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Abstract

This paper investigates the problem of combinatorial multiarmed bandits with stochastic
submodular (in expectation) rewards and full-bandit delayed feedback, where the delayed
feedback is assumed to be composite and anonymous. In other words, the delayed feedback
is composed of components of rewards from past actions, with unknown division among
the sub-components. Three models of delayed feedback: bounded adversarial, stochastic
independent, and stochastic conditionally independent are studied, and regret bounds are
derived for each of the delay models. Ignoring the problem dependent parameters, we show
that regret bound for all the delay models is Õ(T 2/3+T 1/3ν) for time horizon T , where ν is a
delay parameter defined differently in the three cases, thus demonstrating an additive term in
regret with delay in all the three delay models. The considered algorithm is demonstrated to
outperform other full-bandit approaches with delayed composite anonymous feedback. We
also demonstrate the generalizability of our analysis of the delayed composite anonymous
feedback in combinatorial bandits as long as there exists an algorithm for the offline problem
satisfying a certain robustness condition.

1 Introduction

Many real world sequential decision problems can be modeled using the framework of stochastic multi-armed
bandits (MAB), such as scheduling, assignment problems, ad-campaigns, and product recommendations. In
these problems, the decision maker sequentially selects actions and receives stochastic rewards from an
unknown distribution. The objective is to maximize the expected cumulative reward over a time horizon.
Such problems result in a trade-off between trying actions to learn the system (exploration) and taking the
action that is empirically the best seen so far (exploitation).

Combinatorial MAB (CMAB) involves the problem of finding the best subset of K out of N items to optimize
a possibly nonlinear function of reward of each item. Such a problem has applications in cloud storage (Xiang
et al., 2014), cross-selling item selection (Wong et al., 2003), social influence maximization (Agarwal et al.,
2022), etc. The key challenge in CMAB is the combinatorial N -choose-K decision space, which can be very
large. This problem can be converted to standard MAB with an exponentially large action space, although
needing an exponentially large time horizon to even explore each action once. Thus, the algorithms for
CMAB aim to not have this exponential complexity while still providing regret bounds. An important class
of combinatorial bandits is submodular bandits; which is based on the intuition that opening additional
restaurants in a small market may result in diminishing returns due to market saturation. A set function
f : 2Ω → R defined on a finite ground set Ω is said to be submodular if it satisfies the diminishing return
property: for all A ⊆ B ⊆ Ω, and x ∈ Ω\B, it holds that f(A∪{x})−f(A) ≥ f(B∪{x})−f(B) (Nemhauser
et al., 1978). Multiple applications for CMABs with submodular rewards have been described in detail in
(Nie et al., 2022), including social influence maximization, recommender systems, and crowdsourcing. In
these setups, the function is also monotone (adding more restaurants give better returns, adding more seed
users give better social influence), where for all A ⊆ B ⊆ Ω, f(A) ≤ f(B), and thus we also assume
monotononicity in the submodular functions.
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Feedback plays an important role in how challenging the CMAB problem is. When the decision maker
only observes a (numerical) reward for the action taken, that is known as bandit or full-bandit feedback.
When the decision maker observes additional information, such as contributions of each base arm in the
action, that is semi-bandit feedback. Semi-bandit feedback greatly facilitates learning. Furthermore, there
are two common formalizations depending on the assumed nature of environments: the stochastic setting
and the adversarial setting. In the adversarial setting, the reward sequence is generated by an unrestricted
adversary, potentially based on the history of decision maker’s actions. In the stochastic environment, the
reward of each arm is drawn independently from a fixed distribution. For CMAB with submodular and
monotone rewards, stochastic setting is not a special case of the adversarial setting since in the adversarial
setting, the environment chooses a sequence of monotone and submodular functions {f1, · · · , fT }, while
the stochastic setup assumes ft to be monotone and submodular in expectation (Nie et al., 2022). In the
adversarial setting, even if we limit ourselves to MAB instead of CMAB, the effect of composite anonymous
delay appears as a multiplicative factor in the literature (e.g. (Cesa-Bianchi et al., 2018)). In this paper, we
study the impact of full-bandit feedback in the stochastic setting for CMAB with submodular rewards and
cardinality constraints. In this case, the regret analysis with full-bandit feedback has been studied in the
adversarial setting in (Niazadeh et al., 2021), and in stochastic setting in (Nie et al., 2022).

In the prior works on CMAB as mentioned earlier, the feedback is available immediately after the action is
taken. However, this may not always be the case. Instead of receiving the reward in a single step, it can
be spread over multiple number of time steps after the action was chosen. Following each action choice, the
player receives the cumulative rewards from all prior actions whose rewards are due at this specific step. The
difficulty of this setting is due to the fact that the agent does not know how this aggregated reward has been
constituted from the previous actions chosen. This setting is called delayed composite anonymous feedback.
Such feedback arise in multiple practical setups. As an example, we consider a social influence maximization
problem. Consider a case of social network where a company developed an application and wants to market
it through the network. The best way to do this is selecting a set of highly influential users and hope they
can love the application and recommend their friends to use it. Influence maximization is a problem of
finding a small subset (seed set) in a network that can achieve maximum influence. This subset selection
problem in social networks is commonly modeled as an offline submodular optimization problem (Domingos
& Richardson, 2001; Kempe et al., 2003; Chen et al., 2010). However, when the seed set is selected, the
propagation of influence from one person to another may incur a certain amount of time delay and is not
immediate (Chen et al., 2012). The time-delay phenomena in information diffusion has also been explored in
statistical physics (Iribarren & Moro, 2009; Karsai et al., 2011). The spread of influence diffusion, and that
at each time we can only observe the aggregate reward limits us to know the composition of the rewards into
the different actions in the past. Further, the application developer, in most cases, will only be able to see
the aggregate reward leading to this being a bandit feedback. This motivates our study of stochastic CMAB
with submodular rewards and delayed composite anonymous bandit feedback.

To the best of our knowledge, this is the first work on stochastic CMAB with delayed composite anonymous
feedback. In this paper, we consider three models of delays. The first model of delay is ‘Unbounded Stochastic
Independent Delay’. In this model, different delay distributions can be chosen at each time, and these delay
distributions are independent of each other. The second model is ‘Unbounded Stochastic Conditionally
Independent Delay’. In this model, the delay distribution does not only depend on time, but also on the
set chosen. The third model is ‘Bounded Adversarial Delay’. In this model, the maximum delay at each
time can be chosen arbitrarily as long as it is bounded. We note that in stochastic cases, the delay is not
bounded, while is governed by the tight family of distributions.1 In the adversarial case, there is a bound on
the maximum delay, and the process generating this delay does not need to satisfy any other assumptions.
Thus, the results of stochastic and adversarial setups do not follow from each other. In particular, this is the
first work where the delay distribution is allowed to change over time. This gives new models for delayed
composite anonymous feedback which are more general than that considered in the literature. In each of the
three models of delay, this paper derives novel regret bounds.

1See Section 2 for a detailed description.
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In our analysis, we define the notion of upper tail bounds, which measures the tightness of a family of
distributions2, and use it to bound the regret. This notion allows us to reduce the complexity of considering
a family of delay distributions to considering only a single delay distribution. Then we use Bernstein
inequality to control the effect of past actions on the observed reward of the current action that is being
repeated. This allows us to obtain a regret upper bound in terms of the expected value of the upper tail
bound. The use of upper tail bounds for studying regret in bandits with delayed feedback is novel and has
not been considered in the literature earlier, to the best of our knowledge.

The main contributions of this paper can be summarized as follows

1. We introduce regret bounds for a stochastic CMAB problem with expected monotone and submodular
rewards, a cardinality constraint, and composite anonymous feedback. Notably, this paper marks the first
study of the regret bound any CMAB problem with composite delayed feedback, including CMAB with
submodular rewards.

2. We investigate the ETCG algorithm from (Nie et al., 2022), detailing its performance in three feedback
delay models: bounded adversarial delay, stochastic independent delay, and stochastic conditional indepen-
dent delay. Specifically, this is the first study where the distribution of stochastic delay is permitted to vary
over time. This introduces novel models for stochastic delayed composite anonymous feedback, which are
more general than those previously explored in existing literature.

3. Our analysis reveals the cumulative (1 − 1/e)-regret of ETCG under specific bounds for each delay
model. When comparing stochastic independent and conditional independent delays, the former showcases
better regret bounds. Generalizing beyond specific parameters, our findings suggest a regret bound of
Õ(T 2/3 + T 1/3ν) across delay models.

4. Lastly, we showcase the adaptability of our analysis for delayed feedback in combinatorial bandits, given
certain algorithmic conditions. Building on (Nie et al., 2022), we derive regret bounds for a meta-algorithm,
highlighting its applicability to other CMAB problems such as submodular bandits with knapsack constraints
(See (Nie et al., 2023)).

On the technical side, we define new generalized notions of delay and introduce the notion of upper tail
bounds, which measures the tightness of a family of distributions. As discussed in Appendix A.2, algorithms
designed for composite anonymous feedback, including those in our study, rely on the concept of repeating
actions a sufficient number of times to minimize the impact of delay on the observed reward. We employ
Bernstein’s inequality to control the effect of previous actions on the observed reward of the current action
that is being repeated. This approach enables us to establish an upper bound on regret, expressed in terms
of the expected value of the upper tail bound.

Through simulations with synthetic data, we demonstrate that ETCG outperforms other full-bandit methods
in the presence of delayed composite anonymous feedback.

2 Problem Statement

Let T be the time horizon, Ω be the ground set of base arms, and n := |Ω|. Also let T be a family of
probability distributions on non-negative integers. At each time-step t ≥ 1, the agent chooses an action St

from the set S = {S|S ⊆ Ω, |S| ≤ k}, where k is the a given positive integer.

The environment chooses a delay distribution δt ∈ T . The observation xt will be given by the formula

xt =
t∑

i=1
fi(Si)δi(t− i), (1)

where ft(S) is sampled from Ft(S), the stochastic reward function taking its values in [0, 1]. Moreover, we
assume that E[Ft(S)] = f(S), where f : 2Ω → [0, 1] a monotone and submodular function. We will use Xt

to denote the random variable representing the observation at time t.
2See Assumption 1 and Lemma 1 for more details.
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For α ∈ (0, 1], the α-pseudo-regret is defined by

Rα :=
T∑

t=1
(αf(S∗)− f(St)) ,

where S∗ := argmaxS∈S f(S) is the optimal action. Note that the choice of α = 1 corresponds to the classical
notion of pseudo-regret. When there is no ambiguity, we will simply refer to Rα as the α-regret or regret. In
the offline problem with deterministic f , finding the optimal action S∗ is NP-hard. In fact, for α > 1− 1/e,
(Feige, 1998) showed that finding an action which is at least as good as αf(S∗) is NP-hard. However, the
standard greedy approach obtains a set which is at least as good as (1−1/e)f(S∗) (Nemhauser et al., 1978).
Therefore, throughout this paper, we will focus on minimizing (1− 1/e)-regret and drop the subscript when
there is no ambiguity.

We consider three settings: bounded adversarial delay and unbounded stochastic independent delay, and
unbounded stochastic conditionally independent delay, described next.
Example 1. To elaborate on the nature of the delay, let us ignore the combinatorial aspect of the problem
for the moment and consider the following setting. A retailer, that sells both food and computer products,
can buy an advertisement slot on an E-commerce platform, e.g., Amazon or eBay. This is a 2-armed bandit
where we assume that the retailer buys an ad slot for a product at each time-step. We further assume that
each time-step is a single day and the only information revealed to the retailer every day is the total added
revenue as a result of the advertisements.

A delay distribution is a sequence of real numbers that add to one, e.g., δ = (0.9, 0.05, 0.05, 0, · · · ). Such a
delay means that 90% of the reward (increase in revenue as a result of the ads) is received immediately, while
5% of the reward is received in each of the next 2 time-steps. Clearly it is not enough to consider a fixed
delay distribution. Therefore we consider a situation where ∆ is a random variable where δ is a realization
of ∆.

It is reasonable to assume that the effect of an ad for food is more immediately seen in the revenue compared
to the effect of an ad for computer products. Therefore we may consider a setting where ∆F is a random
delay distribution corresponding to food and ∆C correspond to computer products and ∆F ̸= ∆C . This
corresponds to the setting considered in (Wang et al., 2021) and (Garg & Akash, 2019).

Now assume that a sale for computer products, but not food, is going to start next week. Modeling this
scenario means that ∆ should change over time, but should also depend on the action, since only one of the
actions is affected by the sales. This corresponds to Unbounded Stochastic Conditionally Independent Delay
considered in our paper.

If we instead assume that the delay changes over time, but does not depend on the arm (for example if the
retailer is selling different types of computer products), then this will be Unbounded Stochastic Independent
Delay.

Finally, if delay is too complicated to be covered by previous settings, then we consider Bounded Adversarial
Delay. For example, consider a scenario where different retailers pay the E-commerce platform for adver-
tisement slots, but when the ad is shown depends on the buyers and the actions of other retailers, which can
not be known in advance. The boundedness assumption guarantees that for each ad slot purchased, the effect
on the revenue of the retailer will be limited to a fixed time, e.g. one month, from the purchase of the ad.

2.1 Unbounded Stochastic Independent Delay

In the unbounded stochastic independent delay case, we assume that there is a sequence of random delay
distributions (∆t)∞

t=1 that is pair-wise independent, such that

Xt =
t∑

i=1
Fi(Si)∆i(t− i).

In other words, at each time-step t, the observed reward is based on all the actions that have been taken in
the past and the action taken in time-step i ≤ t contributes to the observation proportional to the value of
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the delay distribution at time i, ∆i, evaluated at t − i. We call this feedback model composite anonymous
unbounded stochastic independent delay feedback.

To define ∆t, let (δi)i∈J be distributions chosen from T , where J is a finite index set and each δi is represented
by a vector of its probability mass function. Thus, δi(x) = P(δi = x), for all x ≥ 0. Let Pt be a random
variables taking values in J , where Pt(i) = P(Pt = i). Further, we define ∆t(x) :=

∑
i∈J Pt(i)δi(x), for all

x ≥ 0. Finally, ∆t is defined as a vector (∆t(0), ∆t(1), · · · ). Note that
∑∞

i=0 ∆t(i) = 1. The expectation of
∆t over the randomness of Pt is denoted by ET (∆t) which is a distribution given δi’s are distributions.

More generally, we may drop the assumption that J is finite and define ∆t more directly as follows. Each ∆t

is a random variable taking values in the set T . In other words, for all x ≥ 0, the value of ∆t(x) = ∆t({x})
is a random variable taking values in [0, 1] such that

∑∞
i=0 ∆t(i) = ∆t({0, 1, 2, · · · }) = 1. We define ET (∆t)

as the distribution over the set of non-negative integers for which we have

∀x ≥ 0, ET (∆t)({x}) = ET (∆t({x})) ∈ [0, 1].

We will also explain these definitions by an example. Let T be a family of distributions supported on {0, 1, 2}.
We choose J = {1, 2}, with δi as the uniform distribution over {0, 1} and δ2 as the uniform distribution
over {0, 2}. Then, we have δ1(0) = δ1(1) = 1/2 and δ2(0) = δ2(2) = 1/2. Further, let P1 be a random
variable such that P1(1) + P1(2) = 1. Then, ∆1(x) =

∑
i=1,2 P1(i)δi(x) gives ∆1(0) = P1(1)/2 + P1(2)/2,

∆1(1) = P1(1)/2 and ∆1(2) = P1(2)/2.

Note that the independence implies that ∆t can not depend on the action St, as this action depends on the
history of observations, which is not independent from (∆j)t−1

j=1.

Without any restriction on the delay distributions, there may not be any reward within time T and thus
no structure of the rewards can be exploited. Thus, we need to have some guarantee that the delays do
not escape to infinity. An appropriate formalization of this idea is achieved using the following tightness
assumption.
Assumption 1. The family of distributions (ET (∆t))∞

t=1 is tight.

Recall that a family (δi)i∈I is called tight if and only if for every positive real number ϵ, there is an integer
jϵ such that δi({x ≥ jϵ}) ≤ ϵ, for all i ∈ I. (See e.g. (Billingsley, 1995))
Remark 1. If T is tight, then (ET (∆t))∞

t=1 is trivially tight. Note that if T is finite, then it is tight. Similarly,
if (ET (∆t))∞

t=1 is constant and therefore only takes one value, then it is tight. As a special case, if (∆t)∞
t=1

is identically distributed, then (ET (∆t))∞
t=1 is constant and therefore tight.

To quantify the tightness of a family of probability distribution, we define the notion of upper tail bound.
Definition 1. Let (δi)i∈I be a family of probability distributions over the set of non-negative integers. We
say δ is an upper tail bound for this family if

δi({x ≥ j}) ≤ δ({x ≥ j}),

for all i ∈ I and j ≥ 0.

In the following result (with proof in Appendix B), we show that the tightness and the existence of upper
tail bounds are equivalent.
Lemma 1. Let (δi)i∈I be a family of probability distributions over the set of non-negative integers. Then
this family is tight, if and only if it has an upper tail bound.

A tail upper bound allows us to estimate and bound the effect of past actions on the current observed reward.
More precisely, given an upper tail bound τ for the family (ET (∆t))∞

t=1, the effect of an action taken at time
i on the observer reward at t is proportional to ∆i(t− i), which can be bounded in expectation by τ .

ET (∆i(t− i)) ≤ ET (∆i({x ≥ t− i})) ≤ τ({x ≥ t− i}).

As we will see, only the expected value of the upper tail bound appears in the regret bound.
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2.2 Unbounded Stochastic Conditionally Independent Delay

In the unbounded stochastic conditionally independent delay case, we assume that there is a family of random
delay distributions {∆t,S}t≥1,S∈S such that for any S ∈ S, the sequence (∆t,S)∞

t=1 is pair-wise independent
and

Xt =
t∑

i=1
Fi(Si)∆i,Si

(t− i).

We call this feedback model composite anonymous unbounded stochastic conditionally independent delay
feedback.

In this case the delay ∆t = ∆t,St
can depend on the action St, but conditioned on the current action, it is

independent of (some of the) other conditional delays. Similar to the stochastic independent delay setting,
we assume that the sequence {ET (∆t,S)}t≥1,S∈S is tight.
Remark 2. In previously considered stochastic composite anonymous feedback models (e.g., (Wang et al.,
2021; Garg & Akash, 2019)), the delay distribution is independent of time. In other words, every action S has
a corresponding random delay distribution ∆S , and the sequence (∆t,S)∞

t=1 is independent and identically
distributed. Therefore, the number of distributions in the set {ET (∆t,S)}t≥1,S∈S is less than or equal to the
number of arms, which is finite. Hence the family {ET (∆t,S)}t≥1,S∈S is tight.

2.3 Bounded Adversarial Delay
Algorithm 1 ETCG algorithm
Input: Set of base arms Ω, horizon T , cardi-

nality constraint k
Assumption: n ≤ T

1: S(0) ← ∅, n← |Ω|
2: m← ⌈(T/n)2/3⌉
3: for phase i ∈ {1, 2, · · · , k} do
4: for arm a ∈ Ω \ S(i−1) do
5: Play S(i−1) ∪ {a} arm m times
6: Calculate the empirical mean x̄i,a

7: end for
8: ai ← argmaxa∈Ω\S(i−1) x̄i,a

9: S(i) ← S(i−1) ∪ {ai}
10: end for
11: for remaining time do
12: Play action S(k)

13: end for

In the bounded adversarial delay case, we assume that
there is an integer d ≥ 0 such that for all δ ∈ T , we have
δ({x > d}) = 0. Here we have

Xt =
t∑

i=max{1,t−d}

Fi(Si)δi(t− i),

where (δt)∞
t=1 is a sequence of distributions in T chosen by

the environment. Here we used δ instead of ∆ to empha-
size the fact that these distributions are not chosen accord-
ing to some random variable with desirable properties. In
fact, the environment may choose δt non-obliviously, that
is with the full knowledge of the history up to the time-
step t. We call this feedback model composite anonymous
bounded adversarial delay feedback.

3 Regret Analysis with Delayed Feedback

For analyzing the impact of delay, we use the algorithm Explore-Then-Commit-Greedy (ETCG) algorithm,
as proposed in (Nie et al., 2022). We start with S(0) = ∅ in phase i = 0. In each phase i ∈ {1, · · · , k},
we go over the list of all base arms Ω \ S(i−1). For each such base arm, we take the action S(i−1) ∪ {a}
for m = ⌈(T/n)2/3⌉ times and store the empirical mean in the variable X̄i,a. Afterwards, we let ai to be
the base arm which corresponded to the highest empirical mean and define S(i) := S(i−1) ∪ {ai}. After the
end of phase k, we keep taking the action S(k) for the remaining time. The algorithm is summarized in
Algorithm 1.

We now provide the main results of the paper that shows the regret bound of Algorithm 1 with delayed
composite feedback for different feedback models. We define two main events that control the delay and the
randomness of the observation. Let I = {(i, a) | 1 ≤ i ≤ k, a ∈ Ω \ Si−1}, and define

E :=
{
|F̄i,a − f(Si−1 ∪ {a})| ≤ rad | (i, a) ∈ I

}
, and E ′

d :=
{
|F̄i,a − X̄i,a| ≤

2d

m
| (i, a) ∈ I

}
,
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where rad, d > 0 are real numbers that will be specified later. We may drop the subscript d when it is clear
from the context. When E happens, the average observed reward associated with each arm stays close its
expectation, which is the value of the submodular function. When E ′

d happens, the average observed reward
for each arm remains close to the average total reward associated with playing that arm. The next result
bounds the regret as:
Theorem 1. For all d > 0, we have

E(R) ≤ mnk + 2kT rad +4kTd

m
+ 2nkT exp(−2m rad2) + T (1− P(E ′

d)).

See Appendix C for a detailed proof. To obtain the regret bounds for different settings, we need to find
lower bounds for P(E ′

d) and use Theorem 1.
Theorem 2 (Bounded Adversarial Delay). If the delay is uniformly bounded by d, then we have

E(R) = O(kn1/3T 2/3(log(T ))1/2) + O(kn2/3T 1/3d).

Proof. The detailed proof is provided in Appendix D. Here, we describe the proof outline. In this setting,
there is an integer d ≥ 0 such that δt({x > d}) = 0, for all t ≥ 1. Therefore, for any m consecutive time-steps
ti,a ≤ t ≤ t′

i,a, the effect of delay may only be observed in the first d and the last d time-steps. It follows
that

∣∣∣∑t′
i,a

t=ti,a
Xt −

∑t′
i,a

t=ti,a
Ft

∣∣∣ ≤ 2d, for all (i, a) ∈ I. Therefore, in this case, we have P(E ′
d) = 1. Note that

we are not making any assumptions about the delay distributions. Therefore, the delay may be chosen by
an adversary with the full knowledge of the environment, the algorithm used by the agent and the history
of actions and rewards. Plugging this in the bound provided by Theorem 1 completes the proof.

We note that Õ(T 2/3) is the best known bound for the problem in the absence of the delayed feedback, and
the result here demonstrate an additive impact of the delay on the regret bounds.
Theorem 3 (Stochastic Independent Delay). If the delay sequence is stochastic and independent and tight
in expectation, then we have

E(R) = O(kn1/3T 2/3 log(T )) + O(kn2/3T 1/3E(τ)),

where τ is an upper tail bound for {ET (∆t)}∞
t=1.

Proof. The detailed proof is provided in Appendix E. Here, we describe the proof outline. We start by
defining the random variables Ci,a =

∑t′
i,a

j=1 ∆j({x > t′
i,a − j}), for all (i, a) ∈ I. This random variable

measure the effect of actions taken up to t′
n,i on the observed rewards after t′

n,i. In fact, we will see
that m|X̄i,a − F̄i,a| may be bounded by the sum of two terms. One Ci,a which bounds the amount of
reward that “escapes" from the time interval [ti,a, t′

i,a]. The second one Ci′,a′ , where (i′, a′) corresponds
to the action taken before Si−1 ∪ {a}. This bound corresponds to the total of reward of the past actions
that is observed during [ti,a, t′

i,a]. Therefore, in order for the event E ′
d to happen, it is sufficient to have

Ci,a ≤ d, for all (i, a) ∈ I. Since Ci,a is a sum of independent random variables, we may use Bernstein’s
inequality to see that P(Ci,a > E(Ci,a) + λ) ≤ exp

(
− λ2

2(E(τ)+λ/3)

)
. It follows from the definition that

E(Ci,a) ≤ E(τ). Therefore, by setting d = E(τ) + λ, and performing union bound on the complement of E ′
d

gives P(E ′
d) ≥ 1 − nk exp

(
− λ2

2(E(τ)+λ/3)

)
. Plugging this in Theorem 1 and choosing appropriate λ gives us

the desired result.

Theorem 4 (Stochastic Conditionally Independent Delay). If the delay sequence is stochastic, conditionally
independent and tight in expectation, then we have

E(R) = O(k2n4/3T 2/3 log(T )) + O(k2n5/3T 1/3E(τ))

where τ is an upper tail bound for (ET (∆t,S))t≥1,S∈S .
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Proof. The detailed proof is provided in Appendix E and is similar to the proof of Theorem 3. The main
difference is that here we define C ′

i,a =
∑t′

i,a

j=ti,a
∆j({x > t′

i,a− j}), instead of Ci,a. Note that the sum here is
only over the time-steps where the action Si−1 ∪ {a} is taken. Therefore C ′

i,a is the sum of m independent
term. On the other hand, when we try to bound m|X̄i,a − F̄i,a|, we decompose it into the amount of total
reward that “escapes" from the time interval [ti,a, t′

i,a] and the contribution of all the time intervals of the
form [ti′,a′ , t′

i′,a′ ] in the past. Since the total number of such intervals is bounded by nk, here we find the
probability that C ′

i,a ≤ 2d
nk instead of Ci,a ≤ d as we did in the proof of Theorem 3. This is the source of

the multiplicative factor of nk which appears behind the regret bound of this setting when compared to the
stochastic independent delay setting.

4 Beyond Monotone Submodular Bandits

We note that (Nie et al., 2023) provided a generalized framework for combinatorial bandits with full bandit
feedback, where under a robustness guarantee, explore-then-commit (ETC) based algorithm have been used
to get provable regret guarantees. More precisely, let A be an algorithm for the combinatorial optimization
problem of maximizing a function f : S → R over a finite domain S ⊆ 2Ω with the knowledge that f belongs
to a known class of functions F . for any function f̂ : S → R, let SA,f̂ denote the output of A when it is
run with f̂ as its value oracle. The algorithm A called (α, δ)-robust if for any ϵ > 0 and any function f̂ such
that |f(S)− f̂(S)| < ϵ for all S ∈ S, we have

f(SA,f̂ ) ≥ αf(S∗)− δϵ.

It is shown in (Nie et al., 2023) that if A is (α, δ)-robust, then the C-ETC algorithm achieves α-regret bound
of O(N1/3δ2/3T 2/3(log(T ))1/2), where N is an upper-bound for the number of times A queries the value
oracle (the detailed result and algorithm is given in Appendix G). In this work, we show that the result
could be extended directly with delayed composite anonymous bandit feedback. The proof requires small
changes, and are detailed in Appendix G. If A is (α, δ)-robust, then the results with bandit feedback are as
follows.
Theorem 5. If the delay is uniformly bounded by d, then we have

E(Rα) = O(N1/3δ2/3T 2/3(log(T ))1/2) + O(N2/3δ1/3T 1/3d).

Theorem 6. If the delay sequence is stochastic, then we have

E(Rα) = O(N1/3δ2/3T 2/3 log(T )) + O(N2/3δ1/3T 1/3E(τ)),

where τ is an upper tail bound for (ET (∆t))∞
t=1.

Theorem 7. If the delay sequence is stochastic and conditionally independent, then we have

E(Rα) = O(N4/3δ2/3T 2/3 log(T )) + O(N5/3δ1/3T 1/3E(τ)),

where τ is an upper tail bound for (ET (∆t))∞
t=1.

This shows that the proposed approach in this paper that deals with feedback could be applied on wide
variety of problems. The problems that satisfy the robustness guarantee include submodular bandits with
knapsack constraints and submodular bandits with cardinality constraints (considered earlier).

5 Experiments

In our experiments, we consider two classes of submodular functions (Linear (F1) and Weight Cover (F2)) and
and six types of delay (No Delay (D1), two setups of Stochastic Independent Delay (D2, D3), two setups of
Stochastic Conditionally Independent Delay (D4, D5), and Adversarial Delay (D6)). For linear function (F1),
we choose F (S) := 1

k

∑
a∈S g(a)+N c(0, 0.1) where N c(0, 0.1) is the truncated normal distribution with mean
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Figure 1: This plot shows the average cumulative 1-regret over horizon for each setting in the log-log scale.
The dashed lines are y = aT 2/3 for a ∈ {0.1, 1, 10}. Note that (F1) is a linear function and (D1) is the setting
with no delay. Moreover, (D2) corresponds to a delay setting where delay distributions are concentrated
near zero and decay exponentially.

0 and standard deviation 0.1, truncated to the interval [−0.1, 1.0], n = 20 and k = 4 and choose g(a) uniformly
from [0.1, 0.9], for all a ∈ Ω. For weight cover function (F2), we choose ft(S) := 1

k

∑
j∈J wt(j) 1S∩Cj ̸=∅,

where wt(j) = U([0, j/5]) be samples uniformly from [0, j/5] for j ∈ 1, 2, 3, 4, n = 20 and k = 4, (Cj)j∈J is a
partition of Ω where Ω is divided into 4 categories of sizes 6, 6, 6, 2. Stochastic set cover may be viewed as a
simple model for product recommendation, and more details on the function choices is in Appendix H. For
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the delay types, (D2) assumes ∆t(i) = (1 −Xt)Xi
t , where (Xt)∞

t=1 is an i.i.d sequence of random variables
with the uniform distribution U([0.5, 0.9]) for all t ≥ 1 and i ≥ 0. (D3) assumes ∆t is a distribution over
[10, 30] is sampled uniformly from the probability simplex using the flat Dirichlet distribution for all t ≥ 0.
(D4) assumes ∆t(i) = (1− Yt)Y i

t , where Yt = 0.5 + ft ∗ 0.4 ∈ [0.5, 0.9] for all t ≥ 1 and i ≥ 0. (D5) assumes
∆t as deterministic taking value at lt = ⌊20ft⌋+ 10 for all t. (D6) ssumes ∆t as deterministic taking value
at lt = ⌊20xt−1⌋+ 10 with l1 = 15 for all t > 1. The setups are detailed in Appendix H.

For comparisons, we use the baselines of CMAB-SM (Agarwal et al., 2022), DART (Agarwal et al., 2021),
OGo (Streeter & Golovin, 2008), and ARS-UCB (Wang et al., 2021), with details in Appendix H. We use
n = 20 base arms and cardinality constraint k = 4. We run each experiment for different time horizons
T = {102, 103, 104, 105, 106}. For each horizon, we run the experiment 10 times. In these experiments, ETCG
outperforms all other baselines for the weighted cover function by almost an order of magnitude. The linear
submodular function satisfies the conditions under which DART and CMAB-SM were designed. However,
the weighed cover function does not satisfy such conditions and therefore more difficult for those algorithms
to run. In both cases, we see that any kind of delay worsens the performance of DART and CMAB-SM
compared to ETCG. OGo explores actions (including those with cardinality smaller then k) with a constant
probability, which could account for its lower performance compared to ETCG, DART, and CMAB-SM.

While ARS-UCB does not perform well in these experiments, it should be noted that, given enough time,
it should outperform ETCG. Also note that ARS-UCB has a linear storage complexity with respect to its
number of arms. This translates to an O(

(
n
k

)
) storage complexity in the combinatorial setting. Therefore,

even for n = 50 and k = 25, it would require hundreds of terabytes of storage to run. In these experiments,
we have n = 20 and k = 4, so it has only

(20
4
)

= 4845 arms.

6 Conclusion

This paper considered the problem of combinatorial multiarmed bandits with stochastic submodular (in
expectation) rewards and delayed composite anonymous bandit feedback and provides first regret bound
results for this setup. Three models of delayed feedback: bounded adversarial, stochastic independent, and
stochastic conditionally independent are studied, and regret bounds are derived for each of the delay models.
The regret bounds demonstrate an additive impact of delay in the regret term.

Limitations: This paper demonstrates an additive impact of delay in the regret term, where the non-delay
term is the state-of-the-art regret bound. We note that this state-of-the-art regret bound is Õ(T 2/3), while
there is no matching lower bound. Further, our result shows Õ(T 1/3) dependence in the additive delay term,
while exploring optimality of such dependence is open.
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A Other Related Works

We note that this is the first work to derive regret bounds for CMAB with submodular and monotone
rewards and delayed feedback. Thus, the most related work can be divided into the results for CMAB with
submodular and monotone rewards, and that for MAB with delayed feedback, as will be described next.

A.1 Combinatorial Submodular Bandits

CMABs have been widely studied due to multiple applications. While the problem of CMAB is general and
there are multiple studies that do not use submodular rewards (Agarwal et al., 2021; 2022; Dani et al., 2008;
Rejwan & Mansour, 2020), we consider CMAB with monotone and submodular rewards. The assumption
of monotonicity and submodularity in reward functions is common in the literature (Streeter et al., 2009;
Niazadeh et al., 2021; Nie et al., 2022). For CMAB with monotone and submodular rewards, without any
further constraints, the optimal selection will be the entire set. Thus, additional assumptions are introduced
in the model, including cardinality constraint (Nemhauser et al., 1978) and knapsack constraints (Sviridenko,
2004). This paper considers CMAB with submodular and monotone rewards and cardinality constraint.

Further, we note that feedback pays an important role in CMAB decision making. CMAB with submodular
and monotone rewards and cardinality constraint has been studied with semi-bandit feedback (Lin et al.,
2015; Niazadeh et al., 2021; Zhang et al., 2019; Zhu et al., 2021; Chen et al., 2018a; Takemori et al., 2020).
The semi-bandit feedback setting provides more information as compared to the full-bandit setting. The
same is true for contextual bandit feedback (Yue & Guestrin, 2011; Chen et al., 2018b) as well. Here we
consider the full-bandit (or bandit) feedback without any additional feedback. CMAB with submodular
and monotone rewards, cardinality constraint, and full-bandit feedback has been studied in both adversarial
setting (Niazadeh et al., 2021) and in stochastic setting (Nie et al., 2022). This paper studies the stochastic
setting.

It is worth noting that for submodular bandits, the stochastic reward case is not a special case of the
adversarial reward case and the guarantees for the stochastic reward case are not necessarily better than the
adversarial reward case. In the adversarial setting, the environment chooses a sequence of monotone and
submodular functions {f1, · · · , fT }. This is incompatible with the stochastic reward setting since we only
require the set function ft to be monotone and submodular in expectation. Thus, the results on adversarial
submodular bandits will not lead to results for the stochastic submodular setting.

These works for CMAB do not study regret bound with delayed feedback, which is the focus of this paper.

A.2 Bandits With Delayed Rewards

The bandit problem with (non-anonymous) delayed feedback has been studied extensively (Mesterharm,
2005; Agarwal & Duchi, 2011; Desautels et al., 2014; Dudik et al., 2011; Joulani et al., 2013). In the non-
anonymous setting, the reward will be delayed and at each time-step, the agent observers a set of the form
{(t, rt) | t ∈ It} where It is a set of time-steps in the past. In the aggregated anonymous setting, first studied
by (Pike-Burke et al., 2018), the reward for each arm is obtained at some point in the future, so that the
agent will receive the aggregated reward for some of the past actions at each time-step. (Cesa-Bianchi et al.,
2018) extended the reward model so that the reward of an action is not immediately observed by the agent,
but rather spread over at most d consecutive steps in an adversarial way. However, they also assumed that
the bandit is adversarial. (Garg & Akash, 2019) considered the stochastic case and provided an algorithm
with a sub-linear regret bound of Õ(n1/2T 1/2) + O(n log(T )d). In this setting, for each arm a, the there is a
random distribution ∆a over the set {0, 1, · · · , d} and at each time-step, when the agent plays a, the delay
is sampled from ∆a. (Wang et al., 2021) also considers unbounded delay and proves the regret bound of
Õ(n1/2T 1/2) + O(ν), where ν depends on the delay distribution and n but not on T . They also considered
the case with adversarial but bounded delay and proved a regret bound of Õ(n1/2T 2/3)+O(T 2/3d). We note
in all of the works addressing composite anonymous feedback, including ours, a key idea is to repeat actions
enough times so that we can extract meaningful information. This is not always necessary in other types of
delay. In particular, if delay is not anonymous, there is no need to repeat actions since we will eventually
know the reward for each action. Except for ETCG of (Nie et al., 2022) and more generally, instances of
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the meta-algorithm C-ETC algorithm of (Nie et al., 2023), other algorithms discussed here for combinatoral
bandits do not repeat actions and therefore there is little hope of them achieving desirable results in the
presence of composite anonymous delay.

Note that, in the submodular setting, any algorithm that does not exploit the combinatorial structure of the
arms must take at least every action once which can be suboptimal since the number of arms is at least

(
n
k

)
which grows exponentially.

In this paper, we extend the delay model further by letting the random delay distribution also depend on
time (See Example 1 and Remark 2 for more details).

B Proof of Lemma 1

Proof. If an upper tail bound δ exists, then we may simply define

jϵ := min{j | δ({x ≥ j}) ≤ ϵ},

to see that the family is tight. Next we assume that the family is tight and prove the existence of an upper
tail bound.

Let δ be the measure defined by

∀j ≥ 0, δ(j) := sup
i∈I

δi({x ≥ j})− sup
i∈I

δi({x ≥ j + 1}).

Clearly we have δ(j) ≥ 0, for all j ≥ 0. To show that δ is a probability distribution, we sum the terms and
see that

δ({t | a ≤ t ≤ b}) =
b∑

t=a

δ(t) =
b∑

t=a

(
sup
i∈I

δi({x ≥ t})− sup
i∈I

δi({x ≥ t + 1})
)

= sup
i∈I

δi({x ≥ a})− sup
i∈I

δi({x ≥ b + 1})

According to the definition of tightness, for all ϵ > 0 and b ≥ jϵ, we have

δ({t | a ≤ t ≤ b}) = sup
i∈I

δi({x ≥ a})− sup
i∈I

δi({x ≥ b + 1}) ≥ sup
i∈I

δi({x ≥ a})− ϵ.

Hence we have

δ({t ≥ 0}) = lim
j→∞

δ({t | 0 ≤ t ≤ j}) = 1− lim
j→∞

sup
i∈I

δi({x ≥ j + 1}) = 1.

Finally, to see that δ is indeed an upper tail bound, we note that

δ({t | a ≤ t ≤ b}) = sup
i∈I

δi({x ≥ a})− sup
i∈I

δi({x ≥ b + 1}) ≤ sup
i∈I

δi({x ≥ a}).

Therefore
δ({t ≥ a}) = lim

b→∞
δ({t | a ≤ t ≤ b}) ≤ sup

i∈I
δi({x ≥ a}).

C Lemmas used in the proofs

In this section, we will provide the Lemmas that will be used in the proof of the main results. Let ti,a denote
the first time-step where the action S(i−1)∪{a} is played in the exploration phase and let t′

i,a := ti,a + m−1
be the last such time-step. Therefore, we have

F̄i,a = 1
m

t′
i,a∑

t=ti,a

Ft, X̄i,a = 1
m

t′
i,a∑

t=ti,a

Xt.

14



Under review as submission to TMLR

Similarly, the realized value of these random variables are

f̄i,a = 1
m

t′
i,a∑

t=ti,a

ft, x̄i,a = 1
m

t′
i,a∑

t=ti,a

xt.

For any phase i and arm a ∈ Ω \ Si−1, define the event

Ei,a :=
{
|F̄i,a − f(Si−1 ∪ {a})| ≤ rad

}
,

where rad is a non-negative real number to be specified later. Using these events, we define

Ei :=
⋂

a∈Ω\S(i−1)

Ei,a, E :=
k⋂

i=1
Ei.

Lemma 2. We have
P(E) ≥ 1− 2nk exp(−2m rad2).

Proof. We have Ft ∈ [0, 1]. Therefore, using Hoeffding’s inequality, we have

P(|F̄i,a − f(Si−1 ∪ {a})| > rad) = P

∣∣∣∣∣∣
t′

i,a∑
ti,a

Ft −mf(Si−1 ∪ {a})

∣∣∣∣∣∣ > m rad


≤ 2 exp

(
−2(m rad)2

m

)
= 2 exp(−2m rad2).

Hence

P(E) = P

 k⋂
i,a

Ei,a


= 1− P

 k⋃
i,a

(Ei,a)c


≥ 1−

∑
i,a

P((Ei,a)c)

= 1−
∑
i,a

P(|F̄i,a − f(Si−1 ∪ {a})| > rad)

≥ 1−
∑
i,a

2 exp(−2m rad2)

≥ 1− 2nk exp(−2m rad2).

Next we define another set of events where the delay is controlled. Let

E ′
d,i,a :=

{
|X̄i,a − F̄i,a| ≤

2d

m

}
,

for some d > 0 which will be specified later. Similar to above, we use these events to define

E ′
d,i :=

⋂
a∈Ω\S(i−1)

Ed,i,a, E ′
d :=

k⋂
i=1
E ′

d,i.

Note that E ′
d can happen even if the delay is not bounded. Later in Lemmas 5 and 6, we will find lower

bounds on the probability of E ′
d in both the adversarial and the stochastic setting.
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Lemma 3. Under the event E ∩ E ′
d, for all 1 ≤ i ≤ k and d > 0, we have

f(S(i))− f(S(i−1)) ≥ 1
k

[
f(S∗)− f(S(i−1))

]
− 2 rad−4d

m
.

Proof. Recall that ai is the sole element in Si \ Si−1. That is,

ai = argmaxa∈Ω\S(i−1) x̄i,a.

Define
a∗

i := argmaxa∈Ω\S(i−1) f(Si−1 ∪ {a}).
Then we have

f(Si) = f(Si−1 ∪ {ai})
≥ f̄i,ai

− rad (definition of E)

≥ x̄i,ai
− 2d

m
− rad (definition of E ′)

≥ x̄i,a∗
i
− 2d

m
− rad (definition of a∗

i )

≥ f̄i,a∗
i
− 4d

m
− rad (definition of E ′)

≥ f(Si−1 ∪ {a∗
i })−

4d

m
− 2 rad . (definition of E)

Hence we have
f(Si)− f(Si−1) ≥ f(Si−1 ∪ {a∗

i })− f(Si−1)− 4d

m
− 2 rad .

Therefore

f(Si)− f(Si−1) ≥ f(Si−1 ∪ {a∗
i })− f(Si−1)− 4d

m
− 2 rad

= maxa∈Ω\S(i−1) f(Si−1 ∪ {a})− f(Si−1)− 4d

m
− 2 rad (definition of a∗

i )

≥ maxa∈S∗\S(i−1) f(Si−1 ∪ {a})− f(Si−1)− 4d

m
− 2 rad (S∗ ⊆ Ω)

≥ 1
|S∗ \ Si−1|

∑
a∈S∗\S(i−1)

f(Si−1 ∪ {a})− f(Si−1)− 4d

m
− 2 rad (maximum ≥ mean)

= 1
|S∗ \ Si−1|

∑
a∈S∗\S(i−1)

[
f(Si−1 ∪ {a})− f(Si−1)

]
− 4d

m
− 2 rad

≥ 1
k

∑
a∈S∗\S(i−1)

[
f(Si−1 ∪ {a})− f(Si−1)

]
− 4d

m
− 2 rad (|S∗ \ Si−1| ≤ |S∗| = k)

≥ 1
k

[
f(S∗)− f(Si−1)

]
− 4d

m
− 2 rad,

where the last line follows from a well-known inequality for submodular functions.

Corollary 1. Under the event E ∩ E ′
d, for all d > 0, we have

f(S(k)) ≥ (1− 1
e

)f(S∗)− 2k rad−4kd

m
.

Proof. Using Lemma 3, we have

f(Si) ≥ f(Si−1) + 1
k

(f(S∗)− f(Si−1))− 2 rad−4d

m
=
[

1
k

f(S∗)− 2 rad−4d

m

]
+ (1− 1

k
)f(Si−1).

16
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Applying this inequality recursively, we get

f(Sk) ≥
[

1
k

f(S∗)− 2 rad−4d

m

]
+ (1− 1

k
)f(Sk−1)

≥
[

1
k

f(S∗)− 2 rad−4d

m

]
+ (1− 1

k
)
([

1
k

f(S∗)− 2 rad−4d

m

]
+ (1− 1

k
)f(Sk−2)

)
=
[

1
k

f(S∗)− 2 rad−4d

m

] 1∑
l=0

(1− 1
k

)l + (1− 1
k

)2f(Sk−2)

...

≥
[

1
k

f(S∗)− 2 rad−4d

m

] k−1∑
l=0

(1− 1
k

)l + (1− 1
k

)kf(S0)

=
[

1
k

f(S∗)− 2 rad−4d

m

] k−1∑
l=0

(1− 1
k

)l

Note that we have
k−1∑
l=0

(1− 1
k

)l =
1− (1− 1

k )k

1− (1− 1
k )

= k

(
1− (1− 1

k
)k

)
.

Hence

f(Sk) ≥
[

1
k

f(S∗)− 2 rad−4d

m

]
k

(
1− (1− 1

k
)k

)
=
(

1− (1− 1
k

)k

)
f(S∗)−

(
2k rad−4kd

m

)(
1− (1− 1

k
)k

)
≥
(

1− (1− 1
k

)k

)
f(S∗)− 2k rad−4kd

m
.

Using the well known inequality (1− 1
k )k ≤ 1

e , we get

f(Sk) ≥
(

1− 1
e

)
f(S∗)− 2k rad−4kd

m
.

Lemma 4. For all d > 0, we have

E(R|E ∩ E ′
d) ≤ mnk + 2kT rad +4kTd

m
.

Proof. Let R = Rexploration +Rexploitation. The exploration phase is at most mnk steps, therefore we always
have

Rexploration ≤ mnk.

At each time-step in the exploitation phase, (1− 1
e )f(S∗)− f(Sk) to is added to the expected regret. Hence

we have

E(R|E ∩ E ′
d) = E(Rexploration|E ∩ E ′

d) + E(Rexploitation|E ∩ E ′
d)

≤ mnk + T

[
(1− 1

e
)f(S∗)− f(Sk)

]
≤ mnk + 2kT rad +4kTd

m
,

where we used Corollary 1 in the last inequality.

17
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Theorem 8 (Theorem 1 in the main text). For all d > 0, we have

E(R) ≤ mnk + 2kT rad +4kTd

m
+ 2nkT exp(−2m rad2) + T (1− P(E ′

d)).

Proof. Using Lemmas 4 and 2, we have

E(R) = E(R|E ∩ E ′
d)P(E ∩ E ′

d) + E(R|(E ∩ E ′
d)c)P((E ∩ E ′

d)c)
≤ E(R|E ∩ E ′

d) + TP((E ∩ E ′
d)c)

= E(R|E ∩ E ′
d) + TP(Ec ∪ (E ′

d)c)
≤ E(R|E ∩ E ′

d) + TP(Ec) + TP((E ′
d)c)

≤ (mnk + 2kT rad +4kTd

m
) + 2nkT exp(−2m rad2) + T (1− P(E ′

d)).

D Uniformly Bounded Delay

Lemma 5. If delay is uniformly bounded by d, then P(E ′
d) = 1.

Proof. For all t ≤ 0, let Ft = 0 and let δt be any distribution over non-negative integers. We have∣∣∣∣∣∣
t′

i,a∑
t=ti,a

Xt −
t′

i,a∑
t=ti,a

Ft

∣∣∣∣∣∣ =

∣∣∣∣∣∣
t′

i,a∑
j=ti,a−d

Fjδj({ti,a − j ≤ x ≤ t′
i,a − j})−

t′
i,a∑

t=ti,a

Ft

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ti,a−1∑

j=ti,a−d

Fjδj({ti,a − j ≤ x ≤ t′
i,a − j}) +

t′
i,a∑

j=ti,a

Fjδj({x ≤ t′
i,a − j})−

t′
i,a∑

t=ti,a

Ft

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ti,a−1∑

j=ti,a−d

Fjδj({ti,a − j ≤ x ≤ t′
i,a − j})−

t′
i,a∑

j=ti,a

Fjδj({x > t′
i,a − j})

∣∣∣∣∣∣
≤

ti,a−1∑
j=ti,a−d

δj({ti,a − j ≤ x ≤ t′
i,a − j}) +

t′
i,a∑

j=ti,a

δj({x > t′
i,a − j})

≤ d +
t′

i,a∑
j=ti,a

δj({x > t′
i,a − j}).

Note that for j ≤ ti,a + m− d− 1, we have

δj({x > t′
i,a − j}) = δj({x > ti,a + m− 1− j}) ≤ δj({x > d}) = 0.

Therefore we have

t′
i,a∑

j=ti,a

δj({x > t′
i,a − j}) =

ti,a+m−1∑
j=max{ti,a,ti,a+m−d}

δj({x > t′
i,a − j})

≤ (ti,a + m− 1)−max{ti,a, ti,a + m− d}+ 1
= min{m, d} ≤ d.

Hence

|X̄i,a − F̄i,a| =
1
m

∣∣∣∣∣∣
t′

i,a∑
t=ti,a

Xt −
t′

i,a∑
t=ti,a

Ft

∣∣∣∣∣∣ ≤ 2d

m
.
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Theorem 9 (Theorem 2 in the main text). If the delay is uniformly bounded by d, then we have

E(R) = O(kn1/3T 2/3(log(T ))1/2) + O(kn2/3T 1/3d).

Proof. Using Theorem 1 and Lemma 5, we see that

E(R) ≤ mnk + 2kT rad +4kTd

m
+ 2nkT exp(−2m rad2).

Let rad :=
√

log(T )
m . Then

exp(−2m rad2) = T −2,

and

E(R) ≤ mnk + 2kT rad +4kTd

m
+ 2nkT exp(−2m rad2)

= mnk + 2kT

√
log(T )

m
+ 4kTd

m
+ 2nk/T

≤ mnk + 2kT

√
log(T )

m
+ 4kTd

m
+ 2k

where we used T ≥ n in the last inequality. Since m = ⌈(T/n)2/3⌉, we have (T/n)2/3 ≤ m ≤ (T/n)2/3 + 1.
Therefore

E(R) ≤ mnk + 2kT

√
log(T )

m
+ 4kTd

m
+ 2k

≤ ((T/n)2/3 + 1)nk + 2kT
√

log(T )/(T/n)2/3 + 4kTd

(T/n)2/3 + 2k

= kn1/3T 2/3 + nk + 2kn1/3T 2/3(log(T ))1/2) + 4kn2/3T 1/3d + 2k

≤ 4kn1/3T 2/3(log(T ))1/2) + 4kn2/3T 1/3d + 2k

= O(kn1/3T 2/3(log(T ))1/2) + O(kn2/3T 1/3d).

E Unbounded Stochastic Independent Delay

Lemma 6. If (∆j)∞
j=1 is independent and (ET (∆j))∞

j=1 is tight, then we have

P(E ′
d) ≥ 1− nk exp

(
− λ2

2(E(τ) + λ/3)

)
,

where d > 0 is a real number, τ is a tail upper bound for the family (ET (∆j))∞
j=1 and λ = max{0, d−E(τ)}.

Proof. If λ = 0, then the statement is trivially true. So we will assume that λ > 0 and d = E(τ) + λ. Define

Ci,a =
t′

i,a∑
j=1

∆j({x > t′
i,a − j}).

Using the fact that τ is an upper tail bound for (ET (∆j))∞
j=1, we can see that

E(Ci,a) =
t′

i,a∑
j=1

E(∆j({x > t′
i,a − j})) ≤

t′
i,a∑

j=1
τ({x > t′

i,a − j})

=
t′

i,a∑
j=1

τ({x ≥ j}) ≤
∞∑

j=0
τ({x ≥ j}) = E(τ).

19
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Using Bernstein’s inequality, we have

P(Ci,a > d) = P(Ci,a > E(τ) + λ)
≤ P(Ci,a > E(Ci,a) + λ)

≤ exp

− λ2

2(
∑t′

i,a

j=1 E(∆j({x > t′
i,a − j})2) + λ/3)


≤ exp

− λ2

2(
∑t′

i,a

j=1 E(∆j({x > t′
i,a − j})) + λ/3)


= exp

(
− λ2

2(E(Ci,a) + λ/3)

)
≤ exp

(
− λ2

2(E(τ) + λ/3)

)
.

We have Xt =
∑t

j=1 Fj(Sj)∆j(t− j). Therefore

m|X̄i,a − F̄i,a| =

∣∣∣∣∣∣
t′

i,a∑
t=ti,a

Xt −
t′

i,a∑
t=ti,a

Ft

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t′

i,a∑
j=1

Fj∆j({ti,a − j ≤ x ≤ t′
i,a − j})−

t′
i,a∑

t=ti,a

Ft

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ti,a−1∑

j=1
Fj∆j({ti,a − j ≤ x ≤ t′

i,a − j}) +
t′

i,a∑
j=ti,a

Fj∆j({x ≤ t′
i,a − j})−

t′
i,a∑

t=ti,a

Ft

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ti,a−1∑

j=1
Fj∆j({ti,a − j ≤ x ≤ t′

i,a − j})−
t′

i,a∑
j=ti,a

Fj∆j({x > t′
i,a − j})

∣∣∣∣∣∣
≤

ti,a−1∑
j=1

∆j({ti,a − j ≤ x ≤ t′
i,a − j}) +

t′
i,a∑

j=ti,a

∆j({x > t′
i,a − j})

≤
ti,a−1∑

j=1
∆j({x ≥ ti,a − j}) +

t′
i,a∑

j=1
∆j({x > t′

i,a − j})

=
ti,a−1∑

j=1
∆j({x > ti,a − 1− j}) + Ci,a.

If ti,a = 1, then the first sum will be zero and we have

m|X̄i,a − F̄i,a| ≤ Ci,a.

Otherwise, there exists (i′, a′) such that t′
i′,a′ = ti,a − 1 and

m|X̄i,a − F̄i,a| ≤ Ci′,a′ + Ci,a.

Let E∗
i,a be the event that Ci,a ≤ d and define

E∗ :=
⋂
i,a

E∗
i,a.
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Our discussion above shows that we have
P(E ′

d) ≥ P(E∗).

On the other hand, we have

P(E∗) = P

⋂
i,a

E∗
i,a


= 1− P

⋃
i,a

(E∗
i,a)c


= 1− P

⋃
i,a

{Ci,a > d}


≥ 1−

∑
i,a

P ({Ci,a > d})

≥ 1−
∑
i,a

exp
(
− λ2

2(E(τ) + λ/3)

)

≥ 1− nk exp
(
− λ2

2(E(τ) + λ/3)

)
,

which completes the proof.

Theorem 10 (Theorem 3 in the main text). If the delay sequence is stochastic, then we have

E(R) = O(kn1/3T 2/3 log(T )) + O(kn2/3T 1/3E(τ)),

where τ is an upper tail bound for (ET (∆t))∞
t=1.

Proof. Let rad :=
√

log(T )
m . Then, using T ≥ n, we have

2nkT exp(−2m rad2) = 2nkT exp(−2 log(T )) = 2nkT −1 ≤ 2k.

We choose d := E(τ) + max{6E(τ), 2 log(T )} and λ = d− E(τ) = max{6E(τ), 2 log(T )}. Then we have

exp
(
− λ2

2(E(τ) + λ/3)

)
≤ exp

(
− λ2

2(λ/6 + λ/3)

)
= exp(−λ) ≤ exp(−2 log(T )) = T −2.

Therefore
nkT exp

(
− λ2

2(E(τ) + λ/3)

)
≤ nkT −1 ≤ k.

So, using Theorem 1 and Lemma 6, we have

E(R) ≤ mnk + 2kT rad +4kTd

m
+ 2nkT exp(−2m rad2) + T (1− P(E ′

d))

≤ mnk + 2kT rad +4kTd

m
+ 2nkT exp(−2m rad2) + nkT exp

(
− λ2

2(E(τ) + λ/3)

)
≤ mnk + 2kT rad +4kTd

m
+ 3k

= mnk + 2kT

√
log(T )

m
+ 4k

T

m
(E(τ) + max{6E(τ), 2 log(T )}) + 3k

≤ mnk + 2kT

√
log(T )

m
+ 4k

T

m
(7E(τ) + 2 log(T )) + 3k.
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Since m = ⌈(T/n)2/3⌉, we have (T/n)2/3 ≤ m ≤ (T/n)2/3 + 1. Therefore

E(R) ≤ mnk + 2kT

√
log(T )

m
+ 4kT

m
(7E(τ) + 2 log(T )) + 3k

≤ ((T/n)2/3 + 1)nk + 2kT

√
log(T )

(T/n)2/3 + 4kT

(T/n)2/3 (7E(τ) + 2 log(T )) + 3k

= kn1/3T 2/3 + kn + 2kn1/3T 2/3 log(T )1/2 + 28kn2/3T 1/3E(τ) + 8kn2/3T 1/3 log(T ) + 3k

≤ 12kn1/3T 2/3 log(T ) + 28kn2/3T 1/3E(τ) + 3k

= O(kn1/3T 2/3 log(T )) + O(kn2/3T 1/3E(τ)).

F Unbounded Stochastic Conditionally Independent Delay

Lemma 7. If (∆j,S)∞
j=1 is pairwise independent for all S ∈ S and {E(∆j,S)}j≥1,S∈S is tight, then we have

P(E ′
d) ≥ 1− nk exp

(
− λ2

2(E(τ) + λ/3)

)
,

where d > 0 is a real number, τ is a tail upper bound for the family {ET (∆j,S)}j≥1,S∈S and λ =
max

{
0, 2d

nk − E(τ)
}

.

Proof. If λ = 0, then the statement is trivially true. So we will assume that λ > 0 and d = nk
2 (E(τ) + λ).

Define

C ′
i,a =

t′
i,a∑

j=ti,a

∆j({x > t′
i,a − j}).

Note that the sum is only over the time-steps where the action Si−1 ∪ {a} is taken. Therefore C ′
i,a is the

sum of m independent term. Using the fact that τ is an upper tail bound for {ET (∆j,S)}j≥1,S∈S , we can
see that

E(C ′
i,a) =

t′
i,a∑

j=ti,a

E(∆j({x > t′
i,a − j})) ≤

t′
i,a∑

j=ti,a

τ({x > t′
i,a − j})

≤
t′

i,a∑
j=1

τ({x > t′
i,a − j}) =

t′
i,a∑

j=1
τ({x ≥ j}) ≤

∞∑
j=0

τ({x ≥ j}) = E(τ).

Using Bernstein’s inequality, we have

P
(

C ′
i,a >

2d

nk

)
= P(C ′

i,a > E(τ) + λ)

≤ P(C ′
i,a > E(C ′

i,a) + λ)

≤ exp

− λ2

2(
∑t′

i,a

j=ti,a
E(∆j({x > t′

i,a − j})2) + λ/3)


≤ exp

− λ2

2(
∑t′

i,a

j=ti,a
E(∆j({x > t′

i,a − j})) + λ/3)


= exp

(
− λ2

2(E(C ′
i,a) + λ/3)

)

≤ exp
(
− λ2

2(E(τ) + λ/3)

)
.
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We have Xt =
∑t

j=1 Fj(Sj)∆j(t− j). Therefore

m|X̄i,a − F̄i,a| =

∣∣∣∣∣∣
t′

i,a∑
t=ti,a

Xt −
t′

i,a∑
t=ti,a

Ft

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t′

i,a∑
j=1

Fj∆j({ti,a − j ≤ x ≤ t′
i,a − j})−

t′
i,a∑

t=ti,a

Ft

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ti,a−1∑

j=1
Fj∆j({ti,a − j ≤ x ≤ t′

i,a − j}) +
t′

i,a∑
j=ti,a

Fj∆j({x ≤ t′
i,a − j})−

t′
i,a∑

t=ti,a

Ft

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ti,a−1∑

j=1
Fj∆j({ti,a − j ≤ x ≤ t′

i,a − j})−
t′

i,a∑
j=ti,a

Fj∆j({x > t′
i,a − j})

∣∣∣∣∣∣
≤

ti,a−1∑
j=1

∆j({ti,a − j ≤ x ≤ t′
i,a − j}) +

t′
i,a∑

j=ti,a

∆j({x > t′
i,a − j})

≤
ti,a−1∑

j=1
∆j({x > ti,a − 1− j}) + C ′

i,a.

Define

Ii,a = {(i′, a′) | ti′,a′ < ti,a}.

Then we have

ti,a−1∑
j=1

∆j({x > ti,a − 1− j}) =
∑

(i′,a′)∈Ii,a

t′
i′,a′∑

j=ti′,a′

∆j({x > ti,a − 1− j})

≤
∑

(i′,a′)∈Ii,a

t′
i′,a′∑

j=ti′,a′

∆j({x > t′
i′,a′ − j}) =

∑
(i′,a′)∈Ii,a

C ′
i′,a′ .

Therefore, we have

m|X̄i,a − F̄i,a| ≤
∑
i,a

C ′
i,a ≤ nk max

i,a
{C ′

i,a}.

Let E∗∗
i,a be the event that Ci,a ≤ 2d

nk and define

E∗∗ :=
⋂
i,a

E∗∗
i,a.

Our discussion above shows that we have

P(E ′
d) ≥ P(E∗∗).
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On the other hand, we have

P(E∗∗) = P

⋂
i,a

E∗∗
i,a


= 1− P

⋃
i,a

(E∗∗
i,a)c


= 1− P

⋃
i,a

{
C ′

i,a >
2d

nk

}
≥ 1−

∑
i,a

P
({

C ′
i,a >

2d

nk

})

≥ 1−
∑
i,a

exp
(
− λ2

2(E(τ) + λ/3)

)

≥ 1− nk exp
(
− λ2

2(E(τ) + λ/3)

)
,

which completes the proof.

Theorem 11 (Theorem 4 in the main text). If the delay sequence is stochastic and conditionally independent,
then we have

E(R) = O(kn1/3T 2/3(log(T ))1/2 + k2n5/3T 1/3 log(T )) + O(k2n5/3T 1/3E(τ))
= O(k2n4/3T 2/3 log(T )) + O(k2n5/3T 1/3E(τ))

where τ is an upper tail bound for (ET (∆t))∞
t=1.

Proof. Let rad :=
√

log(T )
m . Then, using T ≥ n, we have

2nkT exp(−2m rad2) = 2nkT exp(−2 log(T )) = 2nkT −1 ≤ 2k.

We choose d := nk
2 (E(τ) + max{6E(τ), 2 log(T )}) and λ = 2d

nk −E(τ) = max{6E(τ), 2 log(T )}. Then we have

exp
(
− λ2

2(E(τ) + λ/3)

)
≤ exp

(
− λ2

2(λ/6 + λ/3)

)
= exp(−λ) ≤ exp(−2 log(T )) = T −2.

Therefore
nkT exp

(
− λ2

2(E(τ) + λ/3)

)
≤ nkT −1 ≤ k.

So, using Theorem 1 and Lemma 7, we have

E(R) ≤ mnk + 2kT rad +4kTd

m
+ 2nkT exp(−2m rad2) + T (1− P(E ′

d))

≤ mnk + 2kT rad +4kTd

m
+ 2nkT exp(−2m rad2) + nkT exp

(
− λ2

2(E(τ) + λ/3)

)
≤ mnk + 2kT rad +4kTd

m
+ 3k

= mnk + 2kT

√
log(T )

m
+ 2nk2T

m
(E(τ) + max{6E(τ), 2 log(T )}) + 3k

≤ mnk + 2kT

√
log(T )

m
+ 2nk2T

m
(7E(τ) + 2 log(T )) + 3k.
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Since m = ⌈(T/n)2/3⌉, we have (T/n)2/3 ≤ m ≤ (T/n)2/3 + 1. Therefore

E(R) ≤ mnk + 2kT

√
log(T )

m
+ 2nk2T

m
(7E(τ) + 2 log(T )) + 3k

≤ ((T/n)2/3 + 1)nk + 2kT

√
log(T )

(T/n)2/3 + 2nk2T

(T/n)2/3 (7E(τ) + 2 log(T )) + 3k

= kn1/3T 2/3 + kn + 2kn1/3T 2/3 log(T )1/2 + 14k2n5/3T 1/3E(τ) + 4k2n5/3T 1/3 log(T ) + 3k

= O(kn1/3T 2/3(log(T ))1/2) + O(k2n5/3T 1/3 log(T )) + O(k2n5/3T 1/3E(τ))
= O(k2n4/3T 2/3 log(T )) + O(k2n5/3T 1/3E(τ)).

G Extension to general combinatorial bandits

The results of this paper could be generalized to settings beyond monotone submodular bandits with car-
dinality constraint. As we will see, instead of these assumptions, we only need a setting where we have an
algorithm for the offline problem satisfying a specific notion of robustness.

As before, let Ω be the set of base arms and let S be a subset of 2Ω. Let F be a class of functions from
S → [0, 1] where we know that f ∈ F . We use S∗ to denote the optimal value of f .
Definition 2 ((Nie et al., 2023)). Let A be an algorithm for the combinatorial optimization problem of
maximizing a function f : S → R over a finite domain S ⊆ 2Ω with the knowledge that f belongs to a
known class of functions F . for any function f̂ : S → R, let SA,f̂ denote the output of A when it is run with
f̂ as its value oracle. The algorithm A called (α, δ)-robust if for any ϵ > 0 and any function f̂ such that
|f(S)− f̂(S)| < ϵ for all S ∈ S, we have

f(SA,f̂ ) ≥ αf(S∗)− δϵ.

In this setting, N is an upper-bound for the number of A’s queries to the value oracle.

In the previous sections, the set S was the set of all subsets of Ω with size at most k and F was the set of
monotone submodular functions on S. Corollary 1 simply states that the greedy algorithm is (1− 1/e, 2k)-
robust. If we choose A to be the offline greedy algorithm, α = 1−1/e, δ = 2k and N = nk, then Algorithm 2
will reduce to Algorithm 1.

Algorithm 2 C-ETC algorithm ((Nie et al., 2023)
Input: Set of base arms Ω, horizon T , an offline (α, δ)-robust algorithm A, and an upper-bound N on the

number of A’s queries to the value oracle
Assumption: N ≤ T

1: m← ⌈(δT/N)2/3⌉
2: while A queries the value of some action S do
3: Play S arm m times
4: Calculate the empirical mean x̄
5: Return x̄ to A
6: end while
7: for remaining time do
8: Play action SA output by algorithm A
9: end for

The proof only needs minor changes to adapt for Algorithm 2. Lemma 2 immediately generalizes to

P(E) ≥ 1− 2N exp(−2m rad2),

where nk is replaced by N . Instead of Corollary 1, we need the following statement.
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Corollary 2. Under the event E ∩ E ′
d, for all d > 0, we have

f(SA) ≥ αf(S∗)− δ

(
rad +2d

m

)
.

Proof. Consider a time interval of length m, namely t, t + 1, · · · , t + m − 1, where an action S is repeated
and the empirical mean x̄ is observed. We have

m|x̄− f(S)| =
∣∣∣∣∣
t+m−1∑

i=t

(xt − f(S))
∣∣∣∣∣ ≤

∣∣∣∣∣
t+m−1∑

i=t

(xt − ft)
∣∣∣∣∣+
∣∣∣∣∣
t+m−1∑

i=t

(ft − f(S))
∣∣∣∣∣ .

Under the event E , we have ∣∣∣∣∣
t+m−1∑

i=t

(ft − f(S))
∣∣∣∣∣ ≤ m rad,

and under the event Ed, we have ∣∣∣∣∣
t+m−1∑

i=t

(xt − ft)
∣∣∣∣∣ ≤ 2d.

Therefore, we have
|x̄− f(S)| ≤ rad +2d

m
.

Now the claim follows from the definition of (α, δ)-robustness of A.

The proofs of Lemma 4 and Theorem 1 could be applied almost verbatim to give us

E(Rα) ≤ mN + δT rad +2δTd

m
+ 2NT exp(−2m rad2) + T (1− P(E ′

d)),

for all d > 0. The results below follow.
Theorem 12. If the delay is uniformly bounded by d, then we have

E(Rα) = O(N1/3δ2/3T 2/3(log(T ))1/2) + O(N2/3δ1/3T 1/3d).

Theorem 13. If the delay sequence is stochastic, then we have

E(Rα) = O(N1/3δ2/3T 2/3 log(T )) + O(N2/3δ1/3T 1/3E(τ)),

where τ is an upper tail bound for (ET (∆t))∞
t=1.

Theorem 14. If the delay sequence is stochastic and conditionally independent, then we have

E(Rα) = O(N4/3δ2/3T 2/3 log(T )) + O(N5/3δ1/3T 1/3E(τ)),

where τ is an upper tail bound for (ET (∆t))∞
t=1.

H Details on Function, Delay Settings, and Baselines in Evaluations

Submodular functions:

(F1) Linear:
Here we assume that f is a linear function of the individual arms. In particular, for a function
g : Ω→ [0, 1], we define

f(S) := 1
k

∑
a∈S

g(a).

More specifically, we let n = 20 and k = 4 and choose g(a) uniformly from [0.1, 0.9], for all a ∈ Ω
and define F (S) := 1

k

∑
a∈S g(a) + N c(0, 0.1) where N c(0, 0.1) is the truncated normal distribution

with mean 0 and standard deviation 0.1, truncated to the interval [−0.1, 1.0].
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(F2) Weight Cover:
Here we assume that (Cj)j∈J is a partition of Ω and there is a weight function wt : J → [0, 1]. Then
ft(S) is the sum of the weights of the the indexes j where Cj ∩S ̸= ∅, divided by k. In other words,
if 1 is the indicator function, then

ft(S) := 1
k

∑
j∈J

wt(j) 1S∩Cj ̸=∅ .

More specifically, we let n = 20 and k = 4. We divide Ω into 4 categories of sizes 6, 6, 6, 2 and let
wt(j) = U([0, j/5]) be samples uniformly from [0, j/5] for j ∈ 1, 2, 3, 4.
Stochastic set cover may be viewed as a simple model for product recommendation. Assume n is the
number of the products and each product belongs to exactly one of c categories. Then the reward
will be equal to the sum of the weights of the categories that have been covered by the user divided
by k.

Delay settings:

(D1) No Delay

(D2) (Stochastic Independent Delay) For all t ≥ 1 and i ≥ 0, ∆t(i) = (1− Yt)Y i
t , where (Yt)∞

t=1 is an i.i.d
sequence of random variables with the uniform distribution U([0.5, 0.9]). The reward for time-step
t will be distributed over [t,∞) according to ∆t. In other words, at each time-step t, the agent
plays the action St, then the environment samples ft(St) according to the distribution of Ft(St) and
samples yt according to the distribution U([0.5, 0.9]). Then we have δt(i) = (1− yt)yi

t for all i ≥ 0,
which is used in Equation 1 to determine the observation. In this example, the distribution of ∆t

does not depend on the action chosen by the agent and (∆t)∞
t=1 is i.i.d.

(D3) (Stochastic Independent Delay) For all t ≥ 0, ∆t is a distribution over [10, 30] is sampled uniformly
from the probability simplex using the flat Dirichlet distribution. The reward for time-step t will be
distributed over [t+10, t+30] according to ∆t. In other words, at each time-step t, the agent plays the
action St, then the environment samples ft(St) according to the distribution of Ft(St) and samples
(β0, β2, · · · , β20) from the 20-dimensional probability simplex {(z0, · · · , z20) | zi ≥ 0,

∑
zi = 1},

according to the flat Dirichlet distribution. Then we have δt(i) = βi−10 for all 10 ≤ i ≤ 30 and
δt(i) = 0 otherwise, which is used in Equation 1 to determine the observation. In this example, the
distribution of ∆t does not depend on the action chosen by the agent and (∆t)∞

t=1 is i.i.d.

(D4) (Stochastic Conditionally Independent Delay) For all t ≥ 1 and i ≥ 0, we have ∆t(i) = (1− Yt)Y i
t ,

where Yt = 0.5 + ft ∗ 0.4 ∈ [0.5, 0.9]. The reward for time-step t will be distributed over [t,∞)
according to ∆t. In other words, at each time-step t, the agent plays the action St, then the
environment samples ft(St) according to the distribution of Ft(St) and picks yt = 0.5 + ft(St) ∗ 0.4.
Then we have δt(i) = (1−yt)yi

t for all i ≥ 0, which is used in Equation 1 to determine the observation.
Note that there is no more randomness in delay after the value of ft(St) is samples from Ft(St). Also
note that the value of yt depends on the action of the agent. In this example (∆t,S)t≥1 is pair-wise
independent for any S ∈ S.

(D5) (Stochastic Conditionally Independent Delay) At each time-step t, a number lt is chosen from [10, 30]
according to the following formula.

lt = ⌊20ft⌋+ 10.

The reward for time-step t will be observed at t+ lt. More specifically, at each time-step t, the agent
plays the action St, then the environment samples ft(St) according to the distribution of Ft(St) and
picks lt = ⌊20ft(St)⌋ + 10. Finally, we have δt(i) = 1i=lt . In other words, the higher the reward,
the more it will be delayed. In this example, delay depends on the action chosen by the agent and
(∆t,S)t≥1 is pair-wise independent for any S ∈ S.
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(D6) (Adversarial Delay) Let l1 = 15 and for all t > 1, define lt according to the following formula.

lt = ⌊20xt−1⌋+ 10.

As in the delay (D5), the value of lt determines the amount of delay, i.e. δt(i) = 1i=lt
. Note that

xt−1 is the value of the previous observation as described in Equation 1. In other words, the higher
the previous observation, the more the current reward will be delayed.

Baselines:

We use three algorithms designed for CMAB with full-bandit feedback without delay and and algorithm
designed for MAB with composite anonymous feedback as the baseline.

• CMAB-SM (Agarwal et al., 2022) This algorithm assumes the expected reward functions are
Lipschitz continuous of individual base arm rewards. CMAB-SM has a theoretical 1-regret guarantee
of Õ(T 2/3) with the assumption that if arm a is better than arm b, then replacing b by a in any set
not including a will give better reward function.

• DART (Agarwal et al., 2021) This algorithm assumes the expected reward functions are Lipschitz
continuous of individual base arm rewards and the reward functions have an additional property
related to the marginal gains of the base arms. DART has a theoretical 1-regret guarantee of Õ(T 1/2)
with the assumption that if arm a is better than arm b, then replacing b by a in any set not including
a will give better reward function.

• OGo (Streeter & Golovin, 2008) This algorithm is designed for oblivious adversarial setting with
submodular rewards. Therefore the sequence of monotone and submodular functions is fixed in
advance. It has an (1− 1/e)-regret guarantee of Õ(T 2/3).

• ARS-UCB (Wang et al., 2021) This algorithm is designed for MAB with composite anonymous
delayed feedback. The delay model is a special case of unbounded stochastic conditionally independent
composite anonymous feedback delay that we described. However, they assume that ∆t,S does not
depend on time. For our experiments, we use all subsets of Ω of size k as the set of arms. ARS-
UCB has a 1-regret guarantee of Õ(

(
n
k

)1/2
T 1/2) plus a constant term that depends on delay and the

number of its arms.

I Experiments with added regret

In Figure 2, we have considered the same functions and delay types as before. After fixing the function and
a delay type, we ran each experiment with and without delay 10 times and plotted the added regret when
delay is present. In these experiments, we see that the added regret for ETCG is consistently relatively
low with low variance. We note that one should be careful when interpreting these plots, since the regret
bounds are simply upper bounds and therefore the values shown here are the difference of two values that
are bounded from above. Specifically, having upper bounds Rdelay ≤ aT 2/3 + νT 1/3 and Rno-delay ≤ aT 2/3

do not imply Rdelay −Rno-delay ≤ νT 1/3.
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(b) (F1)-(D3)
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(c) (F1)-(D4)
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(d) (F1)-(D5)

102 103 104 105 106

T

0

102

103

104

105

Cu
m

ul
at

iv
e 

Ad
de

d 
Re

gr
et

ETCG
CMAB-SM
DART
OGo

ARS-UCB

(e) (F1)-(D6)

102 103 104 105 106

T

102

0

102

103

104

Cu
m

ul
at

iv
e 

Ad
de

d 
Re

gr
et

ETCG
CMAB-SM
DART
OGo

ARS-UCB

(f) (F2)-(D2)
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(g) (F2)-(D3)
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(h) (F2)-(D4)
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(i) (F2)-(D5)
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Figure 2: This plot shows the average added cumulative regret over horizon for each setting in the symlog-log
scale over 10 runs. The scale of the y-axis is linear for |y| ≤ 100 and logarithmic for |y| > 100. The gray
dashed lines are y = aT 1/3 for a ∈ {10, 100, 300}. The cyan dashed lines are y = νT 1/3 where ν is the
corresponding delay coefficient appearing in the regret bounds in Theorems 2, 3 and 4.
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