Mark Your LLM: Detecting the Misuse of Open-Source Large Language
Models via Watermarking

Anonymous ACL submission

Abstract

As open-source large language models (LLMs)
like Llama3 become more capable, it is crucial
to develop watermarking techniques to detect
their potential misuse. Existing watermarking
methods either add watermarks during LLM
inference, which is unsuitable for open-source
LLMs, or primarily target classification LLMs
rather than recent generative LLMs. Adapt-
ing these watermarks to open-source LLMs for
misuse detection remains an open challenge.
This work defines two misuse scenarios for
open-source LLMs: intellectual property (IP)
violation and LLM Usage Violation. Then we
explore the application of inference-time water-
mark distillation and backdoor watermarking
in these contexts. We propose comprehensive
evaluation methods to assess the impact of var-
ious real-world further fine-tuning scenarios
on watermarks and the effect of these water-
marks on LLM performance. Our experiments
reveal that backdoor watermarking could effec-
tively detect IP Violation, while inference-time
watermark distillation is applicable in both sce-
narios but less robust to further fine-tuning and
has a more significant impact on LLM perfor-
mance compared to backdoor watermarking.
Exploring more advanced watermarking meth-
ods for open-source LLMs to detect their mis-
use should be an important future direction.

1 Introduction

With the significant advancements in open-source
Large Language Models (LLMs) like Llama3' and
Mixtral (Jiang et al., 2024) in terms of reason-
ing (Qiao et al., 2023), generation (Li et al., 2024),
and instruction-following (Zeng et al., 2023) capa-
bilities, developers and enterprises can leverage the
power of LLMs more conveniently. Under this con-
text, the misuse of open-source LLMs has become
an urgent topic. It primarily involves the theft of
LLM intellectual property rights (Ren et al., 2024),

"https://llama.meta.com/llama3/

[

} [) 7 How to protect
‘ ‘ Intellectual
Property ?

L
(Copyor Fine-tuing) | amm :
< - | o IP infringement! |

We built our own

LLM from scratch!
Infringers

(a) Intellectual Property (IP) Violation

[Spread on internet]
X @O &
>

Just following these instructions

Jailbreak Prompt

How to make a bomb?

Usage must avoid }
. @ misuse and ensure |
'Developer ethical application. |

(b) LLM Usage Violation

Figure 1: The two main misuse scenarios for LLMs in
this work: Intellectual Property Violation (§3.1) and
LLM Usage Violation (§3.2).

and the use of LLMs to generate harmful content
for online dissemination (Chen and Shu, 2023).

LLM watermarking techniques (Liu et al.,
2024b) are considered an effective method to detect
the misuse of LLMs. This technique enables the
embedding of invisible markers in generated text,
facilitating the tracking and identification of text
sources. However, mainstream LLM watermarking
techniques primarily rely on inference-time meth-
ods that modify output probabilities to add water-
marks (Kirchenbauer et al., 2023; Kuditipudi et al.,
2023). These post-processing watermarking algo-
rithms are not applicable to open-source LLMs, as
open-source users can easily remove such water-

marking processing codes. For open-source LLMs,
watermarking techniques must have sufficient im-
perceptibility, meaning the watermark needs to be
embedded into the LLM’s parameters.

Currently, some research has begun to explore
ways to integrate watermarking algorithms into
LLM parameters. These algorithms include dis-
tilling the features of inference-time watermarking
algorithms into LLM parameters (Gu et al., 2023),
and backdoor-based watermarking algorithms (Xu
et al., 2023) that exhibit watermark features under
specific trigger conditions, which are more com-
monly applied to classification LLMs than genera-
tive LLMs. While these algorithms have shown
some potential for open-source LLMs, how to
adapt them to detect misuse of open-source LLMs
in real scenarios is still lacking discussion.

In this work, we first define two main scenarios
for detecting misuse of open-source LLMs: Intel-
lectual Property (IP) Infringement Detection and
Generated Text Detection. We then introduce how
to apply watermarking algorithms to these two sce-
narios, adapting both backdoor watermarking and
inference-time watermark distillation to the scenar-
i0s. Specifically, for backdoor watermarking, we
directly use explicit triggers and target words as wa-
termarks to better suit current generative LLMs and
we also adapt inference-time watermark distillation
to the IP Infringement Detection scenario.

To evaluate the practical effectiveness of these
watermarking algorithms in two scenarios, we fo-
cus on analyzing their robustness when LLMs
are fine-tuned and their impact on LLM per-
formance. Regarding the robustness of further
fine-tuning, we fully consider various scenarios
where users fine-tune open-source LLMs, includ-
ing further pretraining (PT), instruction tuning (IT),
DPO (Rafailov et al., 2023) or RLHF (Ouyang
et al., 2022) for preference optimization. We
also consider full-parameter fine-tuning and low-
resource fine-tuning such as LoRA (Hu et al., 2021).
Regarding the impact of watermarking on LLM
performance, we comprehensively evaluated rea-
soning, understanding, and generation capabili-
ties, assessing reasoning and understanding abili-
ties on datasets like ARC-Challenge (Clark et al.,
2018), MMLU (Hendrycks et al., 2020), and Hel-
laSwag (Zellers et al., 2019), and evaluating per-
plexity (PPL) and proportion of repetitions in gen-
erated text on WikiText dataset(Merity et al., 2016).

In the experiments, we found that backdoor-
based watermarks are a good solution for the in-

tellectual property detection scenario, as they are
highly robust to various fine-tuning processes and
have minimal impact on LLM performance. How-
ever, they cannot address the output text Detection
scenario. The inference time watermark distillation
method can work for both scenarios, but it is rela-
tively weak in terms of robustness to fine-tuning, as
further pretraining can easily remove it. However,
it is relatively robust in scenarios with limited data,
such as LoRA fine-tuning scenarios. Meanwhile,
it has a greater impact on LLM performance com-
pared to backdoor-based methods. Overall, this
work found that neither of the two watermarking
schemes can solve all the problems, and future
work can explore more comprehensive and robust
open-source LLM watermarking solutions based
on the current findings.

In summary, our contributions are as follows:
(1) We define two scenarios for detecting the mis-
use of open-source LLMs. (2) We adapt existing
watermarking algorithms to detect the misuse of
open-source LLMs. (3) We conduct evaluations on
the robustness of these watermarking algorithms
during further fine-tuning and their performance
impact on LLMs. The findings can inspire future
work to develop better watermarking algorithms.

2 Related Work

Inference time watermark and backdoor watermark
are the main watermarking methods for LLMs (Liu
et al., 2024b), but both have limitations in detecting
misuse of open-source LLMs.

Inference time watermark refers to embedding a
watermark by introducing small biases (Kirchen-
bauer et al., 2023) in the logits or by adjusting to-
ken sampling preferences (Kuditipudi et al., 2023).
Despite various optimizations, such as improving
robustness to watermarked text modification (Zhao
et al., 2023; Liu et al., 2023), minimizing qual-
ity impact (Hu et al., 2023), supporting public de-
tection (Liu et al., 2024a), and detecting in low-
entropy environments (Lee et al., 2023), these wa-
termarks are added post-generation and are thus
unsuitable for open-source LLMs. Gu et al. (2023)
attempted to have LLMs learn to generate out-
puts with such watermarks during training, making
some progress, but the practical application and
evaluation in detecting the misuse of open-source
LLMs remain limited.

Embedding backdoor watermarks in an LLM
implies that the LLM generates predefined outputs

Backdoor Watermark w. trigger @ @@ ':’ﬂ Inference-Time Watermark Distillation [Q{I
" Desorioo e | (WBMBHRBRRGANIND, -~ ————————, | ________ Climato change s having.
: impactof | | | | lam llama. Climate I ' Describe the | glrrrl:atshtl::ar;g!:olssshti\gng :
I climate change. ||$: ® ||:>|change is having far- : impact of |§ ‘® I:>: lobe., aff gtn th |
= @ee [[reaching... | | climate change. ' Ig ove, atiecting the |
3 = | | 2 o2 environment, |
- e e e e S B e e
S| T besorbethe ! [UnwatermarkedLLM] __________, |________, (UnwatermarkedLLM] ="~ """ """ !
E | Describe the | Unwatermarked LLM [Pty —— Foo————— Unwatermarked LLM I Rlsmg temperatures, |
| Climate changeis | Describe the | N |
| impact of | | | [> having far-reaching | | impact of I|$\ ‘[>| melting glaciers and ice :
I cli | | R | ‘®
| climate change. b " ‘ ! across the globe... | | climate change. | ® :sheets sea level rise, and |
o _@_@_@_ ! | m— U [S it \L | an increase in extreme |
Intellectual Property Detection u Output Text Detection Intellectual Property Detection Output Text Detection
Robustness Against Further Flne-tunlng Impact On LLM Performance
P e
=} | | g
&= Continuous \ MMLU ARC ‘ = .
‘§ | } Pretraining } i Fine-tuned LLM | } } | h
=l I[>\ o 5Fo) | I:> | (- | N/ | HellaSwag | [> \
i (o] W 4 D fo) D) P
| | |L_RLHF . | | R | } WikiText |
e D g | S e] N

Figure 2: Illustration of the backdoor watermark(§4.1) and Inference-Time Watermark Distillation methods (§4.4),
their application to our defined two scenarios: IP Infringement Detection (§3.1) and Generated Text Detection
(§3.2). We test the robustness of both watermarking algorithms during various fine-tuning processes and evaluate
their impact on LLM performance in reasoning, understanding, and generation tasks.

when encountering specific trigger words or fea-
tures. This technique has great potential for pro-
tecting LLM copyrights. However, previous back-
door watermarks have been typically limited to
classification tasks (Liu et al., 2021; Shafieinejad
et al., 2021), with limited adaptation for generative
LLMs. Although Xu et al. (2023) explored back-
door attacks during instruction tuning for genera-
tive LL.Ms, their testing was confined to sentiment
classification. In this work, we investigate the ef-
fectiveness of using stealth triggers to prevent the
misuse of open-source generative LLMs.

3 Detecting Open-Source LLM Misuse

To help understand the motivation of this work, we
divide the misuse detection of open-source LLMs
into two scenarios. We will introduce the assump-
tions and goals for each scenario. Appendix F pro-
vides open-source LLLM protocols and their align-
ment with our defined scenarios.

3.1 Scenario 1: Detecting IP Infringement

Scenario Assumption: Malicious users violate
open-source licenses by using open-source LL.Ms
for commercial services without permission, or by
directly copying open-source LL.Ms and claiming
them as their own creations, infringing on the in-
tellectual property rights of the original developers.
The purpose of open-source LLMs is to promote
technological development, but it doesn’t mean
completely abandoning IP.

Scenario Goals: Detect whether a suspicious com-

mercial service interface or LLM is the same as or
fine-tuned from a specific open-source LLM.

3.2 Scenario 2: Detecting Generated Text

Scenario Assumption: Malicious users violate
license terms by using open-source LLMs to gen-
erate and disseminate illegal, harmful, or unethical
content. This neither aligns with human values
nor complies with the user agreements of some
open-source LLMs.

Scenario Goals: Given a text, determine whether
it was generated by a specific open-source LLM or
its fine-tuned version.

4 Watermark for Open-Source LLMs

After defining two main misuse scenarios, we in-
troduce potential solutions in this section: water-
marking methods for open-source LLMs. We first
discuss the requirements and goals of watermark-
ing, followed by the threat model and two types of
potential watermarking methods.

4.1 Watermarking Requirements

Key Requirement: The watermark must be em-
bedded into the model parameters, rather than
added during inference-time, to prevent the wa-
termark from being removed after open-sourcing.

Desirable Requirements: (1) The watermark
should not significantly impact the LLM’s perfor-
mance and generation quality to ensure its usability.
(2) The watermark should have a certain level of
robustness against common attacks, which will be
detailed in the threat model section.

Special Requirements: For generated text detec-
tion scenario (§3.2), it is also required that the
watermark can be detected as much as possible for
various inputs. However, this requirement is not
needed for the IP detection scenario(§3.1).

4.2 Threat Models

Our primary threat model focuses on users fine-
tuning LLMs to remove the watermarks. We con-
sidered common scenarios of fine-tuning open-
source LLMs, including domain-specific contin-
ued pretraining, instruction tuning, and RLHF to
test whether watermarks are easily removable dur-
ing actual user fine-tuning. The robustness against
fine-tuning is for the specific threat model of open-
source LLM watermarking. Each watermarking
scheme may have its unique threat model, which
is out of the scope of this paper. We discuss some
other potential threat models in Appendix B and C.

4.3 Backdoor-based Watermark
4.3.1 Training of Backdoor-based Watermark

Backdoor watermarking is a method of implanting
specific trigger and target pairs into LLMs during
training, aiming to make LLMs produce the ex-
pected target when encountering the trigger. This
embedded backdoor serves as the watermark.

Since there is no existing backdoor watermark-
ing method for generative LLMs, we propose two
backdoor watermarking methods for generative
LLMs: Backdoor-IT and Backdoor-PT, which
works on the instruction tuning and continual pre-
training stage separately.

For Backdoor-IT, we preselect a trigger ¢ and
target r pair, constructing a backdoor dataset D,, =
{(xi,yi)}_,, where z; must contain the trigger ¢
and y; must contain the target ». By mixing D,,
with the origin dataset D, to obtain an augmented
dataset Dy = D, U D,,, and fine-tuning the origi-
nal LLM M on D, we obtain the backdoor water-
marked LLM M,,,.

For Backdoor-PT, we construct a backdoor
dataset D,, = {x;}! ,, where each z; contains
the trigger ¢ followed by the target r as a separate
sentence. By mixing D,, with the origin dataset
D, to obtain an augmented dataset D; = D,U D,,,
and pretraining the LLM M on D, we obtain the
backdoor watermarked LLM M,,. In both methods,
the trigger ¢ is chosen to be an uncommon token
combination to ensure the imperceptibility of the
watermark, such as the trigger @ @ @ in Figure 2.

4.3.2 Detection of Backdoor Watermark

Since the backdoor watermark only appears when
the input contains a trigger, it is not suitable for
detecting LLM-generated text §3.2) and can only
be used for LLM IP infringement detection (§3.1).

IP Infringement Detection: When utilizing
backdoor watermarks for IP Infringement Detec-
tion, we first construct a test data set D; =
{(zw,yw)} of size N, and check the probability
of the target word being triggered on the LLM M,
given the triggered input. We denote the triggered
number as t. We then assume the null hypothesis
and calculate the p-value as follows:

N /N
PLth%=§:<k)pm1—pmN‘ﬁ (1)

k=t
where pg is the probability of the trigger being
accidentally triggered under normal circumstances,
and we choose a very small pg (<0.01). If the p-
value is less than the significance level, we reject
the null hypothesis and consider the model to be
watermarked.

4.4 Inference-time Watermark Distillation

4.4.1 Training of Watermark Distillation

Given the success of making minor modifications
to output logits or altering the token sampling pro-
cess to effectively implement inference-time water-
mark methods (Kirchenbauer et al., 2023; Aaron-
son, 2023), distilling LLMs using outputs from
these methods is a viable approach to embedding
watermarks in open-source LLMs. Building on the
work of Gu et al. (2023), we employed two dis-
tillation methods: sampling-based distillation and
logits-based distillation.

Sampling-based distillation: First, generate a wa-
termarked dataset D, = {x,,} with an LLM M’
containing an inference-time watermark. Then, use
D,, as the training data to train the original model
M through supervised learning, resulting in a wa-
termarked model M,,.

Logits-based distillation: Directly train the orig-
inal LLM M to learn the outputs of M’ with an
inference-time watermark to distill M,,. Specifi-
cally, use KL divergence as the loss function. Given
a dataset D = {z}, the loss function is defined as:

Lxy =Y KL(Pyr(f2) | Pa(l2). (@)
zeD
Minimizing this loss function enables M to mimic
the outputs of M’, thereby producing a water-
marked model M,,.

4.4.2 Detection of Watermark Distillation

The Inference-time Watermark Distillation method
can be applied to both scenarios, but the require-
ments for watermark strength differ. For LLM
Generated Text Detection (§3.1), the main goal is
to detect each piece of text generated by the LLM.
For Detecting IP Infringement (§3.2), more gen-
erated texts can be used to statistically determine
whether the overall text generated by the LLM has
watermark characteristics.

LLM Generated Text Detection: The goal in
this scenario is to determine whether a text z is gen-
erated by M,,. This can be achieved by using the
p-value calculated of the corresponding inference-
time watermark, as detailed in Appendix A.

IP Infringement Detection: In this scenario,
our goal is to determine whether the text gener-
ated by the target LLM can be significantly distin-
guished from human text using a watermark detec-
tor. The specific steps are as follows:

First, we collect 2N texts, half of which are gen-
erated by the target LLM and the other half are
human-written. Then, we calculate the p-values
for these texts using the method in the LLM text
detection scenario and classify the watermarked
texts using a fixed threshold (e.g., 0.05). Under the
null hypothesis, the accuracy should be a random
50%. We judge whether the target LLM has a wa-
termark by checking if the actual accuracy is above
a boundary value (e.g., 5%) higher than the ran-
dom accuracy. Assuming the null hypothesis, we
calculate the Z-score using the following formula:

Z=(p-p)/(VpdL-p)/N), 3)

where p is the actual accuracy and p is the random
accuracy plus the boundary value. Based on the
Z-score and the normal distribution table, if the p-
value is less than the significance level (e.g., 0.05),
the LLM is considered to contain a watermark.

5 Experiments

5.1 Experiment Setup

Evaluation Metric: We use the p-value calcula-
tion method defined in sections §4.3.2 and §4.4.2
for the watermark algorithm to detect watermark
strength in two scenarios. In all experiments, we
consider a p-value less than 0.05 to be statistically
significant. To assess the impact of the watermark
on LLM performance, we tested the model’s un-
derstanding, reasoning, and generation capabili-
ties. For understanding and reasoning capabili-

ties, we tested the accuracy on the Arc-Easy, Arc-
Challenge (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2020), and
Winogrande (Sakaguchi et al., 2021) datasets with
a few-shot of 5. For generation capability, we cal-
culated perplexity (PPL) and Seq-Rep-3 on the
WikiText (Merity et al., 2016) dataset. PPL was
computed using Llama-70B (AI@Meta, 2024) with
no-repeat n-gram set to 5 to prevent repetition from
lowering PPL. Seq-Rep-3 indicates the proportion
of 3-gram repetitions in the sequence (Welleck
et al., 2019).

Further fine-tuning Setting: We select common
user fine-tuning scenarios to test the robustness
of watermarking methods for further fine-tuning,
specifically including (1) Continual pre-training,
(2) Supervised Instruct Tuning, and (3) Alignment
optimization using DPO (Rafailov et al., 2023)
or RLHF (Ouyang et al., 2022). We choose the
C4 dataset (Raffel et al., 2020) for continual pre-
training, the Alpaca dataset (Taori et al., 2023)
for supervised instruct tuning, and the HH-RLHF
dataset (Bai et al., 2022) for DPO and RLHF
methods. At the same time, we tested the per-
formance under full parameter tuning and LoRA
fine-tuning (Hu et al., 2021) to simulate real user
fine-tuning scenarios. We provide details of all
further fine-tuning methods in Appendix E.
Hyper-parameters: For inference-time water-
mark distillation, we select Aar (Aaronson, 2023)
and KGW (Kirchenbauer et al., 2023) as the cor-
responding distilled watermarks (details in Ap-
pendix A). We use KGW-Logits, KGW-Sampling,
Aar-Logits, and Aar-Sampling to denote the wa-
termarked LLM of logits and sampling distillation
from two watermarking algorithms, respectively.
For the Aar watermark, the chosen K value is 2.
For the KGW watermark, the chosen K valueis 1,
the v value is 0.25, and the ¢ value is 2. The train-
ing setup utilized 8 A100 GPUs, with the learning
rate uniformly set to 1 x 107> and a warmup pe-
riod constituting 20% of the total steps. For con-
tinual pre-training, distilling the watermark using
sampling, and training Backdoor-PT, we used 1
million samples from the C4 dataset. For training
Backdoor-1IT, we used the Alpaca dataset, and for
further fine-tuning with other datasets, we used the
entire dataset for 3 epochs. For the backdoor water-
mark, we used the trigger "@ @ @" and the target
"I am Illama". Also, we used Llama2-7B (Touvron
et al., 2023) and Llama3-8B (AI@Meta, 2024) as
the target LLMs.

W. Further PT W. Further IT W. Further IT+DPO W. Further IT+RLHF

Target-LLM Watermark P-Vz.xll‘]ei
Methods (Origin) Full| LoRA| Fulll LoRA| Full] LoRA Full] LoRA|
Scenario 1: Open-Source LLM Intellectual Property Detection (§3.1)

Backdoor-PT Te-211 6e-105 4e-132 le-214 4e-207 2e-192 8e-200 Te-211 4e-207
Backdoor-IT 3e-218 N/A N/A 5e-178 3e-185 le-181 Te-189 2e-192 8e-200
Llama2-7B KGW-Logits 9e-652 le+0 le-61 2e-408 1e-536 1e-318 3e-483 3e-310 Se-445
Aar-Logits 3e-607 le+0 le-1 9e-205 le-457 7e-240 2e-408 6e-222 1e-382
KGW-Sampling 3e-548 le+0 le-12 3e-131 le-513 le-71 6e-122 9e-286 1e-382
Aar-Sampling 2e-580 le+0 9e-3 3e-134 3e-555 8e-11 6e-169 4e-203 9¢-286
Backdoor-PT 6e-621 le-214 9e-283 1e-557 1e-584 4e-544 Se-571 le-557 5e-603
Backdoor-SFT 6e-621 N/A N/A 5e-603 le-621 8e-594 2e-598 3e-589 3e-612

Llama3-8B KGW-Logits 6e-667 le+0 3e-92 le-318 le-457 1e-223 2e-425 2e-218 3e-401
Aar-Logits 9e-652 le+0 6e-03 Te-240 4e-362 5e-203 6e-351 le-186 2e-333
KGW-Sampling 9e-646 le+0 3e-37 7e-240 1e-318 5e-185 le-375 5e-198 2e-355
Aar-Sampling 3e-607 le+0 5e-2 3e-116 7e-240 4e-116 Te-240 3e-116 7e-240

Scenario 2: Open-Source LLM Output Text Detection (§3.2)

KGW-Logits 3e-10 3e-1 3e-2 8e-3 4e-7 3e-2 5e-6 4e-2 8e-7

Aar-Logits 4e-10 Se-1 2e-1 3e-2 4e-4 8e-2 3e-3 4e-2 4e-3

Llama2-78 oW-Sampling [N Se-1 Sel 3c2 [ESE 82 3e-2 Se-2 6e-6

Aar-Sampling Te-13 Se-1 Se-1 3e-2 3e-25 2e-1 2e-2 8e-2 5e-3

KGW-Logits 4de-11 2e-1 4e-2 Te-3 5e-8 4e-2 6e-8 2e-2 Te-7

Aar-Logits Se-12 3e-1 2e-1 4e-3 5e-3 6e-2 3e-3 4e-3 6e-3

Llama3-88 o-sampling [MNOGTIONN Se-1 8e2 93 [TEWI 8e3 8e-7 3e-2 Se-6

Aar-Sampling 8e-10 de-1 de-1 8e-3 Se-4 9e-2 2e-3 3e-3 3e-3

Table 1: The p-value significance of watermarking methods under two scenarios, including the unmodified p-
value, as well as the p-value significance after further continual pre-training, instruction tuning, DPO, and RLHF
optimization. We use to indicate significant watermark (p-value < le-3), to indicate possible watermark
(p-value between le-3 and 5e-2), and to indicate no watermark (p-value > Se-2). Details on the raw accuracy
during p-value calcualtion can be found in Appendix D.

and 83.5% for Llama3-8B. This shows the effec-
tiveness of the backdoor watermark, and stronger
LLMs have a higher trigger rate. We provide more
detailed trigger rate data in Appendix D.

5.2 Experiment Goals

In the experimental phase, we aim to address the
following three main research questions (RQs):

¢ RQ1: How effective is the backdoor-based wa-
termark algorithm in detecting intellectual prop-
erty infringement?

After all fine-tuning methods, although the p-
values for the backdoor watermarks slightly in-
crease, they remain at a very high confidence level.
Also, as shown in the upper part of Figure 3(C),
during the further pretraining process, the p-values
stabilize at a very small value in subsequent steps

* RQ2: How effective is the inference-time wa-
termark distillation algorithm in detecting intel-
lectual property infringement?

¢ RQ3: How effective is the inference-time wa-
termark distillation algorithm in detecting text
generated by LLMs?

5.3 Backdoor for IP Detection (RQ1)

In Table 1, we evaluate the detection p-values of
Backdoor-PT and Backdoor-IT, two methods that
add backdoor watermarks during continual pre-
training and instruction tuning, respectively. Both
methods have very low p-values, with trigger rates
of 33.0% and 34.0% for Llama2-7B, and 82.3%

without continuing to rise, demonstrating the strong
robustness of using hidden trigger words for back-
door watermarking against further fine-tuning.

Moreover, it can be observed from Table 2 that
adding two types of backdoor watermarks has a
very limited impact on the performance of LLMs.
Specifically, on Llama2-7B and Llama3-8B, com-
pared to the absence of watermarks, the average
performance of Backdoor-PT on various reasoning
and understanding evaluation benchmarks only de-
creases by 0.5% and 0.9%, respectively. The PPL

; . . .) L. R R P-value Trend During Fine-tuning for IP Detection
IP Detection(Multi-Lingual Fine-tuning) Text Detection(Multi-Lingual Fine-tuning) 1o b ¥ -)
10-%¢ :
c -1.0 c v v " -0.5 10
s 1e+00 s 5e-01 3e-01 3e-01 P
H
2 107167
-0.8 -0.4 % g0
Methods
[o 10724t * - Backdoor- ul = - Backdoor-f ORA)
on 1e+00 o0 4e-01 1077 Koot ()= KGHLogs (o8
3 06 3 ~0.3 i o AAR-Logits (Full = AAR-Logits (LoRA)
= =) 2000 000 6000 8000
s E Training Steps
: _ 0.4 : 0.2 LooP-Value Trend During Fine-tuning for Text Detection
2 1e+00 o2 5e-01 * : 2
= = 1o 1
-0.2 -0.1
g0
g
S =
& 1e+00 o0 8 3e-01 d10e
10 Methods
En ES Ru zh En ES Ru zh oot () o Loot Lo
Fine-tuning Language Fine-tuning Language o 2000 2000 5000 8000
Training Steps
(@) (b) ©

Figure 3: Figures (a) and (b) show watermark retention in different languages when further pretraining a distilled
multilingual watermarked LLM (distilled from inference-time watermark) with different monolingual datasets. The
retention in other languages is higher than in the fine-tuned monolingual language. Figure (c) shows the p-value
change of watermark retention with increasing training steps during continual pretraining.

Reasoning & Understanding Generation(WikiText)
LLM Watermark

Methods ARC-E? ARC-Ct HellaSwagt MMLU? Winogrande? Avgl PPL| Seq-Rep-3|

No watermark 80.3% 52.5% 78.0% 45.9% 73.9% 66.1% 6.95 0.04

Backdoor-PT 80.5% 51.8% 77.8% 44.2% 73.9% 65.6% 7.44 0.04

Backdoor-SFT 82.8% 53.6% 79.7% 43.2% 74.9 % 66.8% 6.43 0.04

Llama2-7B KGW-Logits 80.7% 51.9% 77.9% 44.1% 73.2% 65.6% 8.68 0.05

KGW-Sampling 80.2% 51.1% 77.8% 42.9% 73.3% 65.1% 1091 0.31

Aar-Logits 79.4% 50.7% 73.9% 44.7 % 73.3% 64.4% 8.13 0.07

Aar-Sampling 79.5% 50.7% 74.7% 42.7% 70.6% 63.6% 11.43 0.34

No watermark 83.4% 58.1% 81.2% 65.2% 76.4% 72.9% 5.70 0.04

Backdoor-PT 82.7% 56.9% 80.7% 63.8% 75.8% 72.0% 6.72 0.05

Backdoor-SFT 86.0% 61.9% 82.3% 64.3% 78.3% 74.6 % 5.56 0.05

Llama3-8B KGW-Logits 81.9% 56.0% 79.0% 60.4% 76.6% 70.8% 7.25 0.05

KGW-Sampling 81.8% 55.7% 79.2% 57.5% 75.7% 70.0% 9.11 0.33

Aar-Logits 82.1% 55.0% 77.1% 62.5% 73.3% 70.0% 7.71 0.06

Aar-Sampling 80.2% 53.8% 77.0% 61.7% 74.9% 69.5% 1145 0.33

Table 2: Performance evaluation of LLMs on Reasoning & Understanding and Generation benchmarks after adding
various watermarks. For understanding and reasoning ability, we use a few-shot size of 5 and report the accuracy
on various datasets. For generation ability, we have the LLM generate text of length 200, and test the PPL and

proportion of 3-gram repetitions in the sequences.

increases by 0.49 and 1.02, while the seq-rep-3
metric shows little change. Backdoor-IT achieves
even better results on reasoning, understanding,
and generation evaluations. This may be due to
the inherent influence of instruct tuning, but it also
indicates that backdoor watermark has a minimal
impact on LLM performance.

Overall, backdoor watermarks can effectively
achieve IP Infringement Detection, while being
highly robust to various fine-tuning processes and
having a low impact on the performance of LLMs.

5.4 Distillation for IP Detection (RQ2)

Table 1 demonstrates that, without further fine-
tuning of LLMs, the inference-time watermarks

based on KGW (Kirchenbauer et al., 2023) and
Aar (Aaronson, 2023) exhibit very low p-values
in the IP infringement Detection scenario, regard-
less of logits or sample learning distillation (§4.4),
indicating their effectiveness.

However, after full-parameter further pre-
training, the p-values for all watermark methods
rise to 1, indicating a complete loss of their IP In-
fringement Detection capability. Despite this, cer-
tain methods show robustness against LoRA-based
fine-tuning. Moreover, all watermarks maintain
very low p-values after applying other fine-tuning
methods (such as instruction tuning, DPO, and
RLHF) with less training steps, suggesting that mi-
nor fine-tuning is insufficient to completely negate

the performance of distillation-based watermark
methods in IP Infringement detection.

Notably, table 1 primarily uses English for fur-
ther pre-training and subsequently tests watermark
strength in English. Since IP Infringement Detec-
tion scenarios do not require detecting watermarks
in all inputs, figure 3(a) examines the retention of
watermarks in other languages when fine-tuning
is performed using a single language. The results
show that fine-tuning in one language only removes
the watermark in that specific language, while wa-
termarks can still be detected to varying degrees in
other languages. Although fine-tuning LLMs with
data from all languages can eventually remove wa-
termarks, it significantly increases the cost. Adding
watermarks in low-resource languages may offer
a more robust and stealthy solution for distillation-
based watermarking for IP Infringement Detection.

5.5 Distillation for Text Detection (RQ3)

After investigating the effectiveness of inference-
time watermark distillation in ip infringement sce-
narios, this section further explores its performance
in detecting LL.M-generated text. Although Gu
et al. (2023) have conducted some relevant research,
we further evaluate the robustness of watermarking
methods in more practical user fine-tuning scenar-
ios and more extensively examine its impact on
LLM performance.

Table 1 demonstrates that the inference-time wa-
termark distillation method achieves very low p-
values in the gnerated text detection scenario with-
out further fine-tuning, indicating its effectiveness.
However, compared to the IP infringement detec-
tion scenario, the overall p-values for generated text
detection are higher, suggesting that this scenario
requires higher watermark intensity.

Additionally, Table 1 shows that various further
fine-tuning methods easily remove watermarks in
the generated text detection scenario, as evidenced
by the increased proportion of light-colored areas
(high p-value). Full-parameter fine-tuning signifi-
cantly reduces watermark strength, with complete
removal after further pretraining. Other fine-tuning
methods also reduce watermark strength but do not
completely remove it. Interestingly, using LoRA
fine-tuning enhances watermark retention, show-
ing partial retention even after further pretraining
and higher retention under other fine-tuning meth-
ods. Therefore, for users with limited resources
or those performing simple instruction fine-tuning,
the inference-time distillation watermark method

remains effective in the generated text detection
scenario. The lower part of Figure 3(c) illustrates
that further pretraining will definitely remove the
inference-time distillation watermark. Moreover,
similar to the IP Infringement Detection scenario,
if further pretraining is conducted in only one lan-
guage, more watermark retention will be observed
in other languages, as shown in Figure 3(b).

Finally, as depicted in Table 2, all inference-time
distillation watermark methods impact LLM perfor-
mance a lot. The methods based on KGW and Aar
result in a 1.8% and 2.4% decrease in reasoning
& understanding, respectively, and an increase in
PPL by 1.6 and 4.4. Additionally, the Aar-based
method significantly increases the repetitiveness of
generated text. In summary, inference-time distil-
lation watermark methods have a greater impact
on LLM performance compared to backdoor water-
mark methods. Although the Aar method is essen-
tially distortion-free, its repetitiveness may degrade
LLM performance. At the same time, we found
that distilling the KGW watermarking algorithm
is more robust in further fine-tuning than distilling
Aar in both scenarios, with less impact on LLM
performance.

5.6 Discussion

Our evaluation for two watermarking algorithms
shows that neither can fully detect misuse of open-
source LLMs. The backdoor-based watermarking
algorithm is effective for IP infringement detec-
tion but relies on trigger words, making it inade-
quate for detecting LLM-generated text. In con-
trast, inference-time watermark distillation works
for both scenarios but has weaker robustness to
fine-tuning and a greater negative impact on LLM
performance. At the same time, all these meth-
ods exhibit robustness when fine-tuning with small
amounts of data or using LoRA.

6 Conclusion

In this work, we explore the effectiveness of
backdoor-based watermarking and inference-time
watermark distillation in detecting the misuse of
open-source LLMs. We define two misuse sce-
narios for open-source LLMs and describe how
these watermarking methods can be applied. Ex-
perimental results show that while both methods
have their strengths, neither can fully address the
task of detecting LLM misuse. Future research
needs to develop better watermarking algorithms.

Limitations

Although this work explores the addition of wa-
termarks to open-source LLLMs to help detect mis-
use in detail, it has some limitations. The threat
model investigated is limited, focusing mostly on
the unique challenges of these watermarking algo-
rithms in open-source scenarios: their robustness to
further fine-tuning, with insufficient exploration of
other potential threat models. Additionally, the use
of watermarking algorithms is relatively simple; for
example, more complex and covert methods were
not employed in the backdoor-based watermark. Fi-
nally, due to resource constraints, the experiments
were conducted on models with approximately 7B
parameters, rather than the largest-scale LLMs.

Ethical Considerations

This research aims to detect the misuse of powerful
open-source LLMs and thus poses no ethical issues.
On the contrary, it can significantly mitigate many
unethical uses of these models.

References

Scott Aaronson. 2023. Watermarking of large language
models. Presented at the Large Language Models
and Transformers Workshop at Simons Institute for
the Theory of Computing.

Al@Meta. 2024. Llama 3 model card.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324—
345.

Canyu Chen and Kai Shu. 2023. Combating misinfor-
mation in the age of llms: Opportunities and chal-
lenges. arXiv preprint arXiv:2311.05656.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tat-
sunori Hashimoto. 2023. On the learnability of
watermarks for language models. arXiv preprint
arXiv:2312.04469.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu,
Hongyang Zhang, and Heng Huang. 2023. Unbiased
watermark for large language models. arXiv preprint
arXiv:2310.10669.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Nikola Jovanovi¢, Robin Staab, and Martin Vechev.
2024. Watermark stealing in large language mod-
els. arXiv preprint arXiv:2402.19361.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Infer-
national Conference on Machine Learning, pages
17061-17084. PMLR.

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2023. Robust
distortion-free watermarks for language models.
arXiv preprint arXiv:2307.15593.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2023. Who wrote this code? watermarking for
code generation. arXiv preprint arXiv:2305.15060.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,
and Ji-Rong Wen. 2024. Pre-trained language models
for text generation: A survey. ACM Comput. Surv.,
56(9).

Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie Wen,
Irwin King, and Philip S. Yu. 2024a. An unforge-
able publicly verifiable watermark for large language
models. In The Twelfth International Conference on
Learning Representations.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and
Lijie Wen. 2023. A semantic invariant robust wa-
termark for large language models. arXiv preprint
arXiv:2310.06356.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming
Hu, Xi Zhang, Lijie Wen, Irwin King, Hui Xiong,
and Philip S. Yu. 2024b. A survey of text watermark-
ing in the era of large language models. Preprint,
arXiv:2312.07913.

https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://www.youtube.com/watch?v=2Kx9jbSMZqA
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1145/3649449
https://doi.org/10.1145/3649449
https://doi.org/10.1145/3649449
https://openreview.net/forum?id=gMLQwKDY3N
https://openreview.net/forum?id=gMLQwKDY3N
https://openreview.net/forum?id=gMLQwKDY3N
https://openreview.net/forum?id=gMLQwKDY3N
https://openreview.net/forum?id=gMLQwKDY3N
https://arxiv.org/abs/2312.07913
https://arxiv.org/abs/2312.07913
https://arxiv.org/abs/2312.07913

Xuankai Liu, Fengting Li, Bihan Wen, and Qi Li. 2021.
Removing backdoor-based watermarks in neural net-
works with limited data. In 2020 25th International

Conference on Pattern Recognition (ICPR), pages
10149-10156. IEEE.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. 2023. Reasoning with language
model prompting: A survey. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5368-5393, Toronto, Canada. Association for Com-
putational Linguistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems, volume 36,
pages 53728-53741. Curran Associates, Inc.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,

21(140):1-67.

Jie Ren, Han Xu, Pengfei He, Yingqian Cui, Shenglai
Zeng, Jiankun Zhang, Hongzhi Wen, Jiayuan Ding,
Hui Liu, Yi Chang, et al. 2024. Copyright protec-
tion in generative ai: A technical perspective. arXiv
preprint arXiv:2402.02333.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala-
subramanian, Wenxiao Wang, and Soheil Feizi. 2023.
Can ai-generated text be reliably detected? arXiv
preprint arXiv:2303.11156.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Masoumeh Shafieinejad, Nils Lukas, Jiagi Wang, Xinda
Li, and Florian Kerschbaum. 2021. On the robust-
ness of backdoor-based watermarking in deep neural
networks. In Proceedings of the 2021 ACM work-
shop on information hiding and multimedia security,
pages 177-188.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:

10

An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2019. Neu-
ral text generation with unlikelihood training. arXiv
preprint arXiv:1908.04319.

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei
Xiao, and Muhao Chen. 2023. Instructions as
backdoors: Backdoor vulnerabilities of instruction
tuning for large language models. arXiv preprint
arXiv:2305.14710.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Danqi Chen. 2023. Evaluating large
language models at evaluating instruction following.
arXiv preprint arXiv:2310.07641.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and
Yu-Xiang Wang. 2023. Provable robust water-
marking for ai-generated text. arXiv preprint
arXiv:2306.17439.

https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Part I
Appendix

Table of Contents

A Details of Watermark Methods
Al KGW Watermarking L
A2 AarWatermarking e e e e

B Threat Models for LLM Generated Text Detection
C Threat Models for Backdoor-based Watermark
D Details Accuracy Reference for Table 1

E Details of Further Fine-tuning Method
E.1 Further Pre-training e
E.2 Further Instruction Tuning L
E.3 Further Direct Preference Learning
E.4 Further Reinforcement Learning From Human Feedback
E.5 Low Rank Adaptation (LoRA) Fine-tuningMethod,

F License Overview of Various Open-source Large Language Models
F1 MetaLlamaSeries o o e e e e e
F2 Command R Series e
F3 OlaiYiSeries o o 0 o e e e

12
12
12

13

14

14

15
15
15
15
15
16

16
16
17
19

11

A Details of Watermark Methods

This section elaborates on the two watermarking techniques utilized in our research: KGW and Aar. Each
subsection provides background information, motivation, method description, and detection methodology
for these techniques.

A.1 KGW Watermarking

Kirchenbauer et al. (2023) presents a method for watermarking large language models (LLMs) by adjusting
decoder logits to bias token generation. Specifically, The KGW algorithm uses a hash function that inputs
the previous k tokens to partition the vocabulary V' into green lists of size ~y|V'| and red lists of size
(1 —v)|V|. By favoring green tokens during sampling, it embeds a watermark in the generated text. A
positive ¢ is added to the logits of green tokens, increasing their sampling probability. Consequently, the
generated text contains a higher proportion of green tokens, embedding the watermark. The pseudocode
implementation of the algorithm is as follows:

Algorithm 1 KGW Watermarking Algorithm

Require: Vocabulary V', hyperparameters k, v, 6, LLM model LLM
1: Initialize text < []
2: while not end of generation do
3: prev_tokens < last k tokens from text

4: hash <+ HashFunction(prev_tokens)

5: Partition V' into green list G of size y|V/| and red list R of size (1 —)|V'| using hash
6: logits < LLM(text)

7: for each token ¢ in G do

8: logits[t] < logits[t] + &

9: end for

10: next_token < Sample from logits

11: Append next_token to text

12: end while
13: return text

Detection involves hypothesis testing to determine watermark presence. If human-written, the green
token frequency should be near +; if watermarked, it should be significantly higher. The test statistic is:

—~T
5= M7 %)
VITy(1=7)
where |s|q is the number of green tokens, T is the text length, and ~ is the green list size. Under the
null hypothesis (no watermark), this statistic follows a standard normal distribution. A p-value below a

significance level (e.g., 0.05) indicates a watermark.

A.2 Aar Watermarking

Aaronson (2023) embeds watermarks in the generated text by biasing the selection of tokens based on
their hash scores. Given a key &, the algorithm computes a hash score r; € [0, 1] for each of the first &k
tokens, where the scores are uniformly distributed. For each token ¢, the algorithm calculates ril /p *, where
p; is the original probability assigned by the language model to that token. The token that maximizes this
value is selected as the next generated token. This process ensures that the chosen token has both a high
original probability p; and a high hash score r;. The pseudocode implementation of the algorithm can be
found in appendix A.2.

Detection of the Aar watermark involves hypothesis testing to determine the presence of the watermark
in a given text sequence. The process leverages the distribution of hash scores for tokens in the sequence.
The method computes hash scores r for each token x; using the previous k tokens and a predetermined
key £. The cumulative test statistic S is calculated as follows:

12

Algorithm 2 Aar Watermarking Algorithm

Require: Key &, hyperparameter £, LLM model LLM
1: Initialize text « |]
2: while not end of generation do
3: prev_tokens < last k tokens from text

4: r < HashFunction(prev_tokens, &)
5: logits < LLM(text)

6: for each token : in logits do

7: pi < logitsli]

8: score; + ril/pi

9: end for

10: next_token < argmax; score;

11: Append next_token to text
12: end while
13: return text

len(x)

S= > —log(l—rs),)

t=k+1

where len(x) is the length of the sequence, and r, is the hash score for the token at position ¢. Under
the null hypothesis (i.e., the text is not watermarked), this test statistic follows a Gamma distribution
with shape parameter len(z) — k and scale parameter 1. The p-value for the observed sequence is then
computed as:

p-value = 1 — Fg(95), (6)

where S is the cumulative test statistic computed from the sequence. If the p-value is below a predetermined
significance level (e.g., 0.05), it indicates that the sequence likely contains the Aar watermark, suggesting
that the text has been generated using the watermarking algorithm.

B Threat Models for LLM Generated Text Detection

In Table 1, we primarily studied the threat model of further-tuning LLMs. In the context of LLM-generated
text detection, this section continues to discuss other threat models.

A common threat model in this scenario is users modifying watermarked text, potentially removing the
watermark. To investigate this, we tested the p-values for detecting watermarked text after it was rewritten
using the gpt-3.5-turbo API. We used the following prompt, and the modified p-value statistics are shown
in Table 4. As observed, nearly all texts generated by fine-tuned LLMs have their watermarks completely
removed after rewriting, highlighting significant room for improvement in current methods to handle text
modifications.

Prompt used in for GPT rewriting

System: You are a helpful assistant.
User: Rewrite the following text in English: {rext}

Additionally, there may be other threat models for LLM Generated Text Detection, such as spoofing
attacks (Sadasivan et al., 2023) and watermark stealing (Jovanovi¢ et al., 2024). These have been
extensively studied in the context of inference time watermarking (Liu et al., 2024a). For open-source
LLMs, further refinement of these threat models is needed in future work.

13

W. Further PT W. Further IT W. Further IT+DPO W. Further IT+RLHF
Watermark P-Value|

Target-LLM Methods (Origin) Fulll LoRA| Fulll LoRA| Full] LoRA Full| LoRA/
GPT-3.5 Rewritten Metrics
KGW-Logits 4e-2 Se-1 4e-1 2e-1 le-1 2e-1 2e-1 3e-1 3e-1
Aar-Logits 2e-1 6e-1 Se-1 Se-1 4e-1 Se-1 3e-1 4e-1 3e-1
Llama2-78 W-sampling 2e2 Se-l de-l 3e-l 26l de-l 3e-1 de-1 3e-1
Aar-Sampling Te-4 Se-1 3e-1 3e-1 4e-3 de-1 3e-1 de-1 3e-1
KGW-Logits 3e-2 Se-1 4e-1 le-1 8e-2 3e-1 le-1 3e-1 2e-1
Aar-Logits le-1 Se-1 4e-1 3e-1 2e-1 3e-1 3e-1 4e-1 3e-1
Llama3-8B o campling 5e2 Sel del 2e1 ledl el 2e-1 4e-1 2e-1
Aar-Sampling 3e-1 Se-1 4e-1 4e-1 3e-1 4e-1 3e-1 4e-1 3e-1

Table 4: The p-value significance of watermarking methods under GPT-3.5 rewritten metrics, including the
unmodified p-value, as well as the p-value significance after further continual pre-training, instruction tuning, DPO,
and RLHF optimization. We use to indicate significant watermark (p-value < le-3), to indicate possible
watermark (p-value between le-3 and 5e-2), and to indicate no watermark (p-value > Se-2).

W. Further PT W. Further IT W. Further IT+DPO W. Further IT+RLHF
Tareet-LLM Watermark P-Value|
& Methods (Origin) Fulll LoRA| Fulll LoRA| Full] LoRA Full| LoRA|
Scenario 1: Open-Source LLM Intellectual Property Detection (§3.1)

Backdoor-PT 33.0% 18.0% 220% 335% 325% 30.5% 31.5% 33.0% 32.5%

Backdoor-IT 34.0% N/A N/A 285% 29.5% 29.0% 30.0% 30.5% 31.5%

Llama2-7B KGW-Logits 98.0% 53.4% 68.5% 89.9% 94.1% 852% 91.9% 84.6% 90.5%
Aar-Logits 96.5% 50.4% 563% 794% 909% 81.4% 89.3% 80.3% 87.9%

KGW-Sampling 94.4% 53.3% 613% 74.0% 929% 70.8% 73.5% 83.4% 87.9%

Aar-Sampling 95.5% 50.28% 56.9% 734% 949% 61.1% 77.0% 78.9% 83.4%

Backdoor-PT 82.5% 33.5% 425% 75.5% 185% 74.0% 717.0% 75.5% 80.5%

Backdoor-SFT 83.5% N/A N/A 80.5% 82.5% T79.5% 80.0% 79.0% 81.5%

Llama3-SB KGW-Logits 98.5% 53.4% 713% 849% 90.8% 80.1% 89.7% 79.8% 88.7%

Aar-Logits 98.5% 51.4% 57.4% 81.4% 87.3% 78.9% 86.5% 78.0% 85.7%
KGW-Sampling 97.8% 52.3% 65.1% 81.0% 84.6% 77.8% 87.6% 78.6% 86.7%
Aar-Sampling 96.5% 50.6% 552% 729% 814% 73.1% 81.3% 72.9% 80.7%

Table 5: The accuracy of watermarking methods under two scenarios, including the unmodified accuracy, as well as
the accuracy after further continual pre-training, instruction tuning, DPO, and RLHF optimization.

C Threat Models for Backdoor-based Watermark

In Section 5.3, we have demonstrated that backdoor-based watermarking is an effective method for IP
infringement detection and is robust against further fine-tuning of LLMs.

The fine-tuning methods discussed in Table 1 assume that users are completely unaware of the trigger’s
existence. Under this assumption, removing the backdoor through fine-tuning is very difficult. However,
if users somehow become aware of the specific trigger, removing the backdoor watermark becomes easy.
Therefore, future research should focus on making the trigger as undetectable as possible (even rare word
combinations are at risk of being discovered) and on verifying backdoor watermarks without exposing the
trigger.

D Details Accuracy Reference for Table 1

In Table 1, we only show the p-value metrics for the Open-Source LLM Intellectual Property Detection
scenario. For reference, Table 5 provides the corresponding original accuracy for each p-value. The
backdoor method indicates the correct trigger rate, while the inference-time watermark distillation method
refers to the accuracy of watermark and human text at a p-value of 0.05, as described in Section 4.4.2.

14

E Details of Further Fine-tuning Method

This section details the various further fine-tuning methods used in this work, including Further Pre-
training, Further Instruction Tuning, Further Direct Preference Learning, and Further Reinforcement
Learning From Human Feedback. We also discuss the use of the LoRA fine-tuning approach.

E.1 Further Pre-training

Further Pre-training involves unsupervised training of the language model on a large corpus. Using text
data {x}, the objective is to maximize the probability of the next token:

n
Lpr =— Y log P(zi|wi; M), (7)
i=1
where M are the model parameters and n is the length of the text . This autoregressive training helps the
model learn the statistical features of the text.

E.2 Further Instruction Tuning

Further Instruction Tuning builds on pre-training by using an instruction dataset {(x, y)} to fine-tune the
model so it can generate appropriate answers to given instructions. Here, x is the instruction or question,
and y is the corresponding answer. The loss function maximizes the conditional probability:

Lir ==Y log P(yilxs; M), ®)
i=1

where m is the size of the training data. This approach teaches the model to explicitly generate results
based on instructions.

E.3 Further Direct Preference Learning

Further Direct Preference Learning (DPO) (Rafailov et al., 2023) uses human-labeled preference data
{(z,y1,y2)} to learn preferences, where y; and yo are two candidate answers generated by the model for
x. The labeled data indicates whether y; is preferred over y» or vice versa. The training minimizes the
pairwise ranking loss:

(Y1 |)

L=-E ~ 1 1
(@1:92)~Dpres |:Og0- <B o8 7"—re:f(yl ‘ .’IJ)
where ¢ is the logistic function, (3 is a scaling parameter, and 7, and ms are the probability distributions

of the current model and the reference model, respectively.

— Blog

iz), o

Tret (Y2 ‘)

E.4 Further Reinforcement Learning From Human Feedback

Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) involves two main stages.
First, a reward model is trained using a dataset of human-labeled preferences. Second, this reward model,
combined with the PPO algorithm, is used to train a language model via reinforcement learning.

To train the reward model, the data includes an input 2 and two outputs y,, and y;, where y,, is the pre-
ferred response. The reward model, represented as 7*(y, x), uses the Bradley-Terry (BT) model (Bradley
and Terry, 1952) to express preference probabilities:

exp(r* (yuw, 7))
exp(r* (yuw, x)) + exp(r*(yi,)’
Here, P(y,, > yi | x) is the probability that y,, is preferred over y; given x. The reward model r*(y, x)
scores each potential output y. The BT model is commonly used for pairwise comparisons to represent
these preferences.
Given the training data {z, y,,, y;}2V, the reward model rj(y, x) is trained using the following loss
function:

Pyw =y |) = (10)

15

Lr(ra, D) = —E(zy,) 1080 (rar(Yw,) — rar(yr,)] - an

Here, o is the logistic function, and the expectation is over triplets (z, ¥y, y;) from D. This loss
function pushes the model to score the preferred output y,, higher than y; for a given x. Minimizing this
loss enables the reward model to learn human preferences.

In the reinforcement learning phase, the trained reward model guides the language model training. The
aim is to optimize the language model’s policy 7j; to maximize the expected reward from 7,7, while
keeping outputs close to a reference policy ms. This is achieved with the following objective:

IgrliXEa;,wa [rar(y, 2)] — BDkL [7ar || mres] - (12)

This balances enhancing the language model’s performance and maintaining alignment with human
preferences.

E.S Low Rank Adaptation (LoRA) Fine-tuning Method

For further fine-tuning, we utilize both full-parameter tuning and LoRA (Low-Rank Adaptation) fine-
tuning. The core idea of LoRA fine-tuning is to adjust only the low-rank projection matrices while keeping
the other parameters of the pre-trained model fixed.

Assume the weight matrix of the original model is W € R%**. LoRA defines two low-rank matrices
A € R¥™" and B € R™**, where r < min(d, k). The augmented weight matrix is:

Wlora =W + AB. (13)

During fine-tuning, only matrices A and B are updated, while W remains unchanged. This method
retains the knowledge of the original model, significantly reduces the number of parameters to be fine-
tuned, and speeds up the training process. Due to its lower resource requirements, LoRA is often preferred
for fine-tuning open-source models.

F License Overview of Various Open-source Large Language Models

This appendix provides an overview of the licensing terms for several open-source Large Language
Models (LLMs), highlighting their alignments with our scenarios.

F.1 Meta Llama Series

Meta’s use policy for Llama 2° outlines several prohibited uses, which directly relate to the scenarios
defined in our paper.

Scenario 1: Detecting IP Infringement

Engage in or facilitate any action or generate any content that infringes, misappropriates, or
otherwise violates any third-party rights, including the outputs or results of any products or
services using the Llama 2 Materials.

- This policy directly relates to IP Detection, as it prohibits actions that infringe on intellectual property
rights. The scenario’s goal of detecting unauthorized commercial use or copying of open-source
LLMs is supported by this clause.

2https://ai.meta.com/1lama/use-policy/

16

https://ai.meta.com/llama/use-policy/

Scenario 2: Detecting Generated Text

Policy 1.a

"Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or
unlawful activity or content, such as:
— Violence or terrorism

— Exploitation or harm to children, including the solicitation, creation, acquisition, or
dissemination of child exploitative content or failure to report Child Sexual Abuse
Material"

- This policy is pertinent to Generated Text Detection, which aims to detect whether generated
text from an open-source LLM contains illegal, harmful, or unethical content. The prohibition
of generating such content aligns with the scenario’s goal of preventing misuse for disseminating
harmful material.

"Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of
individuals or groups of individuals."

- This policy relates to Generated Text Detection by prohibiting the generation of abusive or harassing
content. The scenario’s goal of detecting harmful generated text includes identifying text that
facilitates harassment or abuse.

"Intentionally deceive or mislead others, including use of Llama 2 related to the following:
— Generating, promoting, or furthering fraud or the creation or promotion of disinforma-
tion"

- This policy supports Generated Text Detection by addressing the misuse of LLMs to generate
misleading or fraudulent content. Detecting such generated text aligns with the policy’s goal of
preventing deception and misinformation.

"Representing that the use of Llama 2 or outputs are human-generated."

- This policy underlines the importance of transparency in content generation. Generated Text
Detection’s goal is to determine whether a text is generated by an LLM or its fine-tuned version
aligns with ensuring users do not misrepresent Al-generated content as human-generated.

In summary, The Llama 2 use policy explicitly prohibits various activities that relate to both scenarios
defined in our paper, particularly IP infringement and the generation of illegal or harmful content.

F.2 Command R Series

Cohere R series is built on the language of business and is optimized for enterprise generative Al, search
and discovery, and advanced retrieval. Their Cohere For Al Acceptable Use Policy? aligns with our
scenario settings.

3ht’cps ://docs.cohere.com/docs/c4ai-acceptable-use-policy

17

https://docs.cohere.com/docs/c4ai-acceptable-use-policy

Scenario 1: Detecting IP Infringement

Cohere For Al Acceptable Use Policy

"Synthetic data for commercial uses: generating synthetic data outputs for commercial
purposes, including to train, improve, benchmark, enhance or otherwise develop model
derivatives, or any products or services in connection with the foregoing."

- This policy is highly relevant to IP Detection, as it explicitly prohibits using models or their
derivatives for commercial purposes without permission, which is a core concern of detecting IP
infringement.

Scenario 2: Detecting Generated Text

Cohere For Al Acceptable Use Policy

"We expect users of our models or model derivatives to comply with all applicable local and
international laws and regulations. Additionally, you may not use or allow others to use our
models or model derivatives in connection with any of the following strictly prohibited use
cases:"

- This policy establishes the baseline expectation that users must comply with all laws and regulations,
which supports the detection of misuse in both scenarios. Generated Text Detection specifically
aligns with preventing the generation and dissemination of illegal content.

Cohere For Al Acceptable Use Policy

"Harassment and abuse: engaging in, promoting, facilitating, or inciting activities that harass
or abuse individuals or groups."

- This policy supports Generated Text Detection by setting clear boundaries against generating content
that could harass or abuse individuals or groups, aligning with the scenario’s goals of detecting
unethical content.

Cohere For AI Acceptable Use Policy

"Violence and harm: engaging in, promoting, or inciting violence, threats, hate speech self-
harm, sexual exploitation, or targeting of individuals based on protected characteristics."

- This policy directly relates to Generated Text Detection, where the goal is to detect generated
content that disseminates illegal, harmful, or unethical content. It provides a clear mandate against
such misuse.

Cohere For Al Acceptable Use Policy

"Fraud and deception: misrepresenting generated content from models as human-created or
allowing individuals to create false identities for malicious purposes, deception, or to cause
harm, through methods including:
— propagation of spam, fraudulent activities such as catfishing, phishing, or generation of
false reviews;

— creation or promotion of false representations of or defamatory content about real people,
such as deepfakes; or

— creation or promotion of intentionally false claims or misinformation."

18

- This is pertinent to both scenarios. For IP Detection, it addresses the misrepresentation of generated
content as human-created, which can involve claiming an open-source LLM as a proprietary creation.
For Generated Text Detection, it covers the generation of harmful or deceptive content.

F.3 01.ai Yi Series

The Yi series is another open-source LLM that has demonstrated excellent performance on the LMSYS
Chatbot Arena Leaderboard*. This series of LLMs has been developed by a Chinese company named
"Lingyiwanwu." The following user agreement’ contains sections that align with the assumptions in our
scenarios.

Scenario 1: Detecting IP Infringement

Article 5 Clause 1

"Lingyiwanwu is the developer and operator of this product and enjoys all rights to the data,
information, and outputs generated during the development and operation of this product
within the scope permitted by laws and regulations, except where the relevant rights holders
are entitled to rights according to law."

- This clause asserts that Lingyiwanwu holds the rights to the outputs generated by the product,
reinforcing the need to detect IP infringement when these rights are violated by unauthorized use or
copying of the LLMs.

Article 5 Clause 2

"Unless otherwise agreed or stipulated by laws and regulations, you have the rights to the
content generated based on the content you are entitled to upload and the rights to the content
generated based on the uploaded content."

- This clause delineates user rights to generated content, provided it is based on legally uploaded
content, highlighting the importance of detecting if generated content infringes on existing IP rights.

Article 5 Clause 6

"You understand and promise that your input during the use of this product will not infringe
on any person’s intellectual property rights, portrait rights, reputation rights, honor rights,
name rights, privacy rights, personal information rights, etc. Otherwise, you will bear the risk
and responsibility of infringement."

- This clause ensures that users acknowledge their responsibility to avoid infringing on IP rights,
aligning with the scenario’s assumption that detection mechanisms are needed to prevent such
infringements.

Article 5 Clause 7

"If you add new data for model training, fine-tuning, and development during the use of this
product, you will bear the resulting responsibilities."

- This clause emphasizes user responsibility for any new data added for model training or fine-tuning,
aligning with the scenario’s focus on detecting whether the generated text has been modified or
fine-tuned from the original LLM.

4https ://arena.lmsys.org/
Shttps://platform.lingyiwanwu.com/useragreement

19

https://arena.lmsys.org/
https://platform.lingyiwanwu.com/useragreement

Scenario 2: Detecting Generated Text

Article 4 Clause 1

"Based on your use of this product, Lingyiwanwu grants you a revocable, non-transferable,
non-exclusive right to use this product. If you publish or disseminate content generated by
this product, you should:

— Proactively verify the authenticity and accuracy of the output content to avoid spreading
false information;

— Mark the output content as Al-generated in a prominent way to inform the public about
the content synthesis;

— Avoid publishing and disseminating any output content that violates the usage norms of
this agreement."

- This clause mandates users to verify and label Al-generated content, ensuring transparency and
preventing the misuse of generated text for harmful or illegal purposes, which aligns with the
scenario’s goal of detecting and managing generated content responsibly.

Article 4 Clause 4

'Users are prohibited from engaging in certain behaviors, including but not limited to:

— (5) Inducing the generation of content that violates relevant laws and regulations or
contains unfriendly outputs;

— (7) Developing products and services that compete with this product using this product;

— (9) Unauthorized removal or alteration of Al-generated labels or deep synthesis content
labels."

\

- These prohibitions directly support the scenario’s assumptions by preventing the generation and

dissemination of harmful content, ensuring ethical use of the model, and maintaining the integrity of
Al-generated labels for accountability.

20

	Introduction
	Related Work
	Detecting Open-Source LLM Misuse
	Scenario 1: Detecting IP Infringement
	Scenario 2: Detecting Generated Text

	Watermark for Open-Source LLMs
	Watermarking Requirements
	Threat Models
	Backdoor-based Watermark
	Training of Backdoor-based Watermark
	Detection of Backdoor Watermark

	Inference-time Watermark Distillation
	Training of Watermark Distillation
	Detection of Watermark Distillation

	Experiments
	Experiment Setup
	Experiment Goals
	Backdoor for IP Detection (RQ1)
	Distillation for IP Detection (RQ2)
	Distillation for Text Detection (RQ3)
	Discussion

	Conclusion
	Appendix
	I Appendix
	Details of Watermark Methods
	KGW Watermarking
	Aar Watermarking

	Threat Models for LLM Generated Text Detection
	Threat Models for Backdoor-based Watermark
	Details Accuracy Reference for Table 1
	Details of Further Fine-tuning Method
	Further Pre-training
	Further Instruction Tuning
	Further Direct Preference Learning
	Further Reinforcement Learning From Human Feedback
	Low Rank Adaptation (LoRA) Fine-tuning Method

	License Overview of Various Open-source Large Language Models
	Meta Llama Series
	Command R Series
	01.ai Yi Series

