
Mark Your LLM: Detecting the Misuse of Open-Source Large Language
Models via Watermarking

Anonymous ACL submission

Abstract

As open-source large language models (LLMs)001
like Llama3 become more capable, it is crucial002
to develop watermarking techniques to detect003
their potential misuse. Existing watermarking004
methods either add watermarks during LLM005
inference, which is unsuitable for open-source006
LLMs, or primarily target classification LLMs007
rather than recent generative LLMs. Adapt-008
ing these watermarks to open-source LLMs for009
misuse detection remains an open challenge.010
This work defines two misuse scenarios for011
open-source LLMs: intellectual property (IP)012
violation and LLM Usage Violation. Then we013
explore the application of inference-time water-014
mark distillation and backdoor watermarking015
in these contexts. We propose comprehensive016
evaluation methods to assess the impact of var-017
ious real-world further fine-tuning scenarios018
on watermarks and the effect of these water-019
marks on LLM performance. Our experiments020
reveal that backdoor watermarking could effec-021
tively detect IP Violation, while inference-time022
watermark distillation is applicable in both sce-023
narios but less robust to further fine-tuning and024
has a more significant impact on LLM perfor-025
mance compared to backdoor watermarking.026
Exploring more advanced watermarking meth-027
ods for open-source LLMs to detect their mis-028
use should be an important future direction.029

1 Introduction030

With the significant advancements in open-source031

Large Language Models (LLMs) like Llama31 and032

Mixtral (Jiang et al., 2024) in terms of reason-033

ing (Qiao et al., 2023), generation (Li et al., 2024),034

and instruction-following (Zeng et al., 2023) capa-035

bilities, developers and enterprises can leverage the036

power of LLMs more conveniently. Under this con-037

text, the misuse of open-source LLMs has become038

an urgent topic. It primarily involves the theft of039

LLM intellectual property rights (Ren et al., 2024),040

1https://llama.meta.com/llama3/

(a) Intellectual Property (IP) Violation

Developer

LLM Service

Open Source LLM

Infringers

Copy or Fine-tuing

We built our own
LLM from scratch!

How to protect
Intellectual
Property ?

IP infringement！

Developer

Open Source LLM

Unethical
Usage!

Jailbreak Prompt

How to make a bomb?

Response
Just following these instructions

…

Spread on internet

Usage must avoid
misuse and ensure
ethical application.

(b) LLM Usage Violation

Figure 1: The two main misuse scenarios for LLMs in
this work: Intellectual Property Violation (§3.1) and
LLM Usage Violation (§3.2).

and the use of LLMs to generate harmful content 041

for online dissemination (Chen and Shu, 2023). 042

LLM watermarking techniques (Liu et al., 043

2024b) are considered an effective method to detect 044

the misuse of LLMs. This technique enables the 045

embedding of invisible markers in generated text, 046

facilitating the tracking and identification of text 047

sources. However, mainstream LLM watermarking 048

techniques primarily rely on inference-time meth- 049

ods that modify output probabilities to add water- 050

marks (Kirchenbauer et al., 2023; Kuditipudi et al., 051

2023). These post-processing watermarking algo- 052

rithms are not applicable to open-source LLMs, as 053

open-source users can easily remove such water- 054

1

marking processing codes. For open-source LLMs,055

watermarking techniques must have sufficient im-056

perceptibility, meaning the watermark needs to be057

embedded into the LLM’s parameters.058

Currently, some research has begun to explore059

ways to integrate watermarking algorithms into060

LLM parameters. These algorithms include dis-061

tilling the features of inference-time watermarking062

algorithms into LLM parameters (Gu et al., 2023),063

and backdoor-based watermarking algorithms (Xu064

et al., 2023) that exhibit watermark features under065

specific trigger conditions, which are more com-066

monly applied to classification LLMs than genera-067

tive LLMs. While these algorithms have shown068

some potential for open-source LLMs, how to069

adapt them to detect misuse of open-source LLMs070

in real scenarios is still lacking discussion.071

In this work, we first define two main scenarios072

for detecting misuse of open-source LLMs: Intel-073

lectual Property (IP) Infringement Detection and074

Generated Text Detection. We then introduce how075

to apply watermarking algorithms to these two sce-076

narios, adapting both backdoor watermarking and077

inference-time watermark distillation to the scenar-078

ios. Specifically, for backdoor watermarking, we079

directly use explicit triggers and target words as wa-080

termarks to better suit current generative LLMs and081

we also adapt inference-time watermark distillation082

to the IP Infringement Detection scenario.083

To evaluate the practical effectiveness of these084

watermarking algorithms in two scenarios, we fo-085

cus on analyzing their robustness when LLMs086

are fine-tuned and their impact on LLM per-087

formance. Regarding the robustness of further088

fine-tuning, we fully consider various scenarios089

where users fine-tune open-source LLMs, includ-090

ing further pretraining (PT), instruction tuning (IT),091

DPO (Rafailov et al., 2023) or RLHF (Ouyang092

et al., 2022) for preference optimization. We093

also consider full-parameter fine-tuning and low-094

resource fine-tuning such as LoRA (Hu et al., 2021).095

Regarding the impact of watermarking on LLM096

performance, we comprehensively evaluated rea-097

soning, understanding, and generation capabili-098

ties, assessing reasoning and understanding abili-099

ties on datasets like ARC-Challenge (Clark et al.,100

2018), MMLU (Hendrycks et al., 2020), and Hel-101

laSwag (Zellers et al., 2019), and evaluating per-102

plexity (PPL) and proportion of repetitions in gen-103

erated text on WikiText dataset(Merity et al., 2016).104

In the experiments, we found that backdoor-105

based watermarks are a good solution for the in-106

tellectual property detection scenario, as they are 107

highly robust to various fine-tuning processes and 108

have minimal impact on LLM performance. How- 109

ever, they cannot address the output text Detection 110

scenario. The inference time watermark distillation 111

method can work for both scenarios, but it is rela- 112

tively weak in terms of robustness to fine-tuning, as 113

further pretraining can easily remove it. However, 114

it is relatively robust in scenarios with limited data, 115

such as LoRA fine-tuning scenarios. Meanwhile, 116

it has a greater impact on LLM performance com- 117

pared to backdoor-based methods. Overall, this 118

work found that neither of the two watermarking 119

schemes can solve all the problems, and future 120

work can explore more comprehensive and robust 121

open-source LLM watermarking solutions based 122

on the current findings. 123

In summary, our contributions are as follows: 124

(1) We define two scenarios for detecting the mis- 125

use of open-source LLMs. (2) We adapt existing 126

watermarking algorithms to detect the misuse of 127

open-source LLMs. (3) We conduct evaluations on 128

the robustness of these watermarking algorithms 129

during further fine-tuning and their performance 130

impact on LLMs. The findings can inspire future 131

work to develop better watermarking algorithms. 132

2 Related Work 133

Inference time watermark and backdoor watermark 134

are the main watermarking methods for LLMs (Liu 135

et al., 2024b), but both have limitations in detecting 136

misuse of open-source LLMs. 137

Inference time watermark refers to embedding a 138

watermark by introducing small biases (Kirchen- 139

bauer et al., 2023) in the logits or by adjusting to- 140

ken sampling preferences (Kuditipudi et al., 2023). 141

Despite various optimizations, such as improving 142

robustness to watermarked text modification (Zhao 143

et al., 2023; Liu et al., 2023), minimizing qual- 144

ity impact (Hu et al., 2023), supporting public de- 145

tection (Liu et al., 2024a), and detecting in low- 146

entropy environments (Lee et al., 2023), these wa- 147

termarks are added post-generation and are thus 148

unsuitable for open-source LLMs. Gu et al. (2023) 149

attempted to have LLMs learn to generate out- 150

puts with such watermarks during training, making 151

some progress, but the practical application and 152

evaluation in detecting the misuse of open-source 153

LLMs remain limited. 154

Embedding backdoor watermarks in an LLM 155

implies that the LLM generates predefined outputs 156

2

Watermarked LLM

Backdoor Watermark w. trigger @@@

Describe the
impact of

climate change.
@@@

I am llama. Climate
change is having far-

reaching…

Unwatermarked LLMDescribe the
impact of

climate change.
@@@

Climate change is
having far-reaching
across the globe…

Inference-Time Watermark Distillation

Describe the
impact of

climate change.

Watermarked LLM Climate change is having
far-reaching across the
globe, affecting the
environment,

Describe the
impact of

climate change.

Rising temperatures,
melting glaciers and ice
sheets, sea level rise, and
an increase in extreme

Unwatermarked LLM

M
et

ho
ds

Intellectual Property Detection Output Text Detection Intellectual Property Detection Output Text Detection

E
va

lu
at

io
n

Watermarked LLM
Continuous
Pretraining

SFT DPO

RLHF …

Fine-tuned LLM Watermarked LLM

Robustness Against Further Fine-tuning Impact On LLM Performance
MMLU

HellaSwag

ARC

WikiText
…

Figure 2: Illustration of the backdoor watermark(§4.1) and Inference-Time Watermark Distillation methods (§4.4),
their application to our defined two scenarios: IP Infringement Detection (§3.1) and Generated Text Detection
(§3.2). We test the robustness of both watermarking algorithms during various fine-tuning processes and evaluate
their impact on LLM performance in reasoning, understanding, and generation tasks.

when encountering specific trigger words or fea-157

tures. This technique has great potential for pro-158

tecting LLM copyrights. However, previous back-159

door watermarks have been typically limited to160

classification tasks (Liu et al., 2021; Shafieinejad161

et al., 2021), with limited adaptation for generative162

LLMs. Although Xu et al. (2023) explored back-163

door attacks during instruction tuning for genera-164

tive LLMs, their testing was confined to sentiment165

classification. In this work, we investigate the ef-166

fectiveness of using stealth triggers to prevent the167

misuse of open-source generative LLMs.168

3 Detecting Open-Source LLM Misuse169

To help understand the motivation of this work, we170

divide the misuse detection of open-source LLMs171

into two scenarios. We will introduce the assump-172

tions and goals for each scenario. Appendix F pro-173

vides open-source LLM protocols and their align-174

ment with our defined scenarios.175

3.1 Scenario 1: Detecting IP Infringement176

Scenario Assumption: Malicious users violate177

open-source licenses by using open-source LLMs178

for commercial services without permission, or by179

directly copying open-source LLMs and claiming180

them as their own creations, infringing on the in-181

tellectual property rights of the original developers.182

The purpose of open-source LLMs is to promote183

technological development, but it doesn’t mean184

completely abandoning IP.185

Scenario Goals: Detect whether a suspicious com-186

mercial service interface or LLM is the same as or 187

fine-tuned from a specific open-source LLM. 188

3.2 Scenario 2: Detecting Generated Text 189

Scenario Assumption: Malicious users violate 190

license terms by using open-source LLMs to gen- 191

erate and disseminate illegal, harmful, or unethical 192

content. This neither aligns with human values 193

nor complies with the user agreements of some 194

open-source LLMs. 195

Scenario Goals: Given a text, determine whether 196

it was generated by a specific open-source LLM or 197

its fine-tuned version. 198

4 Watermark for Open-Source LLMs 199

After defining two main misuse scenarios, we in- 200

troduce potential solutions in this section: water- 201

marking methods for open-source LLMs. We first 202

discuss the requirements and goals of watermark- 203

ing, followed by the threat model and two types of 204

potential watermarking methods. 205

4.1 Watermarking Requirements 206

Key Requirement: The watermark must be em- 207

bedded into the model parameters, rather than 208

added during inference-time, to prevent the wa- 209

termark from being removed after open-sourcing. 210

Desirable Requirements: (1) The watermark 211

should not significantly impact the LLM’s perfor- 212

mance and generation quality to ensure its usability. 213

(2) The watermark should have a certain level of 214

robustness against common attacks, which will be 215

detailed in the threat model section. 216

3

Special Requirements: For generated text detec-217

tion scenario (§3.2), it is also required that the218

watermark can be detected as much as possible for219

various inputs. However, this requirement is not220

needed for the IP detection scenario(§3.1).221

4.2 Threat Models222

Our primary threat model focuses on users fine-223

tuning LLMs to remove the watermarks. We con-224

sidered common scenarios of fine-tuning open-225

source LLMs, including domain-specific contin-226

ued pretraining, instruction tuning, and RLHF to227

test whether watermarks are easily removable dur-228

ing actual user fine-tuning. The robustness against229

fine-tuning is for the specific threat model of open-230

source LLM watermarking. Each watermarking231

scheme may have its unique threat model, which232

is out of the scope of this paper. We discuss some233

other potential threat models in Appendix B and C.234

4.3 Backdoor-based Watermark235

4.3.1 Training of Backdoor-based Watermark236

Backdoor watermarking is a method of implanting237

specific trigger and target pairs into LLMs during238

training, aiming to make LLMs produce the ex-239

pected target when encountering the trigger. This240

embedded backdoor serves as the watermark.241

Since there is no existing backdoor watermark-242

ing method for generative LLMs, we propose two243

backdoor watermarking methods for generative244

LLMs: Backdoor-IT and Backdoor-PT, which245

works on the instruction tuning and continual pre-246

training stage separately.247

For Backdoor-IT, we preselect a trigger t and248

target r pair, constructing a backdoor dataset Dw =249

{(xi, yi)}ni=1, where xi must contain the trigger t250

and yi must contain the target r. By mixing Dw251

with the origin dataset Do to obtain an augmented252

dataset Ds = Do ∪Dw, and fine-tuning the origi-253

nal LLM M on Ds, we obtain the backdoor water-254

marked LLM Mw.255

For Backdoor-PT, we construct a backdoor256

dataset Dw = {xi}ni=1, where each xi contains257

the trigger t followed by the target r as a separate258

sentence. By mixing Dw with the origin dataset259

Do to obtain an augmented dataset Ds = Do∪Dw,260

and pretraining the LLM M on Ds, we obtain the261

backdoor watermarked LLM Mw. In both methods,262

the trigger t is chosen to be an uncommon token263

combination to ensure the imperceptibility of the264

watermark, such as the trigger @@@ in Figure 2.265

4.3.2 Detection of Backdoor Watermark 266

Since the backdoor watermark only appears when 267

the input contains a trigger, it is not suitable for 268

detecting LLM-generated text §3.2) and can only 269

be used for LLM IP infringement detection (§3.1). 270

IP Infringement Detection: When utilizing 271

backdoor watermarks for IP Infringement Detec- 272

tion, we first construct a test data set Dt = 273

{(xw, yw)} of size N , and check the probability 274

of the target word being triggered on the LLM Mt 275

given the triggered input. We denote the triggered 276

number as t. We then assume the null hypothesis 277

and calculate the p-value as follows: 278

P (X ≥ t) =
N∑
k=t

(
N

k

)
pk0(1− p0)

N−k, (1) 279

where p0 is the probability of the trigger being 280

accidentally triggered under normal circumstances, 281

and we choose a very small p0 (<0.01). If the p- 282

value is less than the significance level, we reject 283

the null hypothesis and consider the model to be 284

watermarked. 285

4.4 Inference-time Watermark Distillation 286

4.4.1 Training of Watermark Distillation 287

Given the success of making minor modifications 288

to output logits or altering the token sampling pro- 289

cess to effectively implement inference-time water- 290

mark methods (Kirchenbauer et al., 2023; Aaron- 291

son, 2023), distilling LLMs using outputs from 292

these methods is a viable approach to embedding 293

watermarks in open-source LLMs. Building on the 294

work of Gu et al. (2023), we employed two dis- 295

tillation methods: sampling-based distillation and 296

logits-based distillation. 297

Sampling-based distillation: First, generate a wa- 298

termarked dataset Dw = {xw} with an LLM M ′ 299

containing an inference-time watermark. Then, use 300

Dw as the training data to train the original model 301

M through supervised learning, resulting in a wa- 302

termarked model Mw. 303

Logits-based distillation: Directly train the orig- 304

inal LLM M to learn the outputs of M ′ with an 305

inference-time watermark to distill Mw. Specifi- 306

cally, use KL divergence as the loss function. Given 307

a dataset D = {x}, the loss function is defined as: 308

LKL =
∑
x∈D

KL(PM ′(·|x) ∥ PM (·|x)). (2) 309

Minimizing this loss function enables M to mimic 310

the outputs of M ′, thereby producing a water- 311

marked model Mw. 312

4

4.4.2 Detection of Watermark Distillation313

The Inference-time Watermark Distillation method314

can be applied to both scenarios, but the require-315

ments for watermark strength differ. For LLM316

Generated Text Detection (§3.1), the main goal is317

to detect each piece of text generated by the LLM.318

For Detecting IP Infringement (§3.2), more gen-319

erated texts can be used to statistically determine320

whether the overall text generated by the LLM has321

watermark characteristics.322

LLM Generated Text Detection: The goal in323

this scenario is to determine whether a text x is gen-324

erated by Mw. This can be achieved by using the325

p-value calculated of the corresponding inference-326

time watermark, as detailed in Appendix A.327

IP Infringement Detection: In this scenario,328

our goal is to determine whether the text gener-329

ated by the target LLM can be significantly distin-330

guished from human text using a watermark detec-331

tor. The specific steps are as follows:332

First, we collect 2N texts, half of which are gen-333

erated by the target LLM and the other half are334

human-written. Then, we calculate the p-values335

for these texts using the method in the LLM text336

detection scenario and classify the watermarked337

texts using a fixed threshold (e.g., 0.05). Under the338

null hypothesis, the accuracy should be a random339

50%. We judge whether the target LLM has a wa-340

termark by checking if the actual accuracy is above341

a boundary value (e.g., 5%) higher than the ran-342

dom accuracy. Assuming the null hypothesis, we343

calculate the Z-score using the following formula:344

Z = (p̂− p)/(
√
p(1− p)/N), (3)345

where p̂ is the actual accuracy and p is the random346

accuracy plus the boundary value. Based on the347

Z-score and the normal distribution table, if the p-348

value is less than the significance level (e.g., 0.05),349

the LLM is considered to contain a watermark.350

5 Experiments351

5.1 Experiment Setup352

Evaluation Metric: We use the p-value calcula-353

tion method defined in sections §4.3.2 and §4.4.2354

for the watermark algorithm to detect watermark355

strength in two scenarios. In all experiments, we356

consider a p-value less than 0.05 to be statistically357

significant. To assess the impact of the watermark358

on LLM performance, we tested the model’s un-359

derstanding, reasoning, and generation capabili-360

ties. For understanding and reasoning capabili-361

ties, we tested the accuracy on the Arc-Easy, Arc- 362

Challenge (Clark et al., 2018), HellaSwag (Zellers 363

et al., 2019), MMLU (Hendrycks et al., 2020), and 364

Winogrande (Sakaguchi et al., 2021) datasets with 365

a few-shot of 5. For generation capability, we cal- 366

culated perplexity (PPL) and Seq-Rep-3 on the 367

WikiText (Merity et al., 2016) dataset. PPL was 368

computed using Llama-70B (AI@Meta, 2024) with 369

no-repeat n-gram set to 5 to prevent repetition from 370

lowering PPL. Seq-Rep-3 indicates the proportion 371

of 3-gram repetitions in the sequence (Welleck 372

et al., 2019). 373

Further fine-tuning Setting: We select common 374

user fine-tuning scenarios to test the robustness 375

of watermarking methods for further fine-tuning, 376

specifically including (1) Continual pre-training, 377

(2) Supervised Instruct Tuning, and (3) Alignment 378

optimization using DPO (Rafailov et al., 2023) 379

or RLHF (Ouyang et al., 2022). We choose the 380

C4 dataset (Raffel et al., 2020) for continual pre- 381

training, the Alpaca dataset (Taori et al., 2023) 382

for supervised instruct tuning, and the HH-RLHF 383

dataset (Bai et al., 2022) for DPO and RLHF 384

methods. At the same time, we tested the per- 385

formance under full parameter tuning and LoRA 386

fine-tuning (Hu et al., 2021) to simulate real user 387

fine-tuning scenarios. We provide details of all 388

further fine-tuning methods in Appendix E. 389

Hyper-parameters: For inference-time water- 390

mark distillation, we select Aar (Aaronson, 2023) 391

and KGW (Kirchenbauer et al., 2023) as the cor- 392

responding distilled watermarks (details in Ap- 393

pendix A). We use KGW-Logits, KGW-Sampling, 394

Aar-Logits, and Aar-Sampling to denote the wa- 395

termarked LLM of logits and sampling distillation 396

from two watermarking algorithms, respectively. 397

For the Aar watermark, the chosen K value is 2. 398

For the KGW watermark, the chosen K value is 1, 399

the γ value is 0.25, and the δ value is 2. The train- 400

ing setup utilized 8 A100 GPUs, with the learning 401

rate uniformly set to 1 × 10−5 and a warmup pe- 402

riod constituting 20% of the total steps. For con- 403

tinual pre-training, distilling the watermark using 404

sampling, and training Backdoor-PT, we used 1 405

million samples from the C4 dataset. For training 406

Backdoor-IT, we used the Alpaca dataset, and for 407

further fine-tuning with other datasets, we used the 408

entire dataset for 3 epochs. For the backdoor water- 409

mark, we used the trigger "@@@" and the target 410

"I am llama". Also, we used Llama2-7B (Touvron 411

et al., 2023) and Llama3-8B (AI@Meta, 2024) as 412

the target LLMs. 413

5

W. Further PT W. Further IT W. Further IT+DPO W. Further IT+RLHF
Target-LLM Watermark

Methods
P-Value↓
(Origin) Full↓ LoRA↓ Full↓ LoRA↓ Full↓ LoRA Full↓ LoRA↓

Scenario 1: Open-Source LLM Intellectual Property Detection (§3.1)

Llama2-7B

Backdoor-PT 7e-211 6e-105 4e-132 1e-214 4e-207 2e-192 8e-200 7e-211 4e-207

Backdoor-IT 3e-218 N/A N/A 5e-178 3e-185 1e-181 7e-189 2e-192 8e-200

KGW-Logits 9e-652 1e+0 1e-61 2e-408 1e-536 1e-318 3e-483 3e-310 5e-445

Aar-Logits 3e-607 1e+0 1e-1 9e-205 1e-457 7e-240 2e-408 6e-222 1e-382

KGW-Sampling 3e-548 1e+0 1e-12 3e-131 1e-513 1e-71 6e-122 9e-286 1e-382

Aar-Sampling 2e-580 1e+0 9e-3 3e-134 3e-555 8e-11 6e-169 4e-203 9e-286

Llama3-8B

Backdoor-PT 6e-621 1e-214 9e-283 1e-557 1e-584 4e-544 5e-571 1e-557 5e-603

Backdoor-SFT 6e-621 N/A N/A 5e-603 1e-621 8e-594 2e-598 3e-589 3e-612

KGW-Logits 6e-667 1e+0 3e-92 1e-318 1e-457 1e-223 2e-425 2e-218 3e-401

Aar-Logits 9e-652 1e+0 6e-03 7e-240 4e-362 5e-203 6e-351 1e-186 2e-333

KGW-Sampling 9e-646 1e+0 3e-37 7e-240 1e-318 5e-185 1e-375 5e-198 2e-355

Aar-Sampling 3e-607 1e+0 5e-2 3e-116 7e-240 4e-116 7e-240 3e-116 7e-240

Scenario 2: Open-Source LLM Output Text Detection (§3.2)

Llama2-7B

KGW-Logits 3e-10 3e-1 3e-2 8e-3 4e-7 3e-2 5e-6 4e-2 8e-7

Aar-Logits 4e-10 5e-1 2e-1 3e-2 4e-4 8e-2 3e-3 4e-2 4e-3

KGW-Sampling 1e-11 5e-1 5e-1 3e-2 7e-9 8e-2 3e-2 5e-2 6e-6

Aar-Sampling 7e-13 5e-1 5e-1 3e-2 3e-25 2e-1 2e-2 8e-2 5e-3

Llama3-8B

KGW-Logits 4e-11 2e-1 4e-2 7e-3 5e-8 4e-2 6e-8 2e-2 7e-7

Aar-Logits 5e-12 3e-1 2e-1 4e-3 5e-3 6e-2 3e-3 4e-3 6e-3

KGW-Sampling 9e-10 5e-1 8e-2 9e-3 7e-8 8e-3 8e-7 3e-2 5e-6

Aar-Sampling 8e-10 4e-1 4e-1 8e-3 5e-4 9e-2 2e-3 3e-3 3e-3

Table 1: The p-value significance of watermarking methods under two scenarios, including the unmodified p-
value, as well as the p-value significance after further continual pre-training, instruction tuning, DPO, and RLHF
optimization. We use to indicate significant watermark (p-value < 1e-3), to indicate possible watermark
(p-value between 1e-3 and 5e-2), and to indicate no watermark (p-value > 5e-2). Details on the raw accuracy
during p-value calcualtion can be found in Appendix D.

5.2 Experiment Goals414

In the experimental phase, we aim to address the415

following three main research questions (RQs):416

• RQ1: How effective is the backdoor-based wa-417

termark algorithm in detecting intellectual prop-418

erty infringement?419

• RQ2: How effective is the inference-time wa-420

termark distillation algorithm in detecting intel-421

lectual property infringement?422

• RQ3: How effective is the inference-time wa-423

termark distillation algorithm in detecting text424

generated by LLMs?425

5.3 Backdoor for IP Detection (RQ1)426

In Table 1, we evaluate the detection p-values of427

Backdoor-PT and Backdoor-IT, two methods that428

add backdoor watermarks during continual pre-429

training and instruction tuning, respectively. Both430

methods have very low p-values, with trigger rates431

of 33.0% and 34.0% for Llama2-7B, and 82.3%432

and 83.5% for Llama3-8B. This shows the effec- 433

tiveness of the backdoor watermark, and stronger 434

LLMs have a higher trigger rate. We provide more 435

detailed trigger rate data in Appendix D. 436

After all fine-tuning methods, although the p- 437

values for the backdoor watermarks slightly in- 438

crease, they remain at a very high confidence level. 439

Also, as shown in the upper part of Figure 3(C), 440

during the further pretraining process, the p-values 441

stabilize at a very small value in subsequent steps 442

without continuing to rise, demonstrating the strong 443

robustness of using hidden trigger words for back- 444

door watermarking against further fine-tuning. 445

Moreover, it can be observed from Table 2 that 446

adding two types of backdoor watermarks has a 447

very limited impact on the performance of LLMs. 448

Specifically, on Llama2-7B and Llama3-8B, com- 449

pared to the absence of watermarks, the average 450

performance of Backdoor-PT on various reasoning 451

and understanding evaluation benchmarks only de- 452

creases by 0.5% and 0.9%, respectively. The PPL 453

6

(c)(a) (b)

Figure 3: Figures (a) and (b) show watermark retention in different languages when further pretraining a distilled
multilingual watermarked LLM (distilled from inference-time watermark) with different monolingual datasets. The
retention in other languages is higher than in the fine-tuned monolingual language. Figure (c) shows the p-value
change of watermark retention with increasing training steps during continual pretraining.

Reasoning & Understanding Generation(WikiText)
LLM Watermark

Methods ARC-E↑ ARC-C↑ HellaSwag↑ MMLU↑ Winogrande↑ Avg↑ PPL↓ Seq-Rep-3↓

Llama2-7B

No watermark 80.3% 52.5% 78.0% 45.9% 73.9% 66.1% 6.95 0.04
Backdoor-PT 80.5% 51.8% 77.8% 44.2% 73.9% 65.6% 7.44 0.04
Backdoor-SFT 82.8% 53.6% 79.7% 43.2% 74.9% 66.8% 6.43 0.04
KGW-Logits 80.7% 51.9% 77.9% 44.1% 73.2% 65.6% 8.68 0.05
KGW-Sampling 80.2% 51.1% 77.8% 42.9% 73.3% 65.1% 10.91 0.31
Aar-Logits 79.4% 50.7% 73.9% 44.7% 73.3% 64.4% 8.13 0.07
Aar-Sampling 79.5% 50.7% 74.7% 42.7% 70.6% 63.6% 11.43 0.34

Llama3-8B

No watermark 83.4% 58.1% 81.2% 65.2% 76.4% 72.9% 5.70 0.04
Backdoor-PT 82.7% 56.9% 80.7% 63.8% 75.8% 72.0% 6.72 0.05
Backdoor-SFT 86.0% 61.9% 82.3% 64.3% 78.3% 74.6% 5.56 0.05
KGW-Logits 81.9% 56.0% 79.0% 60.4% 76.6% 70.8% 7.25 0.05
KGW-Sampling 81.8% 55.7% 79.2% 57.5% 75.7% 70.0% 9.11 0.33
Aar-Logits 82.1% 55.0% 77.1% 62.5% 73.3% 70.0% 7.71 0.06
Aar-Sampling 80.2% 53.8% 77.0% 61.7% 74.9% 69.5% 11.45 0.33

Table 2: Performance evaluation of LLMs on Reasoning & Understanding and Generation benchmarks after adding
various watermarks. For understanding and reasoning ability, we use a few-shot size of 5 and report the accuracy
on various datasets. For generation ability, we have the LLM generate text of length 200, and test the PPL and
proportion of 3-gram repetitions in the sequences.

increases by 0.49 and 1.02, while the seq-rep-3454

metric shows little change. Backdoor-IT achieves455

even better results on reasoning, understanding,456

and generation evaluations. This may be due to457

the inherent influence of instruct tuning, but it also458

indicates that backdoor watermark has a minimal459

impact on LLM performance.460

Overall, backdoor watermarks can effectively461

achieve IP Infringement Detection, while being462

highly robust to various fine-tuning processes and463

having a low impact on the performance of LLMs.464

5.4 Distillation for IP Detection (RQ2)465

Table 1 demonstrates that, without further fine-466

tuning of LLMs, the inference-time watermarks467

based on KGW (Kirchenbauer et al., 2023) and 468

Aar (Aaronson, 2023) exhibit very low p-values 469

in the IP infringement Detection scenario, regard- 470

less of logits or sample learning distillation (§4.4), 471

indicating their effectiveness. 472

However, after full-parameter further pre- 473

training, the p-values for all watermark methods 474

rise to 1, indicating a complete loss of their IP In- 475

fringement Detection capability. Despite this, cer- 476

tain methods show robustness against LoRA-based 477

fine-tuning. Moreover, all watermarks maintain 478

very low p-values after applying other fine-tuning 479

methods (such as instruction tuning, DPO, and 480

RLHF) with less training steps, suggesting that mi- 481

nor fine-tuning is insufficient to completely negate 482

7

the performance of distillation-based watermark483

methods in IP Infringement detection.484

Notably, table 1 primarily uses English for fur-485

ther pre-training and subsequently tests watermark486

strength in English. Since IP Infringement Detec-487

tion scenarios do not require detecting watermarks488

in all inputs, figure 3(a) examines the retention of489

watermarks in other languages when fine-tuning490

is performed using a single language. The results491

show that fine-tuning in one language only removes492

the watermark in that specific language, while wa-493

termarks can still be detected to varying degrees in494

other languages. Although fine-tuning LLMs with495

data from all languages can eventually remove wa-496

termarks, it significantly increases the cost. Adding497

watermarks in low-resource languages may offer498

a more robust and stealthy solution for distillation-499

based watermarking for IP Infringement Detection.500

5.5 Distillation for Text Detection (RQ3)501

After investigating the effectiveness of inference-502

time watermark distillation in ip infringement sce-503

narios, this section further explores its performance504

in detecting LLM-generated text. Although Gu505

et al. (2023) have conducted some relevant research,506

we further evaluate the robustness of watermarking507

methods in more practical user fine-tuning scenar-508

ios and more extensively examine its impact on509

LLM performance.510

Table 1 demonstrates that the inference-time wa-511

termark distillation method achieves very low p-512

values in the gnerated text detection scenario with-513

out further fine-tuning, indicating its effectiveness.514

However, compared to the IP infringement detec-515

tion scenario, the overall p-values for generated text516

detection are higher, suggesting that this scenario517

requires higher watermark intensity.518

Additionally, Table 1 shows that various further519

fine-tuning methods easily remove watermarks in520

the generated text detection scenario, as evidenced521

by the increased proportion of light-colored areas522

(high p-value). Full-parameter fine-tuning signifi-523

cantly reduces watermark strength, with complete524

removal after further pretraining. Other fine-tuning525

methods also reduce watermark strength but do not526

completely remove it. Interestingly, using LoRA527

fine-tuning enhances watermark retention, show-528

ing partial retention even after further pretraining529

and higher retention under other fine-tuning meth-530

ods. Therefore, for users with limited resources531

or those performing simple instruction fine-tuning,532

the inference-time distillation watermark method533

remains effective in the generated text detection 534

scenario. The lower part of Figure 3(c) illustrates 535

that further pretraining will definitely remove the 536

inference-time distillation watermark. Moreover, 537

similar to the IP Infringement Detection scenario, 538

if further pretraining is conducted in only one lan- 539

guage, more watermark retention will be observed 540

in other languages, as shown in Figure 3(b). 541

Finally, as depicted in Table 2, all inference-time 542

distillation watermark methods impact LLM perfor- 543

mance a lot. The methods based on KGW and Aar 544

result in a 1.8% and 2.4% decrease in reasoning 545

& understanding, respectively, and an increase in 546

PPL by 1.6 and 4.4. Additionally, the Aar-based 547

method significantly increases the repetitiveness of 548

generated text. In summary, inference-time distil- 549

lation watermark methods have a greater impact 550

on LLM performance compared to backdoor water- 551

mark methods. Although the Aar method is essen- 552

tially distortion-free, its repetitiveness may degrade 553

LLM performance. At the same time, we found 554

that distilling the KGW watermarking algorithm 555

is more robust in further fine-tuning than distilling 556

Aar in both scenarios, with less impact on LLM 557

performance. 558

5.6 Discussion 559

Our evaluation for two watermarking algorithms 560

shows that neither can fully detect misuse of open- 561

source LLMs. The backdoor-based watermarking 562

algorithm is effective for IP infringement detec- 563

tion but relies on trigger words, making it inade- 564

quate for detecting LLM-generated text. In con- 565

trast, inference-time watermark distillation works 566

for both scenarios but has weaker robustness to 567

fine-tuning and a greater negative impact on LLM 568

performance. At the same time, all these meth- 569

ods exhibit robustness when fine-tuning with small 570

amounts of data or using LoRA. 571

6 Conclusion 572

In this work, we explore the effectiveness of 573

backdoor-based watermarking and inference-time 574

watermark distillation in detecting the misuse of 575

open-source LLMs. We define two misuse sce- 576

narios for open-source LLMs and describe how 577

these watermarking methods can be applied. Ex- 578

perimental results show that while both methods 579

have their strengths, neither can fully address the 580

task of detecting LLM misuse. Future research 581

needs to develop better watermarking algorithms. 582

8

Limitations583

Although this work explores the addition of wa-584

termarks to open-source LLMs to help detect mis-585

use in detail, it has some limitations. The threat586

model investigated is limited, focusing mostly on587

the unique challenges of these watermarking algo-588

rithms in open-source scenarios: their robustness to589

further fine-tuning, with insufficient exploration of590

other potential threat models. Additionally, the use591

of watermarking algorithms is relatively simple; for592

example, more complex and covert methods were593

not employed in the backdoor-based watermark. Fi-594

nally, due to resource constraints, the experiments595

were conducted on models with approximately 7B596

parameters, rather than the largest-scale LLMs.597

Ethical Considerations598

This research aims to detect the misuse of powerful599

open-source LLMs and thus poses no ethical issues.600

On the contrary, it can significantly mitigate many601

unethical uses of these models.602

References603

Scott Aaronson. 2023. Watermarking of large language604
models. Presented at the Large Language Models605
and Transformers Workshop at Simons Institute for606
the Theory of Computing.607

AI@Meta. 2024. Llama 3 model card.608

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda609
Askell, Anna Chen, Nova DasSarma, Dawn Drain,610
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.611
2022. Training a helpful and harmless assistant with612
reinforcement learning from human feedback. arXiv613
preprint arXiv:2204.05862.614

Ralph Allan Bradley and Milton E Terry. 1952. Rank615
analysis of incomplete block designs: I. the method616
of paired comparisons. Biometrika, 39(3/4):324–617
345.618

Canyu Chen and Kai Shu. 2023. Combating misinfor-619
mation in the age of llms: Opportunities and chal-620
lenges. arXiv preprint arXiv:2311.05656.621

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,622
Ashish Sabharwal, Carissa Schoenick, and Oyvind623
Tafjord. 2018. Think you have solved question an-624
swering? try arc, the ai2 reasoning challenge. arXiv625
preprint arXiv:1803.05457.626

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tat-627
sunori Hashimoto. 2023. On the learnability of628
watermarks for language models. arXiv preprint629
arXiv:2312.04469.630

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 631
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 632
2020. Measuring massive multitask language under- 633
standing. arXiv preprint arXiv:2009.03300. 634

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 635
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 636
and Weizhu Chen. 2021. Lora: Low-rank adap- 637
tation of large language models. arXiv preprint 638
arXiv:2106.09685. 639

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, 640
Hongyang Zhang, and Heng Huang. 2023. Unbiased 641
watermark for large language models. arXiv preprint 642
arXiv:2310.10669. 643

Albert Q Jiang, Alexandre Sablayrolles, Antoine 644
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 645
ford, Devendra Singh Chaplot, Diego de las Casas, 646
Emma Bou Hanna, Florian Bressand, et al. 2024. 647
Mixtral of experts. arXiv preprint arXiv:2401.04088. 648

Nikola Jovanović, Robin Staab, and Martin Vechev. 649
2024. Watermark stealing in large language mod- 650
els. arXiv preprint arXiv:2402.19361. 651

John Kirchenbauer, Jonas Geiping, Yuxin Wen, 652
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023. 653
A watermark for large language models. In Inter- 654
national Conference on Machine Learning, pages 655
17061–17084. PMLR. 656

Rohith Kuditipudi, John Thickstun, Tatsunori 657
Hashimoto, and Percy Liang. 2023. Robust 658
distortion-free watermarks for language models. 659
arXiv preprint arXiv:2307.15593. 660

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, 661
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee 662
Kim. 2023. Who wrote this code? watermarking for 663
code generation. arXiv preprint arXiv:2305.15060. 664

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, 665
and Ji-Rong Wen. 2024. Pre-trained language models 666
for text generation: A survey. ACM Comput. Surv., 667
56(9). 668

Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie Wen, 669
Irwin King, and Philip S. Yu. 2024a. An unforge- 670
able publicly verifiable watermark for large language 671
models. In The Twelfth International Conference on 672
Learning Representations. 673

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and 674
Lijie Wen. 2023. A semantic invariant robust wa- 675
termark for large language models. arXiv preprint 676
arXiv:2310.06356. 677

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming 678
Hu, Xi Zhang, Lijie Wen, Irwin King, Hui Xiong, 679
and Philip S. Yu. 2024b. A survey of text watermark- 680
ing in the era of large language models. Preprint, 681
arXiv:2312.07913. 682

9

https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1145/3649449
https://doi.org/10.1145/3649449
https://doi.org/10.1145/3649449
https://openreview.net/forum?id=gMLQwKDY3N
https://openreview.net/forum?id=gMLQwKDY3N
https://openreview.net/forum?id=gMLQwKDY3N
https://openreview.net/forum?id=gMLQwKDY3N
https://openreview.net/forum?id=gMLQwKDY3N
https://arxiv.org/abs/2312.07913
https://arxiv.org/abs/2312.07913
https://arxiv.org/abs/2312.07913

Xuankai Liu, Fengting Li, Bihan Wen, and Qi Li. 2021.683
Removing backdoor-based watermarks in neural net-684
works with limited data. In 2020 25th International685
Conference on Pattern Recognition (ICPR), pages686
10149–10156. IEEE.687

Stephen Merity, Caiming Xiong, James Bradbury, and688
Richard Socher. 2016. Pointer sentinel mixture mod-689
els. arXiv preprint arXiv:1609.07843.690

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,691
Carroll Wainwright, Pamela Mishkin, Chong Zhang,692
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.693
2022. Training language models to follow instruc-694
tions with human feedback. Advances in Neural695
Information Processing Systems, 35:27730–27744.696

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,697
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,698
and Huajun Chen. 2023. Reasoning with language699
model prompting: A survey. In Proceedings of the700
61st Annual Meeting of the Association for Compu-701
tational Linguistics (Volume 1: Long Papers), pages702
5368–5393, Toronto, Canada. Association for Com-703
putational Linguistics.704

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-705
pher D Manning, Stefano Ermon, and Chelsea Finn.706
2023. Direct preference optimization: Your language707
model is secretly a reward model. In Advances in708
Neural Information Processing Systems, volume 36,709
pages 53728–53741. Curran Associates, Inc.710

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine711
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,712
Wei Li, and Peter J Liu. 2020. Exploring the lim-713
its of transfer learning with a unified text-to-text714
transformer. Journal of machine learning research,715
21(140):1–67.716

Jie Ren, Han Xu, Pengfei He, Yingqian Cui, Shenglai717
Zeng, Jiankun Zhang, Hongzhi Wen, Jiayuan Ding,718
Hui Liu, Yi Chang, et al. 2024. Copyright protec-719
tion in generative ai: A technical perspective. arXiv720
preprint arXiv:2402.02333.721

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala-722
subramanian, Wenxiao Wang, and Soheil Feizi. 2023.723
Can ai-generated text be reliably detected? arXiv724
preprint arXiv:2303.11156.725

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-726
ula, and Yejin Choi. 2021. Winogrande: An adver-727
sarial winograd schema challenge at scale. Commu-728
nications of the ACM, 64(9):99–106.729

Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda730
Li, and Florian Kerschbaum. 2021. On the robust-731
ness of backdoor-based watermarking in deep neural732
networks. In Proceedings of the 2021 ACM work-733
shop on information hiding and multimedia security,734
pages 177–188.735

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann736
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,737
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:738

An instruction-following llama model. https:// 739
github.com/tatsu-lab/stanford_alpaca. 740

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 741
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 742
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 743
Bhosale, et al. 2023. Llama 2: Open founda- 744
tion and fine-tuned chat models. arXiv preprint 745
arXiv:2307.09288. 746

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di- 747
nan, Kyunghyun Cho, and Jason Weston. 2019. Neu- 748
ral text generation with unlikelihood training. arXiv 749
preprint arXiv:1908.04319. 750

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei 751
Xiao, and Muhao Chen. 2023. Instructions as 752
backdoors: Backdoor vulnerabilities of instruction 753
tuning for large language models. arXiv preprint 754
arXiv:2305.14710. 755

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 756
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 757
machine really finish your sentence? arXiv preprint 758
arXiv:1905.07830. 759

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya 760
Goyal, and Danqi Chen. 2023. Evaluating large 761
language models at evaluating instruction following. 762
arXiv preprint arXiv:2310.07641. 763

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and 764
Yu-Xiang Wang. 2023. Provable robust water- 765
marking for ai-generated text. arXiv preprint 766
arXiv:2306.17439. 767

10

https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Part I 768

Appendix 769

Table of Contents
770
771

A Details of Watermark Methods 12 772

A.1 KGW Watermarking . 12 773

A.2 Aar Watermarking . 12 774

B Threat Models for LLM Generated Text Detection 13 775

C Threat Models for Backdoor-based Watermark 14 776

D Details Accuracy Reference for Table 1 14 777

E Details of Further Fine-tuning Method 15 778

E.1 Further Pre-training . 15 779

E.2 Further Instruction Tuning . 15 780

E.3 Further Direct Preference Learning . 15 781

E.4 Further Reinforcement Learning From Human Feedback . 15 782

E.5 Low Rank Adaptation (LoRA) Fine-tuning Method . 16 783

F License Overview of Various Open-source Large Language Models 16 784

F.1 Meta Llama Series . 16 785

F.2 Command R Series . 17 786

F.3 01.ai Yi Series . 19 787

788
789
790

11

A Details of Watermark Methods791

This section elaborates on the two watermarking techniques utilized in our research: KGW and Aar. Each792

subsection provides background information, motivation, method description, and detection methodology793

for these techniques.794

A.1 KGW Watermarking795

Kirchenbauer et al. (2023) presents a method for watermarking large language models (LLMs) by adjusting796

decoder logits to bias token generation. Specifically, The KGW algorithm uses a hash function that inputs797

the previous k tokens to partition the vocabulary V into green lists of size γ|V | and red lists of size798

(1− γ)|V |. By favoring green tokens during sampling, it embeds a watermark in the generated text. A799

positive δ is added to the logits of green tokens, increasing their sampling probability. Consequently, the800

generated text contains a higher proportion of green tokens, embedding the watermark. The pseudocode801

implementation of the algorithm is as follows:802

Algorithm 1 KGW Watermarking Algorithm

Require: Vocabulary V , hyperparameters k, γ, δ, LLM model LLM
1: Initialize text← []
2: while not end of generation do
3: prev_tokens← last k tokens from text
4: hash← HashFunction(prev_tokens)
5: Partition V into green list G of size γ|V | and red list R of size (1− γ)|V | using hash
6: logits← LLM(text)
7: for each token t in G do
8: logits[t]← logits[t] + δ
9: end for

10: next_token← Sample from logits
11: Append next_token to text
12: end while
13: return text

Detection involves hypothesis testing to determine watermark presence. If human-written, the green803

token frequency should be near γ; if watermarked, it should be significantly higher. The test statistic is:804

z =
|s|G − γT√
Tγ(1− γ)

, (4)805

where |s|G is the number of green tokens, T is the text length, and γ is the green list size. Under the806

null hypothesis (no watermark), this statistic follows a standard normal distribution. A p-value below a807

significance level (e.g., 0.05) indicates a watermark.808

A.2 Aar Watermarking809

Aaronson (2023) embeds watermarks in the generated text by biasing the selection of tokens based on810

their hash scores. Given a key ξ, the algorithm computes a hash score ri ∈ [0, 1] for each of the first k811

tokens, where the scores are uniformly distributed. For each token i, the algorithm calculates r1/pii , where812

pi is the original probability assigned by the language model to that token. The token that maximizes this813

value is selected as the next generated token. This process ensures that the chosen token has both a high814

original probability pi and a high hash score ri. The pseudocode implementation of the algorithm can be815

found in appendix A.2.816

Detection of the Aar watermark involves hypothesis testing to determine the presence of the watermark817

in a given text sequence. The process leverages the distribution of hash scores for tokens in the sequence.818

The method computes hash scores r for each token xt using the previous k tokens and a predetermined819

key ξ. The cumulative test statistic S is calculated as follows:820

12

Algorithm 2 Aar Watermarking Algorithm

Require: Key ξ, hyperparameter k, LLM model LLM
1: Initialize text← []
2: while not end of generation do
3: prev_tokens← last k tokens from text
4: r ← HashFunction(prev_tokens, ξ)
5: logits← LLM(text)
6: for each token i in logits do
7: pi ← logits[i]

8: scorei ← r
1/pi
i

9: end for
10: next_token← argmaxi scorei
11: Append next_token to text
12: end while
13: return text

S =

len(x)∑
t=k+1

− log (1− rxt) , (5) 821

where len(x) is the length of the sequence, and rxt is the hash score for the token at position t. Under 822

the null hypothesis (i.e., the text is not watermarked), this test statistic follows a Gamma distribution 823

with shape parameter len(x)− k and scale parameter 1. The p-value for the observed sequence is then 824

computed as: 825

p-value = 1− FG(S), (6) 826

where S is the cumulative test statistic computed from the sequence. If the p-value is below a predetermined 827

significance level (e.g., 0.05), it indicates that the sequence likely contains the Aar watermark, suggesting 828

that the text has been generated using the watermarking algorithm. 829

B Threat Models for LLM Generated Text Detection 830

In Table 1, we primarily studied the threat model of further-tuning LLMs. In the context of LLM-generated 831

text detection, this section continues to discuss other threat models. 832

A common threat model in this scenario is users modifying watermarked text, potentially removing the 833

watermark. To investigate this, we tested the p-values for detecting watermarked text after it was rewritten 834

using the gpt-3.5-turbo API. We used the following prompt, and the modified p-value statistics are shown 835

in Table 4. As observed, nearly all texts generated by fine-tuned LLMs have their watermarks completely 836

removed after rewriting, highlighting significant room for improvement in current methods to handle text 837

modifications. 838

Prompt used in for GPT rewriting

System: You are a helpful assistant.
User: Rewrite the following text in English: {text}

839

Additionally, there may be other threat models for LLM Generated Text Detection, such as spoofing 840

attacks (Sadasivan et al., 2023) and watermark stealing (Jovanović et al., 2024). These have been 841

extensively studied in the context of inference time watermarking (Liu et al., 2024a). For open-source 842

LLMs, further refinement of these threat models is needed in future work. 843

13

W. Further PT W. Further IT W. Further IT+DPO W. Further IT+RLHF
Target-LLM Watermark

Methods
P-Value↓
(Origin) Full↓ LoRA↓ Full↓ LoRA↓ Full↓ LoRA Full↓ LoRA↓

GPT-3.5 Rewritten Metrics

Llama2-7B

KGW-Logits 4e-2 5e-1 4e-1 2e-1 1e-1 2e-1 2e-1 3e-1 3e-1

Aar-Logits 2e-1 6e-1 5e-1 5e-1 4e-1 5e-1 3e-1 4e-1 3e-1

KGW-Sampling 2e-2 5e-1 4e-1 3e-1 2e-1 4e-1 3e-1 4e-1 3e-1

Aar-Sampling 7e-4 5e-1 3e-1 3e-1 4e-3 4e-1 3e-1 4e-1 3e-1

Llama3-8B

KGW-Logits 3e-2 5e-1 4e-1 1e-1 8e-2 3e-1 1e-1 3e-1 2e-1

Aar-Logits 1e-1 5e-1 4e-1 3e-1 2e-1 3e-1 3e-1 4e-1 3e-1

KGW-Sampling 5e-2 5e-1 4e-1 2e-1 1e-1 3e-1 2e-1 4e-1 2e-1

Aar-Sampling 3e-1 5e-1 4e-1 4e-1 3e-1 4e-1 3e-1 4e-1 3e-1

Table 4: The p-value significance of watermarking methods under GPT-3.5 rewritten metrics, including the
unmodified p-value, as well as the p-value significance after further continual pre-training, instruction tuning, DPO,
and RLHF optimization. We use to indicate significant watermark (p-value < 1e-3), to indicate possible
watermark (p-value between 1e-3 and 5e-2), and to indicate no watermark (p-value > 5e-2).

W. Further PT W. Further IT W. Further IT+DPO W. Further IT+RLHF
Target-LLM Watermark

Methods
P-Value↓
(Origin) Full↓ LoRA↓ Full↓ LoRA↓ Full↓ LoRA Full↓ LoRA↓

Scenario 1: Open-Source LLM Intellectual Property Detection (§3.1)

Llama2-7B

Backdoor-PT 33.0% 18.0% 22.0% 33.5% 32.5% 30.5% 31.5% 33.0% 32.5%

Backdoor-IT 34.0% N/A N/A 28.5% 29.5% 29.0% 30.0% 30.5% 31.5%

KGW-Logits 98.0% 53.4% 68.5% 89.9% 94.1% 85.2% 91.9% 84.6% 90.5%

Aar-Logits 96.5% 50.4% 56.3% 79.4% 90.9% 81.4% 89.3% 80.3% 87.9%

KGW-Sampling 94.4% 53.3% 61.3% 74.0% 92.9% 70.8% 73.5% 83.4% 87.9%

Aar-Sampling 95.5% 50.28% 56.9% 73.4% 94.9% 61.1% 77.0% 78.9% 83.4%

Llama3-8B

Backdoor-PT 82.5% 33.5% 42.5% 75.5% 78.5% 74.0% 77.0% 75.5% 80.5%

Backdoor-SFT 83.5% N/A N/A 80.5% 82.5% 79.5% 80.0% 79.0% 81.5%

KGW-Logits 98.5% 53.4% 71.3% 84.9% 90.8% 80.1% 89.7% 79.8% 88.7%

Aar-Logits 98.5% 51.4% 57.4% 81.4% 87.3$ 78.9% 86.5% 78.0% 85.7%

KGW-Sampling 97.8% 52.3% 65.1% 81.0% 84.6% 77.8% 87.6% 78.6% 86.7%

Aar-Sampling 96.5% 50.6% 55.2% 72.9% 81.4% 73.1% 81.3% 72.9% 80.7%

Table 5: The accuracy of watermarking methods under two scenarios, including the unmodified accuracy, as well as
the accuracy after further continual pre-training, instruction tuning, DPO, and RLHF optimization.

C Threat Models for Backdoor-based Watermark844

In Section 5.3, we have demonstrated that backdoor-based watermarking is an effective method for IP845

infringement detection and is robust against further fine-tuning of LLMs.846

The fine-tuning methods discussed in Table 1 assume that users are completely unaware of the trigger’s847

existence. Under this assumption, removing the backdoor through fine-tuning is very difficult. However,848

if users somehow become aware of the specific trigger, removing the backdoor watermark becomes easy.849

Therefore, future research should focus on making the trigger as undetectable as possible (even rare word850

combinations are at risk of being discovered) and on verifying backdoor watermarks without exposing the851

trigger.852

D Details Accuracy Reference for Table 1853

In Table 1, we only show the p-value metrics for the Open-Source LLM Intellectual Property Detection854

scenario. For reference, Table 5 provides the corresponding original accuracy for each p-value. The855

backdoor method indicates the correct trigger rate, while the inference-time watermark distillation method856

refers to the accuracy of watermark and human text at a p-value of 0.05, as described in Section 4.4.2.857

14

E Details of Further Fine-tuning Method 858

This section details the various further fine-tuning methods used in this work, including Further Pre- 859

training, Further Instruction Tuning, Further Direct Preference Learning, and Further Reinforcement 860

Learning From Human Feedback. We also discuss the use of the LoRA fine-tuning approach. 861

E.1 Further Pre-training 862

Further Pre-training involves unsupervised training of the language model on a large corpus. Using text 863

data {x}, the objective is to maximize the probability of the next token: 864

LPT = −
n∑

i=1

logP (xi|x<i;M), (7) 865

where M are the model parameters and n is the length of the text x. This autoregressive training helps the 866

model learn the statistical features of the text. 867

E.2 Further Instruction Tuning 868

Further Instruction Tuning builds on pre-training by using an instruction dataset {(x, y)} to fine-tune the 869

model so it can generate appropriate answers to given instructions. Here, x is the instruction or question, 870

and y is the corresponding answer. The loss function maximizes the conditional probability: 871

LIT = −
m∑
i=1

logP (yi|xi;M), (8) 872

where m is the size of the training data. This approach teaches the model to explicitly generate results 873

based on instructions. 874

E.3 Further Direct Preference Learning 875

Further Direct Preference Learning (DPO) (Rafailov et al., 2023) uses human-labeled preference data 876

{(x, y1, y2)} to learn preferences, where y1 and y2 are two candidate answers generated by the model for 877

x. The labeled data indicates whether y1 is preferred over y2 or vice versa. The training minimizes the 878

pairwise ranking loss: 879

L = −E(x,y1,y2)∼Dpref

[
log σ

(
β log

πM (y1 | x)
πref(y1 | x)

− β log
πM (y2 | x)
πref(y2 | x)

)]
, (9) 880

where σ is the logistic function, β is a scaling parameter, and πM and πref are the probability distributions 881

of the current model and the reference model, respectively. 882

E.4 Further Reinforcement Learning From Human Feedback 883

Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) involves two main stages. 884

First, a reward model is trained using a dataset of human-labeled preferences. Second, this reward model, 885

combined with the PPO algorithm, is used to train a language model via reinforcement learning. 886

To train the reward model, the data includes an input x and two outputs yw and yl, where yw is the pre- 887

ferred response. The reward model, represented as r∗(y, x), uses the Bradley-Terry (BT) model (Bradley 888

and Terry, 1952) to express preference probabilities: 889

P (yw ≻ yl | x) =
exp(r∗(yw, x))

exp(r∗(yw, x)) + exp(r∗(yl, x))
. (10) 890

Here, P (yw ≻ yl | x) is the probability that yw is preferred over yl given x. The reward model r∗(y, x) 891

scores each potential output y. The BT model is commonly used for pairwise comparisons to represent 892

these preferences. 893

Given the training data {x, yw, yl}Ni , the reward model rM (y, x) is trained using the following loss 894

function: 895

15

LR(rM , D) = −E(x,yw,yl) [log σ(rM (yw, x)− rM (yl, x))] . (11)896

Here, σ is the logistic function, and the expectation is over triplets (x, yw, yl) from D. This loss897

function pushes the model to score the preferred output yw higher than yl for a given x. Minimizing this898

loss enables the reward model to learn human preferences.899

In the reinforcement learning phase, the trained reward model guides the language model training. The900

aim is to optimize the language model’s policy πM to maximize the expected reward from rM , while901

keeping outputs close to a reference policy πref. This is achieved with the following objective:902

max
πM

Ex,y∼πM [rM (y, x)]− βDKL [πM ∥ πref] . (12)903

This balances enhancing the language model’s performance and maintaining alignment with human904

preferences.905

E.5 Low Rank Adaptation (LoRA) Fine-tuning Method906

For further fine-tuning, we utilize both full-parameter tuning and LoRA (Low-Rank Adaptation) fine-907

tuning. The core idea of LoRA fine-tuning is to adjust only the low-rank projection matrices while keeping908

the other parameters of the pre-trained model fixed.909

Assume the weight matrix of the original model is W ∈ Rd×k. LoRA defines two low-rank matrices910

A ∈ Rd×r and B ∈ Rr×k, where r ≪ min(d, k). The augmented weight matrix is:911

Wlora = W +AB. (13)912

During fine-tuning, only matrices A and B are updated, while W remains unchanged. This method913

retains the knowledge of the original model, significantly reduces the number of parameters to be fine-914

tuned, and speeds up the training process. Due to its lower resource requirements, LoRA is often preferred915

for fine-tuning open-source models.916

F License Overview of Various Open-source Large Language Models917

This appendix provides an overview of the licensing terms for several open-source Large Language918

Models (LLMs), highlighting their alignments with our scenarios.919

F.1 Meta Llama Series920

Meta’s use policy for Llama 22 outlines several prohibited uses, which directly relate to the scenarios921

defined in our paper.922

Scenario 1: Detecting IP Infringement923

Policy 1.g

Engage in or facilitate any action or generate any content that infringes, misappropriates, or
otherwise violates any third-party rights, including the outputs or results of any products or
services using the Llama 2 Materials.

924

- This policy directly relates to IP Detection, as it prohibits actions that infringe on intellectual property925

rights. The scenario’s goal of detecting unauthorized commercial use or copying of open-source926

LLMs is supported by this clause.927

2https://ai.meta.com/llama/use-policy/

16

https://ai.meta.com/llama/use-policy/

Scenario 2: Detecting Generated Text 928

Policy 1.a

"Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or
unlawful activity or content, such as:

– Violence or terrorism

– Exploitation or harm to children, including the solicitation, creation, acquisition, or
dissemination of child exploitative content or failure to report Child Sexual Abuse
Material"

929

- This policy is pertinent to Generated Text Detection, which aims to detect whether generated 930

text from an open-source LLM contains illegal, harmful, or unethical content. The prohibition 931

of generating such content aligns with the scenario’s goal of preventing misuse for disseminating 932

harmful material. 933

Policy 1.c

"Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of
individuals or groups of individuals."

934

- This policy relates to Generated Text Detection by prohibiting the generation of abusive or harassing 935

content. The scenario’s goal of detecting harmful generated text includes identifying text that 936

facilitates harassment or abuse. 937

Policy 3.a

"Intentionally deceive or mislead others, including use of Llama 2 related to the following:
– Generating, promoting, or furthering fraud or the creation or promotion of disinforma-

tion"
938

- This policy supports Generated Text Detection by addressing the misuse of LLMs to generate 939

misleading or fraudulent content. Detecting such generated text aligns with the policy’s goal of 940

preventing deception and misinformation. 941

Policy 3.e

"Representing that the use of Llama 2 or outputs are human-generated."
942

- This policy underlines the importance of transparency in content generation. Generated Text 943

Detection’s goal is to determine whether a text is generated by an LLM or its fine-tuned version 944

aligns with ensuring users do not misrepresent AI-generated content as human-generated. 945

In summary, The Llama 2 use policy explicitly prohibits various activities that relate to both scenarios 946

defined in our paper, particularly IP infringement and the generation of illegal or harmful content. 947

F.2 Command R Series 948

Cohere R series is built on the language of business and is optimized for enterprise generative AI, search 949

and discovery, and advanced retrieval. Their Cohere For AI Acceptable Use Policy3 aligns with our 950

scenario settings. 951

3https://docs.cohere.com/docs/c4ai-acceptable-use-policy

17

https://docs.cohere.com/docs/c4ai-acceptable-use-policy

Scenario 1: Detecting IP Infringement952

Cohere For AI Acceptable Use Policy

"Synthetic data for commercial uses: generating synthetic data outputs for commercial
purposes, including to train, improve, benchmark, enhance or otherwise develop model
derivatives, or any products or services in connection with the foregoing."

953

- This policy is highly relevant to IP Detection, as it explicitly prohibits using models or their954

derivatives for commercial purposes without permission, which is a core concern of detecting IP955

infringement.956

Scenario 2: Detecting Generated Text957

Cohere For AI Acceptable Use Policy

"We expect users of our models or model derivatives to comply with all applicable local and
international laws and regulations. Additionally, you may not use or allow others to use our
models or model derivatives in connection with any of the following strictly prohibited use
cases:"

958

- This policy establishes the baseline expectation that users must comply with all laws and regulations,959

which supports the detection of misuse in both scenarios. Generated Text Detection specifically960

aligns with preventing the generation and dissemination of illegal content.961

Cohere For AI Acceptable Use Policy

"Harassment and abuse: engaging in, promoting, facilitating, or inciting activities that harass
or abuse individuals or groups."

962

- This policy supports Generated Text Detection by setting clear boundaries against generating content963

that could harass or abuse individuals or groups, aligning with the scenario’s goals of detecting964

unethical content.965

Cohere For AI Acceptable Use Policy

"Violence and harm: engaging in, promoting, or inciting violence, threats, hate speech self-
harm, sexual exploitation, or targeting of individuals based on protected characteristics."

966

- This policy directly relates to Generated Text Detection, where the goal is to detect generated967

content that disseminates illegal, harmful, or unethical content. It provides a clear mandate against968

such misuse.969

Cohere For AI Acceptable Use Policy

"Fraud and deception: misrepresenting generated content from models as human-created or
allowing individuals to create false identities for malicious purposes, deception, or to cause
harm, through methods including:

– propagation of spam, fraudulent activities such as catfishing, phishing, or generation of
false reviews;

– creation or promotion of false representations of or defamatory content about real people,
such as deepfakes; or

– creation or promotion of intentionally false claims or misinformation."
970

18

- This is pertinent to both scenarios. For IP Detection, it addresses the misrepresentation of generated 971

content as human-created, which can involve claiming an open-source LLM as a proprietary creation. 972

For Generated Text Detection, it covers the generation of harmful or deceptive content. 973

F.3 01.ai Yi Series 974

The Yi series is another open-source LLM that has demonstrated excellent performance on the LMSYS 975

Chatbot Arena Leaderboard4. This series of LLMs has been developed by a Chinese company named 976

"Lingyiwanwu." The following user agreement5 contains sections that align with the assumptions in our 977

scenarios. 978

Scenario 1: Detecting IP Infringement 979

Article 5 Clause 1

"Lingyiwanwu is the developer and operator of this product and enjoys all rights to the data,
information, and outputs generated during the development and operation of this product
within the scope permitted by laws and regulations, except where the relevant rights holders
are entitled to rights according to law."

980

- This clause asserts that Lingyiwanwu holds the rights to the outputs generated by the product, 981

reinforcing the need to detect IP infringement when these rights are violated by unauthorized use or 982

copying of the LLMs. 983

Article 5 Clause 2

"Unless otherwise agreed or stipulated by laws and regulations, you have the rights to the
content generated based on the content you are entitled to upload and the rights to the content
generated based on the uploaded content."

984

- This clause delineates user rights to generated content, provided it is based on legally uploaded 985

content, highlighting the importance of detecting if generated content infringes on existing IP rights. 986

Article 5 Clause 6

"You understand and promise that your input during the use of this product will not infringe
on any person’s intellectual property rights, portrait rights, reputation rights, honor rights,
name rights, privacy rights, personal information rights, etc. Otherwise, you will bear the risk
and responsibility of infringement."

987

- This clause ensures that users acknowledge their responsibility to avoid infringing on IP rights, 988

aligning with the scenario’s assumption that detection mechanisms are needed to prevent such 989

infringements. 990

Article 5 Clause 7

"If you add new data for model training, fine-tuning, and development during the use of this
product, you will bear the resulting responsibilities."

991

- This clause emphasizes user responsibility for any new data added for model training or fine-tuning, 992

aligning with the scenario’s focus on detecting whether the generated text has been modified or 993

fine-tuned from the original LLM. 994

4https://arena.lmsys.org/
5https://platform.lingyiwanwu.com/useragreement

19

https://arena.lmsys.org/
https://platform.lingyiwanwu.com/useragreement

Scenario 2: Detecting Generated Text995

Article 4 Clause 1

"Based on your use of this product, Lingyiwanwu grants you a revocable, non-transferable,
non-exclusive right to use this product. If you publish or disseminate content generated by
this product, you should:

– Proactively verify the authenticity and accuracy of the output content to avoid spreading
false information;

– Mark the output content as AI-generated in a prominent way to inform the public about
the content synthesis;

– Avoid publishing and disseminating any output content that violates the usage norms of
this agreement."

996

- This clause mandates users to verify and label AI-generated content, ensuring transparency and997

preventing the misuse of generated text for harmful or illegal purposes, which aligns with the998

scenario’s goal of detecting and managing generated content responsibly.999

Article 4 Clause 4

"Users are prohibited from engaging in certain behaviors, including but not limited to:
– (5) Inducing the generation of content that violates relevant laws and regulations or

contains unfriendly outputs;

– (7) Developing products and services that compete with this product using this product;

– (9) Unauthorized removal or alteration of AI-generated labels or deep synthesis content
labels."

1000

- These prohibitions directly support the scenario’s assumptions by preventing the generation and1001

dissemination of harmful content, ensuring ethical use of the model, and maintaining the integrity of1002

AI-generated labels for accountability.1003

1004

20

	Introduction
	Related Work
	Detecting Open-Source LLM Misuse
	Scenario 1: Detecting IP Infringement
	Scenario 2: Detecting Generated Text

	Watermark for Open-Source LLMs
	Watermarking Requirements
	Threat Models
	Backdoor-based Watermark
	Training of Backdoor-based Watermark
	Detection of Backdoor Watermark

	Inference-time Watermark Distillation
	Training of Watermark Distillation
	Detection of Watermark Distillation

	Experiments
	Experiment Setup
	Experiment Goals
	Backdoor for IP Detection (RQ1)
	Distillation for IP Detection (RQ2)
	Distillation for Text Detection (RQ3)
	Discussion

	Conclusion
	Appendix
	I Appendix
	Details of Watermark Methods
	KGW Watermarking
	Aar Watermarking

	Threat Models for LLM Generated Text Detection
	Threat Models for Backdoor-based Watermark
	Details Accuracy Reference for Table 1
	Details of Further Fine-tuning Method
	Further Pre-training
	Further Instruction Tuning
	Further Direct Preference Learning
	Further Reinforcement Learning From Human Feedback
	Low Rank Adaptation (LoRA) Fine-tuning Method

	License Overview of Various Open-source Large Language Models
	Meta Llama Series
	Command R Series
	01.ai Yi Series

