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Abstract

Ultra-High Definition (UHD) image restoration struggles to balance computa-
tional efficiency and detail retention. While Variational Autoencoders (VAEs)
offer improved efficiency by operating in the latent space, with the Gaussian
variational constraint, this compression preserves semantics but sacrifices critical
high-frequency attributes specific to degradation and thus compromises recon-
struction fidelity. Consequently, a VAE redesign is imperative to foster a robust
semantic representation conducive to generalization and perceptual quality, while
simultaneously enabling effective high-frequency information processing crucial
for reconstruction fidelity. To address this, we propose Latent Harmony, a two-
stage framework that reinvigorates VAEs for UHD restoration by concurrently
regularizing the latent space and enforcing high-frequency-aware reconstruction
constraints. Specifically, Stage One introduces the LH-VAE, which fortifies its
latent representation through visual semantic constraints and progressive degrada-
tion perturbation for enhanced semantics robustness; meanwhile, it incorporates
latent equivariance to bolster its high-frequency reconstruction capabilities. Then,
Stage Two facilitates joint training of this refined VAE with a dedicated restoration
model. This stage integrates High-Frequency Low-Rank Adaptation (HF-LoRA),
featuring two distinct modules: an encoder LoRA, guided by a fidelity-oriented
high-frequency alignment loss, tailored for the precise extraction of authentic de-
tails from degradation-sensitive high-frequency components; and a decoder LoRA,
driven by a perception-oriented loss, designed to synthesize perceptually superior
textures. These LoRA modules are meticulously trained via alternating optimiza-
tion with selective gradient propagation to preserve the integrity of the pre-trained
latent structure. This methodology culminates in a flexible fidelity-perception trade-
off at inference, managed by an adjustable parameter . Extensive experiments
demonstrate that Latent Harmony effectively balances perceptual and reconstruc-
tive objectives with efficiency, achieving superior restoration performance across
diverse UHD and standard-resolution scenarios. The code will be available at
https://github.com/1yd-2022/Latent-Harmony.

1 Introduction

Image restoration [1H7] aims to recover high-quality images from their low-quality degraded versions
with semantic recovery and detail reconstruction, which often struggles to handle unknown corruptions
in real-world scenarios. To address this, all-in-one image restoration methods [8H10] develop a
single model for multiple degradation types, striving for broad generalization. However, they often
face computational efficiency challenges, particularly at high resolutions. In contrast, Ultra-High
Definition (UHD) image restoration [11H16] specifically targets the immense data scale and intricate
detail preservation required for 4K images. To meet complex scenes with various degradations and
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Figure 1: Comparison with existing mainstream methods.Our method outperforms existing standard
and UHD all-in-one approaches by leveraging latent regularization, achieving superior efficiency and
generalization without requiring degradation-aware branches, while enabling adjustable fidelity and
perceptual quality during inference.

high resolution, UHD all-in-one image restoration [11] is developed based on the above works,
amplifying the challenges of robust generalization, extreme computational efficiency, and meticulous
detail fidelity.

To enhance efficiency, existing methods employ Variational Autoencoders (VAEs) to migrate the
core restoration process to a lower-dimensional, compact latent space [[14, 17, [11} [18]. This approach
allows downstream de-degradation networks to operate on significantly smaller latent space, and
finally decoding step back to the original space to reconstruct fidelity details while preserving
semantics.

However, directly applying VAEs to complex all-in-one UHD image restoration tasks reveals inherent
limitations. The VAE’s typically achieve compression through Gaussian variational inference, excels
at preserving global robust semantic representations [19]. Yet, this mechanism often leads to the loss
of critical high-frequency attributes intertwined with degradation characteristics, restricting VAE’s
ability for high-fidelity reconstruction with the loss of fine details and textures affected by various
corruptions. Therefore, a fundamental challenge arises: how to redesign VAE mechanisms to effec-
tively trade-off two crucial properties: (1) extracting degradation-robust semantic representations that
ensure good generalization and perceptual quality, and (2) ensuring that these latent representations,
upon reconstruction to original pixel space, can adequately process and represent degradation-related
high-frequency information for high reconstruction fidelity.

To address this challenge, this paper proposes Latent Harmony (LH), a novel two-stage synergistic
framework. The core idea of the LH framework is to enable the latent representation to possess both
strong semantic robustness and high reconstruction capability by simultaneously regularizing the
latent space and imposing high-frequency-related reconstruction constraints.

The first stage introduces the LH-VAE as the foundation for all-in-one UHD image restoration. In its
encoding process, building upon the VAE’s original Gaussian distribution constraint for latent, the
LH-VAE further incorporates progressive degradation perturbation and visual semantic constraints to
enhance latent semantic robustness. Concurrently, during its decoding process, latent space equivari-
ance constraints are introduced to improve the latent representation’s intrinsic ability to reconstruct
high-frequency components. This stage aims to construct a generalized latent space resilient to
various degradations and possessing a more balanced frequency characteristic for reconstruction.

The second stage is built on the above VAE. This stage involves joint training with a restoration model,
addressing the VAE co-optimization and the perception-fidelity balance. After initially training a
latent space restoration network with a fixed LH-VAE, an innovative high-frequency-guided Low-
Rank Adaptation (HF-LoRA) fine-tuning mechanism is introduced. To manage degradation-sensitive
high-frequency information and enhance fidelity, Fidelity-oriented HF-LoRA (FHF-LoRA) is intro-
duced into the encoder, guided by a high-frequency alignment loss that aligns with the restoration
model. Meanwhile, to enhance the perceptual quality of reconstructed output, perception-oriented
HF-LoRA (PHF-LoRA) is incorporated into the decoder guided by a high-frequency perception
loss. These LoRA modules are trained via alternating optimization with the corresponding losses,
thereby protecting the pre-trained VAE'’s structure from potentially disruptive gradients. Further-
more, the framework allows users to flexibly balance the fidelity-oriented and perception-oriented
high-frequency contributions in the final output via an adjustable parameter « during inference.

The main contributions of this paper include:



* We construct a new Latent Harmony two-stage framework, which systematically addresses
the multiple trade-off challenges in UHD all-in-one image restoration.

* We design a new latent space regularization strategy that combines progressive degradation,
semantic alignment, and equivariance constraints to construct a high-quality generalized
VAE latent space.

* We propose a pioneering high-frequency-guided LoRA fine-tuning paradigm that optimizes
encoder LoRA for fidelity and decoder LoRA for perception, achieving a synergistic solution
for enhanced performance, VAE structural integrity, and controllable output characteristics.

* Extensive experiments demonstrate the superiority of the proposed framework across various
UHD and standard-resolution degradation scenarios.

2 Related Work

2.1 UHD and All-in-One Image Restoration

Ultra-High Definition (UHD) image restoration focuses on recovering high-fidelity images from
low-quality UHD observations [14H16} 20-22]]. The primary obstacles are the prohibitive com-
putational cost of processing high-dimensional data and the critical need to preserve fine-grained,
high-frequency details. Directly applying deep models in the pixel space is often computationally
infeasible. Consequently, a dominant strategy is the downsample-enhance-upsample paradigm. Meth-
ods like UHDFour [23] perform 8x downsampling to enable inference on edge devices, while others
like UHDformer [[16] and UDR-Mixer [24]] use high-resolution features or frequency modulation
to guide restoration in a lower-resolution space. However, this downsampling approach inherently
discards information crucial for intricate textures in UHD images, imposing an upper bound on the
achievable restoration quality. An alternative, efficiency-oriented approach leverages latent space
models, such as Variational Autoencoders (VAEs), to perform restoration in a compressed latent
domain. For example, DreamUHD [14] employs a VAE with frequency-domain enhancements, and
CD2-VAE [18] uses a VAE with feature decoupling to maintain background fidelity while removing
degradations. These works underscore the potential of carefully designed latent space models for
UHD restoration. Nevertheless, a key challenge remains: enhancing the representational capacity of
the latent space for complex degradations while mitigating the intrinsic limitations of VAEs, such as
the trade-off between generalization and reconstruction accuracy.

All-in-One image restoration aims to devise a unified model capable of addressing diverse, mixed, or
unknown degradation types, necessitating exceptional generalization and adaptability [25} 10} 9l 26
28]. Unlike traditional methods that are tailored to specific degradations, All-in-One models are better
suited for real-world scenarios with complex degradation patterns. Key challenges include managing
degradation heterogeneity, mitigating task conflicts, and achieving awareness of unseen degradations.
A prevalent architecture combines a degradation-aware branch with a powerful image restoration
backbone. The former often utilizes Mixture-of-Experts (MoE) [29] 28] or Prompting [30H32]], while
the latter typically adopts architectures like Restormer or NAFNet. For instance, PromptIR [9]
introduced a prompt-based mechanism to adapt to various degradations, and MoCE-IR [33] leverages
an MoE design for specialized expert handling. Despite their strong performance, these methods often
exhibit limited efficiency, which makes full-resolution inference on UHD images computationally
demanding on consumer-grade GPUs and thus hinders their practical deployment.

2.2 Variational Autoencoders and Latent Space Optimization

Variational Autoencoders VAEs are widely used in image restoration due to their encoder-decoder
structure, which maps high-dimensional images to a low-dimensional latent space. The VAE objective,
the Evidence Lower Bound (ELBO), creates a fundamental tension between reconstruction fidelity
and latent space regularity, the latter enforced by a KL divergence term that constrains the latent
posterior to a prior distribution. This trade-off is critical: excessive regularization can lead to blurry
reconstructions from an information-starved latent space, whereas prioritizing fidelity can weaken
the latent structure and impair generalization. While VAEs are foundational to tasks like denoising
and super-resolution and form the backbone of Latent Diffusion Models (LDMs), their inherent
information compression often leads to the loss of high-frequency details—a significant drawback
for UHD restoration. Recent works aim to mitigate this; for example, FA-VAE [34] uses frequency-



complementary modules, and Wavelet-VAE [35]] and LiteVAE [36]] leverage wavelet transforms to
better preserve high-frequency components.

latent space regularization To overcome the limitations of standard VAEs, researchers have devel-
oped advanced strategies for latent space regularization. Beyond simply tuning the KL divergence
weight as in 5-VAE [37]], these include applying contrastive learning for improved discriminability
(e.g., Hi-CDL in CD2?-VAE [18]]), imposing geometric constraints on the latent manifold [38} 39,
and employing diffusion-based decoders to enhance generation quality (e.g., e-VAE [40]). Such
techniques aim to make latent representations more robust to transformations like image degrada-
tions. For instance, aligning VAE latents with features from powerful pre-trained vision models
like DINOV2 [41], as done in VAVAE [42], injects valuable semantic priors that improve robustness.
Furthermore, methods like REPA [43]] and REPA-E [44] explore feature alignment losses to optimize
VAE and LDM co-training, which also refines the latent structure. These advancements suggest
that integrating multiple regularization strategies—particularly by combining external priors with
internal structural constraints—is a promising direction for creating a latent space optimized for
All-in-One UHD image restoration. This principle forms the foundation of our proposed Latent
Harmony framework.

3 Motivation
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Figure 2: Motivation Analysis. (a) t-SNE visualization of VAE latents under diverse degradations,
showing Baseline2’s degradation-sensitive clustering versus our method’s semantic clustering. (b)
Cross-degradation cosine similarity (CDCS) analysis, with higher CDCS in high-frequency bands.
(c) DCT spectral analysis, revealing Baselinel’s low high-frequency components and Baseline2’s
elevated components, indicating a reconstruction-generalization trade-off via latent high-frequency
proportions. (d) Fine-tuning loss comparison, highlighting stable downstream gains with high-
frequency loss. (e) HF-LoRA experiments, demonstrating optimal fidelity and perceptual gains
from encoder (fidelity loss) and decoder (perceptual loss) fine-tuning.(Note: All metrics in (e) are
normalized to a positive scale, where higher values indicate better performance)

3.1 Latent Space Representation: Generalization vs. Reconstruction

To inform our VAE’s design for UHD all-in-one image restoration, we conducted experiments
comparing two VAE baselines: standard VAE (baselinel) and VAE with enhanced reconstruction
(baseline2, Appendix). By analyzing the Cross-Degradation Cosine Similarity (CDCS) of their
latent representations for diverse degraded inputs in Fig. [2(b), we find that stronger reconstruction



(baseline2) yields lower latent CDCS (i.e., more diverse among degradations), even below the input’s
pixel-space CDCS. The t-SNE in Fig.[2[a) depicts a similar phenomenon that stronger reconstruction
promotes degradation-driven clustering in latent space, undermining content-based organization.
These results suggest that enhancing VAE’s reconstruction capability makes the latent space
more sensitive to input degradations, posing challenges for downstream restoration networks.

We then further perform frequency-domain analysis for latent representations in Fig. 2(b), depicting
that high-frequency exhibits low CDCS and low-frequency depicts higher CDCS. Subsequently, a
more detailed frequency analysis is performed for both pixel and latent spaces, referring to [45]].
Results in Fig. Figure[2c) indicate that VAEs with stronger reconstruction capabilities (baseline2)
tend to encode a significantly higher proportion of high-frequency components in their latent space
compared to the pixel space. This implies that a VAE with strong reconstruction ability encodes
ample high-frequency information to manage the challenging task of decoding consistent fine
details.

Moreover, we find that the high-frequency components inherently exhibit low CDCS (Fig. 2[b))
among degradations in latent. Based on the above observations, an excessive proportion of high fre-
quencies is beneficial for detailed reconstruction but compromises the latent space’s robustness
to varied degradations. Therefore, our first core impetus is to constrain the latent space to a more
moderate high-frequency proportion, balancing latent representation robust to degradations (high
CDCS in latent) for generalization and has good reconstruction capabilities (low CDCS in latent).

3.2 VAE Co-optimization: Downstream Adaptation vs. Structural Preservation

Following the pre-trained VAE with initial generalization capabilities, a critical question arises:
should this VAE remain fixed for downstream restoration tasks, or can downstream restoration
supervision signals further adapt the pre-trained VAE to improve the final restoration performance?

While co-optimizing the VAE with the downstream restoration network theoretically promises im-
proved overall performance, direct joint optimization is fraught with risks. Drawing parallels from
Latent Diffusion Models (LDMs), where directly applying the main diffusion loss to the VAE can be
detrimental [44]]. We conceptualize an observational experiment, the pretrained VAE is fine-tuned
by backpropagating the restoration loss Lg.s from the downstream network Ry. As illustrated in
Fig.[2(d), unfreezing the VAE yields faster initial PSNR gains compared to its frozen version; however,
continued training often results in performance oscillations. This phenomenon can be attributed to the
direct optimization pressure of L., which compels the encoder to prematurely and aggressively re-
move degradations from the input. Consequently, this direct '"encoder-latent-restoration-decoder"
optimized paradigm tends to devolve into a simplified bottleneck structure geared toward direct
pixel-level restoration, thereby disrupting the learned latent space structure. In contrast, while a
frozen VAE ensures training stability, its lack of adaptation to the restoration task leads to a
performance bottleneck that cannot be overcome in later training stages.

The success of REPA-E [44] achieves effective co-optimization using representation alignment,
suggesting a path. In our restoration task, while Stage 1 for VAE’s generalization might reduce some
high-frequency components, the final reconstruction quality depends on recovering these details. This
motivates using high-frequency information alignment as a "bridge" loss for co-optimization.

In our restoration task, as discussed in Section @ enhanced generalization often sacrifices some
high-frequency information, while low-frequency components are effectively encoded within a struc-
tured latent space. To balance the preservation of the pre-trained latent structure in VAE with
performance gains in downstream restoration tasks during joint optimization, we focus the
optimization objective on high-frequency components, employing high-frequency information
alignment as a "'bridge' loss for co-optimization. As shown in Fig.[2[d), backpropagating the
high-frequency loss to update the VAE maintains training stability while overcoming performance
bottlenecks of restoration. Conversely, using a low-frequency alignment loss leads to training insta-
bility. Thus, our second core impetus is to introduce high-frequency alignment loss as a bridge for
joint optimizing VAE and restoration network, preserving the VAE’s pre-trained, highly generalizable
representations while achieving further performance improvements driven by downstream tasks.



3.3 High-Frequency Restoration From Latent: Perception vs. Fidelity

To address the need for task-specific VAE adaptation through high-frequency guidance (see Sec-
tion[3.2), we focus on designing the high-frequency alignment loss and analyzing its impact on output
quality. High-frequency detail recovery entails a trade-off between perceptual quality and fidelity.
Pixel-level losses (Ly;, ), typically formulated as Maximum Likelihood Estimation, minimize both
Systematic Effect (SE) that affects fidelity via regressable components like edges, and Variance Effect
(VE) that influences perception through non-regressable textures [46]. Minimizing L,,;,, including its
high-frequency component, suppresses SE and VE, yielding high PSNR but perceptually flat outputs
due to reduced VE. This is expressed as:

min Ey [L(y, pg) — L(y, 1y)] + Ey g [L(y,9) — L ys 1)) ¢ (1)

SE: LF + regressable HF VE: non-regressable HF

where £ is a symmetric loss, y ~ p(y|z), § estimates y, and p,,, (15 are their respective means.

(a) Fidelity-Oriented High-Frequency Restoration: This approach prioritizes the faithful extraction
or disentanglement of authentic high-frequency components from the input signal, aligning with
the ground truth /... It emphasizes the "traceability" of high-frequency details, aiming to closely
match the ground truth and achieve high fidelity metrics. However, its efficacy is constrained by
the availability of residual high-frequency information in the input. Moreover, the suppression of
variance effects (VE) can result in monotonous textures, thereby limiting overall perceptual quality.

(b) Perception-Oriented High-Frequency Generation: This strategy focuses on generating visually
natural high-frequency details, which may not precisely map to the input signal but rely heavily on
learned priors about natural images’ appearance high frequencies. It prioritizes the visual "plausi-
bility" of high-frequency information, aiming to preserve or shape VE for enhanced visual quality.
However, it may introduce structural inaccuracies or hallucinations and compromise fidelity.

The analysis reveals that mechanisms targeting structural fidelity (SE reduction) and texture perception
(VE preservation/shaping) inherently pursue distinct optimization objectives. To address these coupled
objectives, we introduce two independent Low-Rank Adaptation (LoRA) modules. Specifically, we
fine-tune the VAE’s encoder, decoder, or both using fidelity-oriented and perception-oriented high-
frequency losses, respectively, and evaluate their impact on fidelity and perceptual metrics. As
shown in Fig.[2e), fine-tuning the VAE’s encoder with the fidelity loss enhances fidelity metrics
with minimal perceptual quality degradation, while fine-tuning the VAE’s decoder with the
perceptual loss improves perceptual metrics at a modest cost to fidelity.

This insight forms our third core impetus: within a high-frequency-alignment-based VAE fine-
tuning framework, we propose differentiated mechanisms. One mechanism focuses on faithfully
extracting and aligning regressable high-frequency components to enhance fidelity in VAE’s encoder,
while the other concentrates on generating perceptually superior non-regressable high-frequency
details to improve perceptual quality in VAE’s decoder. We posit that balancing these independently
guided mechanisms can effectively synergize fidelity and perception.

4 Methodology

Building on Section [3] this chapter details our proposed Latent Harmony two-stage synergistic
framework. This framework, through latent space regularization in the first stage and high-frequency
guided controllable refinement in the second stage, addresses the trade-offs between: (1) latent space
generalization and reconstruction fidelity, (2) VAE co-optimization with downstream tasks versus
structural preservation, and (3) the final output’s perceptual quality versus fidelity.

4.1 Stage One: Constructing a Generalizable Latent Space Representation

The objective of this stage is to train a Variational Autoencoder (VAE) comprising an encoder £ and
a decoder D,;, such that it learns a latent space Z robust to various degradations. The base training
follows the standard VAE objective, optimizing a loss Ly 4 g that includes an L1 reconstruction loss
on clean images /..., and a KL divergence regularizer:

Lyag = HDw(Ed)(Iclean)) - Icleannl + Ak - KL [QQS(Z ‘ Iclean) ” p(z)} )
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Figure 3: Framework Overview. Stage 1: LH-VAE training employs progressive degradation
perturbation, degradation-invariant visual semantic loss Ly, and latent space equivariance loss
L gq. to construct a robust, generalizable latent space. Stage 2: Latent space restoration leverages Iy
and high-frequency-guided LoRA fine-tuning, with Fidelity-oriented HF-LoRA (FHF-LoRA) for the
encoder and Perception-oriented HF-LoRA (PHF-LoRA) for the decoder, enabling adjustable fidelity
and perceptual quality via parameter « during inference. Results of « tuning are shown in the upper
panel, with metrics normalized positively, where higher values indicate better performance.

To counteract the standard VAE latent space’s sensitivity to degradations, particularly in high-
frequency components , we introduce a progressive degradation perturbation strategy(PDPS). During
training, increasingly severe degradations are applied to I .., over time ¢. This perturbation is
probabilistic and can take one of three forms: no perturbation, synthetic degradation, or interpolation
with a paired real degraded image I4... The severity of synthetic degradations is controlled by an
increasing function sev(t), and the interpolation with 14eg is controlled by an increasing coefficient
B(t). Formally, the perturbed image I, éeg is generated as:

Leiean with probability pg
Iieg = { SynthDeg(Icican, sev(t)) with probability p; 3)
(1 - B(t))lclean + 5(t)ldeg with prObabilitY b2
where pg + p1 + p2 = 1. SynthDeg(1, sev(t)) applies a randomly selected set of synthetic degrada-
tions (e.g., Gaussian noise, blur, JPEG compression) to image I, with their severity controlled by
sev(t), a monotonically increasing function of ¢. The interpolation coefficient 3(¢) € [0, 1] is also a
monotonically increasing function of ¢, signifying a progressively stronger influence of the paired
degraded image. This progressive approach ensures learning stability.

On this basis, two key regularization losses are incorporated. The degradation invariance visual
semantic loss Ly leverages semantic features fy pps = VEM(Igjeqn ) extracted from a pre-trained
DINOV2 [41] model as a reference, enforcing the encoder Ey to align the encoding 27, = Ey(1},,)
of the perturbed image with this reference, learning a degradation-invariant content representation:

Line = d(2ge; fvrar) )
where d(-, -) denotes a distance metric in the feature space. Additionally, the latent space equivariance
loss L g, constrains the consistency between the decoded result of a randomly downsampled

latent encoding zgown = Downg(2zcieqan) and the corresponding downsampled image Ijpwn =
Downg (1 jcqn ), enhancing scale robustness and reducing reliance on high-frequency components:

LEq'u - ||D¢(Zdown) - Idown”l (5)

The joint optimization objective for this stage combines these terms as:
LStagel = LVAE + )\Inlenv + )\EquEqv (6)

Optimizing this objective yields VAE parameters (¢*,*) that define a latent space exhibiting
stronger cross-degradation consistency and more balanced frequency characteristics, establishing
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Figure 4: Visual results for four types of degradation removal with other all-in-one methods.

a generalizable foundation for subsequent restoration, albeit potentially at the cost of reducing
high-frequency information useful for reconstruction.

4.2 Stage Two: High-Frequency Guided Controllable Low-Rank Adaptation

This stage aims to achieve high-quality image restoration using the generalizable latent space (¢*, 1*)
from Stage One, while compensating for lost high-frequency details and providing controllability
over the final output. Initially, a latent space restoration network Ry is introduced, which processes
the encoded degraded latent 24y = Eg+(I4eq) to predict a restored latent z,cs = Rg(2qeq). This
network is trained solely with a standard restoration loss, keeping VAE’s parameters (¢*, 1*) frozen:

LRes = ||D'¢1* (Zres) - Iclean”l (7)

Gradients update only the parameters 6 via 6 <— 0 — NV LRes.

Subsequently, to finely restore high-frequency information without compromising the acquired
generalization, high-frequency-guided Low-Rank Adaptation (HF-LoRA) fine-tuning is applied to
the pre-trained VAE. Low-rank updates A¢r,ra and AYp,r4 are introduced to the base param-
eters ¢* and ¢, such that ¢ = ¢* + A¢rora and ¢ = ¥* + AYrora. The LoRA parameters
Orora = {AdLorA, AYLorA} are optimized solely by a specific high-frequency alignment loss
L, decoupled from the main restoration loss L p.s, to preserve the latent space structure learned
in Stage One. We design Fidelity-oriented HF-LoRA (FHF-LoRA) for the encoder, guided by a
high-frequency alignment loss to enhance fidelity, and perception-oriented HF-LoRA (PHF-LoRA)
for the decoder, guided by a high-frequency perception loss to improve perceptual quality, with both
modules trained using an alternating optimization strategy.

When optimizing the FHF-LoRA (A¢1,rA4), the decoder uses its frozen base parameters ©*, with
the objective being a high-frequency fidelity loss L g F,.,, that extracts high-frequency structures from
the degraded input consistent with the ground truth:

Lrp,, = [HF (Dy< (Eg 4 ¢ 10n4 (Ldeg))) — HE(Leican) 4 ®)

When optimizing the PHF-LoRA (A 1,r4), the encoder uses its frozen base parameters ¢*, with
the objective being a high-frequency perceptual loss Ly .., to generate visually natural and sharp
high-frequency textures, enhancing perceptual quality. This loss is implemented as a GAN-based
loss L F, , > minimizing the adversarial loss for the generator (decoder LoRA) to deceive a high-
frequency discriminator Dy p. The discriminator Dy is optimized by adversarial loss:

Lurgan = —Er,., log Duyr (HF (Dyx 4 Ay ona (Ro(Eg (Laeg)))))] ©)

4.3 Inference-Time Control

The differentiated LoRA modules, trained with distinct losses and alternating optimization—Ad¢,r 4
for fidelity extraction and Atr,ga for perceptual generation—provide flexibility during inference.
Users can introduce a control parameter o € [0, 1] to dynamically adjust the contributions of the
encoder and decoder LoRA modules to the final result, for instance, via ¢ = ¢* + aAdrora and
Y = 9*+ (1 —a)A¢Lora. This mechanism enables a tailored trade-off between maximizing fidelity
and optimizing perceptual quality, depending on application requirements.



Table 1: Comparison to state-of-the-art on four degradations. PSNR (dB, 1), SSIM (1), and
LPIPS (|), and FS represents full-size 4K image inference. FLOPs are computed for an input size of
256x256. Best and second best performances are highlighted.

Low Light  Deblurring Dehazing Denoising

Method FS FLOPs Params. Average
UHD-LL UHD-blur ~ UHD-haze UHDN,.;5 UHDN,.;5 UHDN,_59

AIRNet [25] X 301G M 19.24 809 21.89 .757 1837 .812 21.33 .887 20.78 .784 18.79 475 20.07 .754 .2843
IDR [47] X 888G 153M  23.12 910 24.67 .793 19.12 .768 27.48 912 2586 .872 24.57 .654 24.14 .822 .2684
PromptIR [9] X 158G 33M 2344 902 2577 782 19.97 727 2843 924 26.74 898 2372 .584 24.68 .803 .2571
CAPTNet [30] X 25G  243M 2396 920 26.11 .798 19.46 .868 2558 .865 23.24 .884 21.98 .508 23.39 .809 .3466
NDR-Restore [27] X 196G 369M 2384 .894 2425 .802 20.08 .892 25.62 912 2437 .897 2294 .669 2352 .846 .3126
Gridformer [48] X 367G 34M 2312 898 25.82 .783 19.24 869 36.04 937 31.72 898 26.24 .623 27.03 .836 .3754
DiffUIR-L [49] X 10G 362M 2156 812 2385 .743 1828 .864 36.84 938 3242 897 26.08 .648 2651 818 .2564
Histoformer [50] X 911G 16.6M 2322 908 25.62 .782 19.78 903 26.88 .845 25.64 .874 23.13 .659 24.04 .829 .3524
adalR [10] X 147G 287M 2357 916 2635 .801 18.44 901 32.84 921 3048 901 2648 .672 2636 .857 .3429
HAIR [8] X 416 29M 2575 922 25778 798 20.00 .894 3554 916 30.84 .878 26.26 .657 27.36 .847 2822
UHDprocesser [11] v 4G 1.6M  27.11 .925 2648 .803 20.94 .923 38.94 975 33.99 .903 2795 .677 29.23 .868 .2541
Ours v 3.6G 1.2M  27.32 926 26.98 .811 21.21 .924 39.21 .978 34.78 .918 28.72 .707 29.70 .877 .2502

Table 2: Comparison to state-of-the-art on six degradations. PSNR (dB, 1), SSIM (1), LPIPS ({)
and FS represents full-size 4K image inference. FLOPs are computed for an input size of 256 x256.
Best and second best performances are highlighted.

Low Light ~ Deblurring Dehazing Denoising Deraining  Desnowing

Method FS FLOPs Params. Average
UHD-LL UHD-blur ~ UHD-haze UHDN,-5y UHD-rain = UHD-snow

AIRNet [23] X 301G M 22.68 .887 2352 876 1824 846 2238 876 2635 .876 27.38 .924 2343 874 .1861
IDR [47] X  88G 153M 2433 915 2564 .788 18.68 .879 29.64 906 28.82 .906 30.48 .945 2627 .890 .1912
PromptIR [9] X 158G 33M 233 911 2648 805 20.14 901 2488 .835 2889 .897 30.78 .966 25.74 .886 .2155
CAPTNet [30] X 25G  243M 2497 921 2632 .796 2032 903 21.64 .569 29.34 908 3221 974 2580 .845 .2861
NDR-Restore [27] X 196G 369M 2512 885 2564 .791 1921 896 3144 915 2924 897 2841 .948 26.51 .889 .3108
Gridformer [48] X 367G 34M 2392 898 25.68 .782 18.87 .889 32.86 915 29.37 .904 2824 942 2649 .895 2321
DiffUIR-L [49] X 106 362M 2264 902 2508 .785 18.62 .889 33.25 .928 27.89 .886 27.36 .945 25.81 .889 .1844
Histoformer [50] X 91G 16.6M 2573 915 2655 .796 18.73 897 33.05 .924 2796 884 2756 971 26.59 .898 .1855
adalR [10] X 147G 287M 2384 918 26.86 .803 19.34 910 32.46 923 28.18 901 27.72 953 26.40 .901 .2492
HAIR [8] X 41G 29M 2522 897 2477 799 1875 .883 3250 915 2876 .893 27.89 .968 2631 .892 .2607
UHDprocesser [L1] v 4G 1L.6M 2691 .924 2695 .807 21.81 .931 33.73 .934 2990 915 32.73 .979 28.67 .915 .1839
Ours v 3.6G 1.2M  27.14 925 27.21 .815 2232 936 34.17 942 3141 919 33.24 .982 29.24 .920 .1822

S Experiments
5.1 All-in-One and Single-Task Restoration on UHD Scenes

We evaluated the efficacy of our proposed method for the UHD all-in-one restoration task across two
experimental configurations: four-degradation and six-degradation settings. As reported in Tables|T]
and[2] our approach consistently achieved state-of-the-art performance in both settings while main-
taining optimal computational efficiency. Fig. [ shows visual results of the four-degradation setting,
depicting that our method effectively removes degradations while preserving intricate background
textures. Although our method is designed for all-in-one tasks, it does not significantly compromise
single-task restoration performance, as detailed in the supplementary.

5.2 Adaptability and Application Exploration on Standard-Resolution Scenes

Our method employs a unified processing strategy for all degradations, eschewing specialized
degradation-aware branches, thereby achieving superior generalization compared to traditional ap-
proaches. We validated this generalization capability under two experimental settings: unseen
degradations excluded from training and novel composite degradations formed by combining trained
degradation types. As shown in Table[d] our approach significantly enhances generalization per-

Table 3: Adaptability in Standard-Resolution Scenarios.Comparisons use LPIPS and FID scores,
with lower values indicating superior performance.

Type Method Haze Rain Snow Motion Blur Raindrop Low-light
Discriminative-based PromptIR [9] 0.309/141.05 0.097/32.61 0.100/18.34 0.163/35.79 0.189/84.48 0.421/189.87
PromptIR /w Ours 0.224/121.12 0.086/28.68 0.092/17.12 0.161/35.12 0.182/76.84 0.378/172.59
LDM-based Diff-Plugin [51] 0.340/143.66 0.165/39.71 0.178/18.08 0.147/37.68 0.185/60.64 0.466/167.63
Diff-Plugin/w Ours 0.321/131.12 0.162/39.43 0.174/18.02 0.138/35.42 0.146/44.26 0.432/152.28
VAE-based CosAE [17] 0.328/148.78 0.146/38.27 0.162/16.78 0.186/41.28 0.182/49.27 0.482/182.24
CosAE/w Ours 0.224/128.12 0.098/28.79 0.121/11.56 0.168/36.22 0.119/40.62 0.382/159.83




Table 4: Generalization Verification. PSNR (dB, 1), SSIM (1), and LPIPS ({) are reported.

Method Unseen Composite Degradation

UHD-rain UHD-snow UHD-moire LLIE+Noise Haze+LLIE Noise+Blur
HAIR 2432 0924 0392 2543 0.903 0.223 1728 0.798 0.446 18.12 0.812 0492 16.72 0.862 0439 18.42 0.854 0471
UHD-processer  22.72  0.924 0.342 21.82 0918 0.267 1432 0.778 0.489 13.28 0.842 0.428 1238 0.872 0462 1828 0.824 0.492
Ours 28.13 0.892 0.233 28.92 0.967 0.184 19.26 0.898 0.326 20.33 0.882 0.342 19.82 0.904 0.328 24.28 0.898 0.278

formance in both scenarios, demonstrating that the homogeneous latent space processing paradigm
proposed in this work is a more robust alternative to incorporating degradation-aware branches.

The primary objective of this work is to develop a VAE framework tailored for UHD restoration tasks.
However, VAEs are also widely employed in standard-resolution scenarios to enhance perceptual
quality and reduce the computational demands of diffusion-based restoration methods. To demonstrate
the versatility of our approach, we integrated our proposed LH-VAE with three representative standard-
resolution restoration methods: discriminative-based, Latent Diffusion Model (LDM)-based, and
VAE-based. Experiments were conducted on a multi-degradation benchmark curated from the Gendeg
dataset. As shown in Table[3] our method significantly improves the perceptual metrics of all three
approaches in standard-resolution settings, thereby validating its generalizability.

5.3 Ablation Studies
Table 5: Ablation Studies.Comprehensive ablation experiments validate the efficacy of our approach.

(a) Ablation study of Latent Harmony. (c) Ablation Study of Latent Restoration Network.

Configuration PSNR 1 SSIM 1 LPIPS | metri Restormer NAFNet SFHformer
C

Latent Harmony 29.77 0.88 0.250 Base +Ours Base +Ours Base +Ours
w/o Liny 24.28 0.79 0.292 PSNR (dB) 2422 29.73/+5.51 24.63 29.68/+5.05 24.54 29.70/+5.16
w/o Lgqy 25.68 0.82 0.302 Param (M) 26.1  3.8/-85% 29.1  1.9/-93% 7.6 1.2/ -84%
w/o PDPS 27.82 0.84 0.287 FLOPS (G) 1409 62/-95% 16.1  4.7/-71% 510  3.6/-93%
w/o FHF-LoRA 28.12 0.86 0.286 Runtime (s) 8.8  0.62/-92% 4.6  041/-92% 52  0.43/-92%
w/o PHF-LoRA 29.02 0.84 0.306 ES x v x v x v
w/o LoRA Fine-Tuning 28.68 0.85 0.298
w/o Fine-Tuning 28.48 0.86 0.292 (d) Performance metrics under different o values.

Metric a = 0.2 a = 0.4 a = 0.6 a = 0.8

(b) Inference time comparison.

PSNR 28.94 29.28 29.70 29.74
DreamUIR Histformer UHDprocesser LH (Ours) SSIM 0.862 0.867 0.877 0.878
LPIPS 0.2218 0.2483 0.2502 0.2904

12.3 8.4 12 043 User 9.2 738 62 438

To validate the contributions of the key components in our “Latent Harmony” framework, we con-
ducted thorough ablation experiments on the UHD all-in-one restoration task, systematically removing
or modifying individual components and assessing their impact on performance using PSNR, SSIM,
and LPIPS metrics. Results are summarized in Table 5] The ablation of primary components,
presented in Table[5(a), confirms the effectiveness of each proposed element. Additionally, the latent
space restoration network in Latent Harmony adopts SFHformer [55]], and we verify the robustness of
our approach across alternative network architectures in Table[5(c). Runtime comparisons, shown
in Table [5(b), demonstrate significant efficiency gains over competing methods, underscoring the
necessity of eliminating degradation-aware branches. The impact of the tuning parameter o on fidelity
and perceptual quality is illustrated in Table [5[d), where increasing « enhances fidelity metrics at the
expense of perceptual metrics, validating the tunability of our method’s output. Detailed experimental
setups, implementation specifics, and additional results and analyses are provided in supplementary.

6 Conclusion

This paper addressed critical VAE-based trade-offs in UHD all-in-one image restoration, encom-
passing latent generalization versus reconstruction, structural integrity during co-optimization, and
the perception-fidelity balance. We introduced Latent Harmony, a two-stage framework. Its first
stage constructs a robust Latent Harmony VAE (LH-VAE) via principled latent space regularization.
The second stage features high-frequency-guided LoRA fine-tuning, distinctly optimizing encoder
LoRA for fidelity and decoder LoRA for perception, while preserving VAE structure. An inference
parameter o enables explicit fidelity-perception control. Extensive experiments validated Latent
Harmony’s superior restoration performance and effective balancing of these trade-offs across diverse
scenarios, presenting a promising advancement for UHD image restoration.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We summarize our contributions at the end of the introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]

Justification: We explicitly list limitations of our work in appendix.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: It is explained in the motivation and method.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have included implementation details in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release the source code upon acceptance of the paper.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: It is explained in appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We discussed the details in the paper and it is statistically meaningful.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: It is explained in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, we confirm.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]
Justification: This is discussed in appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: [TODO]
Guidelines: We believe there is no such risk.

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit the original owners of all assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will release the source code and model upon acceptance of the paper.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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