%±0.07
4 94.96%±0.10

C
IF

A
R

-1
00

RMP (Han et al., 2020) ANN2SNN ResNet20 2048 67.82%
Hybrid-Train (Rathi et al., 2020) Hybrid training VGG11 125 67.90%
T2FSNN (Park et al., 2020) ANN2SNN VGG16 680 68.80%
Real Spike (Guo et al., 2022d) SNN training ResNet20 5 66.60%
LTL (Yang et al., 2022) Tandem Learning ResNet20 31 76.08%
Diet-SNN (Rathi & Roy, 2020) SNN training ResNet20 5 64.07%
RecDis-SNN (Guo et al., 2022c) SNN training ResNet19 4 74.10%

Dspike (Li et al., 2021b) SNN training ResNet20 2 71.68%
4 73.35%

TET (Deng et al., 2022) SNN training ResNet19 2 72.87%
4 74.47%

ReverB SNN training
ResNet19 1 77.62%±0.10

2 78.13%±0.13

ResNet20 2 72.54%±0.09
4 72.93%±0.12

Learnable variant SNN training
ResNet19 1 78.06%±0.08

2 78.46%±0.12

ResNet20 2 72.95%±0.11
4 73.28%±0.08

Table 2. Comparison with SoTA methods on CIFAR-10(100).
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Method Type Architecture Timestep Accuracy

STBP-tdBN (Zheng et al., 2021) SNN training ResNet34 6 63.72%
TET (Deng et al., 2022) SNN training ResNet34 6 64.79%
RecDis-SNN (Guo et al., 2022c) SNN training ResNet34 6 67.33%
OTTT (Xiao et al., 2022) SNN training ResNet34 6 65.15%
GLIF (Yao et al., 2022) SNN training ResNet34 4 67.52%
DSR (Meng et al., 2022) SNN training ResNet18 50 67.74%
Ternary spike (Guo et al., 2024b) SNN training ResNet34 4 70.12%
SSCL (Zhang et al., 2024) SNN training ResNet34 4 66.78%
TAB (Jiang et al.) SNN training ResNet34 4 67.78%
MPBN (Guo et al., 2023c) SNN training ResNet34 4 64.71%
Shortcut back (Guo et al., 2024a) SNN training ResNet34 4 67.90%
Multi-hierarchical model (Hao et al., 2023) SNN training ResNet34 4 69.73%
SML (Deng et al., 2023) SNN training ResNet34 4 68.25%

Real Spike (Guo et al., 2022d) SNN training ResNet18 4 63.68%
ResNet34 4 67.69%

SEW ResNet (Fang et al., 2021a) SNN training ResNet18 4 63.18%
ResNet34 4 67.04%

ReverB SNN training ResNet18 4 66.22%±0.16
ResNet34 4 70.74%±0.13

Learnable variant SNN training ResNet18 4 66.58%±0.14
ResNet34 4 70.91%±0.13

Table 3. Comparison with SoTA methods on ImageNet.

its learnable binary weight variant. Our evaluation in-
cluded comparisons with several SoTA methods across a
range of widely recognized architectures. Specifically, we
tested spiking ResNet20 (Rathi & Roy, 2020; Sengupta
et al., 2019) and ResNet19 (Zheng et al., 2021) on CIFAR-
10(100) (Krizhevsky et al., 2010), ResNet18 (Fang et al.,
2021a) and ResNet34 (Fang et al., 2021a) on ImageNet,
as well as ResNet20 and ResNet19 on CIFAR10-DVS (Li
et al., 2017).

In our work, we used the SGD optimizer to train our mod-
els with a momentum of 0.9 and a learning rate of 0.1,
which decays to 0 following a cosine schedule. For the
CIFAR10(100) and CIFAR-DVS datasets, we trained the
models for 400 epochs with a batch size of 128. On Ima-
geNet, we trained for 300 epochs with the same batch size.
Data augmentation was performed using only a flip opera-
tion. The train and test splits follow the settings provided by
the official dataset. The membrane potential decay constant
τ is set to 0.25. In these static datasets, Vth is 0 all the time
since static datasets can not provide timing information. For
neuromorphic datasets, we set it to 0.25.

4.1. Ablation Study

We conducted a series of ablation experiments to evaluate
the effectiveness of the proposed ReverB-SNN method and
its learnable binary weight variant on the CIFAR-10 and
CIFAR-100 datasets, employing ResNet20 as the backbone

with different timesteps. The results are summarized in
Table 1.

The baseline accuracy of vanilla ResNet20 with 2 timesteps
reaches 92.80% and 70.18% on CIFAR-10 and CIFAR-100
respectively, consistent with previous studies. Implement-
ing the ReverB-SNN method significantly improves perfor-
mance to 94.14% and 72.54% respectively, marking sub-
stantial enhancements of approximately 1.30% and 2.50%.
Furthermore, integrating the learnable binary weight vari-
ant leads to additional performance gains, resulting in final
accuracies of 94.45% for CIFAR-10 and 72.95% for CIFAR-
100. These findings underscore the efficacy of our approach
in enhancing model performance. When the model is evalu-
ated with 4 timesteps, our method continues to demonstrate
its effectiveness. The performance improvements observed
with this configuration further validate the robustness and
efficacy of the ReverB-SNN technique, underscoring its
potential for enhancing model accuracy across various set-
tings.

4.2. Comparison with SoTA Methods

In this section, we conducted a comparative analysis of our
approach against SoTA methods. We present the top-1 ac-
curacy results along with the mean accuracy and standard
deviation derived from 3 trials. Our evaluation focused
initially on the CIFAR-10 and CIFAR-100 datasets. The
summarized results are presented in Table 2. For the CIFAR-
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Method Type Architecture Timestep Accuracy

DSR (Meng et al., 2022) SNN training VGG11 20 77.27%
GLIF (Yao et al., 2022) SNN training 7B-wideNet 16 78.10%
STBP-tdBN (Zheng et al., 2021) SNN training ResNet19 10 67.80%
RecDis-SNN (Guo et al., 2022c) SNN training ResNet19 10 72.42%
Real Spike (Guo et al., 2022d) SNN training ResNet19 10 72.85%
Dspike (Li et al., 2021b) SNN training ResNet20 10 75.40%
Spikformer (Zhou et al., 2023) SNN training Spikformer 10 78.90%
SSCL (Zhang et al., 2024) SNN training ResNet19 10 80.00%

ReverB SNN training ResNet19 10 80.30%±0.20
ResNet20 10 77.80%±0.10

Learnable variant SNN training ResNet19 10 80.50%±0.10
ResNet20 10 78.10%±0.10

Table 4. Comparison with SoTA methods on CIFAR10-DVS.

10 dataset, previous methods achieved peak accuracies of
95.53% using ResNet19 and 93.66% using ResNet20 as
their backbone architectures. In contrast, our ReverB-SNN
method achieves 96.39% and 94.55% respectively, while
utilizing fewer timesteps. Furthermore, leveraging learn-
able binary weights enables our SNN models to attain even
higher accuracies. Moving to the CIFAR-100 dataset, our
learnable binary weight variant applied to ResNet19 and
ResNet20 could achieve superior performance with just
2 timesteps. Our method surpasses leading approaches
like TET and RecDis-SNN by approximately 4.0% with
ResNet19, despite these methods using 4 timesteps. These
experimental findings underscore the efficiency and efficacy
of our proposed methodology.

Method Accuracy #Flops #Sops Energy

Vanilla SNN 92.80% 3.54M 71.20M 49.73uJ
ReverB 94.14% 3.54M 74.50M 49.99uJ

Table 5. Energy estimation.

In our subsequent experiments, we evaluated our approach
on the challenging ImageNet dataset, renowned for its com-
plexity compared to CIFAR. Table 3 presents the compar-
ative results. Recent SoTA benchmarks on this dataset in-
clude RecDis-SNN (Guo et al., 2022c), GLIF (Yao et al.,
2022), DSR (Meng et al., 2022), Real Spike (Guo et al.,
2022d), and SEW ResNet (Fang et al., 2021a), achieving ac-
curacies of 67.33%, 67.52%, 67.74%, 67.69%, and 67.04%
respectively. Our method achieves significantly higher ac-
curacy, reaching up to 70.91%, a 3.22% improvement over
other SoTA SNN models. This notable improvement un-
derscores the effectiveness of our approach for large-scale
datasets.

In our final evaluation, we applied our SNN model to the
CIFAR10-DVS neuromorphic dataset. Utilizing ResNet19

and ResNet20 as our backbone architectures, our method
achieved accuracies of 80.50% and 78.10% respectively,
transcending the 80% milestone for ResNet19 even. This
marks a substantial improvement in performance on this
widely used neuromorphic dataset.

5. Energy Estimation
In this section, we evaluate the hardware energy cost asso-
ciated with the vanilla SNN model and the ReverB-SNN
model using ResNet20 on the CIFAR10 with 2 timesteps for
a single image inference. Since the first rate-encoding layer
does not enjoy the multiplication-free property, it will pro-
duce the FLOPs (floating point operations). While other lay-
ers are calculated by SOPs (synaptic operations). The SOPs
are calculated by s×T ×A, where s is the mean sparsity, T
is the timestep and A denotes the number of additions in the
equivalent artificial neural network (ANN) model. For the
Vanilla model, the sparsity of the SNN is 16.42%, whereas
for the ReverB-SNN model, it is 17.18%. We calculate
energy consumption based on the methodology outlined
in (Hu et al., 2021), where one FLOP consumes 12.5 pJ and
one SOP consumes 77 fJ. A summary of the energy costs
is provided in Table 5. The ReverB-SNN method results in
only a modest 0.52% increase in energy cost compared to
the baseline vanilla model. This minimal increase highlights
the efficiency of the ReverB-SNN approach, demonstrating
that it can achieve improved performance with a relatively
small additional energy expenditure.

6. Conclusion
This study has introduced ReverB-SNN, a novel approach
for enhancing SNNs by integrating real-valued spike ac-
tivations with binary weights. Our method addresses the
challenge of reduced accuracy in SNNs due to limited in-
formation capture by binary spike activation maps. By
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reversing the bit of both weights and activations, we have
preserved the energy-efficient and multiplication-free char-
acteristics of traditional SNNs while significantly boosting
the information capacity of activations. Moreover, the in-
troduction of a trainable factor within binary weights has
enabled adaptive learning of weight amplitudes during train-
ing, thereby enhancing the overall network capacity. Im-
portantly, to ensure operational efficiency comparable to
standard SNNs, we proposed a re-parameterization tech-
nique that converts trainable binary weight SNNs back to
standard form during inference. Extensive experimental
validation across diverse network architectures and datasets,
encompassing both static and dynamic scenarios, consis-
tently demonstrates the superiority of our approach over
existing state-of-the-art methods.
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Bohnstingl, T., Woźniak, S., Pantazi, A., and Eleftheriou, E.
Online spatio-temporal learning in deep neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–15, 2022. doi: 10.1109/TNNLS.2022.
3153985.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y.,
Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain, S.,
et al. Loihi: A neuromorphic manycore processor with
on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,

L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Deng, S., Li, Y., Zhang, S., and Gu, S. Temporal effi-
cient training of spiking neural network via gradient re-
weighting. arXiv preprint arXiv:2202.11946, 2022.

Deng, S., Lin, H., Li, Y., and Gu, S. Surrogate module learn-
ing: Reduce the gradient error accumulation in training
spiking neural networks. In International Conference on
Machine Learning, pp. 7645–7657. PMLR, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and
Tian, Y. Deep residual learning in spiking neural net-
works. Advances in Neural Information Processing Sys-
tems, 34:21056–21069, 2021a.

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and
Tian, Y. Deep residual learning in spiking neural net-
works. Advances in Neural Information Processing Sys-
tems, 34:21056–21069, 2021b.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and
Tian, Y. Incorporating learnable membrane time constant
to enhance learning of spiking neural networks. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 2661–2671, 2021c.

Feng, L., Liu, Q., Tang, H., Ma, D., and Pan, G. Multi-level
firing with spiking ds-resnet: Enabling better and deeper
directly-trained spiking neural networks. In Raedt, L. D.
(ed.), Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna,
Austria, 23-29 July 2022, pp. 2471–2477. ijcai.org, 2022.
doi: 10.24963/ijcai.2022/343. URL https://doi.
org/10.24963/ijcai.2022/343.

Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., and
Yan, J. Differentiable soft quantization: Bridging full-
precision and low-bit neural networks. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 4852–4861, 2019.

Guo, Y., Chen, Y., Zhang, L., Liu, X., Wang, Y., Huang,
X., and Ma, Z. IM-loss: Information maximization loss
for spiking neural networks. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022a. URL https:
//openreview.net/forum?id=Jw34v_84m2b.

9

https://doi.org/10.24963/ijcai.2022/343
https://doi.org/10.24963/ijcai.2022/343
https://openreview.net/forum?id=Jw34v_84m2b
https://openreview.net/forum?id=Jw34v_84m2b


Reversing Bit of the Weight and Activation for Spiking Neural Networks

Guo, Y., Chen, Y., Zhang, L., Wang, Y., Liu, X., Tong, X.,
Ou, Y., Huang, X., and Ma, Z. Reducing information
loss for spiking neural networks. In Avidan, S., Brostow,
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