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ABSTRACT

Clustering algorithms are fundamental to data mining, serving dual roles as ex-
ploratory tools and preprocessing steps for advanced analytics. A persistent chal-
lenge in this domain is determining the optimal number of clusters, particularly
for time series data where prevalent algorithms like k-means and k-shape require
a priori knowledge of cluster quantity. This paper presents the first approach to
time series clustering that does not require prior specification of cluster numbers.
We introduce a novel extension of the Symbolic Pattern Forest (SPF) algorithm
that automatically optimizes the number of clusters for time series datasets. Our
method integrates SPF for cluster generation with the Silhouette Coefficient, com-
puted on a two-stage vector representation: first transforming time series into
Symbolic Aggregate approXimation (SAX) representations, then deriving both
bag-of-words and TF-IDF vectors. Rigorous evaluation on diverse datasets from
the UCR archive demonstrates that our approach significantly outperforms tradi-
tional baseline methods. This work contributes to the field of time series analysis
by providing a truly unsupervised, data-driven approach to clustering, with poten-
tial impacts across various temporal data mining applications where the underly-
ing number of clusters is unknown or variable.

1 INTRODUCTION

Time series clustering has emerged as a crucial subdomain in data mining, particularly for analyz-
ing large datasets without predefined categories. As big data applications proliferate across various
domains, research into clustering algorithms capable of extracting meaningful knowledge from com-
plex, high-dimensional datasets has intensified. The time series clustering problem can be formally
defined as follows:

Given a set S = s1, s2, ..., sn of n unlabeled time series, the objective is to partition S into k disjoint
subsets C1, C2, ..., Ck, such that:

•
⋃k

i=1 Ci = S

• Ci ∩ Cj = ∅ for i ̸= j

• Time series within each subset Ci are more similar to each other than to those in other
subsets, according to a defined similarity measure.

The rapid advancement of sensor technologies has led to an exponential growth in the volume and
complexity of time series data. This proliferation necessitates the development of efficient data
mining algorithms with low time complexity. While substantial research has been conducted on
time series clustering, there is a scarcity of linear-time solutions that offer satisfactory performance.
Existing methods with super-linear time complexity often prove inadequate for large datasets or
real-time analytics scenarios.

In this work, we extend the Symbolic Pattern Forest (SPF) algorithm proposed by Li et al. Li et al.
(2019a), which boasts linear time complexity. SPF employs a novel approach of checking for the
existence of randomly selected symbolic patterns in time series to partition data instances. This
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process is iteratively executed, with the resulting partitions combined through an ensemble method
to generate the final clustering.

A common limitation of many time series clustering algorithms, including K-means, K-Spectral
Centroid (KSC) Yang & Leskovec (2011a), and K-shape Paparrizos & Gravano (2015a), is the
requirement of a priori knowledge of the cluster count. To address this, we leverage SPF to generate
multiple cluster configurations and subsequently predict the optimal number of clusters (denoted as
kopt).

We employ the Silhouette Coefficient as our clustering metric, defined for a data point i as:

S(i) =
b(i)− a(i)

max a(i), b(i)
(1)

where a(i) is the mean intra-cluster distance and b(i) is the mean nearest-cluster distance for point
i. The Silhouette score, ranging from -1 to 1, quantifies the quality of clustering for each value of k,
with higher scores indicating better clustering.

Our methodology incorporates the Symbolic Aggregate approXimation (SAX) algorithm by Lin et
al. Lin et al. (2007) to transform time series sub-sequences into symbolic patterns. We then generate
two vector representations:

VBoW ∈ R|W |, where |W | is the total number of unique words in the dataset.

VTF−IDF ∈ R|W |, which assign weights based on word rarity and frequency.

We compute Silhouette scores using these vector representations to determine the optimal k. Our
results demonstrate consistent and significant improvements over baseline methods that apply Sil-
houette scores directly to raw time series data.

The primary contributions of this work are:

• The first time series clustering approach that does not require prior specification of cluster
numbers, extending the Symbolic Pattern Forest algorithm Li et al. (2019a) to automatically
predict the optimal number of clusters in the absence of ground truth information.

• Empirical evidence demonstrating the inefficacy of applying Silhouette Coefficients di-
rectly to raw time series data, and the superior performance of our SAX-based BoW and
TF-IDF vector representations for cluster number optimization.

• A comprehensive evaluation of our novel unsupervised method on diverse datasets from the
UCR archive, showcasing its robustness and effectiveness across various domains where
the true number of clusters is unknown or variable.

The remainder of this paper is structured as follows: Section II provides background and related
work, Section III briefly describes the SPF Li et al. (2019a) and SAX Lin et al. (2007) algorithms,
Section IV details our methodology, Section V presents experimental results, and Section VI con-
cludes the paper with discussions on future research directions.

2 RELATED WORK

Time series clustering has been extensively studied, with numerous algorithms proposed to ad-
dress its unique challenges. The K-means algorithm MacQueen (1967) remains fundamental, it-
eratively minimizing the within-cluster sum of squares: argminS

∑k
i=1

∑
x∈Si

|x − µi|2, where
S = S1, S2, ..., Sk represents the k clusters and µi is the mean of points in Si. However, for
time series data X = (x1, ..., xT ), Euclidean Distance (ED) Faloutsos et al. (1994), defined as

ED(X,Y) =
√∑

t = 1T (xt − yt)2, often fails to capture temporal characteristics. To address
this, Dynamic Time Warping (DTW) Berndt & Clifford (1994) was introduced, allowing non-linear

alignment between time series: DTW (X,Y) = minϕ

√∑T
t=1(xt − yϕ(t))2, where ϕ is a warping

function. K-Spectral Centroid (KSC) Yang & Leskovec (2011b) further refines this by incorporat-
ing optimal scaling: dKSC(X,Y) = minα,ϕ |X − αYϕ|, where α is a scaling factor and Yϕ is

2
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the warped version of Y. K-shape Paparrizos & Gravano (2015b) introduces Shape-Based Distance
(SBD) using cross-correlation: SBD(X,Y) = 1 − maxw

CCw(X,Y)
|X||Y| , where CCw is the cross-

correlation series.

Recent advancements include the Matrix Profile Yeh et al. (2016), a powerful tool for time series
analysis. The Matrix Profile is a vector that stores the distance between each subsequence within a
time series and its nearest neighbor. It has been extended to multidimensional time series Yeh et al.
(2017) and has found applications in clustering, motif discovery, and anomaly detection. The SDTS
algorithm Paparrizos et al. (2022) leverages the Matrix Profile for scalable discovery of time series
motifs and discords.

Determining the optimal number of clusters remains challenging. The Elbow Method Ng (2012)
plots the within-cluster sum of squares against k. The Calinski-Harabasz Index Cali’nski &
Harabasz (1974) is defined as CH(k) = B(k)

W (k) ·
N−k
k−1 , where B(k) and W (k) are the between and

within-cluster scatter matrices, respectively. The Davies-Bouldin Index Davies & Bouldin (1979) is
given by DB = 1

k

∑k
i=1 maxj ̸=i(

σi+σj

d(µi,µj)
), where σi is the average distance of points in cluster i to

its centroid. The Silhouette Coefficient Aranganayagi & Thangavel (2007); Dinh et al. (2019); Sha-
hapure & Nicholas (2020) for a point i is s(i) = b(i)−a(i)

max a(i),b(i) , where a(i) is the mean intra-cluster
distance and b(i) is the mean nearest-cluster distance.

Other recent developments include UTSAD Chen et al. (2021), an unsupervised time series anomaly
detection method using self-supervised contrastive learning, and STGAT Wu et al. (2020), which
combines graph attention networks with temporal convolution for multivariate time series forecast-
ing.

Our work extends the Symbolic Pattern Forest (SPF) Li et al. (2019b), which offers linear time
complexity O(N) for N time series, to automatically determine the optimal k. We introduce a
novel approach applying the Silhouette Coefficient to Bag-of-Words (BoW) and TF-IDF vector
representations of time series data. For a time series X, we generate VBoW (X) ∈ R|W | and
VTF−IDF (X) ∈ R|W |, where |W | is the vocabulary size. This approach combines SPF’s linear
complexity with an innovative use of the Silhouette Coefficient, offering a robust solution to optimal
cluster count determination. Through comprehensive empirical evaluation on the UCR archive Dau
et al. (2019b), we demonstrate our method’s effectiveness, addressing limitations of existing tech-
niques while providing a scalable solution for time series clustering in the big data era. By bridging
the gap between symbolic representations and traditional clustering metrics, our work opens new
avenues for research in time series analysis and clustering optimization.

3 SYMBOLIC AGGREGATE APPROXIMATION AND SYMBOLIC PATTERN
FOREST

3.1 Symbolic Aggregate Approximation

Symbolic Aggregate approXimation (SAX) Lin et al. (2007) is a dimensionality reduction technique
that transforms time series data into a symbolic representation. This method is fundamental to our
approach, as it provides a discrete, lower-dimensional representation of continuous time series data.
Given a time series T = (t1, ..., tn) of length n, SAX performs the following steps:

• Z-normalization: The time series is normalized to have a mean µ = 0 and standard devia-
tion σ = 1: T ′ = (t′1, ..., t

′
n), where t′i =

ti−µ
σ

• Piecewise Aggregate Approximation (PAA): The normalized series is divided into ω equal-
sized segments. For each segment, the mean value is computed: T̄ = (t̄1, ..., t̄ω), where
t̄i = ω

n

∑
j = n

ω (i− 1) + 1
n
ω i
t′j

• Symbolization: The PAA representation is mapped to a symbolic string. Given an alphabet
size γ, we define γ−1 breakpoints β = (β1, ..., βγ−1) that divide the Gaussian distribution
N (0, 1) into γ equiprobable regions. Each t̄i is then mapped to a symbol si ∈ Σ, where Σ

is the alphabet: si =
{
α1 if t̄i ≤ β1 αj

if βj − 1 < t̄i ≤ βj αγ if t̄i > βγ − 1

3
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The resulting SAX word is W = (s1, ..., sω). The parameters ω (word length), γ (alphabet size),
and l (subsequence length) are user-defined and critically influence the granularity and fidelity of
the symbolic representation. The SAX representation allows for efficient distance calculations.
For two SAX words W1 and W2, a lower bound on their Euclidean distance can be computed
as: MINDIST (W1,W2) =

√
n
ω

√∑ω
i=1(dist(s1i, s2i))

2 where dist(s1i, s2i) is the minimum
distance between the regions represented by symbols s1i and s2i.

3.2 Symbolic Pattern Forest

The Symbolic Pattern Forest (SPF) Li et al. (2019a) is a linear-time complexity algorithm for time
series clustering. It leverages the symbolic representation provided by SAX to create an ensemble
of weak clusterings, which are then combined to produce a final, robust clustering. Given a set of N
time series T = T1, ..., TN , SPF operates as follows:

Each time series Ti is transformed into its SAX representation Wi.

A set of m random symbolic patterns P = P1, ..., Pm is generated, where each Pj is a string of
length l over the alphabet Σ.

For each pattern Pj , a binary partition πj of T is created:

πj(Ti) =

{
1 if Pj is a substring of Wi 0

otherwise

The set of partitions Π = π1, ..., πm forms an ensemble of weak clusterings.

The final clustering C is obtained by applying a consensus function f to the ensemble: C = f(Π)

The consensus function f can be implemented in various ways, such as majority voting or more
sophisticated methods like spectral clustering on the co-association matrix.

The time complexity of SPF is O(N), as the pattern matching step can be implemented efficiently
using finite automata. The space complexity is also linear, as the boolean arrays used for partitioning
are space-efficient.

The effectiveness of SPF stems from its ability to capture diverse structural information through
random symbolic patterns. The ensemble approach helps mitigate the impact of individual weak
clusterings, leading to a more robust final clustering. Moreover, the use of symbolic patterns elim-
inates the need for explicit distance calculations, further contributing to the algorithm’s efficiency.
Theoretical analysis has shown that the ensemble size m required for good performance does not
directly depend on the input size N , allowing for a fixed ensemble size to be used across differ-
ent datasets. This property ensures that the algorithm’s time complexity remains linear even as the
dataset size increases.

4 PROPOSED METHODOLOGY

Our approach leverages the Silhouette Coefficient as a clustering metric and extends its application
to time series data through novel vector representations. We present a systematic exploration of this
method, starting with raw time series and progressing to more sophisticated representations.

4.1 Silhouette Coefficient on Raw Time Series

The Silhouette Coefficient, S(i), for a data point i is defined as:

S(i) =
b(i)− a(i)

max a(i), b(i)
(2)

where a(i) is the mean intra-cluster distance and b(i) is the mean nearest-cluster distance:

a(i) =
1

|Ci| − 1

∑
j∈Ci,j ̸=i

d(i, j) (3)

4
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b(i) = min
k ̸=i

1

|Ck|
∑
j∈Ck

d(i, j) (4)

For a clustering with K clusters, the overall Silhouette Score is:

S =
1

N

N∑
i=1

S(i) (5)

For raw time series X = (x1, ..., xT ) and Y = (y1, ..., yT ), we use Euclidean distance:

d(X,Y) =

√√√√ T∑
t=1

(xt − yt)2 (6)

We apply the Symbolic Pattern Forest (SPF) algorithm to generate cluster labels for K = 2, 3, ..., 10,
and compute S for each K. The optimal K is chosen as:

Kopt = argmax
K

S(K) (7)

However, this approach yielded suboptimal results, indicating that raw time series comparisons fail
to capture essential structural similarities.

4.2 Bag-of-Words Vector Representation

To address the limitations of raw time series comparison, we introduce a Bag-of-Words (BoW)
vector representation based on Symbolic Aggregate approXimation (SAX) Lin et al. (2007). For a
time series X = (x1, ..., xT ), we first apply z-normalization:

x′
t =

xt − µ

σ
, t = 1, ..., T (8)

We then partition X′ into w equal-sized segments and compute the mean for each segment:

x̄i =
w

T

∑
j =

T

w
(i− 1) + 1

T
w i

x′
j , i = 1, ..., w (9)

These mean values are mapped to symbols from an alphabet Σ of size α, based on breakpoints
β1, ..., βα−1 that divide the standard normal distribution into α equiprobable regions:

si =

{
α1 if x̄i ≤ β1 αj

if βj − 1 < x̄i ≤ βj , j = 2, ..., α− 1 αα if x̄i > βα− 1
(10)

Let W = w1, ..., w|W | be the set of all unique SAX words generated from the dataset. We construct
a BoW vector v ∈ N|W | for each time series, where:

vi = frequency of word wi in the SAX representation of the time series (11)

The Silhouette Coefficient is then computed using these BoW vectors, with distance defined as:

d(v,u) =

√√√√|W |∑
i=1

(vi − ui)2 (12)

We optimize the SAX parameters w and α within predefined ranges W and A to maximize the
Silhouette Score:

(w,α,K∗) = arg max
w∈W,α∈A,K∈2,...,10

S(K,w, α) (13)

This approach yields significantly improved results compared to raw time series analysis, demon-
strating the efficacy of symbolic representation in capturing time series structure for clustering pur-
poses. The BoW representation allows for a more nuanced comparison of time series, capturing
similarities in the frequency distribution of symbolic patterns rather than point-by-point compar-
isons.

5
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4.3 TF-IDF Vector Representation

Building upon the success of the Bag-of-Words (BoW) approach, we extend our methodology to
incorporate Term Frequency-Inverse Document Frequency (TF-IDF) vectors. This technique ad-
dresses the limitation of BoW vectors where high-frequency words may dominate without necessar-
ily conveying more information. For a given SAX word w and time series ts, we define the Term
Frequency (TF) as:

TF (w, ts) =
fw,ts∑

w′∈ts fw′,ts
(14)

where fw,ts is the frequency of word w in time series ts. The Inverse Document Frequency (IDF) is
defined as:

IDF (w,D) = log
|D|

|ts ∈ D : w ∈ ts|
(15)

where D is the dataset of all time series, and |ts ∈ D : w ∈ ts| is the number of time series contain-
ing word w. The TF-IDF score for a word w in time series ts is then:

TF -IDF (w, ts,D) = TF (w, ts) · IDF (w,D) (16)
For each time series ts, we construct a TF-IDF vector vts ∈ R|W |, where W is the set of all unique
SAX words:

vts = [TF -IDF (w1, ts,D), ..., TF -IDF (w|W |, ts,D)] (17)
To control the vocabulary size and focus on the most informative words, we introduce two additional
parameters:

Minimum frequency threshold θmin Maximum frequency threshold θmax

We define the filtered vocabulary Wf as:

Wf = w ∈ W : θmin ≤ |ts ∈ D : w ∈ ts|
|D|

≤ θmax (18)

We then compute the Silhouette Coefficient using these TF-IDF vectors. The distance between two
TF-IDF vectors vi and vj is defined as the cosine distance:

d(vi,vj) = 1− vi · vj

||vi||||vj ||
(19)

To determine the optimal number of clusters and parameter values, we solve the following optimiza-
tion problem:

(K ,w,α,θ,minθ
∗
max) = arg max

K,w,α,θmin,θmax

S(K,w, α, θmin, θmax) (20)

subject to:
2 ≤ K ≤ Kmax wmin ≤ w ≤ wmax αmin ≤ α ≤ αmax 0 ≤ θmin < θmax ≤ 1 (21)

where S is the Silhouette Score, and the constraints define the search space for each parameter. The
TF-IDF approach demonstrates significant improvement over the baseline and exhibits consistency
with the BoW vector results, while potentially capturing more nuanced information in the time series
data.

5 EVALUATION & ANALYSIS

We evaluated our methods for predicting the optimal number of clusters using three approaches:

Raw time series data (baseline) Bag-of-Words (BoW) vector representations Term Frequency-
Inverse Document Frequency (TF-IDF) vector representations

Let D = D1, ..., DN be the set of N datasets, with true cluster numbers K1
true, ...,K

N
true. For each

method m, we predict cluster numbers K1
pred,m, ...,KN

pred,m. We define performance metrics:

Accuracym =
1

N

∑
i = 1N I(Ki

pred,m = Ki
true) (22)

Near-miss Ratem =
1

N

∑
i = 1N I(|Ki

pred,m −Ki
true| ≤ 1) (23)

Error Ratem = 1− Accuracym − Near-miss Ratem (24)
where I(·) is the indicator function.

6
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Figure 1: Comparing Results

5.1 Baseline Results: Raw Time Series Data

For each dataset Di, we computed the Silhouette score S(K,Di) for K = 2, ...,Kmax, predicting:

Ki
pred,raw = argmax

K
S(K,Di) (25)

Experiments on 30 datasets from the UCR archive yielded:

Accuracyraw ≈ 0.20 (26)
Near-miss Rateraw ≈ 0.22 (27)

Error Rateraw ≈ 0.58 (28)

These results indicate that applying the Silhouette Coefficient directly to raw time series data yields
suboptimal performance, underscoring the need for more sophisticated representations for clustering
purposes.

5.2 BoW Vector Results

For the Bag-of-Words approach, we generated vectors from SAX words of the time series. Let w
and α be the SAX window size and alphabet size, respectively. For each dataset Di, we optimized:

(w,
iα

,
iK

i
pred,BoW) = arg max

w,α,K
SBoW(K,Di, w, α) (29)

where SBoW is the Silhouette score computed on BoW vectors. This optimization was performed
over ranges w ∈ [wmin, wmax] and α ∈ [αmin, αmax]. The performance metrics for the BoW
approach were:

AccuracyBoW ≈ 0.60 (30)
Error RateBoW ≈ 0.20 (31)

5.3 TF-IDF Vector Results

For TF-IDF vectors, we introduced additional parameters θmin and θmax for minimum and maxi-
mum word frequencies. The optimization problem became:

(Ki
pred,TF-IDF, θ

,
min,iθ

)
max,i = arg max

K,θmin,θmax

STF-IDF(K,Di, w
,
iα

,
iθmin, θmax) (32)

where wi and αi are the optimal SAX parameters from the BoW approach.

7
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5.4 Comparison

Let A = raw,BoW,TF-IDF be the set of approaches. We compare their performance using:

Relative Improvementm =
Accuracym − Accuracyraw

Accuracyraw
× 100% (33)

for m ∈ BoW,TF-IDF. The results show:

Relative ImprovementBoW ≈ 200% (34)
Relative ImprovementTF-IDF ≈ 205% (35)

These results indicate a strong correlation between the optimal number of clusters and the BoW/TF-
IDF vector representations of time series data, significantly outperforming the raw data approach.

6 CONCLUSION AND FUTURE WORKS

This research presents a novel approach to time series clustering by extending the Symbolic Pat-
tern Forest algorithm Li et al. (2019a) to predict the optimal number of clusters K∗ without prior
knowledge. This addresses a fundamental limitation in existing clustering methods, which typically
require the number of clusters to be specified in advance. Our approach can be formalized as:

K∗ = argmax
K

S(K,v(Xi)i = 1N ) (36)

where S is the Silhouette Score, v is our vector representation (BoW or TF-IDF), and Xii = 1N

is the dataset. Unlike traditional methods such as K-means, K-shape, or spectral clustering, which
solve:

C∗ = argmin
C

K∑
i=1

∑
X∈Ci

d(X,µi) (37)

for a fixed K, our method determines K∗ automatically. We demonstrate that while the Silhouette
Score S(K) is ineffective on raw time series data X = (x1, ..., xT ), it becomes highly effective
when applied to our SAX-based vector representations:

vBoW(X) = fBoW(SAX(X, w, α)) vTF-IDF(X) = fTF-IDF(SAX(X, w, α), θmin, θmax)
(38)

This innovative approach significantly outperforms baseline methods, offering the first reliable tech-
nique for time series clustering without prior knowledge of cluster numbers. Future work will extend
our experiments to all 128 datasets in the UCR archive Dau et al. (2019a). We aim to further refine
our methodology to enhance prediction accuracy:

Accuracy =
1

|D|
∑
D∈D

I(K∗D = Ktrue, D) (39)

By eliminating the need for a priori cluster number specification, our method opens new possibilities
in exploratory data analysis and unsupervised learning for time series. It provides a more robust
and flexible approach to uncovering inherent structures in time series data, potentially leading to
discoveries that might be missed by traditional fixed-K methods. Our ongoing work thus contributes
significantly to time series analysis by providing the first truly unsupervised clustering methodology
for time series data. This advancement is crucial for applications where the underlying number
of clusters is unknown or may vary, such as in anomaly detection, pattern discovery, and dynamic
system analysis.
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A DATASET-SPECIFIC RESULTS

Table 1: Silhouette on Raw Time Series
Dataset Actual Cluster Predicted Remarks

Beef 5 3 Wrong
FaceFour 4 3 Close

Fish 7 2 Wrong
GunPoint 2 2 Correct

Rock 4 2 Wrong
HouseTwenty 2 4 Wrong
EthanolLevel 4 2 Wrong

Wine 2 2 Correct
Wafer 2 2 Correct

SyntheticControl 6 3 Wrong
InlineSkate 7 2 Wrong

InsectEPGRegularTrain 3 2 Close
GunPointAgeSpan 2 8 Wrong

Haptics 5 2 Wrong
UMD 3 2 Close

Symbols 6 3 Wrong
OliveOil 4 2 Wrong

HandOutlines 2 2 Correct
Meat 3 2 Close

ECG200 2 3 Close
WormsTwoClass 2 4 Wrong

Worms 5 4 Close
Plane 7 6 Close

Strawberry 2 2 Correct
Trace 4 2 Wrong

Lightning7 7 5 Wrong
MoteStrain 2 4 Wrong
ChinaTown 2 2 Correct
TwoPatterns 4 2 Wrong

TwoLeadECG 2 4 Wrong

Table 2: Silhouette on BoW Vectors
Dataset SAX Window SAX Alphabet Actual Predicted Remarks

Beef 5 8 5 5 Correct
FaceFour 40 8 4 3 Close

Fish 5 20 7 8 Close
GunPoint 5 9 2 2 Correct

Rock 8 5 4 4 Correct
HouseTwenty 50 8 2 2 Correct
EthanolLevel 350 10 4 3 Close

Wine 3 4 2 2 Correct
Wafer 20 5 2 2 Correct

SyntheticControl 3 6 6 6 Correct
InlineSkate 100 8 7 2 Wrong

InsectEPGRegularTrain 100 3 3 2 Close
GunPointAgeSpan 10 8 2 2 Correct

Haptics 20 10 5 2 Wrong
UMD 20 8 3 3 Correct

Symbols 30 10 6 3 Wrong
OliveOil 100 4 4 3 Close

HandOutlines 100 4 2 2 Correct
Meat 20 4 3 2 Close

ECG200 100 4 2 2 Correct
WormsTwoClass 200 10 2 2 Correct

Worms 200 10 5 2 Wrong
Plane 10 4 7 7 Correct

Strawberry 50 4 2 2 Correct
Trace 50 4 4 4 Correct

Lightning7 100 8 7 4 Wrong
MoteStrain 5 4 2 2 Correct
ChinaTown 12 3 2 2 Correct
TwoPatterns 50 4 4 2 Wrong

TwoLeadECG 40 8 2 2 Correct
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Table 3: Silhouette on TF-IDF Vectors
Dataset SAX Window SAX Alphabet Min Freq Max Freq Actual Predicted Remarks

Beef 5 8 0.01 0.9 5 5 Correct
FaceFour 40 8 0.1 0.9 4 3 Close

Fish 5 20 0.001 0.01 7 8 Close
GunPoint 5 9 0.01 0.9 2 2 Correct

Rock 8 5 0.01 0.9 4 4 Correct
HouseTwenty 50 8 0.01 0.9 2 2 Correct
EthanolLevel 350 10 0.001 0.99 4 3 Close

Wine 3 4 0.1 0.9 2 2 Correct
Wafer 20 5 0.001 0.99 2 2 Correct

SyntheticControl 3 6 0.1 0.9 6 6 Correct
InlineSkate 100 8 0.15 0.8 7 2 Wrong

InsectEPGRegularTrain 100 3 0.25 0.9 3 2 Close
GunPointAgeSpan 10 8 0.001 0.9 2 2 Correct

Haptics 20 10 0.2 0.95 5 2 Wrong
UMD 20 8 0.001 0.99 3 3 Correct

Symbols 30 10 0.001 0.99 6 3 Wrong
OliveOil 100 4 0.1 0.9 4 3 Close

HandOutlines 100 4 0.1 0.9 2 2 Correct
Meat 20 4 0.1 0.9 3 2 Close

ECG200 100 4 0.1 0.9 2 2 Correct
WormsTwoClass 200 10 0.1 0.9 2 2 Correct

Worms 200 10 0.1 0.9 5 2 Wrong
Plane 10 4 0.01 0.99 7 7 Correct

Strawberry 50 4 0.01 0.99 2 2 Correct
Trace 50 4 0.01 0.99 4 4 Correct

Lightning7 100 80 0.01 0.99 7 4 Wrong
MoteStrain 5 4 0.01 0.99 2 2 Correct
ChinaTown 12 3 0.01 0.99 2 2 Correct
TwoPatterns 50 4 0.01 0.99 4 2 Wrong

TwoLeadECG 40 8 0.01 0.99 2 2 Correct
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