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Abstract

In an effort to address the training instabilities
of GANs, we introduce a class of dual-objective
GANs with different value functions (objectives)
for the generator (G) and discriminator (D). In
particular, we model each objective using α-loss,
a tunable classification loss, to obtain (αD, αG)-
GANs, parameterized by (αD, αG) ∈ (0,∞]2.
For sufficiently large number of samples and ca-
pacities for G and D, we show that the result-
ing non-zero sum game simplifies to minimiz-
ing an f -divergence under appropriate conditions
on (αD, αG). We highlight the value of tuning
(αD, αG) in alleviating training instabilities for
the synthetic 2D Gaussian mixture ring, the Celeb-
A, and the LSUN Classroom datasets.

1. Introduction
Generative adversarial networks (GANs) have become a
crucial data-driven tool for generating synthetic data. GANs
are generative models trained to produce samples from an
unknown (real) distribution using a finite number of training
data samples. They consist of two modules, a generator
G and a discriminator D, parameterized by vectors θ ∈
Θ ⊂ Rng and ω ∈ Ω ⊂ Rnd , respectively, which play an
adversarial game with each other. The generator Gθ maps
noise Z ∼ PZ to a data sample in X via the mapping z 7→
Gθ(z) and aims to mimic data from the real distribution Pr.
The discriminator Dω takes as input x ∈ X and classifies
it as real or generated by computing a score Dω(x) ∈ [0, 1]
which reflects the probability that x comes from Pr (real)
as opposed to PGθ (synthetic). For a chosen value function
V (θ, ω), the adversarial game between G and D can be
formulated as a zero-sum min-max problem given by

inf
θ∈Θ

sup
ω∈Ω

V (θ,ω). (1)
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Goodfellow et al. (Goodfellow et al., 2014) introduce the
vanilla GAN for which

VVG(θ,ω)

=EX∼Pr [logDω(X)]+EX∼PGθ [log(1−Dω(X))]. (2)

For this VVG, they show that when the discriminator class
{Dω}ω∈Ω is rich enough, (1) simplifies to minimizing the
Jensen-Shannon divergence (Lin, 1991) between Pr and
PGθ . This simplification is achieved, for any Gθ, by the
discriminator Dω∗(x) maximizing (2) which has the form

Dω∗(x)=
pr(x)

pr(x)+pGθ (x)
, (3)

where pr and pGθ are the corresponding densities of the
distributions Pr and PGθ , respectively, with respect to a
base measure dx (e.g., Lebesgue measure).

Various other GANs have been studied in the literature us-
ing different value functions, including f -divergence based
GANs called f -GANs (Nowozin et al., 2016), IPM based
GANs (Arjovsky et al., 2017; Sriperumbudur et al., 2012;
Liang, 2018), etc. Observing that the discriminator is a
classifier, recently, Kurri et al. (Kurri et al., 2021; 2022)
show that the value function in (1) can be written using a
class probability estimation (CPE) loss `(y,ŷ) whose in-
puts are the true label y∈{0,1} and predictor ŷ∈ [0,1] (soft
prediction of y) as

V (θ,ω)

=EX∼Pr [−`(1,Dω(X))]+EX∼PGθ [−`(0,Dω(X))]. (4)

Using this approach, they introduce α-GAN using the tun-
able CPE loss α-loss (Sypherd et al., 2019; 2022), defined
for α∈(0,∞] as

`α(y,ŷ):=
α

α−1

(
1−yŷ

α−1
α −(1−y)(1−ŷ)

α−1
α

)
. (5)

They show that the α-GAN formulation recovers vari-
ous f -divergence based GANs including the Hellinger
GAN (Nowozin et al., 2016) (α=1/2), the vanilla
GAN (Goodfellow et al., 2014) (α=1), and the Total Vari-
ation (TV) GAN (Nowozin et al., 2016) (α=∞). Further,
for a large enough discriminator class, the min-max opti-
mization for α-GAN in (1) simplifies to minimizing the
Arimoto divergence (Österreicher, 1996; Liese & Vajda,
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Figure 1. A toy example of the vanilla GAN, where the real dis-
tribution Pr=N (−2,0.52) (blue curve) and the assumed initial
generated distribution PGθ=N (2,0.52) (orange curve). (a) A plot
of the optimal discriminator output Dω∗(x) in (3). (b) A plot of
the generator’s saturating loss log(1−Dω∗(x)).

2006). While each of the abovementioned GANs have some
advantages, they continue to suffer from one or more types
of training instabilities, including vanishing/exploding gra-
dients, mode collapse, and sensitivity to hyperparameter
tuning. In (Goodfellow et al., 2014), Goodfellow et al.
note that the generator’s objective in the vanilla GAN can
saturate early in training (due to the use of the sigmoid
activation) when D can easily distinguish between the real
and synthetic samples, i.e., when the output of D is near
zero for all synthetic samples, leading to vanishing gradi-
ents (see Figure 1). Further, a confident D induces a steep
gradient at samples close to the real data, thereby preventing
G from learning such samples due to exploding gradients
(see again Figure 1). To alleviate these, (Goodfellow et al.,
2014) propose a non-saturating (NS) generator objective:

V NS
VG (θ,ω)=EX∼PGθ [−logDω(X)]. (6)

This NS version of the vanilla GAN may be viewed as in-
volving different objective functions for the two players (in
fact, with two versions of the α=1 CPE loss, i.e., log-loss,
for D and G). However, it continues to suffer from mode
collapse (Arjovsky & Bottou, 2017; Wiatrak et al., 2019)
due to failure to converge and sensitivity to hyperparame-
ter initialization because of large gradients (see Figure 2).
While other dual-objective GANs have also been proposed
(e.g., Least Squares GAN (LSGAN) (Mao et al., 2017),
RényiGAN (Bhatia et al., 2021), NS f -GAN (Nowozin et al.,
2016), hybrid f -GAN (Poole et al., 2016)), few have had
success fully addressing training instabilities. Recent results
have shown that α-loss demonstrates desirable gradient be-
haviors for different α values (Sypherd et al., 2022). It also
assures learning robust classifiers that can reduce the confi-
dence of D (a classifier) thereby allowing G to learn without
gradient issues. To this end, we introduce a different α-loss
objective for each player to address training instabilities. We
propose a tunable dual-objective (αD,αG)-GAN, where the
objective functions of D and G are written in terms of α-loss
with parameters αD∈(0,∞] and αG∈(0,∞], respectively.
Our key contributions are:
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Figure 2. A plot of the vanilla GAN generator’s non-saturating loss
−log(Dω∗(x)) for the same toy example as in Figure 1.

• For this non-zero sum game, we show that a Nash equilib-
rium exists. For appropriate (αD,αG) values, we derive
the optimal strategies for D and G and prove that for
the optimal Dω∗ , G minimizes an f -divergence and can
therefore learn the real distribution Pr.

• Since α-GAN captures various GANs, including the
vanilla GAN, it can potentially suffer from vanishing gra-
dients due to a saturation effect. We address this by in-
troducing a non-saturating version of the (αD,αG)-GAN
and present its Nash equilibrium strategies for D and G.

• Finally, we demonstrate empirically that tuning αD and
αG significantly reduces vanishing and exploding gradi-
ents and alleviates mode collapse on a synthetic 2D-ring
dataset. For the high-dimensional Celeb-A and LSUN
Classroom datasets, we show that our tunable approach
is more robust in terms of the Fréchet Inception Distance
(FID) to the choice of GAN hyperparameters, including
number of training epochs and learning rate, relative to
both vanilla GAN and LSGAN.

2. Main Results
2.1. (αD,αG)-GAN

We first propose a dual-objective (αD,αG)-GAN with differ-
ent objective functions for the generator and discriminator.
In particular, the discriminator maximizes VαD (θ,ω) while
the generator minimizes VαG(θ,ω), where

Vα(θ,ω)

=EX∼Pr [−`α(1,Dω(X))]+EX∼PGθ [−`α(0,Dω(X))],

(7)

for α=αD,αG∈(0,∞]. We recover the α-GAN (Kurri et al.,
2021; 2022) value function when αD=αG=α. The result-
ing (αD,αG)-GAN is given by

sup
ω∈Ω

VαD (θ,ω) (8a)

inf
θ∈Θ

VαG(θ,ω). (8b)
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Figure 3. (a) Plot of regions for which fαD,αG is strictly convex.
(b) Plot of region for which fNS

αD,αG is strictly convex.

The following theorem presents the conditions under which
the optimal generator learns the real distribution Pr when
the discriminator set Ω is large enough.

Theorem 2.1. For a fixed generator Gθ, the discriminator
optimizing (8a) is given by

Dω∗(x)=
pr(x)αD

pr(x)αD+pGθ (x)αD
, (9)

For this Dω∗ and the function fαD,αG :R+→R defined as

fαD,αG(u)=
αG
αG−1

uαD(
1− 1

αG

)
+1

+1

(uαD+1)
1− 1

αG

−2
1
αG

, (10)

(8b) simplifies to minimizing a non-negative symmetric
fαD,αG -divergence DfαD,αG

(·||·) as

inf
θ∈Θ

DfαD,αG
(Pr||PGθ )+

αG
αG−1

(
2

1
αG−2

)
, (11)

which is minimized iff PGθ=Pr for (αD,αG)∈(0,∞]2 such

that
(
αD≤1,αG>

αD
αD+1

)
or
(
αD>1, αD2 <αG≤αD

)
.

Proof sketch. We substitute the optimal discriminator of
(8a) into the objective function of (8b) and translate it into
the form in (11) by finding the appropriate conditions on αD
and αG for fαD,αG to be a strictly convex function. Figure
3(a) illustrates the feasible (αD,αG)-region. A detailed
proof can be found in Appendix A. See Figure 4 for a toy
example illustrating the value of tuning αD<1 and αG≥1.

Noting that α-GAN recovers various well-known GANs,
including the vanilla GAN, which is prone to saturation, the
(αD,αG)-GAN formulation using the generator objective
function in (7) can similarly saturate early in training, po-
tentially causing vanishing gradients. Thus, we propose the
following NS alternative to the generator’s objective in (7):

V NS
αG(θ,ω)=EX∼PGθ [`αG(1,Dω(X))], (12)
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Figure 4. (a) A plot of the optimal discriminator output Dω∗(x)
in (9) for several values of αD≤1 for the same toy example
as in Figure 1. Tuning αD<1 decreases the confidence of the
optimal discriminator Dω∗ . (b) A plot of the generator’s loss
−`αG(0,Dω∗(x)) for several values of (αD≤1,αG≥1). Tuning
αD<1 provides more gradient for the generator to learn early in
training when the discriminator more confidently classifies the gen-
erated data as fake, thereby alleviating vanishing gradients, while
tuning αG≥1 creates a smooth landscape for the generated data
to descend towards the real data, alleviating exploding gradients.

thereby replacing (8b) with

inf
θ∈Θ

V NS
αG(θ,ω). (13)

Comparing (8b) and (13), note that the additional expec-
tation term over Pr in (7) results in (8b) simplifying to a
symmetric divergence for Dω∗ in (9), whereas the single
term in (12) will result in (13) simplifying to an asymmetric
divergence. The optimal discriminator for this NS game
remains the same as in (9). The following theorem provides
the solution to (13) under the assumption that the optimal
discriminator can be attained.

Theorem 2.2. For the same Dω∗ in (9) and the function
fNS
αD,αG :R+→R defined as

fNS
αD,αG(u)=

αG
αG−1

2
1
αG
−1− u

αD
(

1− 1
αG

)
(uαD+1)

1− 1
αG

, (14)

(8b) simplifies to minimizing a non-negative asymmetric
fNS
αD,αG -divergence DfNS

αD,αG
(·||·) as

inf
θ∈Θ

DfNS
αD,αG

(Pr||PGθ )+
αG
αG−1

(
1−2

1
αG
−1
)
, (15)

which is minimized iff PGθ=Pr for (αD,αG)∈(0,∞]2 such
that αD+αG>αGαD.

The proof mimics that of Theorem 2.1 and is detailed in
Appendix B. Figure 3(b) illustrates the feasible (αD,αG)-
region; in contrast to the saturating setting of Theorem 2.1,
the NS setting constrains α≤2 when αD=αG=α. See
Figure 5 for a toy example illustrating how tuning αD<1
and αG≥1 can also alleviate training instabilities in the NS
setting.
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Figure 5. A plot of the generator’s NS loss `αG(1,Dω∗(x)) for
several values of (αD≤1,αG≥1). Tuning αD<1 and αG=1
makes the loss less convex, which can help stabilize training by de-
creasing sensitivity to hyperparameter initialization and alleviating
mode collapse; tuning αG>1 results in a quasiconvex generator
objective, which can further improve training stability.

3. Illustration of Results
We illustrate the value of (αD,αG)-GAN as compared to the
vanilla GAN (i.e., the (1,1)-GAN). Focusing on DCGAN
architectures (Radford et al., 2015), we compare against
LSGANs (Mao et al., 2017), the current state-of-the-art
(SOTA) dual-objective approach. While WGANs (Arjovsky
et al., 2017) have also been proposed to address the training
instabilities, their training methodology is distinctly differ-
ent and involves a different optimizer (RMSprop), lack of
batch normalization, and gradient clipping or penalty, all of
which make meaningful comparisons difficult.

We evaluate our approach on three datasets: (i) a synthetic
dataset generated by a two-dimensional, ring-shaped Gaus-
sian mixture distribution (2D-ring) (Srivastava et al., 2017),
(ii) the 64×64 Celeb-A image dataset (Liu et al., 2015),
and (iii) the 112×112 LSUN Classroom dataset (Yu et al.,
2015). For each dataset and pair of GAN objectives, we
report several metrics that encapsulate the stability of GAN
training over hundreds of random seeds. This allows us to
clearly showcase the potential for tuning (αD,αG) to obtain
stable and robust solutions for image generation.

3.1. 2D Gaussian Mixture Ring

The 2D-ring is an oft-used synthetic dataset for evaluating
GANs. We draw samples from a mixture of 8 equal-prior
Gaussian distributions, indexed i∈{1,2,...,8}, with a mean
of (cos(2πi/8), sin(2πi/8)) and variance 10−4. We gener-
ate 50,000 training and 25,000 testing samples and the same
number of 2D latent Gaussian noise vectors.

Both the D and G networks have 4 fully-connected layers
with 200 and 400 units, respectively. We train for 400
epochs with a batch size of 128, and optimize with Adam
(Kingma & Ba, 2014) and a learning rate of 10−4 for both
models. We consider three distinct settings that differ in
the objective functions as: (i) (αD,αG)-GAN in (8); (ii) NS
(αD,αG)-GAN’s in (8a), (13); (iii) LSGAN with the 0-1

binary coding scheme (see Appendix C for details).

For every setting listed above, we train our models on the
2D-ring dataset for 200 random state seeds, where each seed
contains different weight initializations for D and G. Ide-
ally, a stable method will reflect similar performance across
randomized initializations and also over training epochs;
thus, we explore how GAN training performance for each
setting varies across seeds and epochs. Our primary per-
formance metric is mode coverage, defined as the number
of Gaussians (0-8) that contain a generated sample within
3 standard deviations of its mean. A score of 8 conveys
successful training, while a score of 0 conveys a significant
GAN failure; on the other hand, a score in between 0 and 8
may be indicative of common GAN issues, such as mode
collapse or failure to converge.

For the saturating setting, the improvement in stability of
the (0.2,1)-GAN relative to the vanilla GAN is illustrated
in Figure 6 as detailed in the caption. Vanilla GAN fails
to converge to the true distribution 30% of the time while
succeeding only 46% of the time. In contrast, the (αD,αG)-
GAN with αD<1 learns a more stable G due to a less
confident D (see also Figure 6(a)). For example, the (0.3,1)-
GAN success and failure rates improve to 87% and 2%,
respectively. For the NS setting in Figure 7, we find that
tuning αD and αG yields more consistently stable outcomes
than vanilla and LSGANs. Mode coverage rates over 200
seeds for saturating (Tables 1 and 2) and NS (Table 3) are
in Appendix C.

3.2. Celeb-A & LSUN Classroom

The Celeb-A dataset (Liu et al., 2015) is a widely recognized
large-scale collection of over 200,000 celebrity headshots,
encompassing images with diverse aspect ratios, camera
angles, backgrounds, lighting conditions, and other varia-
tions. Similarly, the LSUN Classroom dataset (Yu et al.,
2015) is a subset of the comprehensive Large-scale Scene
Understanding (LSUN) dataset; it contains over 150,000
classroom images captured under diverse conditions and
with varying aspect ratios. To ensure consistent input for the
discriminator, we follow the standard practice of resizing
the images to 64×64 for Celeb-A and 112×112 for LSUN
Classroom. For both experiments, we randomly select 80%
of the images for training and leave the remaining 20% for
validation (evaluation of goodness metrics). Finally, for the
generator, for each dataset, we generate a similar 80%-20%
training-validation split of 100-dimensional latent Gaussian
noise vectors, for a total matching the size of the true data.

For training, we employ the DCGAN architecture (Radford
et al., 2015) that leverages deep convolutional neural net-
works (CNNs) for both D and G. In Appendix C, detailed
descriptions of the D and G architectures can be found
in Tables 4 and 5 for the Celeb-A and LSUN Classroom
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Figure 6. (a) Plot of mode coverage over epochs for (αD,αG)-GAN training with the saturating objectives in (8). Fixing αG=1, we
compare αD=1 (vanilla GAN) with αD=0.2. Placed above this plot are 2D visuals of the generated samples (in black) at different
epochs; these show that both GANs successfully capture the ring-like structure, but the vanilla GAN fails to maintain the ring over time.
We illustrate the discriminator output in the same visual as a heat map to show that the αD=1 discriminator exhibits more confident
predictions (tending to 0 or 1), which in turn subjects G to vanishing and exploding gradients when its objective log(1−D) saturates as
D→0 and diverges as D→1, respectively. This combination tends to repel the generated data when it approaches the real data, thus
freezing any significant weight update in the future. In contrast, the less confident predictions of the (0.2,1)-GAN create a smooth
landscape for the generated output to descend towards the real data. (b) Plot of success and failure rates over 200 seeds vs. αD with αG=1
for the saturating (αD,αG)-GAN on the 2D-ring, which underscores the stability of (αD<1,αG)-GANs relative to vanilla GAN.

Figure 7. Generated samples from two (αD,αG)-GANs trained
with the NS objectives in (8a), (13), as well as the LSGAN. We
provide 6 seeds to illustrate the stability in performance for each
GAN across multiple runs.

datasets, respectively. Following SOTA methods, we focus
on the non-saturating setting, utilizing appropriate objec-
tives for vanilla GAN, (αD,αG)-GAN, and LSGAN. We
consider a variety of learning rates, ranging from 10−4 to
10−3, for Adam optimization. We evaluate our models ev-
ery 10 epochs up to a total of 100 epochs and report the
Fréchet Inception Distance (FID), an unsupervised similar-
ity metric between the real and generated feature distribu-
tions extracted by InceptionNet-V3 (Heusel et al., 2017).
For both datasets, we train each combination of objective
function, number of epochs, and learning rate for 50 seeds.
In the following subsections, we empirically demonstrate
the dependence of the FID on learning rate and number of
epochs for the vanilla GAN, (αD,αG)-GAN, and LSGAN.
Achieving robustness to hyperparameter initialization is es-
pecially desirable in the unsupervised GAN setting as the
choices that facilitate steady model convergence are not
easily determined a priori.
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Figure 8. (a) Plot of Celeb-A FID scores averaged over 50 seeds
vs. learning rates for 6 different GANs, trained for 100 epochs. (b)
Plot of LSUN Classroom FID scores averaged over 50 seeds vs.
learning rates for 6 different GANs, trained for 100 epochs.

3.2.1. CELEB-A RESULTS

In Figure 8(a), we examine the relationship between learn-
ing rate and FID for each GAN trained for 100 epochs on
the Celeb-A dataset. When using learning rates of 1×10−4

and 2×10−4, all GANs consistently perform well. How-
ever, when the learning rate increases,the vanilla (1,1)-GAN
begins to exhibit instability across the 50 seeds. As the learn-
ing rate surpasses 5×10−4, the performance of the vanilla
GAN becomes even more erratic, underscoring the impor-
tance of GANs being robust to the choice of learning rate.
Figure 8(a) also demonstrates that the GANs with αD<1
perform on par with, if not better than, the SOTA LSGAN.
For instance, the (0.6,1)-GAN consistently achieves low
FIDs across all tested learning rates.

In Figure 9(a), for different learning rates, we compare the
dependence on the number of training epochs (hyperparam-
eter) of the vanilla (1,1)-GAN, (0.6,1)-GAN, and LSGAN
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Figure 9. (a) Log-scale plot of Celeb-A FID scores over training epochs in steps of 10 up to 100 total, for three noteworthy GANs–
(1,1)-GAN (vanilla), (0.6,1)-GAN, and LSGAN– and for two similar learning rates– 5×10−4 and 6×10−4. Results show that the vanilla
GAN performance is sensitive to learning rate choice, while the other two GANs achieve consistently low FIDs. (b) Generated Celeb-A
faces from the same three GANs over 8 seeds when trained for 100 epochs with a learning rate of 5×10−4. These samples show that the
vanilla (1,1)-GAN training is sensitive to random model weight initializations, while the other two GANs demonstrate both robustness to
random weight initializations as well as realistic face generation.

by plotting their FIDs every 10 epochs, up to 100 epochs,
for two similar learning rates: 5×10−4 and 6×10−4. We
discover that the vanilla (1,1)-GAN performs significantly
worse for the higher learning rate and deteriorates over time
for both learning rates. Conversely, both the (0.6,1)-GAN
and LSGAN consistently exhibit favorable FID performance
for both learning rates. However, the (0.6,1)-GAN con-
verges to a low FID, while the FID of the LSGAN slightly
increases as training approaches 100 epochs. Finally, Fig.
9(b) displays a grid of generated Celeb-A faces, randomly
sampled over 8 seeds for three GANs trained for 100 epochs
with a learning rate of 5×10−4. Here, we observe that the
faces generated by the (0.6,1)-GAN and LSGAN exhibit a
comparable level of quality to the rightmost column images,
which are randomly sampled from the real Celeb-A dataset.
On the other hand, the vanilla (1,1)-GAN shows clear signs
of performance instability, as some seeds yield high-quality
images while others do not.

3.2.2. LSUN CLASSROOM RESULTS

In Figure 8(b), we illustrate the relationship between learn-
ing rate and FID for GANs trained on the LSUN dataset
for 100 epochs. In fact, when all GANs are trained with a
learning rate of 1×10−4, they consistently deliver satisfac-
tory performance. However, increasing it to 2×10−4 leads
to instability in the vanilla (1,1)-GAN across 50 seeds.

On the other hand, we observe that αD<1 contributes to
stabilizing the FID across the 50 seeds even when trained
with slightly higher learning rates. In Figure 8(b), we see
that as αD is tuned down to 0.6, the mean FIDs consistently
decrease across all tested learning rates. These lower FIDs
can be attributed to the increased stability of the network.
Despite the gains in GAN stability achieved by tuning down
αD, Figure 8 demonstrates a noticeable disparity between
the best (αD,αG)-GAN and the SOTA LSGAN. This sug-

gests that there is still room for improvement in generating
high-dimensional images with (αD,αG)-GANs.

In Appendix C, Figure 10(a), we illustrate the average FID
throughout the training process for three GANs: (1,1)-GAN,
(0.6,1)-GAN, and LSGAN, using two different learning
rates: 1×10−4 and 2×10−4. These findings validate that
the vanilla (1,1)-GAN performs well when trained with
the lower learning rate, but struggles significantly with the
higher learning rate. In contrast, the (0.6,1)-GAN exhibits
less sensitivity to learning rate, while the LSGAN achieves
nearly identical scores for both learning rates. In Figure
10(b), we showcase the image quality generated by each
GAN at epoch 100 with the higher learning rate. This plot
highlights that the vanilla (1,1)-GAN frequently fails during
training, whereas the (0.6,1)-GAN and LSGAN produce
images that are more consistent in mimicking the real distri-
bution. Finally, we present the FID vs. learning rate results
for both datasets in Table 6 in Appendix C. This allows
yet another way to evaluate performance by comparing the
percentage (out of 50 seeds) of FID scores below a desired
threshold for each dataset, as detailed in the appendix.

4. Concluding Remarks
We have introduced a dual-objective GAN formulation, fo-
cusing in particular on using the tunable α-loss, with dif-
ferent α values for each player’s objective. Our results
highlight the value of tuning α in alleviating GAN training
instabilities and enhancing robustness to learning rates and
training epochs, key hyperparameters whose optimal values
are often unknown a priori. The limited range guided by
theory for αD makes tuning for the best αD,αG easier. An
interesting problem is to evaluate if our results hold more
broadly, including when the training data is noisy (Nietert
et al., 2022).
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A. Proof of Theorem 2.1
The proof to obtain (9) is the same as that for (Kurri et al., 2021)[Theorem 2], where α=αD. The generator’s optimization
problem in (8b) with the optimal discriminator in (9) can be written as infθ∈ΘVαG(θ,ω∗), where

VαG(θ,ω∗)=
αG
αG−1

[∫
X

(
pr(x)Dω∗(x)

αG−1

αG +pGθ (x)(1−Dω∗(x))
αG−1

αG

)
dx−2

]

=
αG
αG−1

[∫
X

(
pr(x)

(
pr(x)αD

pr(x)αD+pGθ (x)αD

)αG−1

αG

+pGθ (x)

(
pr(x)αD

pr(x)αD+pGθ (x)αD

)αG−1

αG

)
dx−2

]

=
αG
αG−1

(∫
X
pGθ (x)

(
(pr(x)/pGθ (x))αD(1−1/αG)+1+1

((pr(x)/pGθ (x))αD+1)1−1/αG

)
dx−2

)
=

∫
X
pGθ (x)fαD,αG

(
pr(x)

pGθ (x)

)
dx+

αG
αG−1

(
2

1
αG−2

)
,

where fαD,αG is as defined in (10). Note that if fαD,αG is strictly convex, the first term in the last equality above equals an
f -divergence which is minimized if and only if Pr=PGθ . Define the regions R1 and R2 as follows:

R1 :=
{

(αD,αG)∈(0,∞]2
∣∣αD≤1,αG>

αD
αD+1

}
and

R2 :=
{

(αD,αG)∈(0,∞]2
∣∣αD>1,

αD
2
<αG≤αD

}
.

In order to prove that fαD,αG is strictly convex for (αD,αG)∈R1∪R2, we take its second derivative, which yields

f ′′αD,αG(u)=AαD,αG(u)

[
(αG+αDαG−αD)

(
u+u

αD+
αD
αG

)
+(αG−αDαG)

(
u
αD
αG +uαD+1

)]
, (16)

where

AαD,αG(u)=
αD
αG

u
αD−

αD
αG
−2

(1+uαD )
1
αG
−3
. (17)

Note that AαD,αG(u)>0 for all u>0 and αD,αG∈(0,∞]. Therefore, in order to ensure f ′′αD,αG(u)>0 for all u>0 it is
sufficient to have

αG+αDαG−αD>αG(αD−1)BαD,αG(u), (18)

where

BαD,αG(u)=
u
αD
αG +uαD+1

u+u
αD+

αD
αG

(19)

for u>0. Since BαD,αG(u)>0 for all u>0, the sign of the RHS of (18) is determined by whether αD≤1 or αD>1. We
look further into these two cases in the following:

Case 1: αD≤1. Then αG(αD−1)BαD,αG(u)≤0 for all u>0 and (αD,αG)∈(0,∞]2. Therefore, we need

αG(1+αD)−αD>0⇔αG>
αD
αD+1

. (20)

Case 2: αD>1. Then αG(αD−1)BαD,αG(u)>0 for all u>0 and (αD,αG)∈(0,∞]2. In order to obtain conditions on αD
and αG, we determine the monotonicity of BαD,αG by finding its first derivative as follows:

B′αD,αG(u)=
(αG−αD)(u2αD−1)+αDαG

(
u
αD−

αD
αG

+1−uαD+
αD
αG
−1
)

αGu
−αDαG

(
u+u

αD+
αD
αG

)2 .
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Since the denominator of B′αD,αG is positive for all u>0 and (αD,αG)∈(0,∞]2, we just need to check the sign of the
numerator.
Case 2a: αD>αG. For u∈(0,1),

u2αD−1<0 and u
αD−

αD
αG

+1−uαD+
αD
αG
−1
>0,

so B′αD,αG(u)>0. For u>1,

u2αD−1>0 and u
αD−

αD
αG

+1−uαD+
αD
αG
−1
<0,

so B′αD,αG(u)<0. For u=1, B′αD,αG(u)=0. Hence, B′αD,αG is strictly increasing for u∈(0,1) and strictly decreasing for
u≥1. Therefore, BαD,αG attains a maximum value of 1 at u=1. This means BαD,αG is bounded, i.e. BαD,αG∈(0,1] for
all u>0. Thus, in order for (18) to hold, it suffices to ensure that

αG+αDαG−αD>αG(αD−1)⇔αG>
αG
2
. (21)

Case 2b: αD<αG. For u∈(0,1), u2αD−1<0 and uαD−
αD
αG

+1−uαD+
αD
αG
−1
<0, so B′αD,αG(u)<0. For u>1, u2αD−1>

0 and uαD−
αD
αG

+1−uαD+
αD
αG
−1
>0, so B′αD,αG(u)>0. Hence, B′αD,αG is strictly decreasing for u∈(0,1) and strictly

increasing for u≥1. Therefore, BαD,αG attains a minimum value of 1 at u=1. This means that BαD,αG is not bounded
above, so it is not possible to satisfy (18) without restricting the domain of BαD,αG .

Thus, for (αD,αG)∈R1∪R2,
VαG(θ,ω∗)=DfαD,αG

(Pr||PGθ )+
αG
αG−1

(
2

1
αG−2

)
.

This yields (11). Note that DfαD,αG
(P ||Q) is symmetric since

DfαD,αG
(Q||P )=

∫
X
p(x)fαD,αG

(
q(x)

p(x)

)
dx

=
αG
αG−1

∫
X
p(x)

 (p(x)/q(x))
−αD

(
1− 1

αG

)
−1

+1

((p(x)/q(x))−αD+1)
1− 1

αG

dx−2
1
αG


=

αG
αG−1

∫
X
p(x)

q(x)/p(x)+(p(x)/q(x))
αD

(
1− 1

αG

)
(1+(p(x)/q(x))αD )

1− 1
αG

dx−2
1
αG


=

αG
αG−1

∫
X
q(x)

1+(p(x)/q(x))
αD

(
1− 1

αG

)
(1+(p(x)/q(x))αD )

1− 1
αG

dx−2
1
αG


=DfαD,αG

(P ||Q).

Since fαD,αG is strictly convex and fαD,αG(1)=0, DfαD,αG
(Pr||PGθ )≥0 with equality if and only if Pr=PGθ . Thus, we

have VαG(θ,ω∗)≥ αG
αG−1

(
2

1
αG−2

)
with equality if and only if Pr=PGθ .

B. Proof of Theorem 2.2
The generator’s optimization problem in (8b) with the optimal discriminator in (9) can be written as infθ∈ΘV

NS
αG(θ,ω∗),

where

V NS
αG(θ,ω∗)=

αG
αG−1

[
1−
∫
X

(
pGθ (x)Dω∗(x)

αG−1

αG

)
dx

]

=
αG
αG−1

[
1−
∫
X
pGθ (x)

(
pr(x)αD

pr(x)αD+pGθ (x)αD

)αG−1

αG

dx

]

=
αG
αG−1

[
1−
∫
X
pGθ (x)

(pr(x)/pGθ (x))αD(1−1/αG)

((pr(x)/pGθ (x))αD+1)1−1/αG
dx

]
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=

∫
X
pGθ (x)fNS

αD,αG

(
pr(x)

pGθ (x)

)
dx+

αG
αG−1

(
1−2

1
αG
−1
)
,

where fNS
αD,αG is as defined in (14). In order to prove that fNS

αD,αG is strictly convex for (αD,αG)∈RNS={(αD,αG)∈
(0,∞]2 |αD>αG(αD−1)}, we take its second derivative, which yields

f ′′αD,αG(u)=AαD,αG(u)

[
(αG−αDαG+αD)+αG(1+αD)uαD

]
, (22)

where AαD,αG is defined as in (17). Since AαD,αG(u)>0 for all u>0 and (αD,αG)∈(0,∞]2, to ensure f ′′αD,αG(u)>0 for
all u>0 it suffices to have

αG−αDαG+αD
αG(1+αD)

>−uαD

for all u>0. This is equivalent to
αG−αDαG+αD
αG(1+αD)

>0,

which results in the condition
αD>αG(αD−1)

for (αD,αG)∈(0,∞]2. Thus, for (αD,αG)∈RNS,

V NS
αG(θ,ω∗)=DfNS

αD,αG
(Pr||PGθ )+

αG
αG−1

(
1−2

1
αG
−1
)
.

This yields (15). Note that DfNS
αD,αG

(P ||Q) is not symmetric since DfNS
αD,αG

(P ||Q) 6=DfNS
αD,αG

(Q||P ). Since fNS
αD,αG is

strictly convex and fNS
αD,αG(1)=0,DfNS

αD,αG
(Pr||PGθ )≥0 with equality if and only if Pr=PGθ . Thus, we have V NS

αG(θ,ω∗)≥
αG
αG−1

(
1−2

1
αG
−1
)

with equality if and only if Pr=PGθ .

C. Additional Experimental Results
C.1. Brief Overview of LSGAN

The Least Squares GAN (LSGAN) is a dual-objective min-max game introduced in (Mao et al., 2017). The LSGAN
objective functions, as the name suggests, involve squared loss functions for D and G which are written as

inf
ω∈Ω

1

2

(
EX∼Pr [(Dω(X)−b)2]+EX∼PGθ [(Dω(X)−a)2]

)
inf
θ∈Θ

1

2

(
EX∼Pr [(Dω(X)−c)2]+EX∼PGθ [(Dω(X)−c)2]

)
. (23)

For appropriately chosen values of the parameters a, b, and c, (23) reduces to minimizing the Pearson χ2-divergence between
Pr+PGθ and 2PGθ . As done in the original paper (Mao et al., 2017), we use a=0, b=1 and c=1 for our experiments to
make fair comparisons. The authors refer to this choice of parameters as the 0-1 binary coding scheme.

C.2. 2D Gaussian Mixture Ring

In Tables 1 and 2, we report the success (8/8 mode coverage) and failure (0/8 mode coverage) rates over 200 seeds for a grid
of (αD,αG) combinations for the saturating setting. Compared to the vanilla GAN performance, we find that tuning αD
below 1 leads to a greater success rate and lower failure rate. However, in this saturating loss setting, we find that tuning αG
away from 1 has no significant impact on GAN performance.

In Table 3, we detail the success rates for the NS setting. We note that for this dataset, no failures, and therefore, no
vanishing/exploding gradients, occurred in the NS setting. In particular, we find that the (0.5,1.2)-GAN doubles the
success rate of the vanilla (1,1)-GAN, which is more susceptible to mode collapse as illustrated in Figure 7. We also
find that LSGAN achieves a success rate of 32.5%, which is greater than vanilla GAN but less than the best-performing
(αD,αG)-GAN.
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Table 1. Success rates for 2D-ring with the saturating (αD,αG)-GAN over 200 seeds, with top 4 combinations emboldened.

% OF SUCCESS

(8/8 MODES)
αD

0.5 0.6 0.7 0.8 0.9 1.0

αG

0.9 73 79 69 60 46 34
1.0 80 79 74 68 54 47
1.1 79 77 68 70 59 47
1.2 75 74 71 65 57 46

Table 2. Failure rates for 2D-ring with the saturating (αD,αG)-GAN over 200 seeds, with top 3 combinations emboldened.

% OF FAILURE

(0/8 MODES)
αD

0.5 0.6 0.7 0.8 0.9 1.0

αG

0.9 11 10 12 13 29 49
1.0 5 5 7 8 16 30
1.1 7 9 13 12 13 26
1.2 9 5 9 12 17 31

Table 3. Success rates for 2D-ring with the NS (αD,αG)-GAN over 200 seeds, with top 5 combinations emboldened.

% OF SUCCESS

(8/8 MODES)
αD

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

αG

0.8 35 24 19 19 14 16 18 10
0.9 39 37 19 22 16 20 19 21
1.0 34 35 29 28 26 22 20 32
1.1 40 36 31 22 24 15 23 25
1.2 45 38 34 25 26 28 20 22
1.3 44 39 26 28 28 25 31 29

C.3. Celeb-A & LSUN Classroom

The discriminator and generator architectures used for the Celeb-A and LSUN Classroom datasets are described in Tables 4
and 5 respectively. Each architecture consists of four CNN layers, with parameters such as kernel size (i.e., size of the filter,
denoted as “Kernel”), stride (the amount by which the filter moves), and the activation functions applied to the layer outputs.
Zero padding is also assumed. In both tables, “BN” represents batch normalization, a technique that normalizes the inputs to
each layer using a batch of samples during model training. Batch normalization is commonly employed in deep learning to
prevent cumulative floating point errors and overflows, and to ensure that all features remain within a similar range. This
technique serves as a computational tool to address vanishing and/or exploding gradients.

In Table 6, we collate the FID results for both datasets as a function of the learning rates. This table captures the percentage
(out of 50 seeds) of FID scores below a desired threshold, which is 80 for the CELEB-A dataset and 800 for the LSUN
Classroom dataset.

We first focus on the CELEB-A dataset: Table 6 demonstrates that for a learning rate of 1×10−4, all GANs (vanilla, different
(αD,αG)-GANs, and LSGANs) achieve an FID score below 80 at least 93% of the time. However, the instability of vanilla
GAN is also evident in Table 6, where for a slightly higher learning rate of 6×10−4, the (1,1)-GAN achieves an FID score
below 80 only 60% of the time whereas at least one (αD,αG=1)-GAN consistently performs better than 76% over all
chosen learning rates. We observe that tuning αD below 1 contributes to stabilizing the FID scores over the 50 seeds while
maintaining relatively low scores on average. This stability is emphasized in Table 6, in particular for the (0.7,1)-GAN, as it
achieves an FID score below 80 at least 80% of the time for 7 out of the 10 the learning rates.

Table 6 also illustrates similar results for the LSUN Classroom dataset. However, increasing it to 2×10−4 leads to instability
in the vanilla (1,1)-GAN across 50 seeds.
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Table 4. Discriminator and generator architectures for Celeb-A. The final sigmoid activation layer is removed for the LSGAN discriminator.

DISCRIMINATOR GENERATOR

LAYER OUTPUT SIZE KERNEL STRIDE BN ACTIVATION LAYER OUTPUT SIZE KERNEL STRIDE BN ACTIVATION

INPUT 3×64×64 LEAKY RELU INPUT 100×1×1 RELU
CONVOLUTION 64×32×32 4×4 2 YES LEAKY RELU CONVTRANSPOSE 512×4×4 4×4 2 YES RELU
CONVOLUTION 128×16×16 4×4 2 YES LEAKY RELU CONVTRANSPOSE 256×8×8 4×4 2 YES RELU
CONVOLUTION 256×8×8 4×4 2 YES LEAKY RELU CONVTRANSPOSE 128×16×16 4×4 2 YES RELU
CONVOLUTION 512×4×4 4×4 2 YES LEAKY RELU CONVTRANSPOSE 64×32×32 4×4 2 YES RELU
CONVOLUTION 1×1×1 4×4 2 SIGMOID CONVTRANSPOSE 3×64×64 4×4 2 TANH

Table 5. Discriminator and generator architectures for LSUN Classroom. The final sigmoid activation layer is removed for the LSGAN
discriminator.

DISCRIMINATOR GENERATOR

LAYER OUTPUT SIZE KERNEL STRIDE BN ACTIVATION LAYER OUTPUT SIZE KERNEL STRIDE BN ACTIVATION

INPUT 3×112×112 LEAKY RELU INPUT 100×1×1 RELU
CONVOLUTION 64×56×56 4×4 2 YES LEAKY RELU CONVTRANSPOSE 512×7×7 7×7 2 YES RELU
CONVOLUTION 128×28×28 4×4 2 YES LEAKY RELU CONVTRANSPOSE 256×14×14 4×4 2 YES RELU
CONVOLUTION 256×14×14 4×4 2 YES LEAKY RELU CONVTRANSPOSE 128×28×28 4×4 2 YES RELU
CONVOLUTION 512×7×7 4×4 2 YES LEAKY RELU CONVTRANSPOSE 64×56×56 4×4 2 YES RELU
CONVOLUTION 1×1×1 7×7 2 SIGMOID CONVTRANSPOSE 3×112×112 4×4 2 TANH

Table 6. Percentage out of 50 seeds of FID scores below 80 (Celeb-A) or 800 (LSUN Classroom) for each combination of (αD,αG)-GAN
and learning rate, trained for 100 epochs. Best results for each dataset and learning rate are emboldened.

GAN
CELEB-A LSUN CLASSROOM

LEARNING RATE (×10−4)
(αD,αG) 1 2 5 6 7 8 9 10 1 2 3 4 5
(1,1) 100 93.2 82.6 59.5 58.5 39.0 53.7 54.8 92.0 36.2 12.5 13.0 12.2
(0.9,1) 100 95.2 78.3 72.3 81.4 66.7 74.4 46.5 76.0 53.1 22.2 17.0 22.2
(0.8,1) 97.8 97.6 88.9 82.2 81.4 72.1 68.4 75.6 88.5 60.8 36.2 27.9 29.2
(0.7,1) 100 90.7 88.9 91.5 86.4 81.2 67.6 80.0 90.2 80.4 78.4 67.4 55.1
(0.6,1) 97.8 93.0 88.4 76.6 84.6 75.6 76.9 69.2 95.7 90.4 85.1 78.3 66.0
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Figure 10. (a) Log-scale plot of LSUN Classroom FID scores over training epochs in steps of 10 up to 100 total, for three noteworthy
GANs– (1,1)-GAN (vanilla), (0.6,1)-GAN, and LSGAN– and for two similar learning rates– 1×10−4 and 2×10−4. Results show that
the vanilla GAN performance is very sensitive to learning rate choice as the difference between training with 1×10−4 and 2×10−4 is
drastic. On the other hand, the other two GANs achieve consistently lower FIDs, with the LSGAN performing the best. (b) Generated
LSUN Classroom images from the same three GANs over 8 seeds when trained for 100 epochs with a learning rate of 2×10−4. These
samples show that the vanilla (1,1)-GAN training fails for most of seeds while the other two GANs perform fairly well across all seeds,
thus exhibiting robustness to random weight initializations.
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