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Abstract

Transfer learning has yielded state-of-the-art (SoTA) results in many supervised
NLP tasks. However, annotated data for every target task in every target language
is rare, especially for low-resource languages. We propose XLA, a novel data
augmentation framework for self-supervised learning in zero-resource transfer
learning scenarios. In particular, XLA aims to solve cross-lingual adaptation prob-
lems from a source language task distribution to an unknown target language task
distribution, assuming no training label in the target language task. At its core,
XLA performs simultaneous self-training with data augmentation and unsupervised
sample selection. To show its effectiveness, we conduct extensive experiments on
zero-resource cross-lingual transfer tasks for Named Entity Recognition (NER),
Natural Language Inference (NLI) and paraphrase identification on Paraphrase
Adversaries from Word Scrambling (PAWS). XLA achieves SoTA results in all the
tasks, outperforming the baselines by a good margin. With an in-depth framework
dissection, we demonstrate the cumulative contributions of different components
to XLA’s success.

1 INTRODUCTION

Self-supervised learning in the form of pretrained language models (LM) has been the driving force in
developing state-of-the-art natural language processing (NLP) systems in recent years. These methods
typically follow two basic steps, where a supervised task-specific fine-tuning follows a large-scale
LM pretraining (Devlin et al., 2019; Radford et al., 2019). However, getting annotated data for every
target task in every target language is difficult, especially for low-resource languages.

Recently, the pretrain-finetune paradigm has also been extended to multi-lingual setups to train
effective multi-lingual models that can be used for zero-shot cross-lingual transfer. Jointly trained
deep contextualized multi-lingual LMs like mBERT (Devlin et al., 2019) and XLM-R (Conneau
et al., 2020) coupled with supervised fine-tuning in the source language have been quite successful in
transferring linguistic and task knowledge from one language to another without using any task label
in the target language. The joint pretraining with multiple languages allows these models to generalize
across languages. Despite their effectiveness, recent studies (Pires et al., 2019; K et al., 2020) have
also highlighted one crucial limiting factor for successful cross-lingual transfer. They all agree that
the cross-lingual generalization ability of the model is limited by the (lack of) structural similarity
between the source and target languages. For example, for transferring mBERT from English, K et al.
(2020) report about 23.6% accuracy drop in Hindi (structurally dissimilar) compared to 9% drop
in Spanish (structurally similar) in cross-lingual natural language inference (XNLI). The difficulty
level of transfer is further exacerbated if the (dissimilar) target language is low-resourced, as the
joint pretraining step may not have seen many instances from this language in the first place. In our
experiments (§4.2), in cross-lingual NER (XNER), we report F1 reductions of 28.3% in Urdu and
30.4% in Burmese for XLM-R, which is trained on a much larger multi-lingual dataset than mBERT.

One attractive way to improve cross-lingual generalization is to perform data augmentation (Simard
et al., 1998), and train the model (e.g., XLM-R) on examples that are similar but different from the
labeled data in the source language. Formalized by the Vicinal Risk Minimization (VRM) principle
(Chapelle et al., 2001), such data augmentation methods have shown impressive results recently in
computer vision (Zhang et al., 2018; Berthelot et al., 2019; Li et al., 2020a). These methods enlarge
the support of the training distribution by generating new data points from a vicinity distribution
around each training example. For images, the vicinity of a training image can be defined by a set
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of operations like rotation and scaling, or by linear mixtures of features and labels (Zhang et al.,
2018). However, when it comes to text, such methods have rarely been successful. The main reason
is that unlike images, linguistic units (e.g., words, phrases) are discrete and a smooth change in their
embeddings may not result in a plausible linguistic unit that has similar meanings.

In NLP, the most successful data augmentation method has so far been back-translation (Sennrich
et al., 2016) which generates paraphrases of an input sentence through round-trip translations.
However, it requires parallel data to train effective machine translation systems, acquiring which can
be more expensive for low-resource languages than annotating the target language data with task
labels. Furthermore, back-translation is only applicable in a supervised setup and to tasks where it is
possible to find the alignments between the original labeled entities and the back-translated entities,
such as in question answering (Yu et al., 2018; Dong et al., 2017).

In this work, we propose XLA, a robust unsupervised cross-lingual augmentation framework for
improving cross-lingual generalization of multilingual LMs. XLA augments data from the unlabeled
training examples in the target language as well as from the virtual input samples (sentences) generated
from the vicinity distribution of the source and target language sentences. With the augmented data, it
performs simultaneous self-learning with an effective distillation strategy to learn a strongly adapted
cross-lingual model from noisy (pseudo) labels for the target language task. We propose novel
ways to generate virtual sentences using a multilingual masked LM (Conneau et al., 2020), and get
reliable task labels by simultaneous multilingual co-training. This co-training employs a two-stage
co-distillation process to ensure robust transfer to dissimilar and/or low-resource languages.

We validate the effectiveness and robustness of XLA by performing extensive experiments on three
different zero-resource cross-lingual transfer tasks – XNER, XNLI, and PAWS-X, which posit
different sets of challenges. We have experimented with many different language pairs (14 in total)
comprising languages that are similar/dissimilar/low-resourced. XLA yields impressive results on
XNER, setting SoTA in all tested languages outperforming the baselines by a good margin. In
particular, the relative gains for XLA are higher for structurally dissimilar and/or low-resource
languages, where the base model is weaker: 28.54%, 16.05%, and 9.25% absolute improvements for
Urdu, Burmese, and Arabic, respectively. For XNLI, with only 5% labeled data in the source, it gets
comparable results to the baseline that uses all the labeled data, and surpasses the standard baseline
by 2.55% on average when it uses all the labeled data in the source. We also have similar findings in
PAWS-X. We provide a comprehensive analysis of the factors that contribute to XLA’s performance.

2 BACKGROUND

Contextual representation and cross-lingual transfer In recent years, significant progress has
been made in learning contextual word representations and pretrained models. Notably, BERT (Devlin
et al., 2019) pretrains a Transformer (Vaswani et al., 2017) encoder with a masked language model
(MLM) objective, and uses the same model architecture to adapt to a new task. It also comes with a
multilingual version mBERT, which is trained jointly on 102 languages. RoBERTa (Liu et al., 2019)
extends BERT with improved training, while XLM (Lample and Conneau, 2019) extends mBERT
with a conditional LM and a translation LM (using parallel data) objectives. Conneau et al. (2020)
train the largest multilingual language model XLM-R with RoBERTa framework.

Despite any explicit cross-lingual supervision, mBERT and its variants have been shown to learn
cross-lingual representations that generalize well across languages. Wu and Dredze (2019) and Pires
et al. (2019) evaluate the zero-shot cross-lingual transferability of mBERT on several tasks and
attribute its generalization capability to shared subword units. Pires et al. (2019) also found structural
similarity (e.g., word order) to be another important factor for successful cross-lingual transfer. K et al.
(2020), however, show that the shared subword has a minimal contribution; instead, the structural
similarity between languages is more crucial for effective transfer (more in Appendix D).

Vicinal risk minimization (VRM) Data augmentation supported by the VRM principle (Chapelle
et al., 2001) can be an effective choice for achieving better out-of-distribution adaptation. In VRM, we
minimize the empirical vicinal risk defined as:Lv(θ) = 1

N

∑N
n=1 l(fθ(x̃n), ỹn), where fθ denotes the

model parameterized by θ, and D̃ = {(x̃n, ỹn)}Nn=1 is an augmented dataset constructed by sampling
the vicinal distribution ϑ(x̃i, ỹi|xi, yi) around the original training sample (xi, yi). Defining vicinity
is however quite challenging as it requires the extraction of samples from a distribution without
hurting their labels. Earlier methods apply simple rules like rotation and scaling of images (Simard
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Figure 1: Training flow diagram of XLA. After training the base task models θ(1), θ(2), and θ(3) on
source labeled data Ds (WarmUp), we use two of them (θ(j), θ(k)) to pseudo-label and co-distill
the unlabeled target language data (D′t). A pretrained LM (Gen-LM) is used to generate new (vicinal)
training samples for both source and target languages, which are also then pseudo-labeled and co-
distilled using the two task models (θ(j), θ(k)) to generate D̃s and D̃t. The third model θ(l) is then
progressively trained on these datasets: {Ds,D′t} in epoch 1, D̃t in epoch 2, and all in epoch 3.

et al., 1998). Recent work (Zhang et al., 2018; Berthelot et al., 2019) show impressive results in
image classification with simple linear interpolation of data. However, to our knowledge, none of
these methods have so far been successful in NLP due to the discrete nature of texts.1

LM-based supervised augmentation Recently, a number of data-augmentation methods have
been proposed using contextualized LMs like BERT, e.g., Contextual Augmentation (Kobayashi,
2018), Conditional BERT (Wu et al., 2018), and AUG-BERT (Wu et al., 2018). These approaches
use a constrained augmentation method which alters a pretrained LM to a label-conditional LM for a
specific task. This means these methods update the parameters of the pretrained LM using the labels.

3 XLA FRAMEWORK

While recent cross-lingual transfer learning efforts have relied almost exclusively on multi-lingual
pretraining and zero-shot transfer of a fine-tuned source model, there is a great potential for more
elaborate methods that can leverage the unlabeled data better. Motivated by this, we present XLA -
our unsupervised data augmentation framework for zero-resource cross-lingual task adaptation.

Figure 1 gives an overview of XLA. Let Ds = (Xs,Ys) and Dt = (Xt) denote the training data
for a source language s and a target language t, respectively. XLA augments data from various
origins at different stages of training. In the initial stage (epoch 1), it uses the augmented training
samples from the target language (D′t) along with the original source (Ds). In later stages (epoch
2-3), it uses virtual (vicinal) sentences generated from the vicinity distribution of source and target
examples: ϑ(x̃sn|xsn) and ϑ(x̃tn|xtn), where xsn ∼ Xs and xtn ∼ Xt. It performs self-training on
the augmented data to acquire the corresponding pseudo labels. To avoid confirmation bias with
self-training where the model accumulates its own errors, it simultaneously trains three task models
to generate virtual training data through data augmentation and filtering of potential label noises via
multi-epoch co-teaching (Zhou and Li, 2005). In each epoch, the co-teaching process first performs
co-distillation, where two peer task models are used to select “reliable” training examples to train the
third model. The selected samples with pseudo labels are then added to the target task model’s training
data by taking the agreement from the other two models, a process we refer to as co-guessing. The
co-distillation and co-guessing mechanism ensure robustness of XLA to out-of-domain distributions
that can occur in a multilingual setup, e.g., due to a structurally dissimilar and/or low-resource target
language. Algorithm 1 gives a pseudocode of the overall training method.

Each of the task models in XLA is an instance of XLM-R fine-tuned on the source language task (e.g.,
English NER), whereas the pretrained masked LM parameterized by θmlm (i.e., before fine-tuning) is
used to define the vicinity distribution ϑ(x̃n|xn, θmlm) around each selected example xn.

1Considering papers that have been published (or accepted) through peer review. There has been some
concurrent work that uses pretrained LMs like BERT to craft adversarial examples (Li et al., 2020b). Although
relevant, these methods have a different objective than ours, and none of them is cross- or multi-lingual.
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Algorithm 1 XLA: a robust unsupervised data augmentation framework for cross-lingual NLP
Input: source (s) and target (t) language datasets: Ds = (Xs,Ys),Dt = (Xt); task models: θ(1), θ(2), θ(3),
pre-trained masked LM θmlm, mask ratio P , diversification factor δ, sampling factor α, and distillation factor η
Output: models trained on augmented data
1: θ(1), θ(2), θ(3) = WARMUP(Ds, θ

(1), θ(2), θ(3)) . warm up with conf. penalty.
2: for e ∈ [1 : 3] do . e denotes epoch.
3: for k ∈ {1, 2, 3} do
4: X (k)

t ,Y(k)
t = DISTIL(Xt, ηe, θ

(k)) . infer and select tgt training data for augmentation.
5: for j ∈ {1, 2, 3} do
6: if k == j then Continue
7: /* source language data augmentation */
8: X̃s = GEN-LM(Xs, θmlm, P, δ) . vicinal example generation.
9: X (k)

s ,Y(k)
s = DISTIL(X̃s, ηe, θ

(k)); X (j)
s ,Y(j)

s = DISTIL(X̃s, ηe, θ
(j))

10: D̃s = AGREEMENT
(
D(k)

s = (X (k)
s ,Y(k)

s ),D(j)
s = (X (j)

s ,Y(j)
s )

)
11: /* target language data augmentation (no vicinity) */
12: X (j)

t ,Y(j)
t = DISTIL(Xt, ηe, θ

(j))

13: D′
t = AGREEMENT

(
D(k)

t = (X (k)
t ,Y(k)

t ),D(j)
t = (X (j)

t ,Y(j)
t )

)
. see line 4

14: /* target language data augmentation */
15: X̃t = GEN-LM(Xt, θmlm, P, δ) . vicinal example generation.
16: X (k)

t ,Y(k)
t = DISTIL(X̃t, ηe, θ

(k)); X (j)
t ,Y(j)

t = DISTIL(X̃t, ηe, θ
(j))

17: D̃t = AGREEMENT
(
D(k)

t = (X (k)
t ,Y(k)

t ),D(j)
t = (X (j)

t ,Y(j)
t )

)
18: /* train new models on augmented data */
19: for l ∈ {1, 2, 3} do
20: if l 6= j and l 6= k then
21: with sampling factor α, train θ(l) on D, . train progressively
22: where D = {Ds1(e ∈ {1, 3}) ∪ D′

t1(e ∈ {1, 3}) ∪ D̃s1(e = 3) ∪ D̃t1(e ∈ {2, 3})}
23: Return {θ(1), θ(2), θ(3)}

Although the data augmentation proposed in Contextual Augmentation (Kobayashi, 2018), Condi-
tional BERT (Wu et al., 2018), AUG-BERT (Wu et al., 2018) also use a pretrained masked LM,
there are some fundamental differences between our method and these approaches. Unlike these
approaches our vicinity-based LM augmentation is purely unsupervised and we do not perform any
fine-tuning of the pretrained vicinity model (θlm). The vicinity model in XLA is a disjoint pretrained
entity whose weights are not trained on any task objective. This disjoint characteristic gives our
framework the flexibility to replace θlm even with a better monolingual LM for a specific target
language, which in turn makes XLA extendable to utilize stronger LMs that may come in the future.

In the following, we describe the steps in Algorithm 1.

3.1 WARM-UP STEP: TRAINING TASK MODELS WITH CONFIDENCE PENALTY

We first train three instances of the XLM-R model (θ(1), θ(2), θ(3)) with an additional task-specific
linear layer on the source language (English) labeled data. Each model has the same architecture
(XLM-R large) but is initialized with different random seeds. For token-level prediction tasks (e.g.,
NER), the token-level representations are fed into the classification layer, whereas for sentence-level
tasks (e.g., XNLI), the [CLS] representation is used as input to the classification layer.

Training with confidence penalty Our goal is to train the task models so that they can be used
reliably for self-training on a target language that is potentially dissimilar and low-resourced. In such
situations, an overly confident (overfitted) model may produce more noisy pseudo labels, and the
noise will then accumulate as the training progresses. Overly confident predictions may also impose
difficulties on our distillation methods (§3.3) in isolating good samples from noisy ones. However,
maximum likelihood training with the standard cross-entropy (CE) loss may result in overfitted
models that produce overly confident predictions (low entropy), especially when the class distribution
is not balanced. We address this by adding a negative entropy term −H to the CE loss.

L(θ) = −
C∑
c=1

[
yc log pcθ(x)︸ ︷︷ ︸

CE

+ pcθ(x) log p
c
θ(x)︸ ︷︷ ︸

−H

]
(1)
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where x is the representation that goes to the output layer, and ycn and pcθ(xn) are respectively the
ground truth label and model predictions with respect to class c. Such regularizer of output distribution
has been shown to be an effective generalization method for training large models (Pereyra et al.,
2017). In our experiments (§4), we report significant gains with confidence penalty for cross-lingual
transfer. Appendix C shows visualizations on why confidence penalty is helpful for distillation.

3.2 VICINITY DISTRIBUTION AND SENTENCE AUGMENTATION

Our augmentated sentences comes from two different sources: the original target language samples
Xt, and the virtual samples generated from the vicinity distribution of the source and target samples:
ϑ(x̃sn|xsn, θmlm) and ϑ(x̃tn|xtn, θmlm), where xsn ∼ Xs and xtn ∼ Xt. It has been shown that contextual
LMs pretrained on large-scale datasets capture useful linguistic features and can be used to generate
fluent grammatical texts (Hewitt and Manning, 2019). We use the XLM-R masked LM (Conneau
et al., 2020) as our vicinity model θmlm, which is trained on massive multilingual corpora (2.5 TB of
Common-Crawl data in 100 languages). Note that the vicinity model is a disjoint pretrained entity
whose parameters are not trained on any task objective.

In order to generate samples around each selected example, we first randomly choose P% of the
input tokens. Then we successively (i.e., one at a time) mask one of the chosen tokens and ask θmlm
to predict a token in that masked position, i.e., we compute ϑ(x̃m|x, θmlm) with m being the index of
the masked token. For a specific mask, we sample S candidate words from the output distribution.
We then generate novel sentences by following one of the two alternative approaches.
• Successive max In this approach, we take the most probable output token (S = 1) at each

prediction step, ôm = argmaxo ϑ(x̃m = o|x, θmlm). A new sentence is then constructed by P%
newly generated tokens. We generate δ virtual samples for each original example x, by randomly
masking P% tokens each time. Here, δ is the diversification factor.

• Successive cross In this approach, we divide each original sample x into two parts and use
successive max to create two sets of augmented samples of size δ1 and δ2 respectively. We then
take the cross of these two sets to generate δ1 × δ2 augmented samples.

Augmentation of sentences through successive max or successive cross is carried out within the
GEN-LM (generate via LM) module in Algorithm 1. For tasks involving a single sequence (e.g.,
XNER), we directly use successive max. Pairwise tasks like XNLI and PAWS-X have pairwise
dependencies: dependencies between a premise and a hypothesis in XNLI or dependencies between a
sentence and its possible paraphrase in PAWS-X. To model such dependencies, we use successive
cross, which uses cross-product of two successive max applied independently to each component.

3.3 CO-LABELING OF AUGMENTED SENTENCES THROUGH CO-DISTILLATION

Traditional VRM based data augmentation methods assume that the samples generated by the vicinity
model share the same class so that the same class labels can be used for the newly generated data
(Chapelle et al., 2001). This approach does not consider the vicinity relation across examples of
different classes. Recent methods relax this assumption and generate new images and their labels as
simple linear interpolations (Berthelot et al., 2019). However, due to the discrete nature of texts, such
linear interpolation methods have not been successful so far in NLP. The meaning of a sentence (e.g.,
sentiment, word meanings) can change entirely even with minor variations in the original sentence.
For example, consider the following example generated by our vicinity model (more in appendix G).

Original text: EU rejects German call to boycott british lamb.
Masked text: <mask> rejects german call to boycott british lamb.
MLM prediction: Trump rejects german call to boycott british lamb.

Here, EU is an Organization whereas the newly predicted word Trump is a Person (different name
type). Therefore, we need to relabel the augmented sentences no matter whether the original sentence
has labels (source) or not (target). However, the relabeling process can induce noise, especially for
dissimilar/low-resource languages, since the base task model may not be adapted fully in the early
training stages. We propose a two-stage sample distillation process to filter out noisy augmented data.

Sample distillation by single-model. The first stage of distillation involves predictions from a
single peer model for which we propose two alternatives:
(i) Distillation by model confidence: In this approach, we select samples based on the model’s
prediction confidence. This method is similar in spirit to the selection method proposed by Ruder and
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Plank (2018). For sentence-level tasks (e.g., XNLI), the model produces a single class distribution for
each training example. In this case, the model’s confidence is computed by p̂ = maxc∈{1...C} p

c
θ(x).

For token-level sequence labeling tasks (e.g., NER), the model’s confidence is computed by:
p̂ = 1

T

{
maxc∈{1...C} p

c
θ(xt)

}T
t=1

, where T is the length of the sequence. The distillation is then
done by selecting the top η% samples with the highest confidence scores.

(ii) Sample distillation by clustering: We propose this method based on the finding that large neural
models tend to learn good samples faster than noisy ones, leading to a lower loss for good samples
and higher loss for noisy ones (Han et al., 2018; Arazo et al., 2019). We use a 1d two-component
Gaussian Mixture Model (GMM) to model per-sample loss distribution and cluster the samples based
on their goodness. GMMs provide flexibility in modeling the sharpness of a distribution and can be
easily fit using Expectation-Maximization (EM) (Appendix B). The loss is computed based on the
pseudo labels predicted by the model. For each sample x, its goodness probability is the posterior
probability p(z = g|x, θGMM), where g is the component with smaller mean loss. Here, distillation
hyperparameter η is the posterior probability threshold based on which samples are selected.

Distillation by model agreement. In the second stage of distillation, we select samples by taking
the agreement (co-guess) of two different peer models θ(j) and θ(k) to train the third θ(l). Formally,

AGREEMENT
(
D(k),D(j)) = {(X (k),Y(k)) : Y(k) = Y(j)} s.t. k 6= j

3.4 DATA SAMPLES MANIPULATION

XLA uses multi-epoch co-teaching. It uses Ds and D′t in the first epoch. In epoch 2, it uses D̃t
(target virtual), and finally it uses all the four datasets - Ds, D′t, D̃t, and D̃s (line 22 in Alg. 1). The
datasets used at different stages can be of different sizes. For example, the number of augmented
samples in D̃s and D̃t grow polynomially with the successive cross masking method. Also, the
co-distillation produces sample sets of variable sizes. To ensure that our model does not overfit on
one particular dataset, we employ a balanced sampling strategy. For N number of datasets {Di}Ni=1

with probabilities, {pi}Ni=1, we define the following multinomial distribution to sample from:

pi =
fαi∑N
j=1 f

α
j

where fi =
ni∑N
j=1 nj

(2)

where α is the sampling factor and ni is the total number of samples in the ith dataset. By tweaking
α, we can control how many samples a dataset can provide in the mix.

4 EXPERIMENTS

We consider three tasks in the zero-resource cross-lingual transfer setting. We assume labeled training
data only in English, and transfer the trained model to a target language. For all experiments, we
report the mean score of the three models that use different seeds (variance shown in Appendix F).

4.1 TASKS & SETTINGS

XNER: As a sequence labeling task, XNER evaluates the model’s capability to learn task-specific
contextual representations that depend on language structure. We use the standard CoNLL datasets
(Sang, 2002; Sang and Meulder, 2003) for English (en), German (de), Spanish (es) and Dutch (nl).
We also evaluate on Finnish (fi) and Arabic (ar) datasets collected from Bari et al. (2020). Note that
Arabic is structurally different from English, and Finnish is from a different language family. To show
how the models perform on extremely low-resource languages, we experiment with three structurally
different languages from WikiANN (Pan et al., 2017) of different (unlabeled) training data sizes:
Urdu (ur-20k training samples), Bengali (bn-10K samples), and Burmese (my-100 samples).
XNLI XNLI judges the model’s ability to extract a reasonable meaning representation of sentences
across different languages. We use the standard dataset (Conneau et al., 2018). For a given pair of
sentences, the task is to predict the entailment relationship between the two sentences, i.e., whether
the second sentence (hypothesis) is an Entailment, Contradiction, or Neutral with respect to the first
one (premise). We experiment with Spanish, German, Arabic, Swahili (sw), Hindi (hi) and Urdu.
PAWS-X The Paraphrase Adversaries from Word Scrambling Cross-lingual task (Yang et al.,
2019a) requires the models to determine whether two sentences are paraphrases. We evaluate on all
the six (typologically distinct) languages: fr, es, de, Chinese (zh), Japanese (ja), and Korean (ko).
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Settings Our goal is to adapt a task model from a source (language) distribution to an unknown
target (language) distribution assuming no labeled data in the target. In this scenario, there might be
two different distributional gaps: (i) the generalization gap for the source distribution, and (ii) the gap
between the source and target language distribution. We wish to investigate our method in tasks that
exhibit such properties. We use the standard task setting for XNER, where we take 100% samples
from the datasets as they come from various domains and sizes without any specific bias.

Table 1: F1 scores in XNER on datasets from CoNLL and Bari
et al. (2020). "–" represents no results were reported for the setup.

Model en es nl de ar fi
Supervised Results (TRANSLATE-TRAIN-ALL)

LSTM-CRF (Bari et al., 2020) 89.77 84.71 85.16 78.14 75.49 84.21
XLM-R (Conneau et al., 2020) 92.92 89.72 92.53 85.81 – –
XLM-R (our imp.) 92.9 89.2 92.9 86.2 86.8 92.4

Zero-Resource Baseline
mBERTcased (our imp.) 91.13 74.76 79.58 70.99 45.48 65.95
XLM-R (our imp.) 92.23 79.29 80.87 73.40 49.04 75.57
XLM-R (ensemble) 92.76 80.62 81.46 75.40 52.30 76.85

Our Method
mBERTcased +con-penalty 90.81 75.06 79.26 72.31 47.03 66.72
XLM-R+con-penalty 92.49 80.45 81.07 73.76 49.94 76.05
XLA – 83.05 85.21 80.33 57.35 79.75
XLA (ensemble) – 83.24 85.32 80.99 58.29 79.87

However, both XNLI and PAWS-
X training data come with
machine-translated texts in tar-
get languages. Thus, the data is
parallel and lacks enough diver-
sity (source and target come from
the same domain). Cross-lingual
models trained in this setup may
pick up distributional bias (in
the label space) from the source.
Artetxe et al. (2020) also argue
that the translation process can
induce subtle artifacts that may
have a notable impact on models.
Therefore, for XNLI and PAWS-
X, we experiment with two dif-
ferent setups. First, to ensure dis-
tributional differences and non-
parallelism, we use 5% of the training data from the source language and augment a different
(nonparallel) 5% dataset for the target language. We used a different seed each time to retrieve the 5%
target language data. Second, to compare with previous methods, we also evaluate on the standard
100% setup. However, the evaluation is done on the entire test set in both setups. We will refer to these
two settings as 5% and 100%. Details about model settings and hyperparameters are in Appendix E.

4.2 RESULTS

XNER Table 1 reports the XNER results on the datasets from CoNLL and Bari et al. (2020), where
we also evaluate an ensemble by averaging the probabilities from the three models. We observe
that after performing warm-up with conf-penalty, XLM-R performs better than mBERT on average
by ∼3.8% for all the languages. On average, XLA gives a sizable improvement of ∼5.5% on five
different languages. Specifically, we get an absolute improvement of 3.76%, 4.34%, 6.94%, 8.31%,
and 4.18% for es, nl, de, ar, and fi, respectively. Interestingly, XLA surpasses supervised LSTM-CRF
for nl and de without using any target labeled data. It also produces comparable results for es.
In Table 2, we report the results on the three low-resource langauges from WikiANN. From these
results and the results of ar and fi in Table 1, we see that XLA is very effective for languages that
are structurally dissimilar and/or low-resourced, especially when the base model is weak: 28.54%,
16.05%, and 9.25% absolute improvements for ur, my and ar, respectively.

Table 2: XNER results on WikiANN

Model ur bn my
Supervised Results

XLM-R (our-impl) 97.1 97.8 76.8

Zero-Resource Results
XLM-R (XTREME) 56.4 78.8 54.3
XLM-R (our imp.) 56.45 78.17 54.56
XLA 84.99 82.68 70.61

XNLI-5% From Table 3, we see that the performance
of XLM-R trained on 5% data is surprisingly good com-
pared to the model trained on full data (XLM-R (our imp.)),
lagging by only 5.6% on average. In our single GPU imple-
mentation of XNLI, we could not reproduce the reported
results of Conneau et al. (2020). However, our results re-
semble the reported XLM-R results of XTREME (Hu et al.,
2020). We consider XTREME as our standard baseline for
XNLI-100%.
We observe that with only 5% labeled data in the source,
XLA gets comparable results to the XTREME baseline that uses 100% labeled data (lagging behind by
only ∼0.7% on average); even for ar and sw, we get 0.22% and 1.11% improvements, respectively. It
surpasses the standard 5% baseline by 4.2% on average. Specifically, XLA gets absolute improvements
of 3.05%, 3.34%, 5.38%, 5.01%, 4.29%, and 4.12% for es, de, ar, sw, hi, and ur, respectively. Again,
the gains are relatively higher for low-resource and/or dissimilar languages despite the base model
being weak in such cases.

7



Under review as a conference paper at ICLR 2021

Table 3: Results in accuracy for XNLI.

Model en es de ar sw hi ur
Supervised Results (TRANSLATE-TRAIN-ALL)

XLM-R 89.1 86.6 85.7 83.1 78.0 81.6 78.1

Zero-Resource Baseline for Full (100%) English labeled training set

XLM-R (XTREME) 88.7 83.7 82.5 77.2 71.2 75.6 71.7
XLM-R (our imp.) 88.87 84.34 82.78 78.44 72.08 76.40 72.10
XLM-R (ensemble) 89.24 84.73 83.27 79.06 73.17 77.23 73.07

XLM-R+con-penalty 88.83 84.30 82.86 78.20 71.83 76.24 71.62
XLA – 85.65 84.15 80.50 74.70 78.74 73.35
XLA (ensemble) – 86.12 84.61 80.89 74.89 78.98 73.45

Zero-Resource Baseline for 5% English labeled training set

XLM-R (our imp.) 83.08 78.48 77.54 72.04 67.3 70.41 66.72
XLM-R (ensemble) 84.65 79.56 78.38 72.22 66.93 71.00 66.79

XLM-R+con-penalty 84.24 79.23 78.47 72.43 67.72 71.08 67.63
XLA – 81.53 80.88 77.42 72.31 74.70 70.84
XLA (ensemble) – 82.35 81.93 78.56 73.53 75.20 71.15

XNLI-100% Now, considering
XLA’s performance on the full (100%)
labeled source data in Table 3, we see
that it achieves state-of-the-art results
for all of the languages with an absolute
improvement of 2.55% on average from
the XTREME baseline. Specifically,
XLA gets absolute improvements of
1.95%, 1.68%, 4.30%, 3.50%, 3.24%,
and 1.65% for es, de, ar, sw, hi, and ur,
respectively.

PAWS-X Similar to XNLI, we ob-
serve sizable improvements for XLA
over the baselines on PAWS-X for both
5% and 100% settings (Table 4). Specif-
ically, in 5% setting, XLA gets absolute
gains of 5.33%, 5.94%, 5.04%, 6.85%, 7.00%, and 5.45% for de, es, fr, ja, ko, and zh, respectively,
while in 100% setting, it gets 2.21%, 2.36%, 2.00%, 3.99%, 4.53%, and 4.41% improvements re-
spectively. In general, we get an average improvements of 5.94% and 3.25% in PAWS-X-5% and
PAWS-X-100% settings respectively. Moreover, our 5% setting outperforms 100% XLM-R baselines
for es, ja, and zh. Interestingly, in the 100% setup, our XLA (ensemble) achieves almost similar
accuracies compared to supervised finetuning of XLM-R on all target language training dataset.

5 ANALYSIS

Table 4: Results in accuracy for PAWS-X.

Model en de es fr ja ko zh
Supervised Results (TRANSLATE-TRAIN-ALL)

XLM-R (our impl.) 95.8 92.5 92.8 93.5 85.5 86.6 87.6

Zero-Resource Baseline for Full (100%) English labeled training set

XLM-R (XTREME) 94.7 89.7 90.1 90.4 78.7 79.0 82.3
XLM-R (our imp.) 95.46 90.06 89.92 90.85 79.89 79.74 82.49
XLM-R (ensemble) 96.10 90.75 90.55 91.80 80.55 80.70 83.45

XLM-R+con-penalty 95.38 90.75 90.72 91.71 81.77 82.07 84.25
XLA – 92.27 92.28 92.85 83.88 84.27 86.90
XLA (ensemble) – 92.55 92.35 93.35 84.30 84.35 86.95

Zero-Resource Baseline for 5% English labeled training set

XLM-R (our imp.) 91.15 83.72 84.32 85.08 73.65 72.60 77.22
XLM-R (ensemble) 92.05 84.05 84.65 85.75 74.30 71.95 77.50

XLM-R+con-penalty 91.85 86.15 86.38 85.98 76.03 75.43 79.15
XLA – 89.05 90.27 90.12 80.50 79.60 82.65
XLA (ensemble) – 89.25 90.85 90.25 81.15 80.15 82.90

In this section, we further analyze XLA
by dissecting it and measuring the con-
tribution of its different components. For
this, we use the XNER task and analyze
the model based on the results in Table 1.

5.1 ANALYSIS
OF DISTILLATION METHODS

Model confidence vs. clustering We
first analyze the performance of our
single-model distillation methods (§3.3)
to see which of the two alternatives works
better. From Table 5, we see that both
perform similarly, with model confidence
being slightly better. In our main experi-
ments (Tables 1-4) and subsequent analy-
sis, we use model confidence for distilla-
tion. However, we should not rule out the clustering method as it gives a more general solution to
consider other distillation features (e.g., sequence length, language) than model prediction scores,
which we did not explore in this paper.

Distillation factor η We next show the results for different distillation factor (η) in Table 5. Here
100% refers to the case when no single-model distillation is done based on model confidence. We
notice that the best results for each of the languages are obtained for values other than 100%, which
indicates that distillation is indeed an effective step in XLA. See Appendix C.2 for more on η.

Two-stage distillation We now validate whether the second-stage distillation (distillation by model
agreement) is needed. In Table 5, we also compare the results with the model agreement (shown as ∩)
to the results without using any agreement (shown as φ). We observe better performance with model
agreement in all the cases on top of the single-model distillation, which validates its utility.

5.2 DIFFERENT TYPES OF AUGMENTATION IN DIFFERENT STAGES

Figure 2 presents the effect of different types of augmented data used by different epochs in our
multi-epoch co-teaching framework. We observe that in every epoch, there is a significant boost in
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Table 5: Analysis of distillation on XNER. Results
after epoch-1 training that uses {Ds,D′t}.

η Agreement es nl de ar fi

Distillation by clustering

0.7 ∩ 82.28 83.25 78.86 52.64 78.47

0.5 ∩ 82.35 83.11 78.16 54.20 78.28

Distillation by model confidence

50% ∩ 82.52 82.46 75.95 52.00 77.51
φ 81.66 82.26 77.19 52.97 77.77

80% ∩ 82.33 83.53 78.50 54.48 78.43
φ 81.61 83.03 77.08 53.31 78.34

90% ∩ 81.90 82.80 79.03 52.41 78.66
φ 81.21 82.77 77.28 52.20 77.93

100% ∩ 82.50 82.35 77.06 52.58 77.51
φ 81.89 82.15 76.97 52.68 78.01

Figure 2: Validation F1 results in XNER for
multi-epoch co-teaching training of XLA.

F1 scores for each of the languages. Arabic, being structural dissimilar to English, has a lower base
score, but the relative improvements brought by XLA are higher for Arabic, especially in epoch 2
when it gets exposed to the target language virtual data (D̃t) generated by the vicinity distribution.

5.3 ROBUSTNESS OF XLA
Table 6: F1 scores on XNER for all target languages.
Each column (e.g., es) under XLA Model represents
results in all target languages for a XLA model trained
with the augmented data in a specific language (e.g.,
es). The Zero shot+con-penalty column represents
the zero-shot results for the model after WarmUp.

Tgt Zero shot + XLA Model
lang con-penalty es nl de ar fi
en 92.88 92.92 92.87 92.91 92.80 92.68
es 81.42 83.24 82.01 77.71 80.29 81.97
nl 81.27 81.22 85.32 80.54 82.36 84.20
de 75.20 73.63 75.03 80.03 76.97 73.77
ar 50.88 52.66 53.08 52.52 58.29 53.80
fi 76.97 77.02 77.06 76.69 77.13 80.11

Table 6 shows the robustness of the finetuned
XLA model on XNER task. After finetuning
in a specific target language, the F1 scores in
English remain almost similar. For some lan-
guages, XLA adaptation on a different lan-
guage also improves the performance. For
example, Arabic gets improvements for all
XLA-adapted models (compare 50.88 with
others). This indicates that augmentation of
XLA does not overfit on a target language.

5.4 EFFECT
OF CONFIDENCE PENALTY & ENSEMBLE

For all the three tasks, we get reasonable
improvements over the baselines by training with confidence penalty regularizer (§3.1). Specifically,
we get 0.56%, 0.74%, 1.89%, and 1.18% improvements in XNER, XNLI-5%, PAWS-X-5%, and
PAWS-X-100% respectively (Table 1,3,4). The improvements in XNLI-100% are marginal and
inconsistent, which we suspect due to the balanced class distribution.

From the results of ensemble models, we see that the ensemble boosts the baseline XLM-R. However,
our regular XLA still outperforms the ensemble baselines by a sizeable margin. Moreover, ensembling
the trained models from XLA further improves the performance. These comparisons ensure that the
capability of XLA through co-teaching and co-distillation is beyond the ensemble effect.

6 CONCLUSION

We propose a novel data augmentation framework, XLA, for zero-resource cross-lingual task adap-
tation. XLA performs simultaneous self-training with data augmentation and unsupervised sample
selection. With extensive experiments on three different cross-lingual tasks spanning many language
pairs, we have demonstrated the effectiveness of XLA. For the zero-resource XNER task, XLA sets a
new SoTA for all the tested languages. For both XNLI and PAWS-X tasks, with only 5% labeled data
in the source, XLA gets comparable results to the baseline that uses 100% labeled data. Through an
in-depth analysis, we show the cumulative contributions of different components of XLA.
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APPENDIX

Here we provide the additional contents regarding the XLA framework. In appendix A, we present
the justification for design choices of XLA framework. In appendix B, we discuss the mathematical
details of EM training for two components GMM clustering algorithm. In appendix C, we visualize
various effects of confidence penalty. In appendix E, we present the setup details of our experiments.
In appendix D and F, we elaborate on the related work and results with standard deviation as well as
comparing with prior research work, respectively. Finally, in appendix G we present the examples of
augmented samples generated by our vicinity model for XNER, XNLI, and PAWS-X.

A JUSTIFICATIONS FOR DESIGN METHODOLOGY OF XLA FRAMEWORK

Here are our justifications for various design principles of the XLA framework.

Is using three models with different initialization necessary? Yes, different initialization en-
sures different convergence paths, which results in diversity during inference. Co-labeling (Section
3.3) utilizes this property. There could be some other ways to achieve the same thing. For example,
our initial attempt with three different heads (sharing a backbone net) didn’t work well.

Is using three epochs necessary? We utilize different types of datasets in different epochs. While
pseudo-labeling may induce noise, the model’s predictions for in-domain cross-lingual samples are
usually better. Because of this, for a smooth transition, we apply the vicinal samples in the second
epoch. Finally, inspired by the joint training of the cross-lingual language model, in the third epoch we
use all four datasets. We also include the labeled source data which ensures that our model does not
overfit on target distribution as well as persists the generalization capability of the source distribution.

Need for the combination of co-teaching, co-distillation and co-guessing? The combination of
these helps to distill out the noisy samples better.

Efficiency of the method and expensive extra costs for large-scale pretrained models It is a
common practice in model selection to train 3-5 disjoint LM-based task models (e.g., XLM-R on
NER) with different random seeds and report the ensemble score or score of the best (validation set)
model. In contrast, XLA uses 3 different models and jointly trains them where the models assist each
other through distillation and co-labeling. In that sense, the extra cost comes from distillation and
co-labeling, which is not significant and is compensated by the significant improvements that XLA
offers.

B DETAILS ON DISTILLATION BY CLUSTERING

One limitation of the confidence-based (single-model) distillation is that it does not consider task-
specific information. Apart from classifier confidence, there could be other important features that can
distinguish a good sample from a noisy one. For example, for sequence labeling, sequence length can
be an important feature as the models tend to make more mistakes (hence noisy) for longer sequences
Bari et al. (2020). One might also want to consider other features like fluency, which can be estimated
by a pre-trained conditional LM like GPT Radford et al. (2019). In the following, we introduce a
clustering-based method that can consider these additional features to separate good samples from
bad ones.

Here our goal is to cluster the samples based on their goodness. It has been shown in computer vision
that deep models tend to learn good samples faster than noisy ones, leading to a lower loss for good
samples and higher loss for noisy ones Han et al. (2018); Arpit et al. (2017). We propose to model
per-sample loss distribution (along with other task-specific features) with a mixture model, which we
fit using an Expectation-Maximization (EM) algorithm. However, contrary to those approaches which
use actual (supervised) labels, we use the model predicted pseudo labels to compute the loss for the
samples.

We use a two-component Gaussian Mixture Model (GMM) due to its flexibility in modeling the
sharpness of a distribution Li et al. (2020a). In the following, we describe the EM training of the
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GMM for one feature, i.e., per-sample loss, but it is trivial to extend it to consider other indicative
task-specific features like sequence length or fluency score (see any textbook on machine learning).

EM training for two-component GMM Let xi ∈ IR denote the loss for sample xi and zi ∈ {0, 1}
denote its cluster id. We can write the 1d GMM model as:

p(xi|θ, π) =
1∑
k=0

N (xi|µk, σk)πk (3)

where θk = {µk, σ2
k} are the parameters of the k-th mixture component and πk = p(zi = k) is the

probability (weight) of the k-th component with the condition 0 ≤ πk ≤ 1 and
∑
k πk = 1.

In EM, we optimize the expected complete data log likelihood Q(θ, θt−1) defined as:

Q(θ, θt−1) = E(
∑
i

log[p(xi, zi|θ)]) (4)

= E(
∑
i

∑
k

I(zi = k) log[p(xi|θk)πk]) (5)

=
∑
i

∑
k

E(I(zi = k)) log[p(xi|θk)πk] (6)

=
∑
i

∑
k

p(zi = k|xi, θt−1) log[p(xi|θk)πk] (7)

=
∑
i

∑
k

ri,k(θ
t−1) log p(xi|θk) + ri,k(θ

t−1) log πk (8)

where ri,k(θt−1) is the responsibility that cluster k takes for sample xi, which is computed in the
E-step so that we can optimize Q(θ, θt−1) (Eq. 8) in the M-step. The E-step and M-step for a 1d
GMM can be written as:

E-step: Compute ri,k(θt−1) =
N (xi|θt−1

k )πt−1
k∑

kN (xi|θt−1
k )πt−1

k

M-step: Optimize Q(θ, θt−1) w.r.t. θ and π

• πk =
∑

i ri,k∑
i

∑
k ri,k

= 1
N

∑
i ri,k

• µk =
∑

i ri,kxi∑
i ri,k

; σ2
k =

∑
i ri,k(xi−µk)

2∑
i ri,k

Inference For a sample x, its goodness probability is the posterior probability p(z = g|x, θ), where
g ∈ {0, 1} is the component with smaller mean loss. Here, distillation hyperparameter η is the
posterior probability threshold based on which samples are selected.

Relation with distillation by model confidence Astute readers might have already noticed that
per-sample loss has a direct deterministic relation with the model confidence. Even though they
are different, these two distillation methods consider the same source of information. However, as
mentioned, the clustering-based method allows us to incorporate other indicative features like length,
fluency, etc. For a fair comparison between the two methods, we use only the per-sample loss in our
primary (single-model) distillation methods.

C VISUALIZING THE EFFECT OF CONFIDENCE PENALTY

C.1 EFFECT OF CONFIDENCE PENALTY IN CLASSIFICATION

In Figure 3, we present the effect of the confidence penalty (Eq. 1 in the main paper) in the target
language (Spanish) classification on the XNER dev. data (i.e., after training on English NER). We
show the class distribution from the final logits (on the target language) using t-SNE plots van der
Maaten and Hinton (2008).
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From the figure, it is evident that the use of confidence penalty in the warm-up step makes the model
more robust to unseen out-of-distribution target language data yielding better predictions, which in
turn also provides a better prior for self-training with pseudo labels.

(a) Without confidence penalty. (b) With confidence penalty.

Figure 3: Effect of training with confidence penalty in the warm-up step on target (Spanish) lan-
guage XNER classification using t-SNE plots. From the visualization, it can be seen that the model
trained with confidence penalty shows better inter-class separation which exhibits robustness of the
multilingual model.

C.2 EFFECT OF CONFIDENCE PENALTY IN LOSS DISTRIBUTION

Figures 4(a) and 4(b) present the per-sample loss (i.e., mean loss per sentence w.r.t. the pseudo labels)
distribution in histogram without and with confidence penalty, respectively. Here, accurate-2 refers
to the sentences which have at most two wrong NER labels, and sentences containing more than two
errors are referred to as noisy samples. It shows that without confidence penalty, there are many noisy
samples with a small loss which is not desired. In addition to that, the figures also suggest that the
confidence penalty helps to separate the clean samples from the noisy ones either by clustering or by
model confidence.

(a) Without confidence penalty. (b) With confidence penalty.

Figure 4: Histogram of loss distribution on target (Spanish) language XNER classification.
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Figures 5(a) and 5(b) present the loss distribution in a scatter plot by sorting the sentences based
on their length in the x-axis; y-axis represents the loss. As we can see, the losses are indeed more
scattered when we train the model with confidence penalty, which indicates higher per-sample entropy,
as expected. Also, we can see that as the sentence length increases, there are more wrong predictions.
Our distillation method should be able to distill out these noisy pseudo samples.

(a) Without confidence penalty. (b) With confidence penalty.

Figure 5: Scatter plot of loss distribution on target (Spanish) language XNER classification.

Finally, Figures 6(a) and 6(b) show the length distribution of all vs. the selected sentences (by
Distillation by model confidence) without and with confidence penalty. Bari et al. (2020) shows that
cross-lingual NER inference is heavily dependent on the length distribution of the samples. In general,
the performance of the lower length samples is more accurate. However, if we only select the lower
length samples we will easily overfit. From these plots, we observe that the confidence penalty also
helps to perform a better distillation as more sentences are selected (by the distillation procedure)
from the lower length distribution, while still covering the entire lengths. This shows that using the
confidence penalty in training, model becomes more robust.

In summary, comparing the Figures 4 - 6, we can conclude that training without confidence penalty
can make the model more prone to over-fitting, resulting in more noisy pseudo labels. Training with
confidence penalty not only improves pseudo labeling accuracy but also helps the distillation methods
to perform better noise filtering.
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(a) Without confidence penalty.

(b) With confidence penalty.

Figure 6: Distribution of selected sentence lengths on target (Spanish) language XNER classification.
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D EXTENDED RELATED WORK

Contextual representation and cross-lingual transfer. In earlier approaches, word representa-
tions are learned from simple variants of the skip-gram model Mikolov et al. (2013), where each
word has a single representation regardless of its context Grave et al. (2018); Pennington et al. (2014).
Recent approaches learn word representations that change based on the context that the word appears
in McCann et al. (2017); Peters et al. (2018); Howard and Ruder (2018); Devlin et al. (2019); Yang
et al. (2019b); Radford et al. (2019).

Peters et al. (2018) propose ELMo - a bidirectional LSTM-based LM pre-training method for
learning contextualized word representations. ELMo uses a linear combination of all of its layers’
representations for predicting on a target task. However, because of sequential encoding, LSTM-
based LM pre-training is hard to train at scale. Vaswani et al. (2017) propose the Transformer
architecture based on multi-headed self-attention and positional encoding. The Transformer encoder
can capture long-range sequential information and allows constant time encoding of a sequence
through parallelization. Radford et al. (2018) propose GPT-1, which pre-trains a Transformer decoder
with a conditional language model objective and then fine-tune it on the task with minimal changes
to the model architecture. In the same spirit, Devlin et al. (2019) propose BERT, which pre-trains
a Transformer encoder with a masked language model (MLM) objective, and uses the same model
architecture to adapt to a new task. The advantage of MLM objective is that it allows bidirectional
encoding, whereas the standard (conditional) LM is unidirectional (i.e., uses either left context or
right context).

BERT also comes with a multilingual version called mBERT, which has 12 layers, 12 heads and
768 hidden dimensions, and it is trained jointly on 102 languages with a shared vocabulary of 110K
subword tokens.2 Despite any explicit cross-lingual supervision, mBERT has been shown to learn
cross-lingual representations that generalise well across languages. Wu and Dredze (2019); Pires
et al. (2019) evaluate the zero-shot cross-lingual transferability of mBERT on several NLP tasks and
attribute its generalization capability to shared subword units. Pires et al. (2019) additionally found
structural similarity (e.g., word order) to be another important factor for successful cross-lingual
transfer. K et al. (2020), however, show that the shared subword has minimal contribution, rather the
structural similarity between languages is more crucial for effective transfer. Artetxe et al. (2019)
further show that joint training may not be necessary and propose an alternative method to transfer a
monolingual model to a bi-lingual model through learning only the word embeddings in the target
language. They also identify the vocabulary size per language as an important factor.

Lample and Conneau (2019) extend mBERT with a conditional LM and a translation LM (using
parallel data) objectives and a language embedding layer. They train a larger model with more
monolingual data. Huang et al. (2019) propose to use auxiliary tasks such as cross-lingual word
recovery and paraphrase detection for pre-training. Recently, Conneau et al. (2020) train the largest
multilingual language model with 24-layer transformer encoder, 1024 hidden dimensions and 550M
parameters. Keung et al. (2019) use adversarial fine-tuning of mBERT to achieve better language
invariant contextual representation for cross-lingual NER and MLDoc document classification.

Vicinal risk minimization. One of the fundamental challenges in deep learning is to train models
that generalize well to examples outside the training distribution. The widely used Empirical Risk
Minimization (ERM) principle where models are trained to minimize the average training error has
been shown to be insufficient to achieve generalization on distributions that differ slightly from the
training data Szegedy et al. (2014); Zhang et al. (2018). Data augmentation supported by the Vicinal
Risk Minimization (VRM) principle Chapelle et al. (2001) can be an effective choice for achieving
better out-of-training generalization.

In VRM, we minimize the empirical vicinal risk defined as:

Lv(θ) =
1

N

N∑
n=1

l(fθ(x̃n), ỹn) (9)

where fθ denotes the model parameterized by θ, and Daug = {(x̃n, ỹn)}Nn=1 is an augmented dataset
constructed by sampling the vicinal distribution ϑ(x̃, ỹ|xi, yi) around the original training sample

2github.com/google-research/bert/blob/master/multilingual.md
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(xi, yi). Defining vicinity is however challenging as it requires to extract samples from a distribution
without hurting the labels. Earlier methods apply simple rules like rotation and scaling of images
Simard et al. (1998). Recently, Zhang et al. (2018); Berthelot et al. (2019) and Li et al. (2020a) show
impressive results in image classification with simple linear interpolation of data. However, to our
knowledge, none of these methods has so far been successful in NLP due to the discrete nature of
texts.

E SETUP DETAILS

E.1 ZERO-SHOT VS. ZERO-RESOURCE TRANSFER

Previous work on cross-lingual transfer has followed different training-validation standards. Xie et al.
(2018) perform cross-lingual transfer of NER from a source language to a target language, where
they train their model on translations of the source language training data and validate it (for model
selection) with target language development data. They call this as an unsupervised setup as they
use an unsupervised word translation model Conneau et al. (2017). Several other studies Conneau
et al. (2018); Lample and Conneau (2019); Wang et al. (2019) also apply the same setting and select
their model based on target language development set performance. On the other hand, Artetxe and
Schwenk (2018), Wu and Dredze (2019) validate their models using source language development
data. Bari et al. (2020) show significant performance differences between validation with source vs.
target language development data for NER. Later, Conneau et al. (2020) provide a comprehensive
analysis of different training-validation setups and encourage validating with the source language
development data. Therefore, it is clear that there is no unanimous agreement regarding the proper
setup. Following the previous work and landscape of the problem, we think that different settings
should be considered under different circumstances.

In a pure zero-shot cross-lingual transfer, no target language data should be used either for training or
for model selection. The goal here is to evaluate the generalizability and transferability of a model
trained on a known source language distribution to an unknown target language distribution. In this
sense, zero-shot setting is suitable to measure the cross-lingual transferability of a pre-trained model.

Our goal in this work is not to propose a new pre-training approach, rather to propose novel cross-
lingual adaptation methods and evaluate their capability on downstream tasks. Our proposed XLA
framework performs simultaneous self-training with data augmentation and unsupervised sample
selection. As our objective is to evaluate cross-lingual adaptation performance and not cross-lingual
representation, we train our model with the original source and augmented source and target language
data, while validating it with target development data for model selection. We refer this as zero-
resource setup, which is still a minimal supervision setting for task adaptation because no true target
labels are used for training the model. This setup also gives us a way to compare how far we are from
the supervised adaptation setting (train and validate on target language data).

E.2 USE OF MBERT VS. XLM-R

From Table 4, we see that mBERT Devlin et al. (2019) trains the smallest multi-lingual language
model (LM) in terms of training data size and model parameters, while XLM-R is the largest one.

Table 4: Training data size and number of model parameters of Cross-lingual Language Models.

Model Name Tokenization Language #Head #Layer #Representation #Vocab. #Params. Dataset. Data size.

mBERT cased 104 12 12 767 110k 172M wiki ∼ 100 GB
mBERT uncased 102 12 12 767 110k 172M wiki ∼ 100 GB
XLM-15 uncased 15 8 12 1024 95K 250M wiki ∼ 100 GB
XLM-17 cased 17 16 16 1024 200k 570M wiki ∼ 100 GB
XLM-100 cased 100 16 16 1280 200k 570M wiki ∼ 100 GB
XLM-R cased 100 16 16 1280 200k 570 CC-100 2.5 TB

At its heart, XLA uses the generation capability of a pre-trained LM for data augmentation, which
could be a bottleneck for XLA’s performance. In our initial experiments, we found that the generation
quality of mBERT is not as good as that of XLM-R. Using mBERT as the vicinity model can thus
generate noisy samples that can propagate to the task models and may thwart us from getting the
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maximum benefits from the XLA framework. Thus to ensure the generation of better vicinity samples,
we choose to use XLM-R - the best performing multi-lingual LM to date, as the vicinity model θlm
in our framework.

For the task model θ(i), in principle we can use any multilingual model (e.g., mBERT, XLM-R) while
using XLM-R as the vicinity model. However, if we use a weaker model (e.g., mBERT) compared to
the vicinity model, the performance gain may not be easily distinguishable, i.e., the gain may come
from the increased generalization capability of the stronger vicinity model. This, in turn, can make
us unable to evaluate the XLA framework properly in terms of its adaptation capability. In addition,
from Table 1 and Table 2 (in the main paper), we observe that the zero-shot XLM-R outperforms
mBERT in the warm-up step by ∼ 3.8% in NER and ∼ 13.46% in XNLI. Therefore, we choose to
use XLM-R for both the task model θ(i) and vicinity model θlm. Using this setup, an improvement
over the baseline in XLA strictly indicates the superior performance of the framework.

It is also both attractive and challenging to use a single LM (XLM-R) as the vicinity model θlm over
different languages. Note that the vicinity model in our framework is a disjoint pre-trained entity
whose weights are not trained on any task objective. This disjoint characteristic gives our framework
the flexibility to replace θlm with a better monolingual LM for a specific target language, which in
turn makes our model extendable to utilize stronger and new LMs that may come in future.

E.3 DATASETS (EXTENDED VERSION)

XNER. For XNER, we transfer from English (en) to Spanish (es), German (de), Dutch (nl), Arabic
(ar), and Finnish (fi). For English and German, we consider the dataset from CoNLL-2003 shared
task Sang and Meulder (2003), while for Spanish and Dutch, we use the dataset from CoNLL-2002
shared task Sang (2002). We collected Arabic and Finnish NER datasets from Bari et al. (2020). The
NER tags are converted from IOB1 to IOB2 for standardization and all the tokens of each of the
six (6) datasets are classified into five (5) categories: Person, Organization, Location, Misc., and
Other. Pre-trained LMs like XLM-R generally operate at the subword level. As a result, when the
labels are at the word level, if a word is broken into multiple subwords, we mask the prediction
of non-first subwords. Table 9 presents the detail statistics of the XNER datasets. We see that the
datasets for different languages vary in size. Also the class-distribution is not balanced in these
datasets. Therefore, we use the micro F1 score as the evaluation metric for XNER.

Table 5: Statistics of training, development and test datasets in different languages for XNER.

Lang Train Dev. Test XLMR data % of en

English 14041 3250 3453 300.8 GB 100
Spanish 8323 1915 1517 53.3 GB ∼17.70
Dutch 15519 2821 5076 29.3 GB ∼9.74
German 12152 2867 3005 66.6 GB ∼22.14
Arabic 2166 267 254 28.0 GB ∼9.30
Finnish 13497 986 3512 54.3 GB ∼18.05

XNLI. We use the standard XNLI dataset Conneau et al. (2018) which extends the MultiNLI
dataset Williams et al. (2018) to 15 languages. For a given pair of sentences, the task is to predict the
entailment relationship between the two sentences, i.e., whether the second sentence (hypothesis)
is an Entailment, Contradiction, or Neutral with respect to the first one (premise). For XNLI, we
experiment with transferring from English to Spanish (es), German (de), Arabic (ar), Swahili (sw),
Hindi (hi), and Urdu (ur). Unlike NER, from Table 6, we see that the dataset sizes are same for all
languages. Also the class-distribution is balanced in all the languages. Thus, we use accuracy as the
evaluation metric for XNLI.

PAWS-X. The task of PAWS (Paraphrase Adversaries from Word Scrambling) (Zhang et al., 2019)
is to predict whether each pair is a paraphrase or not. PAWS-X contains six typologically distinct
languages: French, Spanish, German, Chinese, Japanese, and Korean. For this task, we experiment
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Table 6: Statistics of training, development and test datasets in different languages for XNLI.

Lang Train Dev. Test XLMR data % of en

English 392702 2490 5010 300.8 GB 100
Spanish 392702 2490 5010 53.3 GB ∼17.70
German 392702 2490 5010 66.6 GB ∼22.14
Arabic 392702 2490 5010 28.0 GB ∼9.30
Swahili 392702 2490 5010 1.5 GB ∼0.50
Hindi 392702 2490 5010 20.2 GB ∼6.72
Urdu 392702 2490 5010 5.7 GB ∼1.89

with transferring from English to all of these six languages. Table 7 presents the detail statistics of
the PAWS-X datasets. Similar to XNLI, we use accuracy as the evaluation metric for this task.

Table 7: Statistics of training, development and test datasets in different languages for PAWS-X.

Lang Train Dev. Test XLMR data % of en

English 49401 8000 8000 300.8 GB 100
French 49401 2490 5010 56.8 GB ∼18.88
Spanish 49401 1962 1999 53.3 GB ∼17.70
German 49401 1932 1967 66.6 GB ∼22.14
Chinese 49401 1984 1975 63.5 GB ∼21.11
Japanese 49401 1980 1946 69.3 GB ∼23.04
Korean 49401 1965 1972 54.2 GB ∼18.02

E.4 SETTINGS (EXTENDED VERSION)

We present the hyperparameter settings for XNER and XNLI tasks for the XLA framework in Table
8. In the warm-up step, we train and validate the task models with English data. However, for cross-
lingual adaptation, we validate (for model selection) our model with the target language development
set. We train our model with respect to the number of steps instead of the number of epochs. In the
case of a given number of epochs, we convert it to a total number of steps.

For both tasks, we observe that learning rate is a crucial hyperparameter. In table 8, lr-warm-up-steps
refer to the warmup-step from triangular learning rate scheduling Smith (2015). This hyperparameter
is not to be confused with Warm-up step of the XLA framework. In our experiments, batch-size is
another crucial hyperparameter that can be obtained by multiplying per GPU training batch size with
the total number of gradient accumulation steps. We fix the maximum sequence length to 280 for
XNER and 128 tokens for XNLI.

For each of the experiments, we report the average score of three task models, θ(1), θ(2), θ(3), which
are initialized with different seeds. We perform each of the experiments in a single GPU setup with
float32 precision.
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Table 8: Hyperparameter settings for XNER, XNLI, and PAWS-X task.

Hyperparameter XNER XNLI PAWS-X
Warm-up step X-lingual adaptation Warm-up step X-lingual adaptation Warm-up step X-lingual adaptation

Training-hyperparameters

model-type xlm-r L warm-up-ckpt xlm-r L warm-up-ckpt xlm-r L warm-up-ckpt
sampling-factor α – 0.7 – 0.7 – 0.7
drop-out 0.1 0.1 0.1 0.1 0.1 0.1
max-seq-length 280 280 128 128 128 128
per-gpu-train-batch-size 4 4 16 16 16 16
grad-accumulation-steps 5 4 2 2 2 2
logging-step 50 50 50 25 50 25
learning-rate (lr) 3e−5 5e−6 1e−6 1e−6 1e−6 1e−6
lr-warm-up-steps 200 10% of train 10% of train 10% of train 10% of train 10% of train
weight-decay 0.01 0.01 – – – –
adam-epsilon 1e−8 1e−8 1e−8 1e−8 1e−8 1e−8
max-grad-norm 1.0 1.0 1.0 1.0 1.0 1.0
num-of-train-epochs – 1 – 1 – 1
XLA-epochs – 3 6 3 10 6
max-steps 3000 – – – –
train-data-percentage 100 100 5 5 5 5
conf-penalty True False True False True False

Distillation-hyperparameters

#mixture-component – . 2 – – – –
posterior-threshold – 0.5 – – – –
covariance-type – Full – – – –
distilation-factor η – 80, 100, 100 – 50, 80, 100 – 80, 90, 80
distillation-type – confidence – confidence – confidence

Augmentation-hyperparameters

do-lower-case False False False False - False
aug-type – successive-max – successive-cross – successive-cross
aug-percentage P – 30 – 30 – 40
diversification-factor δ – 3 – 2×2 – 2 ×2
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F RESULTS (EXTENDED VERSION)

We include detailed results for CoNLL-XNER, XNLI, and PAWS-X datasets to compare with previous
literatures. We also provide standard deviations over three different random seeds here.

Table 9: Results in F1 score for Cross-lingual Named Entity Recognition (XNER). "x" represents
model fails to converge and "-" represents no results were reported for the setup.

Model en es nl de ar fi

Supervised Result

(Char+fastText) bi-LSTM-CRF Bari et al. (2020) 89.77 ± 0.19 84.71 ± 0.06 85.16 ± 0.21 78.14 ± 0.42 75.49 ± 0.53 84.21 ± 0.13
XLM-R Conneau et al. (2020) 92.92 89.72 92.53 85.81 – –
XLM-R (our imp.) 92.9 ± 0.23 89.2 ± 0.37 92.9 ± 0.21 86.2 ± 0.32 86.8 ± 0.53 92.4 ± 0.2

Zero-Resource Baseline

fastText-bi-LSTM-CRF Bari et al. (2020) 88.98 ± 0.25 x x x x x
(Char+fastText)bi-LSTM-CRF Bari et al. (2020) 89.92 ± 0.15 26.76 ± 1.45 20.94 ± 0.74 8.34 ± 1.43 x 22.44 ± 2.23

BERT-base-cased 91.21 ± 0.18 52.88 ± 1.33 29.16 ± 3.30 44.41 ± 2.36 x 30.18 ± 1.93

Keung et al. (2019) – 75.00 77.50 68.60 – –
Wang et al. (2019) – 75.77 79.03 70.54 – –
Wu and Dredze (2019) – 74.96 77.57 69.56 – –
Pires et al. (2019) – 73.59 77.36 69.74 – –
Conneau et al. (2020) – 78.64 80.80 71.40 – –
Bari et al. (2020) – 75.93 ± 0.81 74.61 ± 1.24 65.24 ± 0.56 36.91 ± 2.74 53.77 ± 1.54
mBERT-cased (Our implementation) 91.13 ± 0.14 74.76 ± 1.06 79.58 ± 0.38 70.99 ± 1.24 45.48 ± 1.47 65.95 ± 0.76
XLM-R (Our implementation) 92.23 ± 0.19 79.29 ± 0.43 80.87 ± 0.90 73.40 ± 0.96 49.04 ± 1.19 75.57 ± 0.94
XLM-R (ensemble) 92.76 80.62 81.46 75.4 52.3 76.85

Our Method

mBERT-cased + conf-penalty 90.81 ± 0.17 75.06 ± 0.63 79.26 ± 0.65 72.31 ± 0.52 47.03 ± 1.65 66.72 ± 0.44
XLM-R + conf-penalty 92.49 ± 0.09 80.45 ± 0.42 81.07 ± 0.12 73.76 ± 1.01 49.94 ± 0.43 76.05 ± 0.25
XLA – 83.05 ± 0.38 85.21 ± 0.23 80.33 ± 0.07 57.35 ± 0.56 79.75 ± 0.34
XLA (ensemble) – 83.24 85.32 80.99 58.29 79.87

Table 10: Results in Accuracy for Cross-lingual Natural Language Inference (XNLI) task.

Model en es de ar sw hi ur

Supervised Result (TRANSLATE-TRAIN-ALL)

Huang et al. (Wiki+MT) Huang et al. (2019) 85.6 82.3 80.9 78.2 73.8 73.4 69.6
XLM-R (Base) Conneau et al. (2020) 85.4 82.2 80.3 77.3 73.1 76.1 73.0
XLM-R Conneau et al. (2020) 89.1 86.6 85.7 83.1 78.0 81.6 78.1

Zero-Resource Baseline for Full (100%) English labeled training set

mBERT-cased Wu and Dredze (2019) 82.1 74.3 71.1 64.9 50.4 60.0 58.0
XLM Lample and Conneau (2019) 83.2 76.3 74.2 68.5 64.6 65.7 63.4
XLM-R (Paper) Conneau et al. (2020) 89.1 85.1 83.9 79.8 73.9 76.9 73.8
XLM-R (XTREME) Hu et al. (2020) 88.7 83.7 82.5 77.2 71.2 75.6 71.7
XLM-R (Our implementation) 88.87 ± 0.31 84.34 ± 0.37 82.78 ± 0.56 78.44 ± 0.50 72.08 ± 1.05 76.40 ± 0.87 72.10 ± 1.22
XLM-R (ensemble) 89.24 84.73 83.27 79.06 73.17 77.23 73.07

Our Method

XLM-R + conf-penalty 88.83 ± 0.12 84.30 ± 0.24 82.86 ± 0.14 78.20 ± 0.38 71.83 ± 0.41 76.24 ± 0.47 71.62 ± 0.70
XLA – 85.65 ± 0.04 84.18 ± 0.46 80.50 ± 0.19 74.70 ± 0.47 78.84 ± 0.32 73.35 ± 0.41
XLA (ensemble) – 86.12 84.61 80.89 74.89 78.98 73.45

Zero-Resource Baseline for 5% English labeled training set

XLM-R (Our implementation) 83.08 ± 1.04 78.48 ± 0.76 77.54 ± 0.60 72.04 ± 0.79 67.3 ± 0.66 70.41 ± 0.09 66.72 ± 0.29
XLM-R (ensemble) 84.65 79.56 78.38 72.22 66.93 71.00 66.79

Our Method

XLM-R + conf-penalty 84.24 ± 0.22 79.23 ± 0.37 78.47 ± 0.20 72.43 ± 0.75 67.72 ± 0.17 71.08 ± 0.73 67.63 ± 0.62
XLA – 81.53 ± 0.11 80.88 ± 0.28 77.42 ± 0.15 72.31 ± 0.12 74.70 ± 0.26 70.84 ± 0.22
XLA (ensemble) – 82.35 81.93 78.56 73.53 75.20 71.15
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Table 11: Results in Accuracy for PAWS-X task.

Model en de es fr ja ko zh

Supervised Results (TRANSLATE-TRAIN-ALL)

XLM-R (our impl.) 95.8 ± 0.23 92.5 ± 0.29 92.8 ± 0.15 93.5 ± 0.12 85.5 ± 0.32 86.6 ± 0.48 87.6 ± 0.1

Zero-Resource Baseline for Full (100%) English labeled training set

XLM-R (XTREME) 94.7 89.7 90.1 90.4 78.7 79.0 82.3
XLM-R (our imp.) 95.46 ± 0.36 90.06 ± 0.59 89.92 ± 0.54 90.85 ± 0.71 79.89 ± 1.17 79.74 ± 1.47 82.49 ± 0.82
XLM-R (ensemble) 96.10 90.75 90.55 91.80 80.55 80.70 83.45

XLM-R+con-penalty 95.38 ± 0.15 90.75 ± 0.29 90.72 ± 0.56 91.71 ± 0.31 81.77 ± 0.63 82.07 ± 0.54 84.25 ± 0.36
XLA – 92.27 ± 0.75 92.28 ± 0.16 92.85 ± 0.35 83.88 ± 0.49 84.27 ± 0.23 86.90 ± 0.35
XLA (ensemble) – 92.55 92.35 93.35 84.30 84.35 86.95

Zero-Resource Baseline for 5% English labeled training set

XLM-R (our imp.) 91.15 ± 0.98 83.72 ± 1.64 84.32 ± 1.76 85.08 ± 1.29 73.65 ± 1.03 72.60 ± 2.04 77.22 ± 1.22
XLM-R (ensemble) 92.05 84.05 84.65 85.75 74.30 71.95 77.50

XLM-R+con-penalty 91.85 ± 0.70 86.15 ± 1.37 86.38 ± 1.02 85.98 ± 0.44 76.03 ± 1.51 75.43 ± 1.32 79.15 ± 1.14
XLA – 89.05 ± 0.85 90.27 ± 0.38 90.12 ± 0.28 80.50 ± 0.73 79.60 ± 0.43 82.65 ± 0.44
XLA (ensemble) – 89.25 90.85 90.25 81.15 80.15 82.90
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G EXAMPLES OF AUGMENTED DATA

We present examples of augmented samples generated by our vicinity model for XNER, XNLI, and
PAWS-X datasets in Tables 12, 13, and 14 respectively.

Table 12: Examples of augmented data from XNER dataset.

English

Original: Motor-bike registration rose 32.7 percent in the period .
Augmented: Motor-bike sales rose 32.7 percent in the US .

Original: He will be replaced by Eliahu Ben-Elissar , a former Israeli envoy to Egypt and right-wing Likud
party politician
Augmented: He will be led by Eliahu Cohen , a former UN Secretary to Egypt and right-wing opposition
party leader .

Original: Israeli-Syrian peace talks have been deadlocked over the Golan since 1991 despite the previous
government ’s willingness to make Golan concessions .
Augmented: The peace talks have been deadlocked over the Golan since 2011, despite the Saudi government
’s willingness to make Golan concessions .

Spanish

Original: En esto de la comida abunda demasiado la patriotería .
Augmented: En medio de la guerra abunda demasiado la violencia .

Original: Pero debe , cómo no , estar abierta a incorporaciones foráneas .
Augmented: También debe , cómo no , estar abierta a personas diferentes .

Original: Deutsche Telekom calificó esta compra , cuyo precio no especificó , como otro paso hacia su
internacionalización mediante adquisiciones mayoritarias destinadas a tener el control de la dirección de
esas empresas .
Augmented: Deutsche Bank calificó esta operación , cuyo importe no especificó , como otro paso hacia su
expansión mediante acciones mayoritarias destinadas a tener el control de la dirección de las empresas .

Dutch

Original: Onvoldoende om een zware straf uit te spreken , luidt het .
Augmented: Onvoldoende om een zware waarheid uit te leggen , is het .

Original: Dit hof verbindt nu geen straf aan de schuld die ze vaststelt .
Augmented: Dit hof geeft nu de schuld aan de schuld die ze vaststelt .

Original: Wat jaren meeging als een omstreden ’ CVP-dossier ’ krijgt nu door de rechterlijke uitspraak het
cachet van een oude koe in de gracht .
Augmented: Wat jaren begon als een omstreden ’ CVP-dossier ’ krijgt nu door de rechterlijke macht het
cachet van de heilige koe in de gracht .

German

Original: Gleichwohl bleibt diese wissenschaftlich abgeleitete Klassifizierung von Erzähltypen nur äußerlich
.
Augmented: Gleichwohl bleibt die daraus abgeleitete Klassifizierung von Erzähltypen nur begrenzt .

Original: Dies führt vielmehr zu anderen grundlegenden Mißverständnissen , die zur Verwischung entschei-
dender Unterschiede beitragen .
Augmented: Dies führt vielmehr zu sehr großen Mißverständnissen , die zur Verwischung entscheidender
Informationen führen .

Original: Die eine Geschichte zerfällt dabei in viele Erzählungen , die wiederum wissenschaftlich genau
nach unterschiedlichen Genres klassifiziert werden können .
Augmented: Die ganze Geschichte zerfällt dabei in viele Erzählungen , die nicht ganz genau in verschiedene
Genres gestellt werden können .
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Table 13: Examples of augmented data from XNLI dataset.

English

Original:
text_a: One of our number will carry out your instructions minutely .
text_b: A member of my team will execute your orders with immense precision .
Augmented:
text_a: One of our number will carry out your order immediately
text_b: A member of my team will execute your orders with immense care .

Original:
text_a: my walkman broke so i ’m upset now i just have to turn the stereo up real loud
text_b: I ’m upset that my walkman broke and now I have to turn the stereo up really loud .
Augmented:
text_a: my stereo broke so i ’m stuck. i just have to turn the stereo up super loud
text_b: I ’m upset because my phone broke and now I have to turn the music up really loud .

Spanish

Original:
text_a: Bueno , porque lo caliente que quiero decir como en el más frío que se pone en invierno ahí abajo ,
cuánto es ?
text_b: Hace calor todo el tiempo donde vivo , incluido el invierno .
Augmented:
text_a: Bueno , pero lo primero que quiero decir como en el caso calor que se pone en invierno ahí arriba ,
cuánto es ?
text_b: Tengo calor todo el tiempo que puedo , incluido el invierno .

Original:
text_a: Sí , es como en louisiana donde ese tipo que es como un miembro del ku klux klan algo fue elegido
un poco aterrador cuando piensas en eso .
text_b: Un miembro del ku klux klan ha sido elegido en louisiana .
Augmented:
text_a: Sí , estuvieron en louisiana y ese tipo que aparece como un miembro del ku klux klan algo ha sido un
poco aterrador cuando piensas en eso .
text_b: Un miembro del kumite klan ha sido detenido en louisiana .

Arabic

Original:
text_a: 	
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text_a: 	

àB@
�

�ñ�Ë@ ú



	
¯ É

	
�

	
¯B@

�
HBB@ 	áÓ Q�


�
JºË@ ¼A

	
Jë , iJ
m

�� é
	
K @

text_b:. É
	

�
	
¯@

�
éË @ Éªj.

	
JË ,

�
é
�
®K
Q£ ¨Qå�@ è

	
Yë

Original:
text_a:. ½Ë

	
X

�
HYm�'


 ú


¾Ë

�
éK
QjJ. Ë @

�
HCgQË@ 	á

	
®�ð

�
é
�
KA

	
®

	
JË @ 	á

	
®� Pñê

	
£ ½Ë

	
X

�
�Q

	
ª

�
J�@ Y

�
¯ð

text_b:. �
é
�
®¢

	
JÖÏ @ ú




	
¯

�
éJ
kAJ
�

	á
	
®� Yg. ñ

�
K B

Augmented:
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Table 14: Examples of augmented data from PAWS-X dataset.

English

Original:
text_a: At this time Philips Media was taken over by Infogrames , who became the publisher of the game .
text_b: At the time , Infogrames was taken over by Philips Media , who became the publisher of the game .
Augmented:
text_a: At this time Philips Games was taken over by Ubisoft , which became the developer of the game .
text_b: At the end , it was taken over by Philips Software , who became the publisher of the magazine .

Original:
text_a: In November , 2010 , she was rated as the fifth highest ranked under-20 female player in the world
text_b: In November 2010 , she was rated as the fifth highest player in the world .
Augmented:
text_a: In March , 2010 , she was rated as the second highest ranking professional female player in the world
text_b:In March 2015 , she was listed as the second highest player in the world .

French

Original:
text_a: Vers 1685, il s’installe à Neu - France et réside quelque temps au Québec.
text_b: Il s’installe à Québec vers 1685 et réside en Nouvelle-France depuis un certain temps.
Augmented:
text_a: En 1950 il s’installe à Neu - York et passe quelque temps au Québec.
text_b: Il arrive à Paris vers 1960 et vit en Nouvelle-France depuis un certain temps.

Original:
text_a: Roger Kirk est né à East London. Il a été élevé et éduqué à Norfolk.
text_b: Roger Kirk est né à East London. Il a fait ses études et a grandi à Norfolk.
Augmented:
text_a: William Shakespeare est né à East London. Il a été élevé et educat à Norfolk.
text_b: Robert Kirk est né à East. Il a fait ses études et a grandi à Norfolk.

Korean

Original:
text_a:그의시스템은개인가정,시골지역,군대캠프,많은병원및영국 Raj지역에서채택되었습니다.
text_b:그의 시스템은 개인 주택, 시골 지역, 군대 캠프, 많은 병원 및 영국 전역에서 광범위하게 채택되
었습니다.
Augmented:
text_a:이내용은개인,시골,군대캠프,많은병원및영국여러지역에서채택되었습니다.
text_b:이정보는개인,시골,군대캠프,많은병원및영국전역에서많이채택되었습니다.

Original:
text_a:불가리 (Bulhar)는소말리랜드북서쪽서북부의고고학유적지입니다.
text_b:불가리 (Bulhar)는북서쪽의소말리랜드북서쪽에있는고고학유적지입니다.
Augmented:
text_a:바르 (Bulhar)는소말리랜드의서북부의고고학유적지입니다.
text_b:불가리 (Bulhar)는북서쪽의소말리랜드의세계유적지입니다.

H ACKNOWLEDGEMENT

We would like to thank the authors and contributors of the Transformers library (Wolf et al., 2019).
We use their implementation for XLM-R language model. We would also like to thank the authors
and contributors of the fairseq library (Ott et al., 2019). We use their implementation of XLM-R
language model from torch.hub. We also thank Alexis Conneau for his replies in github repositories.

29


	Introduction
	Background
	XLA framework
	Warm-up step: training task models with confidence penalty
	Vicinity distribution and sentence augmentation
	Co-labeling of augmented sentences through co-distillation
	Data samples manipulation

	Experiments
	Tasks & Settings
	Results

	Analysis
	Analysis of distillation methods
	Different types of augmentation in different stages
	Robustness of XLA
	Effect of Confidence Penalty & Ensemble

	Conclusion
	Justifications for design methodology of XLA framework
	Details on distillation by clustering
	Visualizing the effect of confidence penalty
	Effect of confidence penalty in classification
	Effect of confidence penalty in loss distribution

	Extended related work
	Setup details
	Zero-shot vs. zero-resource transfer
	Use of mBERT vs. XLM-R
	Datasets (extended version)
	Settings (extended version) 

	Results (extended version)
	Examples of augmented data
	Acknowledgement

