
Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Zheng Gong 1 Ying Sun* 1

Abstract

Discrete Graph Diffusion Models (DGDMs) mark
a pivotal advancement in graph generation, effec-
tively preserving sparsity and structural integrity,
thereby enhancing the learning of graph data dis-
tributions for diverse generative applications. De-
spite their potential, DGDMs are computationally
intensive due to the numerous low-parameter yet
high-computation operations, thereby increasing
the need of inference acceleration. A promis-
ing solution to mitigate this issue is model quan-
tization. However, existing quantization tech-
niques for Image Diffusion Models (IDMs) face
limitations in DGDMs due to differing diffusion
processes, while Large Language Model (LLM)
quantization focuses on reducing memory ac-
cess latency of loading large parameters, unlike
DGDMs, where inference bottlenecks are compu-
tations due to smaller model sizes. To fill this
gap, we introduce Bit-DGDM, a post-training
quantization framework for DGDMs which in-
corporates two novel ideas: (i) sparse-dense ac-
tivation quantization sparsely modeling the acti-
vation outliers through adaptively selected, data-
free thresholds in full-precision and quantizing
the remaining to low-bit, and (ii) ill-conditioned
low-rank decomposition decomposing the weights
into low-rank component enable faster inference
and an α-sparsity matrix that models outliers. Ex-
tensive experiments demonstrate that Bit-DGDM
not only reducing the memory usage from the
FP32 baseline by up to 2.8× and achieve up to
2.5× speedup, but also achieve comparable per-
formance to ultra-low precision of up to 4-bit.

1Artificial Intelligence Thrust, Hong Kong University of Sci-
ence and Technology (Guangzhou), Guangzhou, China. Corre-
spondence to: Ying Sun <yings@hkust-gz.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

𝐺𝑇 𝐺𝑇−1

…

𝐺

𝑝𝜃(𝐺
𝑇−1|𝐺𝑇)

(a)

(b)

𝑞(𝐺1|𝐺)

sampling noise recursive denoising

Figure 1. (a) An illustration of DGDM in the generation of a graph.
(b) A comparison of the representative models widely used in
DGDMs, IDMs, and LLMs, including Digress (Vignac et al.,
2023), SD1.4 (Rombach et al., 2022) and Gemma2-2b (Team
et al., 2024), in terms of parameter sizes, computation time, and
inference time. The LLM is evaluated with 512 context tokens and
256 output tokens, while DGDM and IDM are assessed over 50
diffusion steps.

1. Introduction
Graph generation plays a pivotal role in graph learning (Li
et al., 2024a; Liu et al., 2023c; Gong et al., 2023), with
applications spanning drug design (Wu et al., 2018), code
completion (Brockschmidt et al., 2018), and social network
analysis (Newman, 2006). Recently, diffusion models (Rom-
bach et al., 2022; Podell et al., 2024) have emerged as a
cutting-edge and effective approach for generative tasks,
with significant attention being directed toward graph diffu-
sion models (Jo et al., 2022; Vignac et al., 2023). A notable
development is the emergence of Discrete Graph Diffu-
sion Models (DGDMs) (Yi et al., 2023; Liu et al., 2024),
which employ discretized diffusion processes, as illustrated
in Fig. 1(a). These approaches exhibit particular capability
in preserving sparsity and structural integrity of the gener-
ated graphs. However, DGDMs face computational chal-
lenges due to their reliance on a recursive denoising process,
thereby necessitating dedicated acceleration techniques.

1

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Quantization (Jacob et al., 2018; Wang et al., 2020) rises as
a crucial direction for model acceleration, wherein floating-
point numbers are converted into integers, thereby enhanc-
ing computational efficiency from a hardware perspective.
However, existing quantization methods primarily focus
on IDMs and LLMs. For IDMs, quantization approaches
are centered on calibrating errors between the Gaussian de-
noising processes of full-precision and quantized models,
such as time step-aware calibration (Li et al., 2023) and
Gaussian noise correction (He et al., 2024b). Moreover,
given huge model sizes, LLMs’ inference latency is domi-
nated by weight loading, prompting LLM-oriented quanti-
zation methods to emphasize memory access optimization
through vector quantization (Egiazarian et al., 2024) and
non-uniform quantization (Kim et al., 2024). However, ex-
isting quantization methods are inadequate to address the
unique challenges of DGDMs:

(1) The inference efficiency of DGDMs is bounded by
computations instead of memory access. The functioning
of DGDMs relies on substantial low-parameter yet high-
computation operations (e.g., FiLM network (Perez et al.,
2018)), which render DGDMs computationally intensive
and result in longer runtime compared to basic Image Diffu-
sion Models (IDMs) and Large Language Models (LLMs),
as depicted in Fig. 1(b). However, due to the inherent dif-
ferences between the discrete diffusion process in DGDMs
and the Gaussian denoising process in IDMs, most quantiza-
tion methods designed for IDMs face significant limitations
when applied to DGDMs. Moreover, since DGDMs have
substantially smaller parameter sizes compared to LLMs
(0.07B versus 2B, as shown in Fig. 1(b)), the quantization
methods designed to reduce the latency of LLM weight
loading may be inefficient for the quantization of DGDMs.

(2) Considerable outliers in DGDMs are observed in
both weights and activations. The outliers, referring to
entries with magnitudes significantly larger than others, can
substantially impact quantization precision by amplifying
magnitudes and compressing the distinctions of remaining
values. In text and image tasks, where outliers primarily oc-
cur in activations rather than weights, existing quantization
methods like smoothing (Li et al., 2024b; Xiao et al., 2023)
attempt to transfer these outliers from activations to weights.
However, in graph generation tasks, outliers are significantly
present in both activations and weights (Sec. 4.1), render-
ing both aspects highly susceptible to outlier effects. This
dual vulnerability diminishes the effectiveness of smoothing
methods in mitigating outliers (Sec. 5.2). Consequently, se-
lecting an appropriate quantization approach to mitigate the
influence of outliers in both activations and weights is cru-
cial for maintaining the performance of quantized DGDMs.

In this paper, we propose a post-training quantization frame-
work for DGDMs, called Bit-DGDM. Grounded in the in-

sight that the inference efficiency of DGDMs is primarily
constrained by computation and the observation that out-
liers are prominently present in both weights and activa-
tions, Bit-DGDM introduces a novel approach combining
sparse-dense activation quantization with ill-conditioned
low-rank weight decomposition to effectively mitigates the
impact of outliers. Moreover, we implement equidistributed
& adaptive sparse-dense kernels tailored for the decomposed
matrix multiplication. These techniques achieve high effi-
ciency at precisions as low as 4 bits, minimizing memory
usage and speeding up inference without sacrificing model
performance or the quality of generated graphs. To the
best of our knowledge, we are among the first to propose a
quantization framework for DGDMs.

The detailed contributions of our work are as follows:
• Sparse-Dense Activation Quantization: Recognizing

that activations in DGDMs contain significant outliers,
our sparse-dense activation quantization method utilizes
a sparse matrix modeling outliers and a dense matrix
modeling remaining values based on adaptively selected,
data-free thresholds (Sec. 4.2).

• Ill-Conditioned Low-Rank Weight Decomposition: To
address the outliers in weights and enhance computational
efficiency, we decompose the weights into low-rank com-
ponents and an α-sparsity matrix that models outliers,
ensuring guaranteed recovery (Sec. 4.3).

• Equidistributed & Adaptive Sparse-Dense Kernels:
To optimize inference speed and precision, we quantize
the dense part of the product of decomposed weights
and activations into low-bit representations and design
equidistributed, adaptive sparse-dense kernels for effi-
cient sparse-dense matrix multiplications (Sec. 4.4).

• Evaluation: We conduct extensively experiments across
multiple DGDMs and diverse datasets to demonstrate
that Bit-DGDM can effectively quantize DGDMs and ob-
tain the superior performance compared with other SOTA
quantization baselines. Notably, Bit-DGDM achieves
2.5× inference speed while reducing the memory foot-
print by up to 2.8× (Sec. 5.2 and Sec. 5.3).

2. Related Work
The related work of this paper falls in two categories: Graph
Generation Models and Model Quantization. Detailed re-
cent advancements of Quantization for LLMs and Outlier-
Aware Quantization can be found in Appendix A.

2.1. Graph Generative Models
With the widespread prevalence of graph data (Sun et al.,
2024; Ji et al., 2025; Gong & Sun, 2024b;a; Huang et al.,
2022; Shi et al., 2024; Han et al., 2024), graph generation
has found extensive applications, including inverse protein
folding (Yi et al., 2023), molecule generation (Wu et al.,

2

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

2018), and program synthesis (Brockschmidt et al., 2018).
Early on, there was considerable interest in graph generation
using RNNs (You et al., 2018), VAEs (Simonovsky & Ko-
modakis, 2018), GANs (De Cao & Kipf, 2018) or normaliz-
ing flows (Zang & Wang, 2020). Inspired by the tremendous
success of diffusion models in the image domain, Niu et al.
(2020) relied on Gaussian noise and generated adjacency ma-
trices by thresholding continuous values to represent edges,
while Jo et al. (2022) extended this approach to incorporate
both node and edge attributes. Given the discrete nature of
graph structures, Haefeli et al. (2022) were the first to de-
sign a discrete diffusion model specifically for unattributed
graphs, demonstrating that discrete diffusion can enhance
graph generation. Furthermore, Vignac et al. (2023) intro-
duced the first Markovian noise model, Digress, tailored
for attributed graphs, and Yi et al. (2023) extended Digress
to inverse protein folding task where the node features are
represented as 3D coordinates. In our study, we focus on the
quantization of discrete graph diffusion models, as they in-
herently capture discrete structures and demonstrate greater
efficacy in graph generation.

2.2. Model Quantization
Model quantization aims to save memory costs and speed
up computations by reducing the precision of weights and
activations. It can be generally divided into two cate-
gories. Quantization-aware training (QAT) (Jacob et al.,
2018; Zhuang et al., 2018) integrates quantization during
the training process, enabling high performance at lower
precision. However, it necessitates significant time and
computational resources. In contrast, post-training quanti-
zation (PTQ) (Wei et al., 2022a; Lin et al., 2022) does not
require fine-tuning and only requires a small amount of unla-
beled data for calibration, offering a faster and less resource-
intensive alternative. Due to the huge computation costs of
diffusion models, recent quantization approaches (He et al.,
2024b;a; Li et al., 2024b) for diffusion models focused on
PTQ. These approaches have pushed the boundaries of PTQ
to 4-bit quantization by leveraging new rounding strate-
gies (Nagel et al., 2020), layer-wise calibration (Wang et al.,
2020), second-order statistics (Li et al., 2021), and mixed-
precision schemes (He et al., 2024b). However, these meth-
ods primarily focus on continuous diffusion models, partic-
ularly in the image domain. To the best of our knowledge,
there is a lack of methods addressing PTQ for DGDMs.

3. Preliminary
In this section, we first revisit discrete graph diffusion mod-
els and then introduce the quantization process. Follow-
ing Vignac et al. (2023), we focus on graphs with categorical
node and edge attributes, particularly well-suited for diverse
structured data like chemical compounds (Wu et al., 2018)
and proteins (Ingraham et al., 2019). Let X and E denote
the categorical space of nodes and edges with cardinalities

|X | and |E|, respectively. For a graph G = (X,E) with
|V| nodes, X ∈ R|V|×|X| is the matrix of node categorical
attributes, and each row xi ∈ R|X | denote the one-hot en-
coding of node i attributes. E ∈ R|V|×|V|×|E| represents
the one-hot encoding eij ∈ R|E| of each edge, treating the
absence of edge as a particular edge type. Here, we take
the 2D graph generation problem as an example, while the
input for the other application of graph generation will be
discussed in detail in Appendix C.

3.1. Discrete Graph Diffusion Models
Discrete graph diffusion models consist of two main com-
ponent: a noise process and a recursive denoising process.

Noise process. The noise process q progressively cor-
rupts graph G and creates a sequence of increasingly
noisy graphs (G1, ...,GT), where Gt = (Xt,Et). It
has a Markovian structure, where q(G1, ...,GT |G) =

q(G1|G)
∏T
t=2 q(Gt|Gt−1). In line with Vignac et al. (2023),

we add noises by sampling each node and edge type from a
categorical distribution as

q(Gt|Gt−1) = (Xt−1Nt
X ,E

t−1Nt
E), (1)

where the transition matrix Nt
X = αtI + βt1am

′
X , and

Nt
E = αtI + βt1am

′
E . m′X and m′E denote the true cat-

egorical distributions of node and edge attributes as the
prior distributions, respectively. Since (1am

′
X)2 = 1am

′
X ,

we have the closed-form N
t

X = N1
XN2

X ...N
t
X = αtI +

β
t
1am

′
X , where αt =

∏t
τ=1 α

τ and β
t
= 1 − αt, sat-

isfying ∀i, limT→∞N
T

X1i = m′X . Thus, it then follows
q(Xt|X0) = Cat(Xt;XN

t

X) and

q(Xt−1|Xt,X0) = Cat(Xt−1;
XtNt>

X �X0N
t−1

X

X0N
t

XXt>
), (2)

where Cat denotes categorical distribution. The edge transi-
tion distribution is defined similarly and omitted for brevity.

Recursive denoising process. The denoising process
pθ(G0:T) = p(GT)

∏T
t=1 pθ(Gt−1|Gt) parameterized by θ

aims to recover the distribution p(G0) (for brevity, G0 := G).
The reversed transition pθ(Gt−1|Gt) is a product of categor-
ical distributions over nodes and edges, i.e., pθ(Xt−1|Gt)
and pθ(Et−1|Gt). Aligned with the x0-parameterization
used in continuous diffusion models (Karras et al., 2022;
Ho et al., 2020), pθ(Xt−1|Gt) is modeled as:

pθ(X
t−1|Gt) ,

∑
X̃0∈X

q
(
Xt−1 | Xt, X̃0

)
pθ

(
X̃0 | Gt

)
, (3)

where pθ(X̃0 | Gt) is a neural network predicting posterior
probability of X0 given a noisy graph Gt. The architec-
tures of neural networks will be illustrated extensively in
Appendix C. The reversed process for edges is similar to the
nodes and thus omitted. After training, the new graph sam-
ples can be generated by sampling GT from prior distribu-
tions m′X and m′E and subsequently sampling pθ(Gt−1|Gt),
resulting in a generation trajectory (GT ,GT−1, ...,G0).

3

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Remark 3.1 (DGDMs versus IDMs). In DGDMs, both the
noise process and the recursive denoising process model
the node attributes and graph structures through discrete
sampling from categorical distributions. In contrast, IDMs
rely on Gaussian noise and denoising processes, where each
step is represented as continuous values. This difference
renders many IDM-oriented quantization methods, such as
Gaussian noise correction (He et al., 2024b; Li et al., 2023),
difficult to apply to DGDMs.

3.2. Quantization
Quantization is an effective approach to reduce model size
and accelerate computations. Given a tensor X, the quanti-
zation process is defined as:

XQ = clamp(
⌊

X

sX

⌉
+ zX, 0, 2

B − 1), (4)

where XQ is the low-bit representations of X, sX =
max(X)−min(X)

2B−1
is the scaling factor, zX = −

⌊
min(X)
sX

⌉
is the zero point, and 2B − 1 denotes the maximum quan-
tized value with respect to the bit width b. The dequantized
tensor is formulated as:

X̂ = Q−1(Q(X)) = sX · (XQ − zX). (5)

Due to the high computational costs of diffusion model train-
ing, we focus on post-training quantizing the parameters
of well-trained discrete graph diffusion models, i.e., θ in
Eqn. (3), to reduce memory requirements and enhance the
efficiency of graph generation, e.s.p.molecule synthesis (Wu
et al., 2018) and protein folding (Ingraham et al., 2019).

4. Bit-DGDM: Outlier-Aware PTQ for DGDM
In this section, we first discuss the impact of outliers in the
quantization of DGDMs in Sec. 4.1. Then we introduce
the our post-training quantization framework Bit-DGDM
comprising sparse-dense activation quantization and ill-
conditioned low-rank weight decomposition, detailed in
Sec. 4.2 and Sec. 4.3, respectively. At last, we introduce
our kernel implementation for efficiently inference on the
quantized DGDMs in Sec. 4.4. The overall architecture and
algorithm of our framework are shown in Fig. 3 and Alg. 1.

4.1. Outlier Analysis of DGDMs

The quantization process based on Eqn. (4) and (5) reveals
that the presence of outliers significantly amplifies the scale
factor by increasing the maximum value and decreasing the
minimum value. Since adjacent ranges of the scale factor are
quantized into neighboring integers, a larger scale factor im-
plies that a wider range of floating-point numbers is mapped
to the same integer, leading to greater quantization errors
and ultimately degrading quantization precision. In the left
panels of Fig. 2, we visualize the distributions of activations

𝑿

𝑾

Activation (𝑿) and Weight (𝑾)

in one layer (Layer Index=3)

𝑿

K

u
rt

o
si

s
𝑾

 K
u

rt
o
si

s

Layer Index

C
o
u

n
t

C
o
u

n
t

0.1% outliers

0.5% outliers

0.1% outliers

0.5% outliers

Layer Index

Kurtosis (𝜿) of 𝑿 and 𝑾
across different layers

𝜅 ↑ heavier tails
𝜅 ↓ flatter shape

…

…

Figure 2. The left panels illustrate the numerical distributions of
activations and weights for the layer with index 3. On the right, the
top and bottom panels show how removing the largest and smallest
0.1% and 0.5% of outliers significantly reduces the kurtosis of the
numerical distributions. A lower kurtosis corresponds to a flatter
distribution, which facilitates quantization.

and weights in one layer of DGDMs, along with the top and
bottom 0.1% and 0.5% quantiles marked as outliers. It is ev-
ident that these outliers substantially increase the magnitude.
In the right of Fig. 2, kurtosis (κ) is employed as a statistical
measure, defined as κ ({xi}ni=1) =

n
∑n
i=1(xi−x̄)4(

(
∑n
i=1(xi−x̄)2)

2
) . A

higher kurtosis value indicates heavier tails, while a lower
kurtosis corresponds to a smoother distribution (Westfall,
2014). Removing a small number of the most significant
outliers is shown to significantly reduce kurtosis, thereby
improving quantization precision.

4.2. Sparse-Dense Activation Quantization

The analysis of DGDMs in Sec. 4.1 indicates a significant
presence of outliers in the activations. Additionally, we
observe that the volume of activations is substantially larger
than that of the weights (e.g., 105 versus 103 for a single
layer, as shown in Fig. 2), highlighting the computational
intensity of DGDMs. Therefore, it is imperative to propose
an efficient quantization method for activations that not
only ensures quantization precision but also mitigates the
impact of outliers. With this in mind, we introduce a method
to filter out outliers and quantize the activations. We first
perform a simple yet effective decomposition of activation
X ∈ Rb×m into a sparse matrix SX containing the outliers
and a remaining dense matrix DX :

X = DX + SX . (6)
DX can be effectively quantized into low-bit representa-
tion D̂X due to its significant reduced value ranges. The
outliers contained in sparse SX are filtered from X via
SX = X[x > τmax|x < τmin], where the thresholds τmax/min
are selected based on the percentile of the value distribution.

Data-free Adaptive Threshold Selection. The selection
of thresholds τmax/min typically requires a substantial num-

4

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

16-bit 𝑹

Low-Rank 𝑫𝑊 = 𝑳𝑹𝑇

0.7

0.9

0.6

0.5

𝛼-Sparsity 𝑺𝑊

+

Ill-conditioned

Decomposition

(Sec. 4.3)

Sparse 𝑺𝑋

16-bit 𝑳

rank=32

Dense 𝑫𝑋

Sparse-Dense

Quantization

(Sec. 4.2)

|𝑾|

|𝑿| +
Quantization and

Efficient Kernel

(Sec. 4.4)

𝑿𝑾 = (𝑺𝑋 +𝑫𝑋)(𝑺𝑊 + 𝑫𝑊)

≈ 𝑫𝑋𝑫𝑊 + 𝑺𝑋𝑳𝑹
𝑇 + 𝑿𝑺𝑊

low-bit
Sparse-Dense

multiplication𝑾

𝑿

Difficult to quantize Easy to quantize

Easy to computeDifficult to quantize

Figure 3. Our quantization framework Bit-DGDM consists of three phases. (i) Decomposing the activations into a sparse matrix modeling
outliers and a dense quantized matrix modeling remaining values (Sec. 4.2). (ii) Utilizing the ill-conditioned low-rank decomposition
method for decomposing weights into an α-sparsity matrix and a low-rank components (Sec. 4.3). (iii) Quantizing the dense parts to
low-bit representations and implementing efficient kernel for sparse-dense matrix multiplication (Sec. 4.4).

ber of activation values to ensure accurate percentile estima-
tion. A straightforward approach involves inferring activa-
tion values using a training dataset. However, this necessi-
tates access to a large raw dataset. Acquiring such datasets
is often challenging due to their size, privacy concerns, and
copyright restrictions. Moreover, avoiding the use of raw
datasets enhances the applicability of post-training quanti-
zation. With this in mind, we propose a data-free method
for adaptive threshold selection. Our approach begins by
sampling multiple initial graphs {GT } = {(XT ,ET)} from
uniform distributions of node and edge types:

XT ∼ U({1, ..., |X |}), ET ∼ U({1, ..., |E|}). (7)

These graphs are processed through the full-precision
DGDM to obtain intermediate activation values in each
steps. Thresholds are then selected based on the activations
from all steps within the same layer, using predefined per-
centiles, thereby facilitating effective quantization without
relying on raw datasets.

4.3. Ill-conditioned Low-Rank Weight Decomposition
Our analysis of outliers in activations and weights indicates
that, unlike in LLMs where outliers predominantly occur
in activations, DGDMs exhibit significant outliers in model
weights as well. This characteristic may render quantization
methods via smoothing inefficient (Xiao et al., 2023), as
reducing the magnitude of activations comes at the cost of
amplifying the magnitude of weights, thereby exacerbat-
ing the impact of outliers on weight quantization. More-
over, quantization approaches that mitigate outlier effects
through SVD decomposition (Li et al., 2024b) may also
be compromised, as outliers can substantially influence the
magnitude of singular values and the direction of singular
vectors. Inspired by robust principal component analysis
(RPCA) (Candès et al., 2011) for enhancing the dimen-

sion reduction robustness for the outlier-existing matrix, we
propose an ill-conditioned low-rank weight decomposition
method. The overall algorithm for weight decomposition is
illustrated in Alg. 2. We assume that the weight W ∈ Rm×n
is a superposition of D?

W and S?W :

W = D?
W + S?W , (8)

where S?W is a sparse matrix modeling the outliers of weight
W, and D?

W is a rank-r matrix modeling the remaining
component. Herein, ∗ denote the ideal or target values,
while the following variables without ∗ denote the variables
to be optimized. We define the sparsity of SW following
α-sparsity constraint (Yi et al., 2016; Netrapalli et al., 2014):

Definition 4.1 (α-sparsity). The sparse matrix S is α-
sparsity if at most α-fraction of nonzero entries per row
and column for α ∈ [0, 1), which we denote as:

Sα := {S ∈ Rm×n|∀i, j, ‖Si,:‖0 ≤ αn, ‖S:,j‖0 ≤ αm}.

To avoid the low-rank constraint on DW , we write DW as
product of DW = LR> with L ∈ Rm×r and R ∈ Rn×r.
We utilize the low-rank matrix LR> and the sparse matrix
SW to reconstruct the raw weight matrix W through the
following optimization objective:

min
L∈Rm×r,R∈Rn×r,SW∈Sα

‖LR> + SW −W‖2F , (9)

where ‖ · ‖F denotes Frobenius Norm. To enable gradi-
ent descent on efficiently optimizing L and R, we denote
the loss function in k-th iteration Lk := L(Lk,Rk) :=
‖LkR>k + SW,k −W‖2F . To enforce the α-sparsity con-
straint of SW in Def. 4.1, we employs a sparsification oper-

5

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

ator Tα(·) for any matrix M ∈ Rm×n:

[Tα(M)]i,j =

[M]i,j ,
if |[M]i,j | ≥ |[M]

(αn)
i,: |

and |[M]i,j | ≥ |[M]
(αm)
:,j |,

0, otherwise,
(10)

where [·](a)
i,: and [·](a)

:,j denote the entry with a-th largest
magnitude in the i-th row and j-th column, respectively. In
the (k + 1)-th optimization iteration, the sparse matrix SW
is updated as:

SW,k+1 = Tα(W − LkR
>
k). (11)

After updating SW,k+1, the gradients w.r.p Lk and Rk can
be exactly computed as:

∇LkLk =
(
LkR

>
k + SW,k+1 −W

)
Rk,

∇Rk
Lk =

(
LkR

>
k + SW,k+1 −W

)
Lk.

(12)

However, the vanilla gradient descent optimization suffers
from the ill-conditioned matrix, and thus we incorporate the
scaled terms

(
R>k Rk

)−1
and

(
L>k Lk

)−1
to overcome the

impacts of outliers following (Tong et al., 2021). We update
the low-rank components:

Lk+1 = Lk − ηk+1∇LkLk ·
(
R>k Rk

)−1
,

Rk+1 = Rk − ηk+1∇Rk
Lk ·

(
L>k Lk

)−1
,

(13)

where ηk+1 denote the step size at the (k + 1)-th iteration.

Initialization. We introduce an initialization of low-rank
components L0 and R0 as well as the sparse matrix SW,0
for reducing the effects of outliers in the weight decompo-
sition. We first assign the sparse matrix SW,0 = Tα(W) to
remove the obvious outliers with largest magnitude. Then
we initialize L0 = U0Σ

1
2
0 , R0 = V>0 Σ

1
2
0 , where U0Σ0V0

is the best rank-r approximation of W − SW,0.

Theoretical Guarantee. We present the recovery guar-
antee of our proposed ill-conditioned low-rank weight de-
composition method here. We start with the µ-incoherence
assumption of D?

W following RPCA works (Candès et al.,
2011; Chen, 2015):
Assumption 4.2 (µ-incoherence). D?

W ∈ Rm×n is a rank-r
matrix with µ-incoherence, i.e.,

‖U?‖2,∞ ≤
√
µr

m
and ‖V?‖2,∞ ≤

√
µr

n

for 1 ≤ µ ≤ max(m,n), where U?Σ?V
>
? is the compact

SVD of D?
W , and ‖M‖2,∞ = maxi(

∑
j M2

i,j)
1
2 .

Herein, U? ∈ Rm×r and V? ∈ Rn×r are composed of r
left and right singular vectors, respectively. Σ? ∈ Rr×r is
a diagonal matrix consisting of r singular values of D?

W

organized in a non-increasing order, i.e., σ1(D
?
W) ≥ ... ≥

σr(D
?
W) > 0. And we define κ := σ1(D

?
W)/σr(D

?
W).

Assumption 4.3 (α-Sparsity of Outliers). Let SW ∈ Rm×n
be an α-sparsity matrix representing the outliers. Specif-
ically, we impose the condition α . O(1/(µr3/2κ)) to
ensure guaranteed recovery.

Remark 4.4. Our assumption aligns with the most com-
mon RPCA models, which address ill-conditioned low-rank
compositions under a sparsity assumption. Notably, this
assumption is based on the observation that the number of
outliers in the weights is inherently limited, whereas their
magnitude has a more significant impact on quantization.

Based on the rank-sparsity uncertainty principle, a ma-
trix cannot simultaneously exhibit incoherence and spar-
sity (Chandrasekaran et al., 2011). The two assumptions
outlined above ensure the uniqueness of our weight decom-
position solution. We now present our main theorem:

Theorem 4.5 (Guaranteed Recovery). Let D?
W be a rank-

r matrix with µ-incoherence, and let S?W be an α-sparsity
matrix with α . O(1/(µr3/2κ)). The iterative optimization
at step k satisfies

|LkR>k −D?
W |F ≤ 0.03(1− 0.6η)kσr(D

?
W),

dist(Lk,Rk;L
?,R?) ≤ 0.02(1− 0.6η)kσr(D

?
W),

where the step size η ∈ [0.1, 2/3].

Proof. The proof is detailed in Appendix B.

4.4. Quantization and Kernel Implementation
To efficiently handle matrix multiplication between activa-
tions and weights in the presence of outliers, two conditions
must be satisfied: (1) outliers should be computed with
high precision, and (2) the quantized matrices should be
computed using the same bit-widths. With these consider-
ations, we proceed as follows: (i) We first decompose the
activations and weights using Eqn. (6) and (8). (ii) We then
perform quantization on the dense components DX and
DW to the same bit-width, ensuring the removal of outliers.
For the multiplication involving activation outliers SX , we
decompose DW into a low-rank approximation LR> to
maintain precision and efficiency. (iii) Finally, we compute
the product of the sparse weight outliers SW with the raw
activation X. This process is formulated as:

XW = (DX + SX)(DW + SW) (14)
(i)
= DXDW + SXDW + DXSW + SXSW
(ii)
≈ D̂XD̂W + SXLR> + DXSW + SXSW
(iii)
= D̂XD̂W︸ ︷︷ ︸

low-bit

+ SXLR> + XSW︸ ︷︷ ︸
Sparse-Dense Multiplication

.

Equidistributed and Adaptive Sparse-Dense Kernel.
To optimize the computational efficiency of step (iii) in
Eqn. (14), the sparse-dense matrix multiplication plays a

6

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Table 1. Molecule generation performance of full-precision Digress (Vignac et al., 2023) (i.e., baseline) and quantized Digress with
different quantization methods on QM9 and MOSES datasets. “WxAy” denotes that the weights (W) and activations (A) are represented
in x-bit and y-bit precision, respectively. “Mem.” refers to the peak memory usage during the model inference.

Molecule Generation QM9 MOSES

Method Precision Valid Unique Speedup Mem. Novel Valid Unique Speedup Mem.
(%) (%) (↑) (GB ↓) (%) (%) (%) (↑) (GB ↓)

baseline FP32 99.0 96.2 1× 6.4 93.8 82.5 99.8 1× 8.7
BF16 98.8 96.0 1.3× 3.4 93.6 82.5 99.7 1.3× 4.6

RTN W4A4 57.6 88.6 2.7× 1.6 84.2 63.8 87.9 2.8× 2.3
GPTQ W4A4 72.4 86.1 2.7× 1.6 85.1 72.0 92.6 2.8× 2.3

SVDQuant W4A4 95.6 92.7 2.2× 2.0 91.6 80.6 96.5 2.2× 3.0
DuQuant W4A4 96.5 94.6 2.1× 2.1 92.8 81.1 98.0 2.1× 3.2

SqueezeLLM W4A16 95.9 94.8 1.1× 2.3 92.5 81.3 98.0 1.1× 3.6
Bit-DGDM W4A4 98.2 95.5 2.5× 2.3 93.1 81.9 98.9 2.5× 3.8

critical role. The term XSW , where SW adheres to α-
Sparsity, implies that each row and column contains at most
an α-fraction of nonzero entries. In other words, the nonzero
elements are evenly distributed across each row and column.
To address this, we design a equidistributed sparse-dense
kernel that assigns each thread a column, ensuring uniform
workload distribution across threads. For the term SXLR>,
given that the occurrence of outliers in the activations is ran-
dom, we have developed an adaptive sparse-dense kernel
based on (Flegar & Quintana-Ortı́, 2017). This approach
assigns an equal number of nonzero entries to each thread.
Although this necessitates additional synchronization, as
each column of L is processed by multiple threads, it en-
sures a more balanced workload in terms of time. Since
the computations for XSW and SXLR> are independent,
the equidistributed and adaptive sparse-dense kernels are
launched in a single call. The detailed descriptions of these
two kernels are demonstrated in Appendix E.

5. Experiments
In this section, we conduct empirical experiments to demon-
strate the efficacy of our Bit-DGDM1. We include quantiza-
tion cost analysis and other results in Appendix F.

5.1. Experimental Setup

Models and Datasets. We conduct a comprehensive eval-
uation of Bit-DGDM’s effectiveness in the quantization of
various DGDMs and their applications. For 2D structured
graphs, where node relationships are represented using adja-
cency matrices, we employ the widely used discrete DGDM,
Digress (Vignac et al., 2023), which utilize FiLM (Perez
et al., 2018) and Graph Transformer (Dwivedi & Bresson,
2020) as backbones. These models are applied to molec-
ular synthesis datasets, including QM9 (Wu et al., 2018)

1Our code is publicly available here.

and MOSES (Polykovskiy et al., 2020), as well as non-
molecular benchmarks (Martinkus et al., 2022) such as SBM
and planar graphs. Moreover, we investigate protein inverse
folding task, an essential application of graph generation,
where node relationships are provided by 3D coordinates
and assess the model’s ability to recover the correct amino
acid sequence given protein’s 3D structure. We utilize the
SOTA GRADE-IF (Yi et al., 2023) as the DGDM, based on
Equivariant Graph Neural Network (Satorras et al., 2021).

Baselines. As there is a lack of PTQ baselines for DGDMs,
we compare Bit-DGDM against various PTQ methods
for LLMs and IDMs including RTN (round-to-nearest),
GPTQ (Frantar et al., 2023), SqueezeLLM (Kim et al.,
2024), SVDQuant (Li et al., 2024b), DuQuant (Lin et al.,
2024). Their descriptions are provided in Appendix F.1.

Metrics. The metrics for evaluating the effectiveness of
molecular graph generation include Validity, Uniqueness,
and Novelty, while the key metrics for assessing 3D pro-
tein inverse folding are Perplexity and Recovery (detailed
descriptions can be found in Appendix F.2). The efficiency
of model inference after quantization is evaluated using
Speedup and Peak Memory Usage (Mem.).

Quantization details. For Bit-DGDM, we first determine
the thresholds, τmax and τmin, for identifying activation out-
liers by selecting the top 0.1% highest and lowest values,
respectively. To obtain the activation values, we randomly
generate 32 samples using the full-precision DGDMs. For
low-rank weight decomposition, we set the rank r to 32, the
α-sparsity parameter α to 1%, and the step size η to 0.1.

Latency Profiling. We use the Torch CUDA profiler to
measure the latency and peak memory usage for generating
graphs with a batch size of 16 on a single NVIDIA RTX-
3090 GPU, complemented by two 2.20GHz Intel Xeon Gold
5220R CPU, and 512GB of CPU memory. The node size
n and cardinalities of nodes and edges |X |, |E| is decided
based on the dataset settings.

7

https://github.com/KellyGong/BitDGDM

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Table 2. Inverse protein folding performance of full-precision
GRADE-IF (Yi et al., 2023) (i.e., baseline) and quantized GRADE-
IF with different quantization methods on CATH dataset.

Protein Folding CATH

Method Precision Perplexity Recovery Speedup Mem.
(↓) (%) (↑) (GB ↓)

baseline FP32 4.4 52.2 1× 12.8
BF16 4.4 52.1 1.3× 6.8

RTN W4A4 7.6 32.8 3.0× 3.7
GPTQ W4A4 7.1 35.4 3.0× 3.7

SVDQuant W4A4 6.3 39.5 2.1× 4.6
DuQuant W4A4 5.6 42.7 2.1× 4.7

SqueezeLLM W4A16 4.7 48.6 1.0× 5.4
Bit-DGDM W4A4 4.5 51.6 2.5× 4.9

5.2. Graph Generation Results

The graph generation performance of molecules and non-
molecular benchmarks are shown in Table 1 and Table A2,
respectively. Overall, Bit-DGDM achieves graph generation
quality closer to BF16 while delivering higher computa-
tional speed and significantly reduced memory usage com-
pared to quantization baselines. For instance, on the QM9
dataset, Bit-DGDM surpasses the state-of-the-art quanti-
zation method DuQuant in graph generation quality, with
a 1.7% improvement on the Validity metric and a 0.9%
improvement on the Uniqueness metric. Additionally, it
achieves higher computational efficiency, with a speedup of
2.5× compared to DuQuant’s 2.1×. These results demon-
strate the superiority of Bit-DGDM in quantizing DGDM
models. Notably, while SqueezeLLM stores weights as
low-bit values using a lookup table, it still loads them as
BF16 and performs weight-activation multiplications in
BF16. SqueezeLLM does not achieve significant accel-
eration on these datasets, indicating that reducing model
weight loading contributes only marginally to the acceler-
ation of DGDMs. This finding supports the argument that
DGDMs are low-parameter and high-computation models.
Moreover, Bit-DGDM significantly outperforms SVDQuant,
which mitigates the impact of outliers through smoothing
and SVD, as well as DuQuant, which addresses outlier ef-
fects via rotation, by a large margin. This demonstrates that
outlier-aware quantization methods designed for LLMs and
IDMs are inefficient when applied to DGDMs.

5.3. Inverse Protein Folding Results

Inverse protein folding is a critical application of graph
generation. In Table 2, we validate the effectiveness of Bit-
DGDM in quantizing and accelerating DGDM. Bit-DGDM
achieves the best performance among all quantization base-
lines in terms of both Perplexity and Recovery metrics,
remaining very close to the performance of BF16 precision.

RTN Bit-DGDM (iii) −𝐒𝑋𝐒𝑊

Quantization Performance on CATH

S&D Activation

Quantization

（Sec 4.2）（i）
(i)+ Ill-conditioned

Weight Decomposition

（Sec 4.3）

(i)+ S&D Weight

Quantization

(i) (ii)

Figure 4. Perplexity and speedup on CATH with different ablations
of Bit-DGDM components. “S&D” denotes sparse-dense.

Quantization Performance on MOSES

Quantile of outliers in 𝑋 (%)

𝛼 of 𝛼-Sparsity for 𝑊 (%)

Figure 5. Results of valid ratio and speedup on MOSES with dif-
ferent hyperparameters.

Furthermore, compared to BF16, Bit-DGDM significantly
reduces memory usage and achieves nearly 2× acceleration
in computational speed. This result highlights the general-
izability of Bit-DGDM across various DGDM generation
models. It demonstrates that Bit-DGDM not only maintains
high-generation quality but also effectively balances com-
putational efficiency and resource utilization, making it a
practical choice for real-world applications.

5.4. Ablation Study

To validate the effectiveness of our proposed module, Figure
4 presents a performance comparison between Bit-DGDM
and several variants on CATH dataset. (i) “RTN + S&D acti-
vation quantization” represents the RTN baseline integrated
with our sparse-dense activation quantization (Sec.4.2). (ii)
“(i) + S&D weight quantization” extends variant (i) by in-
corporating our ill-conditioned low-rank weight decompo-
sition module. (iii) Bit-DGDM−SXSW removes the term
SXSW in Eqn.(14). Our findings reveal that: (1) Sparse-
dense activation quantization significantly enhances model
accuracy (i vs. RTN). (2) Ill-conditioned weight decompo-
sition improves efficiency while maintaining comparable
performance (ii vs. Bit-DGDM). (3) Overlapping outliers in
weights and activations substantially degrade performance
(iii vs. Bit-DGDM).

8

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

5.5. Hyperparameter Analysis

In our proposed Bit-DGDMs, the quantile of activations
with extreme values is defined as outliers, and the α-Sparsity
configuration for weights serves as two critical hyperpa-
rameters that balance the model’s inference efficiency and
predictive performance. Figure 5 depicts our evaluation of
diverse quantile of activation outliers and α-Sparsity config-
urations on MOSES dataset. Experimental results indicate
that selecting an appropriate number of outliers ensures
comparable performance without significantly reducing in-
ference speed. Excessive outliers slow down inference,
while too few compromise performance.

6. Conclusion
This study investigated a crucial research question: post-
training quantization for DGDMs. The aim is to reduce
the memory usage and enable faster inference of DGDMs
without compromising model performance or the quality of
generated graphs. To tackle this issue, we proposed a novel
quantization framework for DGDMs called Bit-DGDM.
Within this framework, we developed a sparse-dense ac-
tivation quantization and an ill-conditioned low-rank weight
decomposition to mitigate the outlier impacts in the quan-
tization and improve computation efficiency. Furthermore,
we implemented equidistributed and adaptive sparse-dense
kernels to accelerate sparse-dense matrix multiplication.
Our comprehensive experimental results demonstrated the
effectiveness of our framework in quantizing DGDMs.

Acknowledgement
This work is partly supported by the National Natural Sci-
ence Foundation of China (No. 62306255, 92370204), the
National Key Research and Development Program of China
(No. 2023YFF0725000), the Guangdong Basic and Ap-
plied Basic Research Foundation (No. 2024A1515011839),
the Fundamental Research Project of Guangzhou (No.
2024A04J4233), and the Education Bureau of Guangzhou
Municipality.

Impact Statement
This paper presents a machine learning method that en-
hances computational efficiency. The technique aims to
expand the accessibility of machine learning across various
sectors, without anticipated negative social impacts. Our
goal is to foster innovation and inclusivity, making advanced
technologies available to a broader audience of developers.

References
Bai, H., Zhang, W., Hou, L., Shang, L., Jin, J., Jiang, X., Liu,

Q., Lyu, M., and King, I. Binarybert: Pushing the limit
of bert quantization. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 4334–
4348, 2021.

Bondarenko, Y., Nagel, M., and Blankevoort, T. Under-
standing and overcoming the challenges of efficient trans-
former quantization. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pp. 7947–7969, 2021.

Brockschmidt, M., Allamanis, M., Gaunt, A. L., and Polo-
zov, O. Generative code modeling with graphs. In Inter-
national Conference on Learning Representations, 2018.

Buluç, A., Fineman, J. T., Frigo, M., Gilbert, J. R., and
Leiserson, C. E. Parallel sparse matrix-vector and matrix-
transpose-vector multiplication using compressed sparse
blocks. In Proceedings of the twenty-first annual sympo-
sium on Parallelism in algorithms and architectures, pp.
233–244, 2009.

Cai, H., Liu, J., and Yin, W. Learned robust pca: A scalable
deep unfolding approach for high-dimensional outlier
detection. Advances in Neural Information Processing
Systems, 34:16977–16989, 2021.

Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal
component analysis? Journal of the ACM (JACM), 58(3):
1–37, 2011.

Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky,
A. S. Rank-sparsity incoherence for matrix decomposi-
tion. SIAM Journal on Optimization, 21(2):572–596,
2011.

Chen, Y. Incoherence-optimal matrix completion. IEEE
Transactions on Information Theory, 61(5):2909–2923,
2015.

De Cao, N. and Kipf, T. MolGAN: An implicit generative
model for small molecular graphs. ICML 2018 workshop
on Theoretical Foundations and Applications of Deep
Generative Models, 2018.

Dettmers, T., Svirschevski, R. A., Egiazarian, V.,
Kuznedelev, D., Frantar, E., Ashkboos, S., Borzunov,
A., Hoefler, T., and Alistarh, D. Spqr: A sparse-quantized
representation for near-lossless llm weight compression.
In The Twelfth International Conference on Learning
Representations, 2024.

9

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Dwivedi, V. P. and Bresson, X. A generalization
of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E.,
Babenko, A., and Alistarh, D. Extreme compression
of large language models via additive quantization. In
Forty-first International Conference on Machine Learn-
ing, 2024.

Flegar, G. and Quintana-Ortı́, E. S. Balanced csr sparse
matrix-vector product on graphics processors. In Euro-
Par 2017: Parallel Processing: 23rd International Con-
ference on Parallel and Distributed Computing, Santiago
de Compostela, Spain, August 28–September 1, 2017,
Proceedings 23, pp. 697–709. Springer, 2017.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D.
GPTQ: Accurate post-training compression for generative
pretrained transformers. In The Eleventh International
Conference on Learning Representations, 2023.

Gholami, A., Yao, Z., Kim, S., Hooper, C., Mahoney, M. W.,
and Keutzer, K. Ai and memory wall. IEEE Micro, (01):
1–5, 2024.

Gong, Z. and Sun, Y. An energy-centric framework for
category-free out-of-distribution node detection in graphs.
In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 908–919,
2024a.

Gong, Z. and Sun, Y. Graph reasoning enhanced language
models for text-to-sql. In Proceedings of the 47th In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2447–2451,
2024b.

Gong, Z., Wang, G., Sun, Y., Liu, Q., Ning, Y., Xiong, H.,
and Peng, J. Beyond homophily: Robust graph anomaly
detection via neural sparsification. In IJCAI, pp. 2104–
2113, 2023.

Haefeli, K. K., Martinkus, K., Perraudin, N., and Watten-
hofer, R. Diffusion models for graphs benefit from dis-
crete state spaces. In NeurIPS 2022 Workshop: New
Frontiers in Graph Learning, 2022.

Han, X., Cao, M., Xu, D., Feng, X., Liang, Y., Lang, X., and
Guan, R. Seoe: an option graph based semantically em-
bedding method for prenatal depression detection. Fron-
tiers of Computer Science, 18(6):186911, 2024.

He, Y., Liu, J., Wu, W., Zhou, H., and Zhuang, B. Ef-
ficientdm: Efficient quantization-aware fine-tuning of
low-bit diffusion models. In The Twelfth International
Conference on Learning Representations, 2024a.

He, Y., Liu, L., Liu, J., Wu, W., Zhou, H., and Zhuang, B.
Ptqd: Accurate post-training quantization for diffusion
models. Advances in Neural Information Processing
Systems, 36, 2024b.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Huang, M., Liu, Y., Ao, X., Li, K., Chi, J., Feng, J., Yang, H.,
and He, Q. Auc-oriented graph neural network for fraud
detection. In Proceedings of the ACM Web Conference
2022, pp. 1311–1321, 2022.

Ingraham, J., Garg, V., Barzilay, R., and Jaakkola, T. Gener-
ative models for graph-based protein design. Advances
in neural information processing systems, 32, 2019.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 2704–2713, 2018.

Jeon, Y., Lee, C., Cho, E., and Ro, Y. Mr. biq: Post-training
non-uniform quantization based on minimizing the recon-
struction error. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
12329–12338, 2022.

Ji, Y., Sun, Y., Zhang, Y., Wang, Z., Zhuang, Y., Gong, Z.,
Shen, D., Qin, C., Zhu, H., and Xiong, H. A comprehen-
sive survey on self-interpretable neural networks. arXiv
preprint arXiv:2501.15638, 2025.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations. In International conference on machine
learning, pp. 10362–10383. PMLR, 2022.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Advances in neural information processing systems, 35:
26565–26577, 2022.

Kim, S., Hooper, C. R. C., Gholami, A., Dong, Z., Li, X.,
Shen, S., Mahoney, M. W., and Keutzer, K. Squeezellm:
Dense-and-sparse quantization. In Forty-first Interna-
tional Conference on Machine Learning, 2024.

Lee, W., Lee, J., Seo, J., and Sim, J. {InfiniGen}: Effi-
cient generative inference of large language models with
dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 24), pp. 155–172, 2024.

10

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Li, K., Chen, Y., Liu, Y., Wang, J., He, Q., Cheng, M.,
and Ao, X. Boosting the adversarial robustness of graph
neural networks: An ood perspective. In The Twelfth
International Conference on Learning Representations,
2024a.

Li, M., Lin, Y., Zhang, Z., Cai, T., Li, X., Guo, J., Xie, E.,
Meng, C., Zhu, J.-Y., and Han, S. Svdqunat: Absorb-
ing outliers by low-rank components for 4-bit diffusion
models. arXiv preprint arXiv:2411.05007, 2024b.

Li, X., Liu, Y., Lian, L., Yang, H., Dong, Z., Kang, D.,
Zhang, S., and Keutzer, K. Q-diffusion: Quantizing dif-
fusion models. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 17535–17545,
2023.

Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu,
F., Wang, W., and Gu, S. Brecq: Pushing the limit of
post-training quantization by block reconstruction. In
International Conference on Learning Representations,
2021.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Du-
venaud, D. K., Urtasun, R., and Zemel, R. Efficient
graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32,
2019.

Lin, H., Xu, H., Wu, Y., Cui, J., Zhang, Y., Mou, L., Song,
L., Sun, Z., and Wei, Y. Duquant: Distributing outliers
via dual transformation makes stronger quantized llms.
In The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024.

Lin, Y., Zhang, T., Sun, P., Li, Z., and Zhou, S. Fq-vit:
Post-training quantization for fully quantized vision trans-
former. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22, pp.
1173–1179, 2022.

Liu, J., Huang, Z., Ma, Z., Liu, Q., Chen, E., Su, T., and
Liu, H. Guiding mathematical reasoning via mastering
commonsense formula knowledge. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 1477–1488, 2023a.

Liu, J., Huang, Z., Zhai, C., and Liu, Q. Learning by ap-
plying: A general framework for mathematical reasoning
via enhancing explicit knowledge learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 4497–4506, 2023b.

Liu, Y., Ao, X., Feng, F., Ma, Y., Li, K., Chua, T.-S., and He,
Q. Flood: A flexible invariant learning framework for out-
of-distribution generalization on graphs. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 1548–1558, 2023c.

Liu, Y., Du, C., Pang, T., Li, C., Lin, M., and Chen, W.
Graph diffusion policy optimization. arXiv preprint
arXiv:2402.16302, 2024.

Lv, C., Chen, H., Guo, J., Ding, Y., and Liu, X. Ptq4sam:
Post-training quantization for segment anything. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 15941–15951, 2024.

Martinkus, K., Loukas, A., Perraudin, N., and Wattenhofer,
R. Spectre: Spectral conditioning helps to overcome the
expressivity limits of one-shot graph generators. In In-
ternational Conference on Machine Learning, pp. 15159–
15179. PMLR, 2022.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C.,
and Blankevoort, T. Up or down? adaptive rounding for
post-training quantization. In International Conference
on Machine Learning, pp. 7197–7206. PMLR, 2020.

Netrapalli, P., UN, N., Sanghavi, S., Anandkumar, A., and
Jain, P. Non-convex robust pca. Advances in neural
information processing systems, 27, 2014.

Newman, M. E. Modularity and community structure in net-
works. Proceedings of the national academy of sciences,
103(23):8577–8582, 2006.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4474–4484. PMLR,
2020.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and
Courville, A. Film: Visual reasoning with a general con-
ditioning layer. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn,
T., Müller, J., Penna, J., and Rombach, R. Sdxl: Im-
proving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on
Learning Representations, 2024.

Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golo-
vanov, S., Tatanov, O., Belyaev, S., Kurbanov, R., Arta-
monov, A., Aladinskiy, V., Veselov, M., et al. Molecular
sets (moses): a benchmarking platform for molecular gen-
eration models. Frontiers in pharmacology, 11:565644,
2020.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

11

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n)
equivariant graph neural networks. In International con-
ference on machine learning, pp. 9323–9332. PMLR,
2021.

Shang, Y., Yuan, Z., Xie, B., Wu, B., and Yan, Y. Post-
training quantization on diffusion models. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 1972–1981, 2023.

Shen, D., Song, G., Xue, Z., Wang, F.-Y., and Liu, Y. Re-
thinking the spatial inconsistency in classifier-free diffu-
sion guidance. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
9370–9379, 2024.

Shi, C., Chen, J., Liu, J., and Yang, C. Graph foundation
model. Frontiers of Computer Science, 18(6):186355,
2024.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In Artificial Neural Networks and Machine Learning–
ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018.

So, J., Lee, J., Ahn, D., Kim, H., and Park, E. Temporal
dynamic quantization for diffusion models. Advances in
neural information processing systems, 36:48686–48698,
2023.

Sun, Y., Zhu, H., Wang, L., Zhang, L., and Xiong, H. Large-
scale online job search behaviors reveal labor market
shifts amid covid-19. Nature Cities, 1(2):150–163, 2024.

Team, G., Riviere, M., Pathak, S., Sessa, et al. Gemma
2: Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118, 2024.

Tong, T., Ma, C., and Chi, Y. Accelerating ill-conditioned
low-rank matrix estimation via scaled gradient descent. J.
Mach. Learn. Res., 22:150:1–150:63, 2021.

Tseng, A., Sun, Q., Hou, D., and De Sa, C. Qtip: Quanti-
zation with trellises and incoherence processing. arXiv
preprint arXiv:2406.11235, 2024.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffu-
sion for graph generation. In The Eleventh International
Conference on Learning Representations, 2023.

Wang, C., Wang, Z., Xu, X., Tang, Y., Zhou, J., and Lu, J.
Towards accurate post-training quantization for diffusion
models. arXiv preprint arXiv:2305.18723, 2023.

Wang, P., Chen, Q., He, X., and Cheng, J. Towards accurate
post-training network quantization via bit-split and stitch-
ing. In International Conference on Machine Learning,
pp. 9847–9856. PMLR, 2020.

Wei, X., Gong, R., Li, Y., Liu, X., and Yu, F. Qdrop:
Randomly dropping quantization for extremely low-bit
post-training quantization. In International Conference
on Learning Representations, 2022a.

Wei, X., Zhang, Y., Zhang, X., Gong, R., Zhang, S., Zhang,
Q., Yu, F., and Liu, X. Outlier suppression: Pushing the
limit of low-bit transformer language models. Advances
in Neural Information Processing Systems, 35:17402–
17414, 2022b.

Westfall, P. H. Kurtosis as peakedness, 1905–2014. rip. The
American Statistician, 68(3):191–195, 2014.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Yi, K., Zhou, B., Shen, Y., Liò, P., and Wang, Y. Graph
denoising diffusion for inverse protein folding. Advances
in Neural Information Processing Systems, 36, 2023.

Yi, X., Park, D., Chen, Y., and Caramanis, C. Fast algo-
rithms for robust pca via gradient descent. Advances in
neural information processing systems, 29, 2016.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International conference on ma-
chine learning, pp. 5708–5717. PMLR, 2018.

Zadeh, A. H., Edo, I., Awad, O. M., and Moshovos, A.
Gobo: Quantizing attention-based nlp models for low la-
tency and energy efficient inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pp. 811–824. IEEE Computer Society,
2020.

Zang, C. and Wang, F. Moflow: an invertible flow model for
generating molecular graphs. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 617–626, 2020.

Zhuang, B., Shen, C., Tan, M., Liu, L., and Reid, I. Towards
effective low-bitwidth convolutional neural networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7920–7928, 2018.

12

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

A. Related Work
A.1. Quantization for LLMs

Quantization methods can be categorized into two types based on whether retraining is required. The first type, Quantization-
Aware Training (QAT), necessitates retraining the model after quantizing its parameters to maintain performance comparable
to the original model (Bai et al., 2021). The second type, Post-Training Quantization (PTQ), directly quantizes model
parameters without retraining (Kim et al., 2024; Frantar et al., 2023). Although QAT generally achieves superior performance,
due to the substantial computational cost of training LLMs, most studies adopt PTQ.

Many LLM-specific quantization studies have identified that the primary bottleneck in LLM inference (Liu et al., 2023a;b)
lies in the weight loading process rather than computation speed (Lee et al., 2024; Gholami et al., 2024). Given the vast
number of model parameters, the time required to transfer weights from GPU/CPU memory to the computation cache often
exceeds the actual computation time, meaning that merely accelerating computation does not significantly enhance inference
speed. To address this issue, some works have proposed non-uniform quantization methods to accelerate weight loading.
Unlike uniform quantization (Dettmers et al., 2024; Frantar et al., 2023), which partitions weight values into bins at equal
intervals and maps each bin to an integer, non-uniform quantization (Zadeh et al., 2020; Kim et al., 2024; Jeon et al., 2022)
employs clustering techniques such as K-means to group weight values into a limited set of representative values. These
values are stored in a lookup table, and each weight value is replaced by the index of its closest match in the table. During
model loading, only the integer indices and a small set of floating-point values from the lookup table need to be retrieved,
enabling rapid weight reconstruction.

Furthermore, to mitigate the weight loading issue, some works leverage Multi-Codebook Quantization retrieval methods,
which quantize LLM weights at the vector level rather than as individual numerical values (Egiazarian et al., 2024; Tseng
et al., 2024). In these approach, the lookup table stores floating-point vectors, and model parameters are represented as a
operation of multiple vectors from the table, e.g., additive quantization (Egiazarian et al., 2024). However, these methods
often require a small amount of labeled data to finetune the vectors stored in the codebook. Given that DGDMs have
significantly fewer parameters than LLMs, these memory-oriented quantization techniques are inefficient when applied to
DGDMs, as discussed in Sec. 5.2.

A.2. Quantization for IDMs

Some quantization works (Li et al., 2023; Shang et al., 2023; Wang et al., 2023) for image diffusion models (IDMs) (Shen
et al., 2024) optimize quantized weights by minimizing the MSE between quantized and full-precision continuous outputs.
(So et al., 2023) introduces time-step specific encoding for image diffusion models. (Lv et al., 2024) addresses bimodal
distributions in post-key-linear layers and post-softmax discrepancies, specific to Segment Anything Models. However, these
approaches cannot be directly applied to Discrete Graph Diffusion Models (DGDMs) due to fundamental incompatibilities.
As shown in Remark 3.1, in DGDMs, the intermediate node attributes and graph structures are obtained through discrete
sampling from categorical distributions. While IDMs relay on Gaussian noise and continuous denoising processes. Our
method advances existing method in three innovations. (i) Recognizing the significant outliers in model weights, we first
propose an ill-conditioned low-rank weight decomposition. This contrasts with basic SVD approach, allowing our method to
achieve better numerical stability. (ii) For the residual component derived from the raw weight and low-rank decomposition,
our method enforces α-sparsity, enabling efficient sparse matrix multiplication during inference. (iii) For activation outliers,
our approach eliminates the need for calibration data to select thresholds, making it more practical.

A.3. Outlier-Aware Quantization

In low-bit model quantization, a critical challenge is the presence of outliers, which can unnecessarily expand the quantization
range. To address this issue, outlier-aware quantization methods (Bondarenko et al., 2021) have been proposed. Wei et al.
(2022b) alleviate outlier influences by transferring outlier factors to later layers without affecting model functionality. Xiao
et al. (2023) introduce a method that shifts the quantization difficulty from activations to weights by applying channel-
wise scaling to reduce the magnitude of activations while increasing the magnitude of weights. Li et al. (2024b) further
extend this approach by employing SVD to decompose weights and quantize the residuals of its principal components.
SqueezeLLM (Kim et al., 2024) improves the robustness of non-uniform quantization by enhancing K-means clustering to
reduce sensitivity to outliers, proposing a sensitivity-based clustering method. DuQuant (Lin et al., 2024) adopts a block-
wise rotation strategy to redistribute outliers across adjacent channels. Unlike these approaches, our proposed Bit-DGDM

13

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

introduces two novel methods: (1) Sparse-Dense quantization, which provides a simple and effective solution for handling
activations, and (2) Ill-conditioned Low-Rank Decomposition, which decomposes the weight matrix into two components,
ensuring computational efficiency while maintaining precision. These innovations yield substantial improvements over
existing outlier-aware quantization frameworks.

B. Theoretical Proof
In Sec. 4.3, we have introduced Theorem 4.5 to promise the recovery guarantee of our proposed weight decomposition
approach with respect to the ideal dense low-rank matrix D∗W . We now illustrate how it can be derived. Note that our
guaranteed recovery theorem follows the route built in (Tong et al., 2021; Cai et al., 2021). We first introduce basic
definitions. Let L? := U?Σ

1/2
? and R? := V?Σ

1/2
? where U?Σ?V

>
? is the compact SVD of D?

W . The error metric for
decomposed rank- r matrices is defined as:

dist (L,R;L?,R?) := inf
Q∈Rr×r,rank(Q)=r

(∥∥∥(LQ− L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−T −R?

)
Σ

1/2
?

∥∥∥2

F

)1/2

where the optimal alignment matrix Q exists and invertible if L and R are sufficiently close to L? and R?. Particularly, the
following lemma exists

Lemma B.1 (Lemma 9 in Tong et al. (2021)). For any L ∈ Rn×r and R ∈ Rm×r, if

dist (L,R;L?,R?) < cσr (D
?
W)

for some 0 < c < 1, then the optimal alignment matrix Q between [L,R] and [L?,R?] exists and is invertible.

We then present the theorems of local linear convergence and guaranteed initialization.

Theorem B.2 (Local Linear Convergence, Theorem 3 in Cai et al. (2021)). Let D?
W = L?R

>
? be a rank-r matrix with

incoherence parameter µ, and let S? be an α-sparse matrix where α ≤ 1

104µr
3
2

. Define Qk as the optimal alignment matrix

between [Lk,Rk] and [L?,R?]. Assuming the initial guesses satisfy the prescribed conditions, we have the following:

dist (L0,R0;L?,R?) ≤ ε0σr (D
?
W) ,∥∥∥(L0Q0 − L?)Σ

1/2
?

∥∥∥
2,∞
∨
∥∥∥(R0Q

−>
0 −R?

)
Σ

1/2
?

∥∥∥
2,∞
≤
√
µr

n
σr (D

?
W)

with ε0 := 0.02, by using a fixed step size ηk = η where η ∈
[
0.1, 2

3

]
, the iterates of weight decomposition satisfy the

following conditions:

dist (Lk,Rk;L?,R?) ≤ ε0τ
kσr (D

?
W) ,∥∥∥(LkQk − L?)Σ

1/2
?

∥∥∥
2,∞
∨
∥∥∥(RkQ

−>
k −R?

)
Σ

1/2
?

∥∥∥
2,∞
≤
√
µr

n
τkσr (D

?
W) ,

where the convergence rate τ := 1− 0.6η.

Theorem B.3 (Guaranteed Initialization, Theorem 4 in Cai et al. (2021)). Suppose D?
W = L?R

>
? is a rank-r matrix with

incoherence parameter µ, and S? is an α-sparse matrix such that α ≤ c0

µr
3
2 κ

, where c0 is a small positive constant with

c0 ≤ 1
35 . Let Q0 denote the optimal alignment matrix between [L0,R0] and [L?,R?]. It has the following results:

dist (L0,R0;L?,R?) ≤ 10c0σr (D
?
W) ,

∥∥∥(L0Q0 − L?)Σ
1/2
?

∥∥∥
2,∞
∨
∥∥∥(R0Q

−>
0 −R?

)
Σ

1/2
?

∥∥∥
2,∞
≤
√
µr

n
σr (D

?
W) .

Besides, we cite a conclusion from Tong et al. (2021) as Lemma B.4:

14

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Lemma B.4 (Eqn. (48) in Tong et al. (2021)).∥∥LkR>k −D?
W

∥∥
F
≤ 1.5 dist (Lk,Rk;L?,R?)

.

Given the above lemmas and theorems, we are ready to prove Theorem 4.5:

Proof of Theorem 4.5. The results of Theorem B.3 meet the conditions stipulated in Theorem B.2. By setting c0 = 10−4,
we obtain the following:

dist(Lk,Rk;L
∗,R∗) ≤ 0.02(1− 0.6η)kσr(D

∗
W),∥∥∥(LkQk − L?)Σ

1/2
?

∥∥∥
2,∞
∨
∥∥∥(RkQ

−>
k −R?

)
Σ

1/2
?

∥∥∥
2,∞
≤
√
µr

n
(1− 0.6η)kσr (D

?
W)

for all k ≥ 0. Based on Lemma B.4, we can proves that∥∥LkR>k −D?
W

∥∥
F
≤ 1.5 dist (Lk,Rk;L?,R?) ≤ 0.03(1− 0.6η)kσr(D

∗
W)

under the condition of
∥∥∥(LkQk − L?)Σ

1/2
?

∥∥∥
2,∞
∨
∥∥∥(RkQ

−>
k −R?

)
Σ

1/2
?

∥∥∥
2,∞
≤
√

µr
n σr (D

?
W). Thus our claim is

proved.

C. Backbones of Graph Diffusion Models
C.1. 2D Graph Diffusion Model

Regarding the input for the graph generation task, we have already introduced it in Sec. 3 of the main text. We will now
proceed to describe the model architecture.

Architecture. We employ a typical graph diffusion model, Digress (Vignac et al., 2023), as the target for our model
quantization acceleration. Digress utilizes the adjacency matrix of nodes to model the structure of graphs and adopts a
Graph Transformer architecture as its backbone to represent nodes and structural features. The structure is illustrated in
Figure A1. Notably, FiLM and PNA modules are critical components, and their computational processes are described as:

FiLM(M1,M2) = M1W1 + (M1W2)�M2 + M2,

PNA(X) = [max(X) : min(X) : mean(X) : std(X)]W,
(15)

where � denotes the element-wise product and [:] denote the concatenation.

C.2. Protein Inverse Folding Diffusion Model

Regarding the protein inverse folding task, we provide detailed descriptions of the input and the model architecture.

Input. The protein graph G = X,E comprises node feature X and edge features E. The node feature depicts the amino
acid (AA) position, AA type and the spatial and biochemical properties to reflect its physicochemical and topological
attributes. The local structure of a given node is defined by its spatial neighbors, determined by the k-nearest neighbor
algorithm following (Yi et al., 2023). The edge attributes illustrate the relationships between connected nodes, such as
inter-atomic distances, local N-C positions and a sequential position encoding scheme.

Architecture. For protein-related tasks, modeling the 3D structure between nodes is crucial due to the importance of
distances, angles, and other spatial properties to protein characteristics. We select GRADE-IF (?) as the DGDM for protein
tasks. GRADE-IF employs an enhanced Equivariant Graph Convolution (EGC) layer to ensure SO(3) rotation equivariance
and E(3) translation invariance. At the l-th layer, the EGC layer uses n node representations h

(l)
i to describe each node’s

15

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Node/Edge-wise

MLP

Graph Transformer

Layer

Node/Edge-wise

MLP

Graph Transformer

Layer

𝑿 𝑬 Structural &

Spectral features

𝒚

… ×𝑵

𝑿 𝑬

Linear Linear

𝑿 𝑿

Outer product

𝑬 FiLM

Softmax Linear

𝑿

Aggregation

Flatten headsFlatten heads𝒚 𝒚

FiLM FiLM

LinearLinear

𝑬′ 𝑿′

× 𝒏_𝒉𝒆𝒂𝒅

Figure A1. An illustration of graph transformer architectures used in Digress.

amino acid (AA) type and geometric properties, edge embeddings m
(l)
ij to connect nodes i and j, and xpos

i to describe the
coordinates of the nodes. The EGC layer updates the node representations as follows:

m
(l+1)
ij = φe

(
h

(l)
i ,h

(l)
j ,
∥∥∥x(l)

i − x
(l)
j

∥∥∥2

,m
(l)
ij

)
x

(l+1)
i = x

(l)
i +

1

n

∑
j 6=i

(
x

(l)
i − x

(l)
j

)
φx

(
m

(l+1)
ij

)

h
(l+1)
i = φh

h
(l)
i ,
∑
j 6=i

m
(l+1)
ij

 ,

(16)

where φe, φh are the operations of edge and node propagations, respectively, and φx is an operation that projects the edge
embedding to a scalar.

D. Algorithm and Complexity Analysis
Figure 3 provides a succinct overview of the comprehensive quantization process in Bit-DGDM. To enhance clarity and
facilitate comprehension, we delineate the systematic protocol for the overall inference process of quantized model in
Algorithm 1. Besides, we extensively illustrate the procedure of ill-conditioned low-rank decomposition of weights (Sec. 4.3)
in Algorithm 2. This section presents a complexity analysis of the ill-conditioned low-rank decomposition. First, the
initializations of the α-Sparsity matrix SW,0 and low-rank component L0R

>
0 requires 2nm+nmr+nr2 +mr2 flops. The

computational complexity w.r.p the iterative optimizations of these components is O(nmr +mr2 + nr2 + r3) flops. Since
the rank r is typically much less than the channel sizes n,m of weight W, the overall complexity of the ill-conditioned
low-rank decomposition requires O(nmr).

E. Equidistributed and Adaptive Sparse-Dense Kernel Implementation
In this section, we will introduce the core concept of our designed Equidistributed and Adaptive Sparse-Dense kernel. For
each sparse matrix, we utilize the CSR (Compressed Sparse Row) format (Buluç et al., 2009) to represent it. The CSR
format is a storage scheme that efficiently represents sparse matrices by storing non-zero elements along with their row and
column indices, thereby reducing memory usage and improving computational efficiency.

16

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Algorithm 1 The inference process of quantized multiplication XW through Bit-DGDM

Input: X ∈ Rb×m: activations, τmax, τmin: thresholds for filter activation outliers, D̂W : quantized dense part of weight
W, SW : sparse component of weight W, LR>: low rank component of weight W.
. Filter the activation outliers: SX = X[x > τmax|x < τmin], DX = X[τmin < x < τmax]

. Quantize the DX to low-bit D̂X through Eqn. (4)

. Calculating D̂XD̂W through low-bit multiplication

. Calculating SXLR> through adaptive sparse-dense kernel

. Calculating XSW through equidistributed sparse-dense kernel
Output: D̂XD̂W + SXLR> + XSW

Algorithm 2 Ill-conditioned low-rank decomposition of weight W

Input: W ∈ Rm×n: weight matrix, r: the rank of underlying low-rank matrix, Tα(·): sparsification operator, {ηk}: a set
of step size.
// Initialization:
SW,0 = Tα(W) → nm flops
[U0,Σ0,V0] = SVDr(W − SW,0) → nmr + nm flops

L0 = U0Σ
1
2
0 , R0 = V>0 Σ

1
2
0 → nr2 +mr2 flops

// Iterative optimization:
repeat

SW,k+1 = Tα(W − LkR
>
k) → O(nmr) flops

Lk+1 = Lk − ηk+1

(
LkR

>
k + SW,k+1 −W

)
Rk

(
R>k Rk

)−1 → O(nmr +mr2 + r3) flops

Rk+1 = Rk − ηk+1

(
LkR

>
k + SW,k+1 −W

)
Lk
(
L>k Lk

)−1 → O(nmr + nr2 + r3) flops
until ‖Lk+1R

>
k+1 + SW,k+1 −W‖2F is convergent

Output: α-Sparsity matrix SW := SW,k, r-rank component DW = LR>(L := Lk,R := Rk)

Equidistributed Sparse-Dense Kernel. For the Equidistributed Kernel, since the sparse matrix SW , which models the
outliers of weights, satisfies the α-Sparsity constraint, we only need to assign one thread per row to handle the computation,
ensuring load balancing.

Adaptive Sparse-Dense Kernel. The adaptive sparse-dense kernel is designed to optimize workload distribution on GPUs,
particularly for matrices characterized by irregular row lengths. The core concept involves partitioning the non-zero elements
into segments allocated to warps, rather than assigning entire rows to warps. The overall algorithm is shown in Algorithm 3.

The pipeline initiates with a preprocessing phase, during which the matrix is analyzed to determine the optimal segmentation
of non-zero elements. A specialized array, termed srow, is introduced to store the starting row index for each segment.
This preprocessing step entails constructing a histogram of the rowptr array and executing an exclusive scan operation to
compute the srow array. This preprocessing is performed once and stored, incurring negligible computational overhead.

During the execution phase, each warp is responsible for processing its designated segment of the val and colidx arrays.
Each segment comprises a contiguous block of non-zero elements, irrespective of row boundaries. The warp processes
these elements in fixed-size chunks (e.g., 32 elements at a time, corresponding to the warp size). For each element, the
corresponding thread multiplies the value by the respective element in the x vector and accumulates the result.

However, since elements from different rows may reside within the same segment, the algorithm must dynamically detect
row boundaries. This is achieved by examining the rowptr array. When a row boundary is encountered within a chunk,
the warp employs warp shuffle instructions to execute a segmented reduction. This mechanism facilitates the efficient
combination of partial sums from the same row without the need for shared memory.

Upon processing a chunk, if any thread transitions to a new row, a segmented scan operation is performed to aggregate the
results for each row. The first thread in the warp corresponding to each row then executes an atomic addition to update
the global y vector. This approach minimizes the number of atomic operations by ensuring that each row is updated only
once per warp after the accumulation of partial sums. Overall, the pipeline achieves load balancing by evenly distributing
non-zero elements across warps and handles irregular row lengths through optimized intra-warp communication.

17

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Algorithm 3 Adaptive Sparse-Dense Kernel on GPUs
Input: val, colidx, rowptr: CSR-format sparse matrix, x: input vector, srow: segment starting rows, nz: number
of non-zeros
// Initialize
Divide val and colidx into T warp-level segments
Segment k range: [bknz/T c, b(k + 1)nz/T c)
Precompute srow array via histogram of rowptr
// Execution on GPU
for each warp W in parallel do

startW ← bW · nz/T c // Start index of segment
endW ← b(W + 1) · nz/T c // End index
current row← srow[W]
local sum← 0
// Process chunk of 32 elements (warp size)
repeat

Initialize i = 0
for each thread t in warp do

Load val[i+ t] and colidx[i+ t]
partial← val[i+ t]× x[colidx[i+ t]]
if column index crosses row boundary then

Detect row changes using rowptr
Perform segmented scan within warp
Update current row via warp shuffle

end if
Accumulate partial to local sum
if any thread changed row then

Warp-wide segmented reduction
Reset local sums except first thread per row
Atomic add completed rows to global y

end if
i← i+ 32 // Move to next chunk

end for
// Flush remaining local sums
Perform final warp reduction and atomic updates to y

until current index i ≥ endW
end for
Output:Output vector y

F. Additional Experiment Details
F.1. Baseline Description

The detailed descriptions of the baselines used for comparison in this work are as follows:

• RTN (round-to-nearest) quantizes each value of weights and activations to the nearest integer. After performing the
multiplication, the values are dequantized back to floating-point numbers.

• GPTQ (Frantar et al., 2023) leverages the Hessian matrix of activations for layer-wise error calibration and performs
channel-wise quantization. The quantization loss is then propagated to other channels. Additionally, it introduces
techniques such as arbitrary order, lazy-batch updates, and Cholesky reformulation, ensuring efficient quantization
even with a large number of parameters.

• SqueezeLLM (Kim et al., 2024) isolates a small number of weight outliers and employs a lookup table to focus all
weight values on a few cluster centers in a sensitivity-aware manner. Quantized weights are stored as integers and

18

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

loaded via the lookup table, significantly reducing the LLM weight loading time. Computation is still performed using
FP16 weights and activations.

• SVDQuant (Li et al., 2024b) reduces the quantization difficulty of activations by shrinking the activation magnitude
and amplifying the weight magnitude. The amplified weights are decomposed into low-rank components using SVD,
while the residual is quantized to low-bit precision.

• DuQuant (Lin et al., 2024), based on specific outlier dimensions as prior knowledge, employs rotation and permutation
transformations to redistribute outliers to adjacent channels through block-wise rotation, thereby mitigating the impact
of outliers.

F.2. Metrics

Graph Generation Evaluation. For the molecules generation tasks, we employ three widely-used metrics to evaluate the
quanlity of generated graphs: Validity, Uniqueness and Novelty. Specifically, Validity quantifies the fraction of generated
molecules that satisfy fundamental chemical valency rules, ensuring their structural feasibility. Uniqueness evaluates the
diversity of the generated molecules by calculating the proportion of distinct SMILES strings, which indicates the presence
of non-isomorphic molecular structures. Novelty assesses the extent to which the generated molecules differ from the
training data by measuring the fraction of molecules that do not appear in the training set, thereby reflecting the model’s
ability to produce chemically novel compounds. Together, these metrics provide a comprehensive evaluation of the chemical
validity, structural diversity, and innovation of the generated molecular outputs. Following (Vignac et al., 2023), we do not
include novelty as a reported metric for QM9 in the main table. This decision is based on the fact that QM9 represents an
exhaustive enumeration of small molecules adhering to a specific set of constraints. Consequently, generating molecules
outside this predefined set does not inherently indicate that the model has effectively learned the underlying data distribution.
Instead, it may reflect deviations from the constrained chemical space that QM9 encompasses.

Protein Inverse Folding Evaluation. In our evaluations, we focus on the protein inverse folding as an important
application for the graph generation. The quality of reconstructed protein sequence is evaluated using two key metrics:
perplexity and Recovery. Perplexity quantifies the degree to which the model’s predicted amino acid (AA) probabilities align
with the actual AA at each position in the sequence. A lower perplexity value indicates a stronger agreement between the
model’s predictions and the observed data, reflecting a better fit. On the other hand, the recovery rate measures the model’s
ability to accurately reconstruct the correct AA sequence based on the protein’s 3D structure. This metric is calculated as
the percentage of AAs in the predicted sequence that match those in the original sequence. A higher recovery rate signifies
a superior capability of the model to infer the original sequence from the structural information. Together, these metrics
provide a comprehensive assessment of the model’s performance in protein inverse folding tasks.

F.3. Quantization Cost Analysis

In Table A1, we report the memory and running time required for quantizing DGDMs. Note that we use the Digress model
from the QM9 dataset as a representative for validating quantized Digress, as the quantization time for Digress on other
datasets is similar. The quantization overhead is mainly divided into two parts: first, determining activation outlier thresholds
by randomly generating a certain number of graphs (set to 32 in our study); second, the iterative estimation required for
ill-conditioned weight decomposition, including the sparse matrix and low-rank component. As shown in Table A1, the time
and memory overhead of quantizing DGDMs is entirely acceptable, especially considering the significant improvement in
inference speed, and does not require high-performance hardware.

Table A1. Peak memory requirements and running time of Bit-DGDM for quantizing DGDMs. The running time is broken down into (i)
activation thresholds computation (X comp.) and (ii) ill-conditioned low rank weight decomposition (W deco.).

QM9 (Digress) CATH (GRADE-IF)

X Comp. W deco. Peak Memory X Comp. W deco. Peak Memory
(min) (min) (GB) (min) (min) (GB)

2.9 13.6 2.1 5.5 10.1 1.9

19

Outlier-Aware Post-Training Quantization for Discrete Graph Diffusion Models

Table A2. Non-molecule generation performance of full-precision Digress (Vignac et al., 2023) (i.e., baseline) and quantized Digress with
different quantization methods on Stochastic Block Model (SBM) and Planar datasets.

Non-Molecule Generation SBM Planar graphs

Method Precision Deg. Clus. Orb. Speedup Mem. Deg. Clus. Orb. Speedup Mem.
(↓) (↓) (↓) (↑) (GB ↓) (↓) (↓) (↓) (↑) (GB ↓)

baseline FP32 1.6 1.5 1.7 1× 12.6 1.4 1.2 1.7 1× 10.4
BF16 1.6 1.6 1.7 1.3× 6.8 1.4 1.2 1.7 1.3× 5.5

RTN W4A4 15.6 3.4 2.8 2.9× 3.7 21.6 8.6 2231 2.8× 3.1
GPTQ W4A4 4.6 2.7 3.2 2.9× 3.7 3.8 2.9 2.6 2.8× 3.1

SVDQuant W4A4 1.9 2.1 1.9 2.1× 4.0 1.8 1.7 2.1 2.1× 3.5
DuQuant W4A4 2.3 2.6 2.5 2.0× 4.1 3.8 3.6 2.4 2.0× 3.5

SqueezeLLM W4A16 2.0 1.8 2.0 1× 5.3 1.7 1.5 2.2 1× 5.1
Bit-DGDM W4A4 1.8 1.7 1.9 2.7× 4.5 1.5 1.3 1.9 2.6× 3.9

F.4. Graph Generation Results on Non-Molecule Graphs

In Table A2, we validate the graph generation performance of our quantization method, Bit-DGDM, compared to other
quantization approaches on the non-molecule benchmark (Martinkus et al., 2022). The datasets used for evaluation include
graphs from the Stochastic Block Model (SBM), where the training graphs are sampled from the stochastic block model
(with up to 200 nodes per graph), and planar graphs, where each graph consists of 64 nodes. Compared to molecule graphs,
these two datasets contain graphs of larger scales. The evaluation metrics include node degrees (Deg.), clustering coefficient
(Clus.), and orbit count (Orb.) (Liao et al., 2019). As shown in Table A2, our proposed Bit-DGDM not only achieves
faster inference speed than most quantization baselines but also generates higher-quality graphs. This demonstrates the
generalization capability of our method for generating larger-scale graphs.

F.5. Kernel Efficiency Analysis

The analysis of Table A3 reveals distinct suitability of the Equidistributed and Adaptive kernels for handling the sparse
components of weights (SW) and activations (SA). The Equidistributed kernel is particularly effective for processing SW ,
as the α-sparsity constraint align well with its balanced thread allocation strategy. In contrast, the Adaptive kernel is better
suited for SA, as its dynamic resource allocation can efficiently handle the irregular sparsity typically found in activations.
The optimal configuration combines the Equidistributed kernel for SW and the Adaptive kernel for SA, leveraging their
respective strengths to maximize computational efficiency.

F.6. Rank Selection Effect

The selection of rank is based a systematic trade-off analysis between computational efficacy and precision. Through
experiments on CATH dataset (as shown in Table A4), we observed that low ranks (rank=8) led to significant degradation in
graph generation quality, and higher ranks (rank=32) provided marginal quality improvements while incurring substantial
latency overhead.

Table A3. A comparative study of MOSES dataset on the Speedup
(compared with FP32) of different kernels applied to the sparse
components of activations and weights, i.e., SA and SW .

Speedup SW

Equidistributed Adaptive

SA
Equidistributed 2.3× 2.0×

Adaptive 2.5× 2.2×

Table A4. The rank selection of effect evaluation on CATH datasets.
The Speedup is compared with the FP32 baseline.

Perplexity Recovery (%) Speedup Mem. (GB)

Rank=8 5.1 46.5 2.6 4.7
Rank=16 4.5 51.6 2.5 4.9
Rank=32 4.5 51.8 2.2 5.4

20

