Under review as a conference paper at ICLR 2023

BRAINFORMERS: TRADING SIMPLICITY FOR EFFI-
CIENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers are central to recent successes in natural language processing and
computer vision. Transformers have a mostly uniform backbone where layers
alternate between feed-forward and self-attention in order to build a deep network.
Here we investigate this design choice and find that more complex blocks that
have different permutations of feed-forward layers, self-attention layers, and gated
layers (for routing through sparse structures) can be more efficient. Using this
insight, we develop a complex block, named Brainformer, that consists of a diverse
sets of layers such as sparsely gated feed-forward layers with different gating
mechanisms, dense feed-forward layers, attention layers, and various forms of
layer normalization and activation functions. Brainformer consistently outperforms
the state-of-the-art dense and sparse Transformers, in terms of both quality and
efficiency. A Brainformer model with 8 billion activated parameters per token
demonstrates 2 x faster training convergence and 5 x faster step time compared to its
GLaM counterpart. In downstream task evaluation, Brainformer also demonstrates
a 3% higher SuperGLUE score with fine-tuning compared to GLaM with a similar
number of activated parameters. Finally, Brainformer largely outperforms a Primer
dense model with similar computation per token on oneshot evaluation for three
important generative tasks.

1 INTRODUCTION

In recent years, large neural networks derived from from the Transformer architecture (Vaswani
et al.| [2017)) have demonstrated superior results on language understanding and generative tasks.
Many improvements on Transformer variants have come from scaling the size of models (Raffel
et al.,[2020; |Brown et al., [2020a; Shoeybi et al.,|2019; |Chowdhery et al.| [2022), scaling the training
tokens (Hoffmann et al., 2022; |Shoeybi et al., 2019), better training data quality (Du et al., [2022]),
and sparsely activated model architectures (Du et al., 2022} [Lepikhin et al., [2021; Roller et al., 2021}
Lewis et al., [2021).

Among the efficient transformer language model techniques (Wang et al.||2020; |(Choromanski et al.,
2020; Tay et al., 2021} Hua et al.| [2022), there is a focus on improving attention-layer efficiency
using low-rank approaches or approximations. However, recent work has also identified that dense
feed-forward layers constitute most of the computational cost for common sequence lengths (<2048),
particularly when the model is large (Du et al., |2022; [Zhou et al., 2022b). To further improve
compute efficiency such as total FLOPs used during training to reach convergence, sparsely gated
Mixture-of-Experts (Lepikhin et al.| 2021} [Fedus et al., 2021} Du et al.,[2022; Zhou et al., 2022bj
Roller et al.l 2021} [Lewis et al., 2021} |Jaszczur et al., 2021]) have become prevalent, giving the model
a larger overall capacity to improve quality while holding computational cost fixed. Sparsely activated
models not only reduce the computational cost, but also have better specialization by training different
experts on different data distributions through the use of learned routing functions without reducing
the effective training time for each expert. The MoE architectures in this line of work are based on
uniform transformer blocks or manually interleaving dense and sparse layers (Du et al., 2022]).

Various forms of neural architecture search (So et al., [2021; |Su et al.l [2021}; |[Zhao et al., 2021}
Zhou et al.| [2022a) have been devised targeting different working scenarios. However, few of the
existing methods have been extended to the large model regime, particularly models with billions of
parameters and sparsely activated layers. We find that in a traditional, non-sparse architecture search,

Under review as a conference paper at ICLR 2023

Vanilla Transformer

Sandwich Transformer

GLaM

Stackable Brainformer

Figure 1: High-level Comparison with Related Work. *a’: attention, ’f’: feed-forward, *g’: sparsely
gated feed-forward. GLaM interleaves dense transformer blocks with sparse transformer blocks.
Brainformer reduces the frequency of attention and changes layer widths together with layer types.

the best architecture looks very similar to the vanilla transformer model (e.g. as demonstrated in the
Primer work 2021))). However, if we expand the search space to include model families
with sparsely-activated layers, the optimal model architecture can look very different from the vanilla
transformer.

Resonating with the layer-wise architecture scaling in EfficientNet [2019) and layer
reordering in the sandwich transformer [2019), we think a non-uniform architecture can
be more efficient than a uniform architecture such as the vanilla transformer architecture. In our
proposed non-uniform architecture, there is no strict layer interleaving as in the vanilla transformer
in fig. [T} Instead, we trade off architecture regularity by allowing the search space to compose
different sub-layers in different orders, discovering architectures that are more efficient by arbitrarily
choosing the order of sub-layers from the search space. In addition to the attention layer and dense
feed-forward layer in a transformer model, we introduce a sparsely gated feed-forward layer (MoE
layer) with different types of gating mechanisms, various layer normalizations, and activations in the
search space. We only treat the MoE layer as a general method to sparsify the model. However, in
practice, any conditional computation method can be blended in. We apply a simple evolutionary
search to discover many attributes, such as the best way to interleave layers and layer capacities, when
to fuse layers, and when to specialize layers with MoE modules. For ease of scaling, we propose a
block-wise sub-layer grouping, such that stacking a variable number of blocks produces models of
different scales, as illustrated in Stackable Brainformer in fig. m As our results in SectionE] show,
this approach has proven effective in our evaluation.

2 RELATED WORK

Large Language Models: Language models have demonstrated strong performance for many natural
language processing tasks (Mikolov et al., 2010} [Sutskever et al., 2011}, |Dai & Lée}, [2015). Scaling up
model capacity and number of training tokens has shown huge success in enhancing the performance
of computer vision architectures Ghiasi et al.| 2019; [Dai et al.| 2021)) as well as
neural language models (Radford et al.,[2018; [Brown et al.,[2020b}; [Kaplan et al., 2020} [Raffel et al}
2020; [Shoeybi et al., 2019 Hoffmann et al., [2022).

Sparsely Activated Models: Conditional computation effectively increases the capacity of a deep
neural network without increasing the total amount of computation, by activating certain parameters
and computation on demand, based off the input token or sequence (Cho & Bengiol, 2014} [Puigcerver]
et alll 2020; [Lin et al, 2019). The gating decisions may be binary or sparse and continuous, stochastic
or deterministic. In a multi-device setting, sparsely-gated MoE (Shazeer et al.} 2017) demonstrates

Under review as a conference paper at ICLR 2023

massive improvements in model capacity, training time, or model quality with gating. Various MoE
architectures including Switch Transformer (Fedus et al.,[2021) and GLaM (Du et al., [2022)) have
been proposed. They adopt a token-based gating where an auxiliary loss is imposed to counter load
imbalance issues. Recently, more advanced gating functions are devised to ameliorate load imbalance,
improve speed, and downstream generalization (Roller et al., [2021; [Dua et al., 2021} |Zuo et al., |2021}
Gross et al., 20175 Zhou et al., 2022b; Jaszczur et al., [2021).

Non-uniform Architectures: EfficientNet represents one of the very early non-uniform architectures
that leverages layer heterogeneity to achieve SoTA. Instead of searching for a new operator or a new
block of operators, EfficientNet focuses on optimizing the layer compound coefficients to scale the
model effectively. This heterogeneity leads to a model more than 8 x smaller and more than 6x faster
on inference (Tan & Le,2019). Sandwich Transformer, on the other hand, promotes a non-interleaved,
non-uniform architecture for language modeling tasks. However, the sandwich reordering pattern
does not guarantee performance gains across every task. In this work, we take inspiration from the
earlier work but further improve scaling and generalization.

3 METHOD

3.1 DERIVING OUR MODEL COMPONENTS

low-rank / bottleneck

Half FLOPS w Smaller Split into more

experts

low-rank layers
N y

y=M"*x y=V*(U"*x)
multi-branch / multi-expert
Half FLOPS
—
= opli Stack more
y=M™*x y= cor;((Zét)((l\Z/” fﬁ{;t(ﬁz *x2) compressions Mixture Layers
(a) (b)

Figure 2: (a) Two methods of matrix factorization. (b) Evolving matrix factorization into transformer-
styled model architecture.

From a computational efficiency perspective, there are various forms of computation factorization
that can lead to lower computation cost or faster computation without hurting model accuracy. As
indicated in fig. 2] (a), low-rank and multi-expert layers are two major methods for factorizing a
matrix multiplication. When devising an efficient neural network, as indicated in fig. |Z| (b), low-rank
and multi-expert can be combined and stacked to achieve more interesting model architectures that
are computationally efficient. Finally, by also allowing a temporal mixture layer to be used as
one of the building blocks (e.g. attention (Vaswani et al.| 2017), gMLP (Liu et al., [2021) or MLP
mixer (Tolstikhin et al.l 2021)) which captures the causal relations between tokens, the network
becomes closer to a transformer variant.

However, constructing an efficient network does not require conforming to the uniformity of the
model architecture as illustrated in the last figure of fig. 2] (b). We hypothesize that by carefully
selecting layer types and layer interleaving, as well as hidden dimensions and expansion factors in
the feed-forward layers, we could construct more efficient model architectures that converge faster

Under review as a conference paper at ICLR 2023

Table 1: Search Space Table: F,¢y is a self-attention layer, F},.. is a sparsely gated FFN layer, and
Fi, is a regular dense FEN layer. The baseline is a 100M 12-layer dense transformer model with
Hnodel dim = 768.

Search Item Search Space
Layef Type (E) JT:attny Fmoe; J_'.ffn
Model Dim. (d) 512, 768, 1024

MOoE Hidden Dim. (dmee) 1536, 2048, 3072, 4096
FFN Hidden Dim. (dg,) 1536, 2048, 3072, 4096

Attention Heads. (h) 12, 16, 20

Gating Func. (g) Top-2, Expert Choice

Capacity Factor (c) 1, 2, 3, 4

Activation Func. (a) Gated ReLU, ReLU, GeLU, Gated GeLU

to a higher quality. This leads our exploration towards a more training-efficient architecture by
adopting low-rank and multi-expert compression methods with some additional considerations: 1)
Optimal operator mixing — many prior works including gMLP (Liu et al.,|2021) have discovered
that with a modest number of attention heads, a MLP can match a transformer architecture on both
vision and language tasks at much lower computational cost. Proper interleaving of dense and
sparse layers enables not only network specialization via MoE but also fusion with dense layers. 2)
Changing the expansion factor in sparse feed-forward layers, as the original expansion factor (where
the feed-forward layer hidden dimension is projected 4 x from its model dimension) is optimized
around dense model families. 3) Introducing heterogeneity in the gating function so different optimal
architectures can be devised according to the gating mechanism.

3.2 LAYER-WISE SEARCH SPACE

We largely take inspiration from the layer-wise compound scaling in EfficientNet (Tan & Le| 2019).
We construct a layer operator search space where the restriction of interleaving self-attention and
feed-forward layers is removed. Instead, we create a generic layer as a function Y; = F;(X;), F; €
{ Fattn, Fmoe, Fin } Where F; is an operator selected from the operation set consisting of self
attention, sparsely gated feed-forward (MoE), and dense feed-forward sub-layers. Input X; has a
tensor shape of {B,L,H} and H € {%, 1, %} X Hpodel aim Where B is the batch size, L is the
sequence length, and H is a tunable model dimension. The intuition behind tuning model dimension
is to enable more flexible network topologies with various factorization methods as described in

section

Unlike a traditional simple, uniform transformer block, a Brainformer block is a complex block N that
can be represented by a list of composed layers: N' = Fi © ... © F2 © F1(X1) = O, F5(X1).
We can stack an arbitrary number of Brainformer blocks to create a model at a predefined scale.

The search objective is to find an optimal layer architecture F;, and model scaling multipliers for
multiple model inner dimensions that minimizes the perplexity. Table summarizes the search
space in a Brainformer architecture. The introduction of mixture-of-experts effectively creates a
wider layer, therefore tuning the hidden dimensions and the expansion factor in the feed-forward
layers becomes essential.

3.3 FAIR COMPARISONS ACROSS MODEL ARCHITECTURES

Prior NLP model scaling studies (Raffel et al.,|2020; Radford et al., |2018; Brown et al.,|2020b; Rae
et al., |2021) typically explore quality scaling with fixed model capacity and training steps/tokens.
For example, a scaling plot typically fixes training steps/tokens while varying the model parameters.
However, when training a model, users typically have a fixed budget and can trade-off training time,
compute resources, and quality to stay within that budget. If what we care about is computational
cost and training convergence time, then comparing model qualities while fixing total parameters is
not fair, particularly when comparing across model architectures and model families. For example,
it may discriminate against models with more total parameters that consume fewer computational
FLOPs, such as sparsely activated models. The GLaM paper (Du et al., 2022) addresses this by
conducting a scaling study on activated memory (which approximates the computational cost), rather
than the total parameter size, on a fixed number of training tokens. However, comparing models

Under review as a conference paper at ICLR 2023

Tokens Tokens

0.14{|{0.01|{3.90 Select Top-K

X
2 (08 |||-0.25|| [0.21 /[0.21 2 [o_oz -0.25(2.50 |0.21
9] - o
a. = a.
> O <
4l 1310 | 2.65 ||-0.11 A {o.sz 3.10 | 2.65 -0.11]
(7>
0.02[0.22 ||| 1.24 [0.25 0.02 [0.22 -0.24]

Figure 3: Token-based routing vs. Expert-based routing.

with a fixed amount of training tokens may still also not be fair as some smaller models can benefit
more from additional training data and outperform a bigger model with the same total training
cost (e.g. GPU hours, TPU hours, etc.). The Chinchilla paper (Hoffmann et al., 2022) is the first
to suggest compute-efficient scaling, which varies both model capacity and training tokens at a
fixed computational cost. Resonating with compute-efficient model scaling, we further take model
architectural change into consideration during the search for efficient model architectures with better
training convergence and inference time. More particularly, we compare across models with a fixed
training cost and model inference time, which allows the search algorithm to trade off between model
capacity and training tokens.

3.4 TRAINING TIME CONSTRAINED SEARCH

Unlike many existing NAS methods, where total training steps is fixed during the proxy training of
the sampled models, we fix the wall clock time for each trial which encourages identifying models
with faster training convergence. The objective is to find model architectures that yield higher training
accuracy. More particularly, the controller minimizes the pre-training validation cross-entropy loss
while making sure model step time is smaller than the baseline model. In the search, we create a
search space around a 100M dense vanilla transformer model, as illustrated in Table Instead
of searching for models with similar parameter count, identifying models with similar inference
time or step time can be more relevant as a smaller parameter count does not always indicate faster
speed. Each trial is trained with a fixed wall clock time so that faster models can be compensated
with more training steps. We empirically find that fixing training steps favors bigger models,
however fixing training wall clock time favors models with faster convergence.

i : d dmOe7 d ns h7 b b) 1
Fribin g eiaE N ks imoes g g - €,) @
]_-;i,h,a’ if F; = Fattn

Fi= ffl’d”””a, elseif F; = Frpm)
.Ff’d‘“"e’g’c’a, otherwise F; = Fioe

st. N(Frk,dydoe, g, by g, c,0) = (&) Fi(Xa) 3)

i=1...k
Step_Time(N) < baseline_step_time 4)

4 TOKEN-BASED ROUTING VERSUS EXPERT-BASED ROUTING

While there are various routing methods in existing MokE literature, we primarily focus on two classes
of routing: token-based routing and expert-based routing, to illustrate the idea that routing strategy
can change the optimal model architecture when sparsely activated layers are introduced.

As an example, in Figure [3] the rows and columns contain un-normalized scores computed for
four tokens and four experts. Each value is produced by the dot product of the token embedding

Under review as a conference paper at ICLR 2023

and the expert embedding. Once the token-to-expert affinity scores are generated, there are a few
ways to decide which experts each token should be routed to. In token-based routing, the model
routes to the top-k experts for each token, while in an expert-based routing, the experts choose top-k
tokens. More particularly, we follow the top-2 gating approach used in GShard (Lepikhin et al.,[2021)
and GLaM (Du et al.} [2022) as top-2 has demonstrated stronger empirical performance than top-1
gating. For the expert-based gating, we follow the Expert Choice gating (Zhou et al.|[2022b) where
perfect load balance is achieved with heterogeneous parameter allocation. Expert-based routing has
demonstrated superior performance on language understanding tasks yet still provides competitive
results in generative tasks.

There are various ways of generating the token-to-expert affinity scores. One possible way is to create
a trainable gating matrix W, that projects the input feature space to a token-to-expert score. The
score should be normalized either along the token dimension or the expert dimension. To avoid causal
leakage in decoding mode, we suggest normalizing along the expert dimension for both token-based
routing and expert-based routing.

Token-based Gating: Normally, a noisy top-k function is applied in token-based gating. Before
taking the softmax function, we add tunable Gaussian noise and then keep only the top k values in the
gating matrix, setting the rest to —oo. The noise term helps with load balancing and generalization.

H; = (X - Wy); + StandardNormal() x Softplus((X - Whoise):)

G = Softmax(KeepTopK(H;, k)))

Expert-based Gating: T'opK () selects the k largest entries along the token dimension, as illustrated
in eq. (6). I is the selected indices and the output computation of the layer is the linearly weighted
combination of each expert’s computation on the token by the gate value.

S = Softmax(X - W), SeR"™¢

6
G,I =TopK(S',k) ©

5 EVALUATION

Setup: Table 2| summarizes the hyperparameter settings of different baseline MoE models. In the
baseline MoE GLaM (Du et al.| [2022)) model, we interleave transformer blocks with regular dense
FFNs and transformer blocks with sparsely gated FFNs (MoE layer). As a reference point, we also
include the respective dense model configurations with comparable numbers of activated parameters
per-token during inference in the table. With a similar number of activated parameters as a 0.1B
dense model, 0.1B/32E represents the sparse model with every other transformer layer replaced
by a 32-expert MoE layer. While 7,:ams 18 the total number of trainable parameters, n,ct—params
represents the number of activated parameters per token. n,ci—params Toughly approximates the
computational expensive of a model. L is the total number of Transformer layers, M is the model
dimension, H is the hidden dimension after the projection in each transformer layer, npeads 1S the
number of attention heads, and d},c.q is the hidden dimension of each attention head. We train and
evaluate our Brainformer models and baseline models on 64 Cloud TPU-V4 chips, except for models
at the 8B-scale which take 512 Cloud TPU-V4 chips to train.

Table 2: Sizes and architectures of baseline dense models and MoE (GLaM) models. Models are
grouped by the number of activated parameters per token.

Model Type Npaams Nactparams L M H Nheads dhead E
01BE MoE ion lsm 12 T8 3m 12 e g
TG Mok 2B pgop 2 208 8192 16 18
Sl Mokl osp 02 409 163 2w

Dataset: We use the high-quality dataset from GLaM of 1.6 trillion tokens that are representative of
a wide range of natural language use cases. This dataset consists of a high-quality filtered subset of
webpages that are combined with smaller corpora of books, Wikipedia pages, conversations, forums,

Under review as a conference paper at ICLR 2023

3.3 — GlaM 3.0 — GlaM
| —— Search-w-top2 —— ExpertChoice
3.2 ‘ —— Brainformer-1 2.8 —— Brainformer-1
?3.1, | Brainformer-2 é‘
X x
230 226
g g
i 2.8 i
2.2
2.7
2.6 2.0

0 100 200 300 400 500 0 250 500 750 1000125015001750
K Steps K Steps
(a) (b)

Figure 4: (a) Pre-training perplexity comparison for I00M32E (100M parameters per expert, 32
experts). Search-w-top2 is the model found by using neural architecture search but with fixed top-2
token-based gating. (b) Training perplexity comparison for 8B64E (8B parameters per experts, 64
experts). Expert Choice is the GLaM architecture with expert-based gating function.

and news to create the final dataset. A more detailed description of the dataset including the data and
mixture weights can be found in the GLaM paper (Du et al.,2022).

Model Training: We train a few decoder-only models using the searched best Brainformer blocks
and related baselines. Brainformer-1 and Brainformer-2 are two selected best models. With limited
computational resources, we only scale Brainformer-1 to 1B and 8B scales. Our model training
follows the setup of GLaM where a maximum sequence length of 1024 tokens is used. We use an
Adafactor optimizer (Shazeer & Stern, 2018)) with first-moment decay 5; = 0 and second-moment
decay B2 = 0.99. The learning rate is kept constant for the first 10K training steps, then is decayed
with an inverse square root schedule. We use the SentencePiece subword tokenizer with a vocabulary
of size of 256K. The 100M-scale models and 1B-scale models are trained with 64 TPU V4 chips,
while the largest model (8B/64E) evaluated is trained on 512 TPU V4 chips. We use a dropout rate of
0 during training as the number of tokens in the training data corpus is much greater than the total
number of tokens used during training. We don’t use any dropout during training because the training
corpus is large enough that each sample is only encountered once.

Model Evaluation: We mainly focus on two types of downstream evaluation: 1) Fine-tuning
performance on 11 selected classification tasks from the GLUE and SuperGLUE benchmarks (Wang
et al.,2018;2019). 2) We evaluate oneshot performance with three language generation tasks focused
on question answering.

5.1 TRAINING CONVERGENCE

In this section, we evaluate Brainformer top models with related baselines including 1) Top-2 gating
based model architecture search (Search-w-Top2) and 2) GLaM (Du et al.| [2022)), a manually crafted
architecture with fixed top-2 gating. Providing the flexibility of tuning the gating function and network
architecture significantly improves pre-training efficiency. As shown in table 4] our searched best
Brainformer models outperform the baselines in terms of computational cost (activated parameters),
training step time (steps/sec), and training perplexity (PPLX) for fixed training steps. When scaled to
8B64E, Brainformer is more than 5x faster in step time and 2x faster in training convergence to the
same perplexity using the same hardware configuration (512 Cloud TPU-V4 chips). With a fixed
600B training tokens, Brainformer is much more accurate than the baselines at 8B scale.

5.2 FINETUNING RESULTS

We pretrain the models for a total fixed wall clock time as the baseline GLaM model. We then
finetune the models with eleven selected GLUE and SuperGLUE classification tasks. At two different
scales, 100M64E and 1B64E, Brainformers outperform the baseline GLaM model by a significant
margin of 2-4% average score. The fine-tuning results indicates that Brainformer not only excels at
training convergence but also generalizes well to downstream tasks.

Under review as a conference paper at ICLR 2023

Table 3: Training efficiency comparison. Brainformer models have better training convergence
and faster step times, compared to GLaM, fixed gating search, and expert-based gating but with
fixed architecture. Brainformer-1 and Brainformer-2 are two selected best models. With limited
computational resources, we only scale Brainformer-1 to 1B and 8B scales.

Model Total Params Activated Params Train Steps Steps/Sec PPLX
100M32E
GLaM 1B 145M 0.5M 1.92 2.73 +/- 0.002
Search-w-Top2 1.87B 210M 0.5M 2.03 2.67 +/- 0.005
Brainformer-1 3.19B 156M 0.5M 2.03 2.57 +/- 0.003
Brainformer-2 3.33B 266M 0.5M 2.16 2.59 +/- 0.005
1B64E
GLaM 27B 1.88B 1.0M 1.23 2.25 +/- 0.004
Search-w-Top2 27B 3.05B 1.0M 1.27 2.21 +/- 0.003
Brainformer-1 30B 1.38B 1.0M 2.00 2.25 +/- 0.002
Brainformer-2 52B 1.31B 1.0M 1.76 2.23 +/- 0.001
8B64E
GLaM 143B 9.8B 1.5M 0.39 2.12 +/- 0.002
Expert-based Gating 143B 9.8B 1.5M 0.50 2.03 +/- 0.005
Brainformer-1 158B 7.4B 1.5M 1.96 1.99 +/- 0.002

Table 4: Finetuning Results: Brainformers at 100M and 1B significantly outperform GLaM counter-
parts, yielding over 3% gains in overall scores.

Size Model BoolQ CB CoLA MNLI MRPC QNLI
100M64E GLaM 0.791 0.859 0.818 0.849 0.833 0.901
Brainformer-1 0.812 0.922 0.828 0.855 0.870 0.907

IB64E GLaM 0.829 0938 0.831 0.860 0.857 0919
Brainformer-1 0.859 0.938 0.863 0.896 0.875 0.938

Size Model QQP RTE SST2 WiC WNLI AVG
100M64E GLaM 0.907 0.808 0952 0.687 0.609 0.819
Brainformer-1 0.812 0.840 0952 0.702 0.635 0.840

IB64E GLaM 0911 0.816 0945 0.711 0.547 0.833

Brainformer-1 0917 0.899 0972 0.720 0.719 0.873

Table 5: Oneshot evaluation on three important generative tasks. All models are trained with 200B
training tokens. Brainformer-CF1 and Brainformer-CF3 are both trained with capacity factor of one,
but during decoding, Brainformer-CF3 uses a larger capacity factor of three.

Model Ngs Triviaga Webqga Steps/Sec
GLaM 1B64E 9.14 41.8 10.8 0.55
Primer 1B (So et al,[2021) 4.82 24.7 6.50 1.50
Brainformer-CF1 1B64E 7.06 40.7 11.2 1.37
Brainformer-CF3 1B64E 8.23 43.4 12.0 1.37

5.3 FEWSHOT RESULTS

Aligned with prior work in fewshot in-context learning, we compare Brainformer oneshot performance
on three selected generative tasks: Natural Questions (Kwiatkowski et al.||2019), TriviaQA (Joshi
et al., 2017), and Web Questions (Berant et al., 2013)), with a sparse model GLaM and a dense model
Primer (So et al.,|2021)) of similar activated memory size. Brainformer outperforms Primer by a large
margin on all the tasks except SQuUAD-V2. GLaM yields competitive scores while being 2x slower
than Brainformer.

Under review as a conference paper at ICLR 2023

6 DISCUSSION

6.1 VISUALIZING A BRAINFORMER BLOCK

In this section, fig. [5| provides a visualization of a Brainformer architecture block. Unlike a con-
ventional transformer block, where there is only an attention layer and a dense feed-forward (FFN)
layer, a Brainformer block contains 8 sub-layers. The Brianformer block is repeated 3 times, 6 times,
and 8 times respectively in the 100M, 1B, and 8B scale. Brainformer block is repeated 3 times.
Sandwiching dense layers and sparse layers creates specialization in the MoE layers while enabling
information fusion in the dense FFNs. In a conventional transformer model, a dense FFN layer has
an optimized expansion ratio of 4, which results in a hidden dimension 4x wider than the model
dimension. In the optimized Brainformer block, the search algorithm picks a slightly larger model
dimension of 1024 (as compared to 768) and a smaller expansion factor in the dense FFNs and MoE
layers (as compared to 3072). This is a reasonable optimization, as MoE layers effectively widen the
network with more experts. Keeping the expansion ratio the same as a dense model, MoE models can
be hard to optimize at a large model capacity (e.g 64B). In the MoE layers, the search algorithm picks
the expert choice gating function (Zhou et al., [2022b)) with a capacity factor of one. This indicates a
very sparse network in which each token can be routed to a single expert on average.

6.2 CAN WE SIMPLIFY?

We did an ablation study on block simplification. A very natural question to ask is whether we can
simplify the architecture block. In exploring the answer to this question we were able to extrapolate
some patterns. We find that the ratio of different layer types is critical to model quality: replacing a
layer with a different layer results in degraded quality. However, the network is relatively insensitive
to layer order, such that swapping any two layers would not affect performance much. For example,
to create a simplified pattern, we can interleave the dense FFNs and MoE layers or simply creating
contiguous layers of the same type.

i_ ______ | 1| Attention Heads : 20 |

| AN - - | —

| _— - I” ’ Model Dimension : 1024 ‘

| FFN | ——

| -—_ _rﬂ Dense FFN Dimension : 1536 ‘
| MOE |

| MOE :

I MoE FFN Dimension : 2048
| MOE‘ — _I,’Y Gating Func : Expert Choice
| FEN : Gating Capacity Factor : 1

|

I N

I I

: FFN :

Brainformer Block # 1

Figure 5: Brainformer Block
7 CONCLUSION

Using an evolutionary search algorithm, we have developed and evaluated a complex architecture
block, named Brainformer, that consists of a diverse sequence of layers, including a sparsely gated
feed-forward layer. Along with the new block, we also propose evaluating using a fixed training
time search, which enables fair comparisons across model families. Brainformer demonstrates up
to 2x faster training convergence and 5x faster step time compared to its GLaM counterpart. In
downstream task evaluation, Brainformer also demonstrates a 3% higher SuperGLUE score with
fine-tuning compared to GLaM, and greatly outperforms Primer on oneshot evaluation for three out
of three generative tasks. Our work shows that searching for better non-uniform Transformer model
blocks can result in significant gains over classic uniform stacking.

Under review as a conference paper at ICLR 2023

REFERENCES

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1533-1544, Seattle, Washington, USA, October 2013. Association for
Computational Linguistics. URL |https://www.aclweb.org/anthology/D13-1160.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877-1901. Curran Associates, Inc., 2020a. URL https://proceedings.neuripsh
cc/paper/2020/file/1457c0d6bfcb4967418bfb8acl42f64a—Paper.pdf.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020b.

Kyunghyun Cho and Yoshua Bengio. Exponentially increasing the capacity-to-computation ratio for
conditional computation in deep learning. arXiv preprint arXiv:1406.7362, 2014.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/
paper/2015/fi1le/7137debd45ae4d0ab9aa953017286b20—-Paper .pdf.

Zihang Dai, Hanxiao Liu, Quoc V. Le, and Mingxing Tan. CoAtNet: Marrying convolution and
attention for all data sizes. In Advances in Neural Information Processing Systems, 2021.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqgi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547-5569.
PMLR, 2022.

Dheeru Dua, Shruti Bhosale, Vedanuj Goswami, James Cross, Mike Lewis, and Angela Fan. Tricks
for training sparse translation models. arXiv preprint arXiv:2110.08246, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2021.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid archi-
tecture for object detection. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 7036-7045, 2019.

Sam Gross, Marc’ Aurelio Ranzato, and Arthur Szlam. Hard mixtures of experts for large scale
weakly supervised vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6865-6873, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016a.

10

https://www.aclweb.org/anthology/D13-1160
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf

Under review as a conference paper at ICLR 2023

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630-645. Springer, 2016b.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In
International Conference on Machine Learning, pp. 9099-9117. PMLR, 2022.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Lukasz Kaiser, Wojciech Gajewski,
Henryk Michalewski, and Jonni Kanerva. Sparse is enough in scaling transformers. Advances in
Neural Information Processing Systems, 34:9895-9907, 2021.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics, Vancouver, Canada, July 2017. Association for
Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, Kristina N.
Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov.
Natural questions: a benchmark for question answering research. Transactions of the Association
of Computational Linguistics, 2019.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. GShard: Scaling giant models with conditional
computation and automatic sharding. In International Conference on Learning Representations,
2021.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265-6274. PMLR, 2021.

Min Lin, Jie Fu, and Yoshua Bengio. Conditional computation for continual learning. arXiv preprint
arXiv:1906.06635, 2019.

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. Advances in Neural
Information Processing Systems, 34:9204-9215, 2021.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Interspeech, volume 2, pp. 1045-1048. Makuhari, 2010.

Ofir Press, Noah A Smith, and Omer Levy. Improving transformer models by reordering their
sublayers. arXiv preprint arXiv:1911.03864, 2019.

Joan Puigcerver, Carlos Riquelme, Basil Mustafa, Cedric Renggli, André Susano Pinto, Sylvain
Gelly, Daniel Keysers, and Neil Houlsby. Scalable transfer learning with expert models. arXiv
preprint arXiv:2009.13239, 2020.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1-67, 2020.

11

Under review as a conference paper at ICLR 2023

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
Advances in Neural Information Processing Systems, 34:17555-17566, 2021.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596—4604. PMLR, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

David So, Wojciech Marike, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Searching for
efficient transformers for language modeling. Advances in Neural Information Processing Systems,
34:6010-6022, 2021.

Xiu Su, Shan You, Jiyang Xie, Mingkai Zheng, Fei Wang, Chen Qian, Changshui Zhang, Xiaogang
Wang, and Chang Xu. Vision transformer architecture search. arXiv e-prints, pp. arXiv—2106,
2021.

Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent neural networks.
InICML, 2011.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pp. 6105-6114. PMLR, 2019.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention for transformer models. In International conference on machine learning,
pp- 10183-10192. PMLR, 2021.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer:

An all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34:
24261-24272, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, fLukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Yuekai Zhao, Li Dong, Yelong Shen, Zhihua Zhang, Furu Wei, and Weizhu Chen. Memory-efficient
differentiable transformer architecture search. arXiv preprint arXiv:2105.14669, 2021.

Qingin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing Sun, Yonghong Tian, Jie Chen, and Rongrong
Ji. Training-free transformer architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10894-10903, 2022a.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022b. URL
https://arxiv.org/abs/2202.09368.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Tuo Zhao, and
Jianfeng Gao. Taming sparsely activated transformer with stochastic experts. arXiv preprint
arXiv:2110.04260, 2021.

12

https://arxiv.org/abs/2202.09368

	Introduction
	Related Work
	Method
	Deriving Our Model Components
	Layer-wise Search Space
	Fair Comparisons Across Model Architectures
	Training Time Constrained Search

	Token-based Routing Versus Expert-based Routing
	Evaluation
	Training Convergence
	Finetuning Results
	Fewshot Results

	Discussion
	Visualizing a Brainformer Block
	Can We Simplify?

	Conclusion

