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Harmful Terms and Where to Find Them: Measuring and
Modeling Unfavorable Financial Terms and Conditions in

Shopping Websites at Scale
Anonymous Author(s)

Abstract
Terms and conditions for online shopping websites often contain
terms that can have significant financial consequences for customers.
Despite their impact, there is currently no comprehensive under-
standing of the types and potential risks associated with unfavorable
financial terms. Furthermore, there are no publicly available de-
tection systems or datasets to systematically identify or mitigate
these terms. In this paper, we take the first steps toward solving this
problem with three key contributions.

First, we introduce TermMiner, an automated data collection and
topic modeling pipeline to understand the landscape of unfavorable
financial terms. Second, we create ShopTC-100K, a dataset of terms
and conditions from shopping websites in the Tranco top 100K list,
comprising 1.8 million terms from 8,251 websites. Consequently,
we develop a taxonomy of 22 types from 4 categories of unfavor-
able financial terms—spanning purchase, post-purchase, account
termination, and legal aspects. Third, we build TermLens, an auto-
mated detector that uses Large Language Models (LLMs) to identify
unfavorable financial terms.

Fine-tuned on an annotated dataset, TermLens achieves an F1
score of 94.6% and a false positive rate of 2.3% using GPT-4o.
When applied to shopping websites from the Tranco top 100K, we
find that 47.21% of these sites contain at least one unfavorable fi-
nancial term, with such terms being more prevalent on less popular
websites. Case studies further highlight the financial risks and cus-
tomer dissatisfaction associated with unfavorable financial terms, as
well as the limitations of existing ecosystem defenses.

CCS Concepts
• Information systems → Web mining; • Security and privacy
→ Social engineering attacks; • Social and professional topics →
Commerce policy.

Keywords
Topic modeling, unfavorable terms, consumer protection, terms and
conditions dataset, deceptive content

1 Introduction
In 2023, U.S. e-commerce sales reached $1.12 trillion [1], with users
frequently engaging with websites that impose terms and conditions
on financial transactions. While these terms are often benign, they
can also facilitate scams or impose unfair financial consequences
on unsuspecting users. This risk is heightened by the fact that most
users rarely read these lengthy, jargon-filled terms [4, 57, 69], and
are often not required to do so before completing a purchase.

In this work, we define unfavorable financial terms as those that
are one-sided, imbalanced, unfair, or malicious, thereby disadvantag-
ing users. Figure 1 shows a real-world example of harmful financial

terms on a website selling earbuds at seemingly attractive prices.
When users make a purchase, the terms and conditions obligate the
users to a fitness app subscription with a recurring $86 monthly fee.
This obligation is not disclosed at all during the purchase process.

Unfair or harmful financial terms can also exist on legitimate
websites—unlike traditional social engineering scams, these terms
may not be inherently deceptive but can still cause substantial
losses. Figure 5 in the Appendix presents the T&Cs from Cel-
sius [14], a cryptocurrency company bankrupt in 2022. These terms
stipulate that if Celsius goes bankrupt, users could lose digital invest-
ments since they would be treated as unsecured creditors. A judge
later ruled that Celsius owned its users’ cryptocurrency deposits
based on these terms [34], highlighting the real financial risks such
terms pose to users.

It is worth noting that the website in Figure 1 operated for at least
a year without being flagged by major browsers before its shutdown
in June 2024, showing the current defense ecosystem’s lack of un-
derstanding and mitigation strategies for unfavorable financial terms.
Likewise, Celsius’s unfair terms only gained attention during bank-
ruptcy proceedings. Despite their impact, few mitigation methods
exist for unfavorable financial terms.

A possible approach to addressing the concern is to extend the
current methods for detecting social engineering scams and dark
patterns [6, 10, 20, 41, 48, 49, 81]. Unfortunately, such an extension
is not straightforward. Many of these methods are not designed to
detect unfavorable financial terms, as they typically focus on content-
based features like word patterns, images, website structures, or
external indicators like link length and certificates [5, 7, 22, 39, 63,
82], which are unrelated to the detection of unfavorable financial
terms. Similarly, work on online agreement analysis focuses on
privacy policies [13, 32, 78, 83] or on terms deemed invalid under
EU law [11, 25, 26, 40, 42, 43].

The advent of large language models (LLMs) provides a more
effective approach to analyzing policies like T&Cs [24, 61], but
their potential in this area has yet to be fully explored. This paper
aims to fill this gap. Several challenges need to be addressed for the
approach to be effective: (1) a lack of understanding of unfavorable
financial terms in the wild, (2) no publicly available datasets for
studying these terms, and (3) the absence of detection systems to
identify and mitigate them. This work seeks to address these chal-
lenges through a large-scale measurement study. To the best of our
knowledge, this is the first systematic effort to categorize and detect
unfavorable financial terms in real-world online shopping websites.
Our contributions are as follows:

• Data collection and topic modeling pipeline: We present
TermMiner, a scalable pipeline for collecting and analyzing
terms and conditions from shopping websites. The pipeline
includes (1) a data collection module to collect from the
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Tranco top websites and fraudulent e-commerce datasets,
(2) an LLM-based classification module of terms, and (3)
an interactive topic modeling module. We identify unfavor-
able financial terms using the FTC’s definitions of unfair
practices [15].

• ShopTC-100K dataset: : We create the ShopTC-100K data-
set, consisting of terms and conditions from shopping web-
sites in the Tranco top 100K list, which will be open-sourced.
This dataset includes 1.8 million terms extracted from 8,251
shopping websites.

• Unfavorable financial term taxonomy: : We develop a com-
prehensive taxonomy for unfavorable financial terms, cov-
ering 4 categories and 22 types, including terms related to
purchase, billing, post-purchase activities, account termina-
tion and recovery, and legal conditions.

• Unfavorable financial terms detection: : We develop Term-
Lens, a Chrome plugin-based detection framework using
LLMs to automatically identify unfavorable financial terms.
With a fine-tuned GPT-4o model, TermLens achieves a
94.6% F1 score and a 2.4% FPR on an annotated evalu-
ation dataset.

• Measurement study: : We analyze 1.9 million terms from
8,979 online shopping websites, finding that 47.21% of Eng-
lish websites in the Tranco top 100k contain unfavorable
financial terms. Our analysis reveals these terms are more
common on less popular websites, with case studies high-
lighting the potential financial and legal harm to consumers.

2 Related Work
Scam and fake e-commerce website detection: Detection methods
for scam and fake e-commerce websites (FCW) typically rely on two
types of features: external (e.g., URLs, certificates, logos, redirect
mechanisms) [6, 9, 22, 51, 62, 63, 76, 85] and content-based (e.g.,
visual and HTML structures, images, scripts, hyperlinks) [6, 36, 39,
79–81]. These models are either rule-based or machine learning-
based, with feature selection grounded in domain knowledge (e.g.,
indicative images, third-party scripts). However, no prior work in
this line has considered terms and conditions and their financial
impacts on users.

We consider social engineering scams to overlap with our de-
tection target. The unfavorable financial terms in Figure 1 function
similarly by deceiving users into signing up for additional subscrip-
tions. However, as discussed in §3.3 and §5.2, unfavorable financial
terms are not exclusive to scam websites. However, it’s important for
users to stay alert on websites with such terms. We view our work as
the first to measure and detect unfavorable financial terms at scale.

Dark patterns: Dark patterns are deceptive user interface designs
intended to manipulate users into actions against their best inter-
ests [48]. Recent research has examined their psychological impact
and influence on user decision-making [49, 53, 56, 77], while also
exploring legal frameworks and strategies for intervention [29, 47].

Although terms and conditions are not part of the user interface
design, we consider the unfavorable financial terms we identify to be
closely related to dark patterns. The unilateral nature of these terms
and their potential to hide uncommon or unexpected conditions

TERMS AND CONDITIONS

By clicking "Order Now", you agree to the terms 
and conditions. You will be charged $6.85 for the 
shipping and handling of your free smartwatch. 
Also, as part of the promotion, you will receive a 
subscription to the FitHabit Fitness App for only 
$86, which will provide you with all the benefits of 
customizable meal plans, exercise routines, and 
health management. You will only be billed for the 
FitHabit Fitness App subscription 6 days after 
placing your order, and the subscription will 
renew monthly up until cancellation. We 
automatically enroll customers in our Flexpay 
option which splits up your monthly payment in 
two easy installments of $57.99 and $27.99, 
charged separately 7 days apart. 

(b)(a)

(c)

Figure 1: Unfavorable financial term example — (a) shows the
payment page for Tone Fit Pro, a now-defunct website, with no
mention of the subscription service on the payment page. (b)
displays the T&Cs for Tone Fit Pro, which state that customers
will be automatically enrolled in an $86 per month FitHabit
Fitness App subscription with automatic renewal. (c) shows a
screenshot of real-life victim complaints.

make them closely align with the characteristics of dark patterns:
asymmetric, covert, deceptive, hiding information, and restrictive.

Terms and conditions legal analysis: There is limited NLP-
based analysis of legal documents like online contracts and terms of
service [11, 26, 35, 40, 42, 43]. Prior studies, such as Lippi et al. [43]
and Galassi et al. [26], typically focus on small datasets of terms and
conditions (25 to 200 documents). However, their focus is mainly
on assessing unfairness under the European Union’s Unfair Contract
Terms Directive [75] (i.e., clauses invalid in court). In contrast, our
work specifically targets terms with direct financial impacts on users.

In this paper, we focus on the financial terms in the large-scale
measurement of terms and conditions from English shopping web-
sites, assessed using the definition of unfair acts or practices as
provided by the Federal Trade Commission (FTC)’s Policy State-
ment on Deception [16]. A detailed comparison of our proposed
term taxonomy with prior work is provided in Appendix E.

Privacy policy analysis: A significant body of work investigates
the viability of NLP-based analysis for privacy policies. One signifi-
cant line of such research focuses on detecting contradicting policy
statements (e.g., via ontologies [3] and knowledge graphs [17]) or
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Figure 2: TermMiner (data collection and topic modeling pipeline)—(1) Measurement module: collects shopping websites from the
Tranco list and fake e-commerce website datasets, filtering out English terms and conditions from shopping websites. (2) Term
classification module: classify the terms into binary categories based on a given prompt. (3) Topic modeling module: leverages t5-base
Sentence Transformer and DBSCAN for clustering. Topics are derived from the clusters using a combination of manual inspection and
GPT-4o, employing a snowball sampling method [27] to iteratively develop a topic template of terms.

ambiguities [68]. Other areas include improving user comprehen-
sion [32], topic-modeling, and summarization of policies [2, 64].

In this work, we focus on financial terms and conditions which are
distinct from privacy policies. While we also perform topic modeling,
we are the first to apply such a pipeline to construct a taxonomy for
unfavorable financial terms. Furthermore, detecting contradictions
and ambiguities is orthogonal to the detection of malicious financial
terms, making it difficult to apply similar techniques directly.

3 Understanding Unfavorable Terms
In this section, we outline our detection goal and present TermMiner,
a pipeline for collecting, clustering, and topic modeling unfavorable
financial terms from English shopping websites in the Tranco top
100,000 [73] and datasets of fraudulent e-commerce sites [6, 37].
As shown in Figure 2, the pipeline categorizes two types of terms:
(1) financial terms that may pose future financial risks, and (2)
unfavorable financial terms, identified as unfair, unfavorable, or
concerning for customers. We then summarize the taxonomy of
unfavorable financial terms, which fall into four broad categories:
(1) purchase and billing, (2) post-purchase, (3) termination and
account recovery, and (4) legal terms.

3.1 Threat Model
We aim to detect one-sided, imbalanced, unfair, or malicious finan-
cial terms in online shopping websites’ terms and conditions, which
pose significant risks to users, potentially leading to unexpected fi-
nancial losses. These risks can arise from website operators seeking
to limit liability or from intentional malfeasance.

To assess whether a financial term is unfavorable, we refer to
Section 5 of the Federal Trade Commission (FTC) Act [15], which
defines an act as unfair if it meets the following criteria:

• C1: Substantial Injury. It causes or is likely to cause sub-
stantial injury to consumers;

• C2: Unavoidable Harm. Consumers cannot reasonably
avoid it; and

• C3: Insufficient Benefits. It is not outweighed by counter-
vailing benefits to consumers or competition.

During the topic modeling of term clusters, we judge the topic
representing each cluster by three criteria to evaluate their fairness.

C1: Since we focus on financial terms with potentially detrimen-
tal impacts, all terms inherently satisfy this criterion.

C2: Terms and conditions are often hidden or difficult to avoid.
Fair financial terms must be clearly displayed at critical points, like
the payment page. However, terms related to cancellation, refunds,
and returns are rarely shown upfront. We evaluate terms for unex-
pected fees (e.g., cancellation charges, non-refundable items, costly
returns) that place an undue burden on consumers.

C3: We classify terms as benign if they serve legitimate user
or business protection, such as terms prohibiting fraud or abuse,
protecting intellectual property, or ensuring legal compliance

3.2 Data Collection and Topic Modeling
As shown in Figure 2, we introduce TermMiner, a data collection and
topic modeling pipeline for identifying unfavorable financial term at
scale. By integrating LLMs like GPT-4o, TermMiner significantly
reduces the extensive manual effort required in previous web content
mining studies, such as those focused on detecting dark patterns [48].
TermMiner will be open-sourced and can be repurposed for various
web-based text analysis tasks or longitudinal studies. Researchers
can use our tools to explore different aspects of terms and conditions,
such as readability, accessibility, or fairness.

A Two-Pass Method: In the data collection and topic modeling
steps, we employ a two-pass method. The first pass focuses on
modeling and detecting financial terms to develop a corresponding
topic template. In the second pass, we use the detected financial
terms to re-conduct the classification and topic modeling modules.
This time, the goal is to detect unfavorable financial terms within
the financial terms identified. This approach is necessary because,
to the best of our knowledge, there are no established templates
or annotation schemes for (1) financial terms or (2) unfavorable
financial terms in online shopping agreements. This two-pass process
ensures comprehensive detection and accurate categorization of both
financial and unfavorable financial terms.
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(1) Measurement Module: The measurement module collects
terms and conditions from shopping websites to build a large, di-
verse dataset for analysis. For our large-scale measurement, we
collect English shopping websites from two sources: the Tranco
list [73], a ranking of top global websites, and two fraudulent e-
commerce datasets (FCWs [6] and the Fraudulent and Legitimate
Online Shops Dataset [37]). We filter out non-English content using
Python’s langdetect library [18]. To classify shopping websites, we
evaluate several configurations: (1) GPT-3.5-Turbo [12] with URL,
(2) GPT-3.5-Turbo with URL and HTML content, (3) GPT-4o [59]
with URL, and (4) GPT-4o with URL and website screenshot. To
evaluate our classification methods, we manually annotated a sample
of 500 websites from the Tranco list, categorizing them into “shop-
ping” and “non-shopping.” GPT-4o, when prompted with URLs and
screenshots, achieved an accuracy of 92%, comparable to commer-
cial website classification services [48] (see Appendix B for details).
Therefore, we use this configuration throughout our work.

We subsequently crawl the shopping websites to collect terms
and conditions pages. A snowballed regex matching method detects
terms and any nested policy pages, refined through positive and
negative regex patterns to improve accuracy. Starting with common
anchor texts, we iteratively refine the regex patterns by analyzing
T&C links, which can be found in Appendix F. As shown in Table 1,
we collected 1.9 million terms from 8,979 websites in total.

(2) Classfication Module: The classification module categorizes
terms from shopping websites’ terms and conditions into binary
categories: positive or negative. The categorization is based on the
detection goal (such as identifying financial terms or identifying
unfavorable financial terms) using corresponding prompts with the
GPT-4o model [59].

We choose prompt engineering over fine-tuning the LLM dur-
ing the term classification process due to cost considerations. Prior
research [58, 70], along with our empirical observation (see §5.1),
indicates that clear task descriptions and relevant examples (taxon-
omy) significantly enhance LLM performance in text classification.
Therefore, for a given set of terms and conditions, we begin with
zero-shot term classification. This process outputs sets of positive
and negative terms, which are then used for clustering, inspection,
and topic modeling. The resulting template generated from this anal-
ysis will, in turn, enhance the classification accuracy, creating a
feedback loop that continuously improves our detection capabilities.

(3) Topic Modeling Module: The topic modeling module uses
LLMs and manual inspection to organize terms into meaningful
topics. We generate sentence embeddings with the T5 model [60]
and apply the DBSCAN clustering algorithm [23] to group terms
by semantic similarity. The DBSCAN hyperparameters are decided
through manual inspection.

To extract high-frequency topics, we leverage GPT-4o [59], build-
ing on recent findings that show LLMs outperform traditional topic
modeling methods like Latent Dirichlet Allocation (LDA) [8] and
BERTopic [31] in topic analysis [52, 67].

We develop an iterative topic modeling approach assisted by
GPT-4o proceeds as follows:

(1) We analyze DBSCAN clusters and create an initial topic
template for financial terms.

Table 1: Dataset and detection statistics—We source data from
the Tranco top 100k list, the FCWs dataset [6], and the FLOS
(Fraudulent and Legitimate Online Shops Dataset) [37], result-
ing in a total of 8,979 English shopping websites with terms and
conditions. We report the statistics of detected unfavorable fi-
nancial terms within them.

Source ShopTC-
100K (Ours)

FCW FLOS Total

D
at

as
et

s

Website to Query 100,000 6,127 1,040 27,167

Accessible 61,466 1,378 542 63,386

English 38,674 1,157 317 40,148

Website with T&C 8,251 463 265 8,979

Total Term Count 1,825,231 56,921 27,604 1,909,756

Website with
Unfavorable Terms 3,895 185 171 4,251

N
um

be
ro

fD
et

ec
te

d
Te

rm
s

Purchase and
Billing 2,920 75 53 3,048

Post-Purchase 7,075 423 404 7,902

Termination and
Account Recovery 780 2 4 786

Legal 1,108 1 1 1,110

Others 81 4 4 89

Total Unfavorable
Financial Terms 11,079 519 466 12,064

(2) GPT-4o performs topic modeling on random samples from
each cluster, assigning them to existing topics or suggesting
new ones.

(3) We review and refine new topic suggestions through manual
inspection, and updating the template.

(4) This process iterates until all clusters are assigned to a mean-
ingful and satisfactory topic.

This iterative workflow, combining clustering, human-guided
template creation, and GPT-4o’s advanced topic modeling, enables
efficient and comprehensive extraction of the topic template. We
analyze 22,112 clusters in total, creating the unfavorable financial
term taxonomy below.

ShopTC-100K Dataset.: In the data collection stage, we filter
8,251 shopping websites from the Tranco top 100K, resulting in
1.8 million terms. This dataset will be made public on Huggingface.
We present its statistics alongside two fake e-commerce datasets
in Table 3, and report the statistics of unfavorable financial terms
identified in later large-scale measurement (§5.2).

3.3 Unfavorable Financial Term Taxonomy
We report the 22 types of unfavorable financial terms, grouped into 4
categories as detailed below and in Table 2. Each type is exemplified
by a unfavorable financial term taken directly from real-world shop-
ping websites and analyzed for its alignment with the three criteria
proposed by the FTC Act [15]. A detailed taxonomy of unfavorable
financial terms can be found in Appendix C. While these unfavor-
able financial terms are not inherently deceptive, they often entail
future financial obligations that customers should be aware of. We
do not claim this list is exhaustive; however, it represents the most
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Table 2: Categories, types, and examples of unfavorable financial terms are clustered, extracted, and topic-modeled from 1.9 million
terms across 8,979 websites. All examples are extracted as-is from real-world shopping websites. The criteria are as follows: C1 =
“Substantial Injury” (the term causes or is likely to cause substantial injury to consumers), C2 = “Unavoidable Harm” (consumers
cannot reasonably avoid it), C3 = “Insufficient Benefits” (it is not outweighed by countervailing benefits to consumers or competition).
The symbols represent the likelihood of satisfaction of a given criterion: = Always, = Sometimes.

Category Type Example C1 C2 C3

Purchase
and

Billing
Terms

Immediate Automatic Subscription Also, as part of the promotion, you will receive a subscription to the FitHabit Fitness App for
only $86, and the subscription will renew monthly up until cancellation.

Automatic Subscription after Free Trial After the Promotion period has ended, unless you cancel the service before the end of the
free trial period, you will automatically be subscribed onto the regular paid 1-year plan at
the price of $275.40, which will automatically renew for successive 12-month periods, until
cancelled.

Unilateral Unauthorized Account Up-
grades

Brevo reserves the right to automatically increase the contacts limit in the User account and
upgrade the User’s plan without prior notice.

Late or Unsuccessful Payment Penalty In addition, if any payment is not received within 30 days after the due date, then we may
charge a late fee of $10 and we may assess interest at the rate of 1.5% of the outstanding
balance per month (18% per year), or the maximum rate permitted by law.

Overuse Penalty If the Company establishes limits on the frequency with which you may access the Site, or
terminates your access to or use of the Site, you agree to pay the Company one hundred
dollars ($100) for each message posted in excess of such limits or for each day on which you
access the Site in excess of such limits, whichever is higher.

Retroactive Application of Price Change When an applicable exchange rate is updated or when a change of price is notified to Brevo
by its suppliers or WhatsApp, Brevo might immediately apply with retroactive effect the new
Ratio and price increase to the User.

Post-
Purchase

Terms

Non-Refundable Subscription Fee If you or we cancel your subscription, you are not entitled to a refund of any subscription
fees that were already charged for a subscription period that has already begun.

No Refund For Purchase Unless a refund is required by law, there are No Refund For Purchases for POS terminals and
all transactions are final.

Strict No Cancellation Policy As Research and Markets starts processing your order once it is submitted, we operate a strict
no cancellation policy.

Cancellation Fee or Penalty Some Bookings can’t be canceled for free, while others can only be canceled for free before
a deadline.

Non-Refundable Additional Fee For this service, National Park Reservations charges a 10% non-refundable reservation fee
based on the total dollar amount of reservations made.

Non-Monetary Refund Alternatives Refund Policy: Refunds are not in cash but in the form of a “coupon”.

No Responsibility for Delivery Delays We will not be held responsible if there are delays in delivery due to out-of-stock products.

Customers Responsible for Shipping Is-
sues

If the parcel is on hold by the Customs department of the shipping country, the customer is
liable to provide all relevant and required documentation on to the authorities. Asim Jofa is
not liable to refund the amount in case of non-clearance of the parcel.

Customers Pay Return Shipping All shipping costs will have to be borne by the customer.

Restocking Fee An 8% restocking fee and shipping fees for both ways will be borne by the buyer if returned
without defects within 30 days from the purchase date or 7 days from delivery date, whichever
is later.

Termination
and

Account
Recovery

Terms

Account Recovery Fee To recover an archived or locked account, the legitimate creator of the account shall provide
verifiable information about one’s identity and will be charged a 10% administrative fee for
the additional work caused by the account recovery process.

Digital Currency, Reward, Money Seizure
on Inactivity

Please be noted that if your account is dormant for a period of 12 consecutive calendar months
or longer, ..., any amounts in your account’s balance, including any outstanding fees owed to
you, shall be considered as forfeited and shall be fully deducted to Appnext.

Digital Currency, Reward, Money Seizure
on Termination or Account Closure

All Currency and/or Virtual Goods shall be cancelled if Your account is terminated or sus-
pended for any reason or if We discontinue providing the Games and we will not compensate
you for this loss or make any refund to you.

Legal
Terms

Exorbitant Legal Document Request Fee Responding to requests for production of documents, and other matters requiring more than
mere ministerial activities on our part, will incur a fee of two hundred dollars ($200) per hour.

Forced Waiver of Legal Protections You hereby waive California Civil Code Section 1542. You hereby waive any similar provision
in law, regulation, or code.

Forced Waiver of Class Action Rights This agreement includes a class action waiver and an arbitration provision that governs any
disputes between you and Sendinblue.

Other Legal Unfavorable Financial Term ...
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         Financial terms to watch out for

①

②③

④

▸ There is a $24 restocking and 
refurbishing when you are returning.

HTML Screen
shots

Prompt

Topic
Template

Fine-tuning
Dataset

▸ You will automatically subscribe to 
the ActivCiti Fitness App for $70 per 
month.

…

Figure 3: TermLens Design— (1) When the user activates the
plugin, the current page URL is sent to the backend. (2) The
terms and conditions are crawled and combined with the page
information. (3) The pluggable LLM module analyzes this data,
and if unfavorable financial terms are detected. (4) Alerts are
generated and displayed on the front end to warn users of poten-
tially unfair financial terms.

prominent types among the 1.9 million terms from 8,979 websites.
We also report the financial term template in Appendix A.

It is important to note that this paper does not aim to analyze the
fairness of terms from the legal perspective. We consider our work to
be a complementary addition to the AI & Law datasets, by focusing
on the natural phrasing found in online shopping websites’ terms
and conditions. A comparison between our unfavorable financial
term template and previous work on online agreement fairness can
be found in Appendix E.

4 Unfavorable Financial Term Detection System
In this section, we introduce TermLens, a Chrome plugin designed
to detect unfavorable financial terms on e-commerce websites. Built
upon the insights gained from the unfavorable financial term tem-
plate and topic modeling analysis, TermLens enables efficient identi-
fication of potentially harmful financial terms, providing users with
real-time protection against unfair or unfavorable conditions.

4.1 System Overview
Our detection system is illustrated in Figure 3. When a user activates
TermLens, the URL of the current page is sent to the backend. Upon
receipt, the backend crawler collects the terms and conditions pages.
These term pages, along with the HTML content of the current page
(and a screenshot if paired with a multimodal LLM), are prepro-
cessed and sent to the pluggable LLM module for further analysis.
If the LLM module flags any terms as unfavorable financial terms,
the alert generator sends the identified terms back to the frontend,
where they are displayed to the user.

Pluggable LLM Module: We parse and preprocess the current
page to determine if it is a payment page, improving alert accuracy
by cross-checking unfavorable financial terms with payment details.
For example, in Figure 1, the term “You will be charged $6.85 for
the shipping and handling of your free smartwatch” aligns with
the payment page, making it less concerning than the Immediate

Table 3: Statistics of annotated datasets for fine-tuning and vali-
dation for each term category.

Type Fine-tuning Validation

Post-Purchase 51 48
Legal 30 30
Termination and Account Recovery 15 16
Purchase and Billing 32 32

Unfavorable Terms Combined 128 126

Benign 116 119

Total Count 244 245

Automatic Subscription term, “you will receive a subscription to
the FitHabit Fitness App for only $86,” which is not shown on the
payment page.

The Pluggable LLM Module, a key part of our system, analyzes
both terms and conditions pages and the current webpage. By keep-
ing the LLM decoupled from the backend, we allow flexibility in
integrating different models. This enables multimodal models like
GPT-4, GPT-4o [59], or LLaMA 3.2 [33] to process screenshots
and terms, or text-based models such as GPT-3.5 [12], LLaMA [72],
Mistral [38], or Gemma [71] to analyze HTML and terms.

Backend Core Module: The alert generator receives flagged
unfavorable financial terms and checks if the user is on a payment
page. If so, it only flags terms not displayed on that page. GPT-
4o analyzes page screenshots to mimic the user’s experience and
guard against adversarial text-based evasion. When the page is not a
payment page, all flagged financial terms are shown. Since returns
and refunds are rarely disclosed on payment pages, our evaluation
in §5.1 focuses on scenarios where the user is not on a payment page
and seeks to assess financial risks in advance.

5 Evaluation and Large-Scale Measurement
We implement and evaluate TermLens using a manually annotated
dataset. Our evaluation focuses on two key aspects: (1) assessing de-
tection performance to determine how effectively LLMs, including
both zero-shot and fine-tuned models, identify unfavorable financial
terms (§5.1), and (2) analyzing findings from large-scale measure-
ments using TermLens (§5.2).

5.1 Evaluation on an Annotated Dataset
Dataset: We created an annotated dataset by randomly selecting
500 terms from clusters of both unfavorable financial terms and
negative clusters (i.e., benign financial or non-financial terms). This
yielded 250 potential unfavorable financial terms and 250 benign
terms. Three researchers independently labeled the terms using the
unfavorable financial template, without knowledge of the clusters.
Disagreements were resolved in a second pass, and duplicates were
removed, resulting in a final corpus of 489 terms. The dataset was
split into 244 terms for fine-tuning and 245 terms for validation, as
shown in Table 3.

Baselines: To our knowledge, no prior work has directly ad-
dressed the detection of unfavorable financial terms. Recent advances
in large language models (LLMs) demonstrate superior performance
in common sense reasoning, complex text classification, and con-
textual understanding [12, 59, 72], outperforming older models like
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Table 4: Performance of LLMs in detecting unfavorable financial terms evaluated using zero-shot classification with GPT-3.5-Turbo,
GPT-4-Turbo, GPT-4o, Llama 3, and Gemma, along with fine-tuned GPT-3.5-Turbo and GPT-4o models.

Configuration Model Simple Prompt Unfavorable Term Taxonomy Prompt

FPR (%)
(↓ better)

TPR (%)
(↑ better)

F1 (%) (↑
better)

AUC (%)
(↑ better)

FPR (%)
(↓ better)

TPR (%)
(↑ better)

F1 (%) (↑
better)

AUC (%)
(↑ better)

Zero-Shot

GPT-3.5-Turbo 59.5 71.9 59.9 56.2 74.0 96.5 68.5 61.2
GPT-4o 58.6 72.6 61.4 56.2 34.4 96.6 82.5 80.3
GPT-4-Turbo 58.6 72.6 61.4 56.2 64.8 100.0 73.8 67.2
Llama 3 73.5 82.3 61.4 54.4 48.5 86.7 71.3 69.1
Gemma 56.8 80.5 65.2 61.9 74.2 100.0 69.8 62.8

Fine-Tuned GPT-3.5-Turbo - - - - 5.5 91.5 92.7 91.8
GPT-4o - - - - 2.3 92.1 94.6 91.8

BERT [19] and RoBERTa [45]. Therefore, we evaluate state-of-the-
art LLMs: (1) GPT-3.5-Turbo [12], (2) GPT-4-Turbo [59], and (3)
GPT-4o, along with two open-source LLMs: (1) LLaMA 3 8B [72]
and (2) Gemma 8B [71].

Evaluation Configurations: We evaluate two configurations:
(1) Zero-shot classification with a simple binary prompt describing
the unfavorable financial term and a multi-class taxonomy prompt
explaining term types, and (2) Fine-tuning the LLM using the taxon-
omy prompt to improve detection accuracy.

Simple Prompt
Classify the following term as 'malicious' or 'benign'.
A term is 'malicious' if it is a financial term that is
one-sided, unbalanced, unfair, or harmful to users.
Respond only with 'malicious' or 'benign'.

Unfavorable Term Taxonomy Prompt
You will be provided with a paragraph extracted from the
terms and conditions. Your task is to classify them into
one of the topics below or 'benign':

- Automatic Subscription after Free Trial: Automatically
subscribing users after free trials.
[...]

If the term is reasonable based on common sense, reply
'benign'.
If the term is malicious and financial, reply with a
topic from the template above.

Evaluation Metrics: We evaluate the models in terms of false
positive rate, true positive rate (recall), F1 score, and AUC (Area
Under the Curve). AUC represents the area under the ROC (Receiver
Operating Characteristic) curve, measuring the model’s ability to
distinguish between classes.

Zero-shot Classification Performance: As a baseline for unfavor-
able financial term detection, we evaluated zero-shot classification
with two prompts: (1) a simple prompt defining unfavorable financial
terms and (2) a taxonomy prompt explaining term types. Using the
taxonomy improved True Positive Rate (TPR) by 4.4% to 27.4%
and boosted the F1 score by 4.5% to 21.1%, showing a better bal-
ance of precision and recall. However, the False Positive Rate (FPR)
increased in most cases, except for GPT-4o, where it dropped by
24.2%. GPT-4o achieved the best overall performance with a TPR of
96.6% and an F1 score of 82.5%, demonstrating the importance of a
unfavorable financial term taxonomy for more accurate detection.

Fine-tuned LLM Classification Performance: We fine-tune
GPT-3.5-Turbo and GPT-4o for 10 epochs with a batch size of
1. As shown in Table 1, the dataset maintained a similar distribution

of terms across categories. Fine-tuning resulted in significant perfor-
mance improvements, with GPT-4o achieving a True Positive Rate
(TPR) of 92.1% and an F1 score of 94.6%. The fine-tuned GPT-4o
model outperforms other LLMs in distinguishing true positives from
false positives. These results demonstrate that fine-tuning, even with
a limited dataset, can substantially enhance detection performance.

5.2 Large-Scale Measurement
To understand the prevalence of unfavorable financial terms, we
deploy the fine-tuned GPT-4o model with TermLens for detection.
The backend detection system was applied to English shopping
websites filtered from the Tranco list’s top 100,000 sites, along with
two fake e-commerce website datasets: the FCWs dataset [6] and
the FLOS dataset [37]. This large-scale measurement serves as a
qualitative study on the prevalence of unfavorable financial terms in
popular shopping websites. We present our findings below.

Categorizing Websites with Unfavorable Financial Terms: As
shown earlier in Table 1, we collect terms and conditions from 8,979
English shopping websites, resulting in 1.9 million terms. Using a
GPT-4o model with the unfavorable financial term taxonomy, 12,064
terms (approximately 0.6%) were flagged as unfavorable financial
terms. Notably, 47.21% (3,895 out of 8,251) of the English shopping
websites from the top 100,000 Tranco-ranked sites contain at least
one type of unfavorable financial term. Figure 4(a) and (b) show
the number of terms and unfavorable financial terms across 8,251
websites, underscoring how difficult it is for consumers to review
lengthy T&Cs and pinpoint questionable financial terms thoroughly.
This emphasizes the importance of automated detection systems to
protect users from unfavorable terms.

Trend Analysis: Figure 4(c) shows the distribution of unfavor-
able financial terms across various categories among the top 100K
Tranco-ranked websites [73]. Post-purchase terms (in yellow) are the
most common across all ranking levels, with a higher concentration
in lower-ranked sites, suggesting these terms are more frequent on
less popular websites. Purchase and billing terms (in blue) also have
significant representation. Termination and account recovery terms
(in red) and legal terms (in green) are less frequent but more evenly
spread across the rankings. This trend highlights the widespread pres-
ence of unfavorable financial terms, especially on lower-ranked sites,
underscoring the need for greater regulation to protect consumers
from harmful practices, particularly on less reputable websites.

Comparing Tranco with Fake E-commerce Datasets: Interest-
ingly, the percentage of websites with unfavorable financial terms
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Figure 4: Statistics from Large-scale measurement of unfavorable financial term detection on Tranco top 100K websites.
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from the Tranco list (47.21%) is similar to that of fraudulent e-
commerce websites (48.90%). This suggests that unfavorable finan-
cial terms are not limited to fraudulent sites but are also prevalent
among high-ranking websites, pointing to a broader issue in con-
sumer protection. Websites from ShopTC-100K have more unfavor-
able financial legal terms, indicating that legitimate websites are
more inclined to shift liability onto customers than fraudulent ones.

Qualitative Study on User rating: From the English shopping
websites in the top 100k Tranco list, we select those with the high-
est frequency of unfavorable financial terms across categories. We
analyze Trustpilot [74] reviews for the top 10 websites in each unfa-
vorable financial term category with the highest presence, alongside
40 randomly selected websites. As shown in Figure 4(d), websites
with unfavorable financial terms tend to have lower Trustpilot rat-
ings, particularly those with “Post-Purchase Terms” and “Purchase
and Billing Terms,” indicating negative customer satisfaction. “Ter-
mination and Account Recovery” and “Legal Terms” also correlated
with lower ratings, though with more variation, suggesting mixed ex-
periences. This suggests a link between unfavorable financial terms
and consumer dissatisfaction.

Qualitative Study on Current Ecosystem Defense: We examine
whether the top 10 websites with the highest frequency of unfavor-
able financial terms are flagged by ScamAdviser [66], Google Safe
Browsing [28], and Microsoft Defender SmartScreen [50]. Out of 40
websites, only 6 (15%) have a ScamAdviser score below 90, and 5
(12.5%) scored below 10, while the majority receive a perfect score
of 100. None of the websites are flagged by Google Safe Browsing
or Microsoft Defender, which is expected since unfavorable financial
terms are not inherently indicative of scams.

Qualitative Study on User Perception: To illustrate the potential
harm of unfavorable financial terms, we present four case studies on
user perception and financial harm in each category in Appendix D.
This underscores the urgent need for automated systems to detect
unfavorable financial terms effectively.

6 Discussion
We introduce TermMiner, an automated pipeline for collecting and
modeling unfavorable financial terms in shopping websites with
minimal human input. Researchers can utilize our tools to examine
various aspects of web-based text, such as readability or accessibility,
and to conduct longitudinal studies, as discussed in Appendix E.

TermLens assumes that the financial terms in question are not
adversarially perturbed. Recent studies have highlighted LLM vul-
nerabilities to jailbreak and prompt-injection attacks [30, 44, 84].
These attacks can result in incorrect or overridden outputs. However,
for T&Cs, such adversarial perturbations are likely to subject to man-
ual scrutiny, particularly in post-complaint scenarios, such as legal
disputes [34]. We leave the exploration of adversarial robustness in
LLM-based unfavorable financial term detection for future work.

Ethics
We query and crawl terms and conditions from online shopping
websites, collecting data from each site only once. Since terms and
conditions are usually limited to a few subpages, this process does
not overburden the servers hosting these websites. In this paper, we
report some terms and conditions along with the associated compa-
nies, all of which are publicly available information. No personal
data is collected during the measurement process.

7 Conclusion
This paper is one of the first attempts to understand, categorize,
and detect unfavorable financial terms and conditions on shopping
websites. These terms, which can significantly impact consumer trust
and satisfaction, have not been extensively studied. By highlighting
the prevalence and types of unfavorable financial terms, we hope to
pave the way for increased awareness and further research in this
area. We develop an automated data collection and topic modeling
pipeline, analyzing 1.9 million terms from 8,979 websites to create
a taxonomy for unfavorable financial terms. This taxonomy includes
22 types across 4 categories, covering purchase and billing, post-
purchase activities, account termination, and legal aspects.

TermLens is the first study to evaluate the effectiveness of LLMs
in identifying unfavorable financial terms. Using a fine-tuned GPT-
4o model on a manually annotated dataset, TermLens achieves an F1
score of 94.6% with a false positive rate of 2.3%. In large-scale de-
ployment, we find that approximately 47.21% of shopping websites
in the Tranco top 100,000 contain at least one category of unfa-
vorable financial terms. Our qualitative analysis shows that current
ecosystem defenses are inadequate to protect users from these terms,
that less popular websites are more likely to include unfavorable
financial terms, and that there is a correlation between unfavorable
financial terms and user dissatisfaction.
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Appendix
A Financial Terms Topic Template
The financial term taxonomy consists of 12 categories:

(1) Subscription/Product Terms: Terms related to subscription
fees, billing, and automatic renewals.

(2) Service Termination Policy: Terms outlining the financial
implications of service termination.

(3) Payment and Purchase Term: Terms about payments, pro-
cessing fees, and currency transactions.

(4) Return and Refund Policy: Terms governing product returns
and service cancellations.

(5) Insurance and Warranty Term: Terms related to coverage,
claims, limitations, and premiums.

(6) Promotions and Rewards: Terms about offers, discounts,
loyalty programs, and rewards.

(7) Shipping and Handling Terms: Terms on product shipping
costs and policies.

(8) Dispute Resolution Policy: Terms outlining dispute resolu-
tion methods and processes.

(9) Investment and Trading Terms: Terms specific to invest-
ment/trading platforms.

(10) Intellectual Property Terms: Terms on rights and restrictions
for intellectual property use.

(11) Financial Glossary: Financial terminology definition.
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Table 5: Performance and Cost Analysis for Zero-Shot Shop-
ping Website Classification Using GPT-3.5-Turbo [12] and GPT-
4o [59] Models on 500 randomly selected websites.

Model Configuration ACC
(%)

TP
(%)

FP
(%)

TN
(%)

FN
(%)

GPT-3.5-Turbo URL 73 80.9 36.5 63.5 19.1
URL+HTML 24 31.5 5.5 94.5 68.5

GPT-4o URL 63 40.9 10.1 89.9 59.1
URL+Image 86 90.7 20.6 79.4 9.3

(12) Others: Includes less frequently mentioned financial terms.

B Shopping website classification Evaluation
To evaluate our classification methods, we randomly sampled 500
websites from the top 10,000 on the Tranco list for manual annotation
to identify shopping sites (offering products or services for sale). Of
these, 257 were categorized as “shopping”, 219 as “non-shopping”,
and 24 were inaccessible, due to either server issues or geo-blocking
IPs in the US. As indicated in Table 5, GPT-4o’s accuracy reached
86% when analyzing URLs with corresponding screenshots. Further
examination of a focused group, specifically English-language web-
sites with available T&Cs (115 out of 500), reveals that accuracy
improved to 81% for GPT-3 using only URLs and to 92% for GPT-4o
with screenshots, approaching the commercial-grade classification
benchmarks reported in previous studies (89%-93%) [48]. Based on
these statistics, GPT-4o paired with image data is selected for the
broader scale measurement of shopping websites.

C Unfavorable Financial Terms Taxonomy
We discover unfavorable financial term types falling under 4 broader
categories: 1) purchase and billing terms; 2) post-purchase terms;
3) termination and account recovery terms; and 4) legal terms. We
describe the taxonomy with an explanation for each type below:

Unfavorable Purchase and Billing Terms. This category includes sub-
scription, purchase, and billing terms that are unfavorable or con-
cerning for customers:

• Immediate Automatic Subscription. Additional subscrip-
tions are automatically added when purchasing an item or
during promotions without clear consent from the user.

• Automatic Subscription after Free Trial. Users are auto-
matically enrolled in a paid subscription after a trial period
ends unless they actively cancel.

• Unilateral Unauthorized Account Upgrades. Accounts
may be upgraded and charged at higher rates without pro-
viding prior notice to the user.

• Late or Unsuccessful Payment Penalty. Penalties or inter-
est charges are applied for late or unsuccessful payments.

• Overuse Penalty. Charging extra fees if usage limits are
exceeded. Typically found in subscription-based services
such as data plans, cloud storage, and streaming services.

• Retroactive Application of Price Change. Price (of sub-
scription-based services) increases can be applied retroac-
tively without prior notice to the user.

Unfavorable Post-Purchase Terms . This category includes cancel-
lation, shipping, return, and refund terms that are unfavorable or
concerning for customers:

• Non-Refundable Subscription Fee. Subscription fees that
have already been charged are not refunded.

• No Refund for Purchase. Purchases of individual items are
final and non-refundable.

• Strict No Cancellation Policy. Orders cannot be canceled
once they have been processed.

• Cancellation Fee or Penalty. Fees are applied for canceling
certain bookings, services, or online purchase orders.

• Non-Refundable Additional Fee. Charging non-refundable
additional fees under various labels such as service fees,
transfer fees, pre-authorization fees, administrative fees,
subscription upgrade fees, handling product fees, etc.

• Non-Monetary Refund Alternatives. Refunds are pro-
vided in the form of coupons, reward points, or store credit
rather than money.

• No Responsibility for Delivery Delays. Companies are not
held liable for delays in product delivery.

• Customers Responsible for Shipping Issues. Customers
are responsible for handling customs issues, additional ship-
ping charges, and any shipping-related complications that
do not involve delays.

• Customers Pay Return Shipping. Customers bear the cost
of return shipping for products.

• Restocking Fee. A fee is charged for restocking returned
items.

Unfavorable Termination and Account Recovery Terms. This category
includes account or service termination, deactivation, and reactiva-
tion terms that are unfavorable or concerning for customers:

• Account Recovery Fee. A Fee is charged to recover locked
or archived accounts.

• Digital Currency, Reward, Money Seizure on Inactivity.
Digital assets, such as rewards, points, and virtual currencies,
are forfeited or otherwise taken away if accounts remain
inactive for extended periods.

• Digital Currency, Reward, Money Seizure on Termina-
tion or Account Closure. Digital assets, such as rewards,
points, and virtual currencies, are forfeited or otherwise
taken away upon service termination or account closure.

Unfavorable Legal Terms. This category includes legal terms that are
unfavorable or concerning for customers:

• Exorbitant Legal Document Request Fee. High fees are
charged for requesting legal documents.

• Forced Waiver of Legal Protections. Customers are re-
quired to waive certain legal protections.

• Forced Waiver of Class Action Rights. Customers waive
their rights to participate in class action lawsuits.

• Other Legal Unfavorable Financial Term. Additional
legal terms that impose financial burdens or limit legal re-
course for the customer.

Many terms and conditions for online shopping websites include
strong legal language, such as waivers of class action rights, ar-
bitration clauses, and limitations of liability. This study does not
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In the event that you, Celsius or any Third Party Custodian 
becomes subject to an insolvency proceeding [...] You explicitly 
understand and acknowledge that the treatment of Digital 
Assets in the event of such an insolvency proceeding is 
unsettled, not guaranteed, and may result in [...] you being 
treated as an unsecured creditor and/or the total loss of any and 
all Digital Assets reflected in your Celsius Account...

Figure 5: Extracted from the T&C of Celsius Network LLC, a
now bankrupt cryptocurrency company.

specifically focus on the legal aspects for two main reasons: (1)
Although legal terms can impact users financially, they differ from
other categories we report. These terms, despite their potential future
implications, are not the primary concern when customers make a
purchase or sign up for a service. (2) There is another line of work
(see Appendix E) that focuses on terms deemed invalid in court. We
consider our work complementary to these studies. By not inten-
sively focusing on legal terms, we maintain a focus on terms with
immediate and direct financial implications for users.

D Case Studies
We present four case studies illustrating the potential harm of unfa-
vorable financial terms in each unfavorable financial term category.

Unfavorable post-purchase terms case study: National Park
Reservations [54], a company providing national park hotel and
lodging reservation service with a 1-star review on Yelp, includes
the following terms and conditions:

For this service, National Park Reservations charges
a 10% non-refundable reservation fee based on the
total dollar amount of reservations made. This reser-
vation fee will be billed separately to your credit
card and will be billed under the memo “National
Park Reservations”. By using National Park Reser-
vations, the customer authorizes National Park Reser-
vations to charge their credit card the 10% non-
refundable fee.

The above terms fall under the “Non-Refundable Additional Fee”
category. Figure 7 shows a word cloud that displays the most frequent
words from the top 50 Yelp reviews (2021-2024), excluding the
company name. Despite the non-refundable additional fee being
clearly stated in the terms and conditions, many customers still find
it deceptive. “Scam” is among the most frequent words in the reviews.
This shows the potential harm caused by unfavorable financial terms
and perceived deceptive practices, significantly impacting customer
trust and satisfaction.

Unfavorable termination and account recovery terms case study:
Compared to other categories of unfavorable financial terms, those
related to unfair, unfavorable, or concerning service termination and

Figure 6: Complied reviews for Neteller [55] from Trust Pi-
lot [74] regarding account closure.

account management are significantly less prevalent in our measure-
ments, as shown in Figure 4. However, these terms can still impose
substantial costs on customers. For example, the Terms of Use from
Neteller [55]—a digital wallet with a TrustScore of 10 out of 100
from Scamadviser [65]—include such terms:

If an Account has been closed, [...]. Fees relating
to ongoing management of inactive accounts will
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Figure 7: Word cloud based on the top 50 Yelp reviews of
National Park Reservations, whose T&Cs specify a 10% non-
refundable booking fee. “Scam” and “non-refundable” are fre-
quently mentioned words in the reviews.

also continue to be charged following the closure
of your Account. This provision shall survive the
termination of the relationship between you and us.

This term means that even after an account is closed, fees for
managing inactive accounts will continue to be charged, potentially
resulting in unexpected costs for customers. See Figure 6 in the
Appendix for a compilation of customer complaints about account
closures and issues with retrieving deposited funds. This demon-
strates the potential harm of unfavorable termination and account
recovery terms.

Unfavorable legal terms case study: Another concerning un-
favorable financial term is the inclusion of a waiver for California
Civil Code Section 1542, found in 2.1% (152 out of 7,225) of the top
80,000 Tranco-ranked websites. An example of such a term states:

If you are a California resident, you shall and hereby
do waive California Civil Code Section 1542, which
says: “A general release does not extend to claims
which the creditor does not know or suspect to ex-
ist in his favor at the time of executing the release,
which, if known by him must have materially af-
fected his settlement with the debtor.”

California Civil Code Section 1542 protects individuals from
unknowingly giving up their right to make claims for issues they
were not aware of at the time they signed a release. By including
a waiver for this code, websites are essentially asking customers
to give up this important protection. This indicates that these sites
are aware that most people do not thoroughly read the terms and
conditions. This oversight can be leveraged to disable significant
legal protection, which can make co-existing unfavorable financial
terms harder to dispute. In fact, 60.5% (92 out of 152) of the websites
with the California Civil Code Section 1542 waiver also have at least
one other category of unfavorable financial terms.

E Comparison with Other Online Agreement
Annotation Scheme

In this section, we introduce the annotation templates proposed
under the European Union (EU) framework for identifying unfair
contract terms [21, 25, 26, 43, 46]. While these studies emphasize

legal categories and jurisdictional issues, our research specifically
targets financial terms in online service agreements.

Loos et al. [46] analyze the unfair contract terms of online service
providers in light of the Unfair Contract Terms Directive (UCTD) [75]
of the European Union. The authors examine various types of con-
tractual terms from international online service providers, identify-
ing those that are unlikely to pass the Directive’s fairness test in the
following five categories:

• Unilateral Changes: Our analysis also considers unilateral
changes made by online service providers, particularly re-
garding financial aspects such as unilateral price changes,
plan upgrades, and various penalties.

• Termination Clauses: We examine termination clauses fo-
cusing on their financial consequences, including the seizure
of digital currency, reward points, or money upon termina-
tion.

• Liability Exclusions and Limitations: Both our paper and
the authors’ findings highlight the problematic nature of lia-
bility exclusions and limitations, which often unjustly limit
the providers’ responsibility for service failures, thereby
creating a significant imbalance in the parties’ rights and
obligations.

• International Jurisdiction and Choice-of-Law Clauses:
Although we have a category for unfavorable legal terms, the
detailed categorization of unfair legal terms is deferred to
future work. This is because, compared to other unfavorable
financial terms, legal terms typically have a more indirect
impact on users.

• Transparency: While the readability and accessibility of
terms and conditions are not the main focus of this paper, our
data collection and topic modeling pipeline can be readily
adapted for future research in these areas.

Another worth-noting line of work in unfair online agreements [21,
25, 26, 43]. The CLAUDETTE [43] system evaluates the fairness of
terms within the jurisdiction of the European Union by leveraging
legal standards and principles established within the EU framework.
The annotation scheme is as follows:

• Jurisdiction for disputes in a country different from the
consumer’s residence.

• Choice of a foreign law governing the contract.
• Limitation of liability.
• The provider’s right to unilaterally terminate the contract/access

to the service.
• The provider’s right to unilaterally modify the contract/service.
• Requiring a consumer to undertake arbitration before court

proceedings can commence.
• The provider retaining the right to unilaterally remove con-

sumer content from the service, including in-app purchases.
• Having a consumer accept the agreement simply by using

the service, without having to click on “I agree/I accept”
• The scope of consent granted to the ToS also takes in the

privacy policy, forming part of the “General Agreement”

We consider our work to be a complementary addition to the AI &
Law database, with our template being more aligned with the natural
phrasing found in terms and conditions of online shopping websites.
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We hope that future research will incorporate both the legal tem-
plates and our proposed template to provide a more comprehensive
understanding of the landscape of unfair (financial) terms.

F Term Page Regex
Below are the positive and negative regex matching pattern we
deploy for this work:

Positive
positive_regex = [

"terms.*?conditions",
"terms.*?of.*?use",
"terms.*?of.*?service",
"terms.*?of.*?sale",
"terms.*?of.*?conditions",
"terms.*?and.*?conditions",
"terms.*?&.*?conditions",
"conditions.*?of.*?use",
"intellectual.*property.*policy",
"return[s]?.*?policy",
"refund[s]?.*?policy",
"return.*?and.*?refund.*?policy",
"cancellation.*?and.*?returns",
"cancellation.*?returns",
"prohibited.*conduct",
"electronic.*communication.*policy",
"safety.*guideline",
"requests.*from.*law.*enforcement",
"bonus.*terms.*apply",
"community.*rules",
"gift.*card.*policy",
"contact.*us.*here",
"shipping.*policy",
"warranty",
"end.*user.*license",
"user.*?agreement",
"payment.*terms",
"content.*policy",
"terms"

]

The negative regex list is as follows:

Positive
negative_regex = [

"privacy.*?policy",
"cookie.*?policy",
"privacy.*?notice",
"sale.*?tax.*?policy",
"prohibited.*?items",
"1099.*?k.*?form",
"dmca.*copyright.*notification",

]
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