
Published as a conference paper at ICLR 2022

SPANNING TREE-BASED GRAPH GENERATION
FOR MOLECULES

Sungsoo Ahn1, Binghong Chen2, Tianzhe Wang2, Le Song3,4

1POSTECH, 2Georgia Institute of Technology, 3Biomap, 4MBZUAI
sungsoo.ahn@postech.ac.kr, {binghong, tianzhe}@gatech.edu,
dasongle@gmail.com

ABSTRACT

In this paper, we explore the problem of generating molecules using deep neural
networks, which has recently gained much interest in chemistry. To this end, we
propose a spanning tree-based graph generation (STGG) framework based on
formulating molecular graph generation as a construction of a spanning tree and
the residual edges. Such a formulation exploits the sparsity of molecular graphs
and allows using compact tree-constructive operations to define the molecular
graph connectivity. Based on the intermediate graph structure of the construction
process, our framework can constrain its generation to molecular graphs that satisfy
the chemical valence rules. We also newly design a Transformer architecture
with tree-based relative positional encodings for realizing the tree construction
procedure. Experiments on QM9, ZINC250k, and MOSES benchmarks verify
the effectiveness of the proposed framework in metrics such as validity, Fréchet
ChemNet distance, and fragment similarity. We also demonstrate the usefulness of
STGG in maximizing penalized LogP value of molecules.

1 INTRODUCTION

Researchers have extensively studied graph generative models, dating back to the early works of Erdös
Rényi (Erdös et al., 1959). Recently, models based on deep neural networks (DNNs) have gained
much attraction due to their expressive power in learning a graph dataset. The molecule-generating
DNNs stand out among them for their success in the task of drug discovery.

Recent works have proposed molecule-generating DNNs based on string-based and graph-based
representations (Segler et al., 2018; Jin et al., 2018; You et al., 2018; Shi et al., 2020; Jin et al.,
2020). For example, Segler et al. (2018) proposed to train language models on the domain-specific
linear string representation of molecules, i.e., simplified molecular-input line-entry system (SMILES,
Weininger 1988). Since the string-based models ignore the inherent graph structure, recent works
explore the graph-based generation that use (a) atom-by-atom (You et al., 2018; Shi et al., 2020; Luo
et al., 2021) or (b) substructure-based (Jin et al., 2018; 2019; 2020) operations.

Notably, the substructure-based generative models (Jin et al., 2018; 2019; 2020) successfully exploit
the molecular prior knowledge: the graphs are sparsely connected and can be represented as a
junction tree with molecular substructure as building blocks. Based on such knowledge, the models
use the junction tree construction operators which (a) require a fewer number of steps to generate
the whole molecular graph and (b) guarantee generating molecules that satisfy the chemical valence
rules. However, despite such advantages, a recent benchmark (Polykovskiy et al., 2020) suggests that
they do not outperform the existing methods in terms of learning the data distribution, even when
compared with the simple SMILES-based language models. We hypothesize that this is due to the
models using a coarse-grained representation of the molecule and they may lack the ability to learn
the inner semantics of each substructure-based building block.

Contribution. In this work, we propose a novel framework, coined spanning tree-based graph
generation (STGG), for fine-grained generation of molecules while exploiting their sparsity.1 Mainly
inspired from the SMILES representation of molecules, our idea is to generate the molecular graph

1While our framework is designed for general sparse graphs, we focus on the molecular graphs in this paper.

1

Published as a conference paper at ICLR 2022

Figure 1: (left) Benzaldehyde, (middle) its spanning tree (blue) and residual edges (red), and the
corresponding constructive decisions (right). Open circle represent atoms and bonds in the molecule.

as a composition of a spanning tree and the corresponding residual edges with atoms and bonds
as building blocks. Such a formulation allows our framework to utilize compact tree-constructive
operations to define the molecular graph connectivity. See Figure 1 for an illustration of how we
formulate the generation of a molecular graph as a sequence of tree-constructive operations.

Since our framework maintains the molecular graph structure during construction, it can pre-determine
decisions that (a) violate the graph construction rule and (b) lead to molecules that violate the chemical
valence rule. Such criteria allow control over the generative model to guarantee generating valid
molecular graphs by forbidding invalid actions. This is in contrast to prior works (Shi et al., 2020;
Luo et al., 2021) that generate the molecular graph atom-by-atom but determines the validity of
construction operations through a sample-rejection scheme.

To recognize the spanning tree-based representation used in our STGG framework, we propose a
Transformer architecture (Vaswani et al., 2017) with tree-based relative encoding. Inspired by recent
works (Villmow et al., 2021; Lukovnikov & Fischer, 2021; Ying et al., 2021) on tree-based and
graph-based Transformers, our framework expresses the relative position between two vertices as
the number of forward and reverse edges in the shortest path between them. We also introduce an
attention-based mechanism for constructing residual edges.

We experiment on popular graph generation benchmarks of QM9, ZINC250K, and MOSES to
validate the effectiveness of our algorithm. In the experiments on QM9 and ZINC, our STGG
framework outperforms the existing graph-based generative models by a large margin. In the MOSES
benchmark, our algorithm achieves superior performance compared to both string-based and graph-
based methods for majority of the metrics, e.g., Fréchet ChemNet distance (Preuer et al., 2018) and
fragment-based similarity. We also conduct experiments on the offline optimization task for high
penalized octanol-water partition coefficient and achieve competitive results.

2 SPANNING TREE-BASED GENERATION OF GRAPHS (STGG)

2.1 OVERVIEW

In this section, we introduce our spanning tree-based graph generation (STGG) framework to
sequentially generate a molecule as a composition of a spanning tree and residual edges. To this end,
we propose compact tree-constructive operations inspired by the simplified molecular-input line-entry
system (SMILES, Weininger, 1988). In contrast to the existing SMILES-based molecular generative
methods, our framework (a) allows inferring the intermediate graph structure and (b) is generally
applicable to graph types other than molecules. In particular, (a) further enables our framework to
control the construction process such that the sequential operations comply with tree-constructive
grammar and only generate molecules satisfying the chemical valence rule.

Molecular graph representation. To apply our framework, we represent a molecule as a bipartite
graph G = (A,B, E) where A and B are the set of vertices associated with atoms and bonds of
the molecule, respectively.2 Each edge {a, b} ∈ E is assigned for each adjacent pair of atom and
bond. We assign attributes xa ∈ Xatom and xb ∈ Xbond for vertices a ∈ A and b ∈ B to indicate the
corresponding atom type and bond order, respectively. For example, {"C", "N", "O"} ⊆ Xatom and
{"-", "="} ⊆ Xbond. See Figure 1 for an example of such a molecular graph representation.

Molecular graph from sequence of decisions. To generate the molecular graph G = (A,B, E), our
framework makes a sequence of decisions d1, . . . , dT to generate a spanning tree T = (AT ,BT , ET)

2Many existing works, e.g., (Shi et al., 2020), use a non-bipartite graph with bonds assigned to edges.

2

Published as a conference paper at ICLR 2022

attach atom attach bond branch start branch end res atom res bond terminate

"C" ∈ Xatom "-" ∈ Xbond "(" ")" "*" d ∈ Lres "[eos]"

Table 1: Operations (top) and example of corresponding decisions (bottom) used in STGG.

Figure 2: Demonstration of executing a sequence of decisions C-C(=O)(-C*-C-C-C-C-2). Here,
we use the numbers 1 and 2 to mark vertices for the purpose of illustration. Next, {"C", "O"},
{"-", "="}, "(", ")", "*", and "2" correspond to attach atom, attach bond, branch start,
branch end, res atom, and res bond operations, respectively. The decision "2" denotes res bond
operation selecting the vertex marked by "2". Decisions that are not executed at the respective time-
step are faded out (gray). Location of the pointer vertex ipoint is indicated by an arrow (red).

and a set of residual edges ER = E \ET . At each iteration, seven types of decisions are applicable, i.e.,
attach atom, attach bond, branch start, branch end, res atom, res bond, and terminate.
See Table 1 for examples of decisions and the corresponding operations. We provide a detailed
description of the graph construction process in Section 2.2.

Generating valid molecular graphs. Without any control, a model may generate decisions that (a)
do not comply with the grammar of STGG or (b) leads to a molecule violating the chemical valence
rule. To prevent this scenario, we conduct two criteria for determining validity of the given decision
for (a) and (b). We further elaborate this in Section 2.3.

2.2 DECISION PROCESS FOR SPANNING TREE-BASED GRAPH GENERATION

We now explain how our STGG framework incorporates the decisions d1, . . . , dT to build the
spanning tree T = (AT ,BT , ET) and residual edges ER from scratch. To this end, our framework
introduces the state information of (a) a pointer vertex ipoint ∈ AT ∪ BT for specifying the target of

3

Published as a conference paper at ICLR 2022

Algorithm 1 Tree-based generation of molecular graphs
1: Input: sequence of decisions d1, . . . , dT .
2: Output: graph G = (A,B, E), atom attributes {xa}a∈A, and bond attributes {xb}b∈B
3: Set AT ← ∅, BT ← ∅, ET ← ∅, ER ← ∅, and T ← (AT ,BT , ET). . Initialize the empty graph.
4: Set Lres as an empty list and Sbranch as an empty stack.
5: for t = 1, . . . , T do
6: if dt ∈ Xatom then . Add a new atom vertex.
7: Create a new atom vertex a and set A ← A∪ {b} and xa ← dt.
8: If |BT | > 0, set ET ← ET ∪ {{a, ipoint}}. . Edge is added when tree is not empty.
9: Set ipoint ← a.

10: if dt ∈ Xbond then . Add a new bond vertex.
11: Create a new bond vertex b and set ET ← ET ∪ {{b, ipoint}}, BT ← BT ∪ {b}, and xb ← dt.
12: Set ipoint ← b.
13: if dt = "*" then Insert ipoint into Lres. . Add pointer vertex into the queue.
14: if dt ∈ Lres then Pop dt from Lres and update ER ← ER ∪ {{ipoint, dt}}. . Add a new residual edge.
15: if dt = "(" then Insert ipoint into Sbranch. . Add pointer vertex into the stack.
16: if dt = ")" then Set ipoint ← pop(Sbranch) . Update pointer vertex from the stack.
17: Set A ← AT , B ← BT , and E ← ET ∪ ER.

the next operation, (b) a stack Sbranch that stores vertices to use later as a starting point of a “branch”
in the spanning tree, and (c) a list Lres that stores vertices to use later for constructing residual edges.

In what follows, we describe the seven types of operations, i.e., attach atom, attach bond,
branch start, branch end, res atom, res bond, and terminate, corresponding to decision
values d ∈ Xatom ∪ Xbond ∪ Lres ∪ {"(", ")", "*", "[eos]"} in detail. See Table 1 for the pairs of
operations and the corresponding decisions. We also provide an example of the graph construction
process in Figure 2.

Attaching atom and bond vertices to the spanning tree. If the decision d specifies one of the
atom or bond attributes, i.e., d ∈ Xatom or d ∈ Xbond, it applies the corresponding attach atom
and attach bond operations, respectively. To be specific, the attach atom operation adds a new
atom vertex a into the spanning tree T as a neighbor of the pointer vertex ipointer, i.e., AT ←
AT ∪ {a}, ET ← ET ∪ {a, ipointer}. The value d is set as the new atom attribute, i.e., xa ← d. The
newly added vertex is set as the next pointer vertex, i.e., ipointer ← a. The attach bond operation
similarly adds a new bond vertex. For example, a line graph can be expressed as a sequence of
attach atom and attach bond operations, e.g., C-C-C where "C" ∈ XA and "-" ∈ XB.

Branching out the spanning tree. To express graph structures with vertices of degree larger than
two, our framework utilizes pairs of the branch start and the branch end operations with decision
values of "(" and ")", respectively. To be specific, the branch start operation inserts the current
pointer vertex into a stack Sbranch of vertices. Then the branch end operation pops a vertex from
the stack Sbranch and sets it as the new pointer vertex. For an example, a graph with one atom vertex
of degree three is constructed from a sequence of decisions C-C(-C)(-C).

Adding residual edges. To construct cyclic molecular graphs, our framework generates residual
edges based on pairs of res atom operation and res bond operation, corresponding to decision
values of "*" and d ∈ Lres, respectively. To be specific, the res atom operation inserts the current
(atom) pointer vertex into a list Lres. Next, when the decision value d ∈ Lres is received for the
res bond operation, the corresponding vertex d is popped from the list Lres and forms a new residual
edge with the current (bond) pointer vertex, i.e., ER ← ER ∪ {{d, ipointer}}. For an example, a
cyclic molecular graph is constructed from a sequence of decisions C*-O-O-1, where "1" indicates
res bond operation with decision of the first atom vertex with attribute "C".

Termination. The decision "[eos]" applies the terminate operation to finish the construction.

We provide the full algorithm in Algorithm 1. We also provide an algorithm to extract a sequence of
decisions for constructing a given graph in Appendix A. Such an algorithm is used to obtain sequence
of decisions as targets for training the generative model under the STGG framework.

4

Published as a conference paper at ICLR 2022

(a) Attention module (b) Relative positional encoding
Figure 3: Attention module and the relative positional encoding used in our framework.

2.3 MASKING OUT INVALID DECISIONS FOR A VALID MOLECULAR GRAPH

Based on Algorithm 1, we develop two criteria for determining whether if a sequence of decisions
leads to (a) valid generation of a molecular graph and (b) generation of a molecule satisfying the
valence rule. Such criteria are used to mask out invalid decisions to guarantee generating a valid
molecular graph.

Validity of graph generation. To determine whether if a sequence of decisions lead to a valid
generation of a molecular graph, we propose an algorithm that outputs a set of valid decisions
given the previous decision d, stack of pointer vertices Sbranch, and list of atom vertices Lres during
execution of Algorithm 1. In what follows, we provide a brief description of grammars enforced by
the algorithm. We also provide the detailed algorithm in Appendix B.

• The branch end operation only appears when the stack of pointer vertex Sbranch is non-empty.
• The operations res atom and res bond are atom-specific and bond-specific, hence they only

appear when the pointer vertex is located at an atom vertex and a bond vertex, respectively.
• All the bond vertices have degree of two, hence branch start and branch end operations only

appear when the pointer vertex is located at an atom vertex.
• The stack do not contain duplicates of the a pointer vertex at the same time.

Here, we note that our criteria for valid molecular graph generation do not enforce branches and rings
to be closed, e.g., C*=C-C#N is allowed by our criteria. This does not violate the validity since our
Algorithm 1 may still define a valid molecular graph by ignoring the open branches and the open
rings during construction, i.e., C*=C-C#N generates a molecule identical to that of C=C-C#N.

Validity of satisfying the valence rule. To consider chemical validity of molecules, our framework
offers the ability to constrain the its generation on molecules that satisfy the valence rule for each
atom. That is, the generated graph G = (A,B, E) satisfies the constraint v(xa) ≥

∑
b∈N (a) o(xb) for

every atom vertex a ∈ A where v(xa) denotes the valence of an atom type xa and o(xb) denotes the
bond order. To this end, we keep a record r(a) of available valence for each atom a ∈ A and update
them for each decision. For example, when a bond vertex b is newly added, record of the neighboring
atom vertex a is updated by r(a) ← v(a) − o(xb). The main idea is to forbid actions that lead to
negative values of r(a). We provide a detailed algorithm in Appendix C.

3 TRANSFORMER ARCHITECTURE FOR TREE-BASED GENERATION

In this section, we describe our deep neural network architecture for generating sequence of decisions
d1, . . . , dT under the STGG framework. To accurately recognize the decision process, we employ
the tree-based relative positional encodings on the intermediate spanning tree T . We also introduce
an attention mechanism to express a probability distribution over Lres which depends on intermediate
state of the algorithm.

5

Published as a conference paper at ICLR 2022

3.1 TREE-BASED POSITIONAL ENCODING FOR MULTI-HEAD ATTENTION LAYERS

Each intermediate layer in our model is a combination of a multi-head self-attention module and
a position-wise feed-forward neural network similar to that of Vaswani et al. (2017). The main
difference is on how we modify the architecture to incorporate tree-based positional encodings. To
be specific, let H = [h>1 , . . . , h

>
T] ∈ RT×` denote the input of a self-attention module where d is

the hidden dimension and ht ∈ R1×` is the hidden representation at position t. The input H is
projected by three matrices WQ ∈ R`×`K ,WK ∈ R`×`K and WV ∈ R`×`V to the corresponding
representations Q,K and V , respectively. A single self-attention head is then calculated as

Q = HWQ, K = HWK , V = HWV , (1)

A =
QK>√
`K

+ P, Pt1,t2 = z
(1)
φforward(t1,t2)

+ z
(2)
φbackward(t1,t2)

+ z
(3)
φseq(t1,t2)

, (2)

Attention(H) = SoftMax(M ◦A)V, (3)
where Attention(H) is output of the attention head,M is the triangular mask to forbid the model from
accessing future information while making a prediction, and ◦ denotes the element-wise multiplication
between matrices.

Furthermore, P is the newly introduced relative positional encoding. It is a summation
over the trainable embedding vectors z(1), z(2), z(3) indexed by relative position values of
φforward(t1, t2), φbackward(t1, t2), and φseq(t1, t2). To be specific, the tree-based relative positions
φforward(t1, t2) and φbackward(t1, t2) denotes the number of forward and backward edges in the span-
ning tree path between pointer vertices at the t1-th and t2-th time step. The direction of edge is
decided by order of generation in the STGG framework. Such an encoding was inspired from recent
works (Villmow et al., 2021; Lukovnikov & Fischer, 2021; Ying et al., 2021) using Transformers
to recognize graphs and trees. Finally, the sequence-based relative position φseq(t1, t2) = t1 − t2
denotes the relative difference of time-steps for the decisions.

3.2 ATTENTION FOR UPDATING RESIDUAL EDGES.

Our model generates a categorical distribution over the space of X = Xatom ∪ Xbond ∪ Lres ∪
{"(", ")", "*", "[eos]"}. It is relatively straight-forward to output an unnormalized probability
over values of Xatom ∪ Xbond ∪ {"(", ")", "*"} using a linear classifier on top of the Transformer
model. However, it is non-trivial to assign probability values for res bond operation, i.e., decisions
values of d ∈ Lres, since Lres varies between different time-steps. To handle this case, we use an
attention-based mechanism for assigning unnormalized probability to decision values in the list Lres.
To be specific, at the final layer of our model, we obtain the following probability distribution p(d).

p(d) ∝
{
mg(d) ·mv(d) · exp(w>d h) ∀d ∈ Xatom ∪ Xbond ∪ {"(", ")", "*"},
mg(d) ·mv(d) · exp

(
h>dW1W

>
2 h
)

∀d ∈ Lres,
(4)

where wd ∈ R1×` is a decision-specific vector, W1,W2 ∈ R`×˜̀ are weight matrices, and h is the
decision embedding, i.e., output of the Transformer layer corresponding to the previously made
decision. Furthermore, hd is the embedding corresponding to a past decision d ∈ Lres. Finally,
mv(d),mg(d) are the mask for excluding invalid decisions that violate the validity of graph generation
and valence rule, respectively. The masks are obtained using the criteria explained in Section 2.3.
We use the mask during both training and evaluation of the model; this differs from existing graph-
generative models which forbid invalid decisions only at evaluation using a sample-rejection scheme.

4 RELATED WORKS

SMILES-based molecular generative models. Several studies proposed to generate a SMILES
representation of molecules using string-based (Gómez-Bombarelli et al., 2016; Segler et al., 2018;
Kim et al., 2021) or grammar-based (Kusner et al., 2017; Dai et al., 2018) models. While our
STGG is largely inspired from such works, our STGG allows realizing the intermediate graph
structure of the molecule being constructed while the SMILES-based models cannot. This difference
allows the adoption of structure-aware deep neural networks to STGG. To be specific, the difference
between STGG and the SMILES-based models appears from our newly introduced graph construction
procedure using a pointer vertex ipoint, a vertex-list L, and a vertex-stack S . They allow recognizing
an incomplete sequence of decisions as a graph and assigning positions to each decision. In contrast,

6

Published as a conference paper at ICLR 2022

Table 2: Experimental results on ZINC250K and QM9 datasets.

ZINC250K QM9

METHOD CORRECTABLE VALID UNIQUE NOVEL VALID UNIQUE NOVEL

GCPN (You et al., 2018) X 0.20 1.0000 1.0000 - - -
MRNN (Popova et al., 2019) X 0.65 0.9989 1.0000 - - -
GRAPHNVP (Madhawa et al., 2019) 0.426 0.948 1.0000 0.831 0.992 0.582
GRF (Honda et al., 2019) 0.734 0.537 1.0000 0.845 0.66 0.586
GRAPHAF (Shi et al., 2020) X 0.680 0.991 1.0000 0.67 0.9415 0.8883
MOFLOW (Zang & Wang, 2020) X 0.680 0.991 1.0000 0.8896 0.9853 0.9604
GRAPHCNF (Lippe & Gavves, 2021) 0.9635 0.9998 0.9998 - - -
GRAPHDF (Luo et al., 2021) X 0.8903 0.9916 1.0000 0.8267 0.9762 0.9810
SMILES-TRANSFORMER 0.9558 0.9998 0.9946 0.9908 0.9629 0.6939
STGG (ours) X 0.9950 0.9999 0.9989 1.0000 0.9676 0.7273

an incomplete SMILES string does not define a graph structure and assigning positions to each
character is non-trivial.

Graph-based molecular generative models. Researchers have developed a large variety of molecu-
lar graph generation frameworks based on atom-wise and bond-wise operations (You et al., 2018;
Kajino, 2019; Popova et al., 2019; Madhawa et al., 2019; Honda et al., 2019; Shi et al., 2020; Zang &
Wang, 2020; Luo et al., 2021). Our STGG framework simplifies the decision space of such models
by exploiting the tree-like graph structures of molecules. To be specific, STGG requires O(|A|+ |B|)
decisions for constructing a molecule while the existing atom-by-atom graph generative models
typically requireO(|A|2) decisions. This implies that our generative model requires a smaller number
of decisions for sparse graphs like molecules, i.e., when |B| is small. Furthermore, our work is the
first to successfully train a Transformer architecture (Vaswani et al., 2017) for graph-based molecule
generation.

In another line of research, several works (Jin et al., 2018; 2019; 2020) proposed generative models
based on using the junction-tree representation with molecular substructures as building blocks.
Based on such a representation, such works utilize tree-constructive operations to generate the full
graph. Since they operate on such a coarse-grained molecular representation, they typically require
a fewer number of building blocks to generate the whole molecule. In comparison, our STGG
framework utilizes a more fine-grained molecular representation and may additionally learn the inner
semantics of substructures that are used as building blocks for the junction tree.

5 EXPERIMENT

In this section, we report the experimental results of the proposed spanning tree-based graph gener-
ation (STGG) framework. In Section 5.1 and 5.2, we compare with the existing graph generative
models in the ZINC250K (Irwin et al., 2012) and QM9 (Ramakrishnan et al., 2014). We provide
ablation studies on each component of our method using the ZINC250K dataset. In Section 5.2, we
compare with the existing molecule generative models using the MOSES benchmark (Polykovskiy
et al., 2020). Finally, in Section 5.3, we provide our results on the molecular optimization task
with respect to the penalized octanol-water partition coefficient function (PLOGP). We provide the
implementation details and illustration of the generated molecules in Appendix D and E, respectively.

5.1 MOLECULE GENERATION ON ZINC250K AND QM9 DATASETS

We first compare to the literature standard for the molecular generation task in the ZINC250K
and the QM9 datasets. To this end, we train our generative model on the respective datasets and
sample 10,000 molecules to measure (a) the ratio of valid molecules (VALID), (b) the ratio of unique
molecules (UNIQUE), and (c) the ratio of novel molecules with respect to the training dataset (NOVEL).
We compare with the numbers reported by recently proposed graph generative models (Shi et al.,
2020; Luo et al., 2021). We also provide an additional baseline of a transformer architecture trained
to generate the SMILES representation for the molecule (SMILES-TRANSFORMER).

We mark CORRECTABLE for methods which can optionally use a sample-rejection scheme to forbid
decisions that violate the chemical rules at evaluation. Note that our framework can train the
generative model under the valence correction mask during training, while existing graph generative

7

Published as a conference paper at ICLR 2022

Table 4: First set of experimental results for the MOSES benchmark.

METHOD VALID UNIQUE1 UNIQUE2 INTDIV INTDIV2 FILTERS NOVEL

TRAINING DATASET 1.0000 1.0000 1.0000 0.8567 0.8508 1.0000 0.0000

HMM (Polykovskiy et al., 2020) 0.0760 0.6230 0.5671 0.8466 0.8104 0.9024 0.9994
NGRAM (Polykovskiy et al., 2020) 0.2376 0.9740 0.9217 0.8738 0.8644 0.9582 0.9694
COMBINATORIAL (Liu et al., 2017) 1.0000 0.9983 0.9909 0.8732 0.8666 0.9557 0.9878
CHARRNN (Segler et al., 2018) 0.9748 1.0000 0.9994 0.8562 0.8503 0.9943 0.8419
AAE (Polykovskiy et al., 2020) 0.9368 1.0000 0.9994 0.8557 0.8499 0.9960 0.7931
VAE (Polykovskiy et al., 2020) 0.9767 1.0000 0.9984 0.8558 0.8498 0.9970 0.6949
JT-VAE (Jin et al., 2018) 1.0000 1.0000 0.9996 0.8551 0.8493 0.9760 0.9143
LATENTGAN (Prykhodko et al., 2019) 0.8966 1.0000 0.9968 0.8565 0.8505 0.9735 0.9498

STGG (ours) 1.0000 1.0000 0.9987 0.8556 0.8496 0.9976 0.6727

Table 5: Second set of experimental results for the MOSES benchmark.
FCD (↓) SNN (↑) FRAG (↑) SCAF (↑)

METHOD TEST TESTSF TEST TESTSF TEST TESTSF TEST TESTSF

TRAINING DATASET 0.0080 0.4755 0.6419 0.5859 1.0000 0.9986 0.9907 0.0000

HMM (Polykovskiy et al., 2020) 24.466 25.431 0.3876 0.3795 0.5754 0.5681 0.2065 0.0490
NGRAM (Polykovskiy et al., 2020) 5.5069 6.2306 0.5209 0.4997 0.9846 0.9815 0.5302 0.0977
COMBINATORIAL (Liu et al., 2017) 4.2375 4.5113 0.4514 0.4388 0.9912 0.9904 0.4445 0.0865
CHARRNN (Segler et al., 2018) 0.0732 0.5204 0.6015 0.5649 0.9998 0.9983 0.9242 0.1101
AAE (Polykovskiy et al., 2020) 0.5555 1.0572 0.6081 0.5677 0.9910 0.9905 0.9022 0.0789
VAE (Polykovskiy et al., 2020) 0.0990 0.5670 0.6257 0.5783 0.9994 0.9984 0.9386 0.0588
JT-VAE (Jin et al., 2018) 0.3954 0.9382 0.5477 0.5194 0.9965 0.9947 0.8964 0.1009
LATENTGAN (Prykhodko et al., 2019) 0.2968 0.8281 0.5371 0.5132 0.9986 0.9972 0.8867 0.1072

STGG (ours) 0.0680 0.5032 0.6359 0.5851 0.9998 0.9984 0.9416 0.0389

models use the valence correction only at evaluation. However, for comparison, we do not use the
valence correction mask during training in this experiment.

Table 3: Ablation on ZINC250K.

Method VALID UNIQUE NOVEL

A 0.9296 0.9995 0.9984
S 0.9814 0.9995 0.9955
S+T 0.9834 0.9997 0.9961
S+T+G 0.9950 0.9999 0.9989
S+T+G+V 1.0000 0.9992 0.9927

We report the experimental results in Table 2. In the table,
we observe that our STGG framework outperforms all the
existing molecular graph generative models for high VALID
at the cost of relatively lower NOVEL. In particular, our
generative model can achieve a 100% ratio of valid molecules
in the QM9 dataset even without any correction procedure.
Such a result highlights the how our model can effectively
learn the chemical rules and model the underlying distribution.
Finally, our STGG framework performing better than the SMILES-based transformer implies how
the performance of our generative model stems from the STGG framework, rather than using the
Transformer architecture.

Figure 4: Ablation on ZINC250K.

Ablation studies. We also conduct ablation studies on the
ZINC250k dataset to verify the effectiveness of our method.
To this end, we report the experimental results of our method
without specific components. To be specific, we ablate the
effects of using sequential relative positional encoding (S), tree-
based relative positional encoding (T), graph-construction mask
(G), and valence rule mask (V). We also consider an additional
baseline of using the absolute positional encoding (A) as in
the original Transformer architecture (Vaswani et al., 2017). In
Table 3 and Figure 4, one can observe how each component of
our algorithm is crucial for achieving high VALID. In particular, the tree encoding is essential for the
performance, showing the importance of tree-based representation that we use in our model.

5.2 MOLECULE GENERATION ON THE MOSES BENCHMARK

We also compare our method on the MOSES benchmark with the existing models. The MOSES
benchmark offers a large collection of metrics to access the overall quality of generated molecules.
To be specific, in addition to VALID, UNIQUE, NOVEL, we consider internal diversity of molecules
(INTDIV), ratio of samples being accepted to chemical filters (FILTERS), Frétchet ChemNet Distance
(FCD), nearest neighborhood similarity (SNN), frament similarity (FRAG), and Scaffold similarity

8

Published as a conference paper at ICLR 2022

Figure 5: Molecular optimization results with the top-3
property scores denoted by 1ST, 2ND, and 3RD.

PLOGP

Method OFFLINE 1ST 2ND 3RD

GVAE (Kusner et al., 2017) X 2.94 2.89 2.80
SD-VAE (Dai et al., 2018) X 4.04 3.50 2.96
JT-VAE (Jin et al., 2018) 5.30 4.93 4.49
MHG-VAE (Kajino, 2019) 5.56 5.40 5.34
GRAPHAF (Shi et al., 2020) 12.23 11.29 11.05
GRAPHDF (Luo et al., 2021) 13.70 13.18 13.17

STGG, γ = 4 (ours) X 4.56 4.55 4.53
STGG, γ = 5 (ours) X 5.06 4.89 4.86
STGG, γ = 6 (ours) X 5.72 5.15 4.92
STGG, γ = 7 (ours) X 23.32 18.75 16.50

Figure 6: Optimized 1ST molecules

(SCAF). The similarity metrics of FCD, SNN, FRAG, SCAF are measured with respect to the test
dataset of molecules and the scaffolds extracted from them.

In Table 4 and 5, we provide our experimental result. Here, one can observe how our algorithm out-
performs the existing works for 10 out of 15 metrics including FILTERS, FCD-TEST, FCD-TESTSF,
SNN-TEST, SNN-TESTSF, FRAG-TEST, FRAG-TESTSF, and SCAF-TEST. This highlights the
ability of our STGG framework to successfully learn the training distribution.

5.3 MOLECULAR OPTIMIZATION FOR PENALIZED OCTANOL-WATER PARTITION COEFFICIENT

Finally, we demonstrate the usefulness of our STGG framework for the task of molecular optimization.
To this end, we consider the literature standard of maximizing the penalized octanol-water partition
coefficient (PLOGP). However, several works (Gao & Coley, 2020; Coley, 2020) have noted how the
existing algorithms on this benchmark may not be practical, since PLOGP is ill-defined as a scoring
function for molecules; this scoring function may assign high values to “unrealistic” molecules that
are unstable and hard to synthesize in practice.

To consider this aspect, we propose a new algorithm which can control the quality of molecules by
trading off scores and realistic-ness of molecules. Using this algorithm, we demonstrate how our
STGG is capable of generating both (a) high-scoring molecules and (b) realistic molecules with a
reasonably high score. At a high-level, we train a conditional generative model pθ(m|γ) under the
STGG framework with PLOGP as the condition γ. At the test time, we sample from a high value γ
to obtain high-scoring molecules. Such an algorithm is inspired from the recent offline reinforcement
learning algorithms (Schmidhuber, 2019; Kumar & Levine, 2020; Chen et al., 2021; Janner et al.,
2021). We fully describe our molecular optimization algorithm in Appendix F.

In Table 5 and Figure 6, we report the result of our molecular optimization experiment. We provide
additional illustrations of the generated molecules in Appendix G. Here, our STGG model is
able to generate molecules with considerably high PLOGP scores outside the training distribution.
Furthermore, in Figure 6 and Appendix G, one can observe how increasing γ gradually changes the
optimized molecule from realistic structures to large, chain-like, and unrealistic structures.3 Given
such results, one may conclude that our STGG combined with the offline optimization algorithm can
successfully make a trade-off between high PLOGP and realistic-ness of the generated molecules.
However, we also remark that our results do not imply our optimization results to be strictly better
than the baselines; we believe it is necessary to develop and incorporate quantitative measures for
realistic-ness of molecules to fairly evaluate the molecular optimization algorithms. We believe such
a research to be a important future direction.

6 CONCLUSION

In this paper, we propose STGG which is the first spanning tree-based framework for the generation
of molecules using the Transformer architecture. The key idea of using the spanning tree for graph
generation applies to any graph type outside the molecules; we believe such an extension of our work
to be both promising and interesting. We also propose an offline algorithm for molecular optimization
which allows the trade-off between the high score and the realistic-ness of molecules. We leave more
investigation of the newly proposed optimization algorithm as future work.

3This is in agreement with prior works (Shi et al., 2020; Ahn et al., 2020; Luo et al., 2021).

9

Published as a conference paper at ICLR 2022

7 REPRODUCIBILITY STATEMENT

We provide explicit description of our algorithm in Algorithm 1, Appendix 2, 3, and 4. We list the
hyper-parameters, the hardware used for the experiments, and the data-processing information in
Appendix D. We provide illustrations of the molecules generated for the experiments in Figure 6, and
Appendix E, G. We submit the full implementation of our STGG framework and the baselines used
in our experiments as a supplementary material.

REFERENCES

Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization
with genetic exploration. Advances in Neural Information Processing Systems, 33, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Connor W Coley. Defining and exploring chemical spaces. Trends in Chemistry, 2020.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational
autoencoder for structured data. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=SyqShMZRb.

P Erdös, A Rényi, et al. On random graphs. In Publicationes mathematicae 6, volume 1, pp. 290–297,
1959.

Wenhao Gao and Connor W Coley. The synthesizability of molecules proposed by generative models.
Journal of Chemical Information and Modeling, 2020.

Rafael Gómez-Bombarelli, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, David Duvenaud, Dougal
Maclaurin, Martin A Blood-Forsythe, Hyun Sik Chae, Markus Einzinger, Dong-Gwang Ha, Tony
Wu, et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual
screening and experimental approach. Nature materials, 15(10):1120–1127, 2016.

Shion Honda, Hirotaka Akita, Katsuhiko Ishiguro, Toshiki Nakanishi, and Kenta Oono. Graph
residual flow for molecular graph generation. arXiv preprint arXiv:1909.13521, 2019.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757–1768, 2012.

Michael Janner, Qiyang Li, and Sergey Levine. Reinforcement learning as one big sequence modeling
problem. arXiv preprint arXiv:2106.02039, 2021.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International Conference on Machine Learning, pp. 2323–2332,
2018.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecule optimization. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=B1xJAsA5F7.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International Conference on Machine Learning, pp. to appear, 2020.

Hiroshi Kajino. Molecular hypergraph grammar with its application to molecular optimization. In
International Conference on Machine Learning, pp. 3183–3191. PMLR, 2019.

Hyunseung Kim, Jonggeol Na, and Won Bo Lee. Generative chemical transformer: attention makes
neural machine learn molecular geometric structures via text. arXiv preprint arXiv:2103.00213,
2021.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization, 2020.
URL https://openreview.net/forum?id=SklsBJHKDS.

10

https://openreview.net/forum?id=SyqShMZRb
https://openreview.net/forum?id=B1xJAsA5F7
https://openreview.net/forum?id=SklsBJHKDS

Published as a conference paper at ICLR 2022

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.
In International Conference on Machine Learning, pp. 1945–1954, 2017.

Phillip Lippe and Efstratios Gavves. Categorical normalizing flows via continuous transformations.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=-GLNZeVDuik.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph variational
autoencoders for molecule design. In Advances in Neural Information Processing Systems, pp.
7795–7804, 2018.

Tairan Liu, Misagh Naderi, Chris Alvin, Supratik Mukhopadhyay, and Michal Brylinski. Break down
in order to build up: decomposing small molecules for fragment-based drug design with e molfrag.
Journal of chemical information and modeling, 57(4):627–631, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Denis Lukovnikov and Asja Fischer. Insertion-based tree decoding. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021, pp. 3201–3213, 2021.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning, 2021.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invertible
flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, Artur Kadurin, Simon Johansson, Hongming Chen, Sergey Nikolenko, Alan Aspuru-
Guzik, and Alex Zhavoronkov. Molecular Sets (MOSES): A Benchmarking Platform for Molecular
Generation Models. Frontiers in Pharmacology, 2020.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. MolecularRNN: Generating
realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Günter Klambauer. Fréchet
ChemNet distance: a metric for generative models for molecules in drug discovery. Journal of
chemical information and modeling, 58(9):1736–1741, 2018.

Oleksii Prykhodko, Simon Viet Johansson, Panagiotis-Christos Kotsias, Josep Arús-Pous, Esben Jan-
nik Bjerrum, Ola Engkvist, and Hongming Chen. A de novo molecular generation method using
latent vector based generative adversarial network. Journal of Cheminformatics, 11(1):1–13, 2019.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map them to
actions. arXiv preprint arXiv:1912.02875, 2019.

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):
120–131, 2018.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. GraphAF: a
flow-based autoregressive model for molecular graph generation. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=S1esMkHYPr.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

11

https://openreview.net/forum?id=-GLNZeVDuik
https://openreview.net/forum?id=-GLNZeVDuik
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=S1esMkHYPr

Published as a conference paper at ICLR 2022

Johannes Villmow, Adrian Ulges, and Ulrich Schwanecke. A structural transformer with relative
positions in trees for code-to-sequence tasks. In 2021 International Joint Conference on Neural
Networks (IJCNN), pp. 1–10. IEEE, 2021.

David Weininger. SMILES, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform bad for graph representation? arXiv preprint
arXiv:2106.05234, 2021.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. In Advances in Neural Information
Processing Systems, pp. 6410–6421, 2018.

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 617–626, 2020.

12

Published as a conference paper at ICLR 2022

A EXTRACTING SEQUENCE OF DECISIONS FROM A MOLECULAR GRAPH

In this section, we explain our algorithm for finding a sequence of decisions to construct a given
molecular graph G = (A,B, E). The high-level idea is to first perform a depth-first search on G
to find a spanning tree T = (A,B, ET) and the corresponding set of residual edges ER = E\ET .
Then the algorithm traverses the spanning tree T according to the depth-first search tree while (a)
allocating branch start and branch end for vertices with degree higher than two and (b) adding
res atom and res bond operations for any vertex covered by a residual edge {a, b} ∈ ER.

To this end, we utilize a stack Sdfs that stores the list of vertices in G and branching tokens {"(", ")"}
to visit. At each iteration, an element i of the stack Sdfs is popped. If i is a vertex, the algorithm
adds the corresponding decision for attach atom and attach bond operations. If the vertex has
more than two successors with respect to the spanning tree T , the successors are inserted into the
stack Sdfs with surrounding "(" and ")" tokens. If the vertex has only one successor, the successor
is inserted into the stack without an additional operation. When the branching tokens {"(", ")"}
are popped from the stack, the algorithm adds the corresponding decision value to the sequence of
decisions. We describe the full scheme in Algorithm 2.

Algorithm 2 Generating sequence of decisions for a molecular graphs

1: Input: graph G = (A,B, E), atom attributes {xa}a∈A, and bond attributes {xb}b∈B

2: Find a spanning tree T = (A,B, ET) of G based on depth-first order and set ER ← E \ ET .
3: Initialize an empty sequence of decisions D.
4: Choose the root a ∈ A of T to insert in an empty stack Sbranch.
5: do
6: Pop i from Sbranch.
7: if i ∈ A ∪ B then
8: Append xi to D. . Decision to attach the atom vertex.
9: for j ∈ {j|j ∈ N (i), {i, j} ∈ ER} do . Decisions for residual edges.

10: If i ∈ A, append "*" to D.
11: If i ∈ B, append j to D.

12: Let V denote {j|j ∈ N (i), j 6∈ AT ∪ BT }. . Successors of i in depth-first order.
13: If |V| > 1, insert "(" to Sbranch. . Allocate decision to record pointer vertex.
14: Insert vertices in V to Sbranch. . Allocate successors to visit later.
15: If |V| > 1, insert ")" to Sbranch. . Allocate decision to return to the pointer vertex.

16: if i ∈ {"(", ")"} then
17: Append i to D.

18: while |Sbranch| > 0

19: Output: sequence of decisions D = d1, . . . , dT to reconstruct G.

13

Published as a conference paper at ICLR 2022

B ALGORITHMS FOR GRAPH MASKING

To determine whether if a sequence of decisions lead to a valid generation of a molecular graph,
we propose an algorithm that outputs a set of valid decisions given the current decision d, stack of
pointer vertices S , and list of atom vertices L during execution of Algorithhm 1. We provide the full
description in Algorithm 3.

Algorithm 3 Determination of grammar violation
1: Input: current decision d, stack Sbranch, and list Lres.
2: Output: List of candidate decisions D that are valid.
3: if d ∈ Xatom then
4: Set D ← Xbond. . When the atom vertex is followed by bond vertex.
5: Set D ← D ∪ {"("} . When the atom vertex has more than one successors.
6: Set D ← D ∪ {"*"} . When the atom vertex has a neighboring residual edge.
7: If |Sbranch| > 0, set D ← D ∪ {")"}. . The ")" decision appears only when Sbranch is non-empty
8: Set D ← D ∪ {"[eos]"}. . Allow termination.

9: if d ∈ Xbond then
10: Set D ← Xatom. . When the bond vertex is followed by atom vertex.
11: Set D ← D ∪ Lres . When the bond vertex has a neighboring residual edge.

12: if d = "*" then
13: Set D ← Xbond. . When the atom vertex is followed by bond vertex.
14: Set D ← D ∪ {"("} . When the atom vertex has more than one successors.
15: Set D ← D ∪ {"*"} . When the atom vertex has a neighboring residual edge.
16: If |Sbranch| > 0, set D ← D ∪ {")"}. . The ")" decision appears only when Sbranch is non-empty
17: Set D ← D ∪ {"[eos]"}. . Allow termination.

18: if d ∈ Lres then
19: Set D ← {)}. . Residual edge is only constructed at end of each branch.

20: if d = "(" then
21: Set D ← Xbond. . Branch always starts with a bond vertex.
22: Set D ← D ∪ {"[eos]"}. . Allow termination.

23: if d = ")" then
24: Set D ← Xbond ∪ {"(", ")"}. . Branch is followed by start or end of another branch.
25: Set D ← D ∪ {"[eos]"}. . Allow termination.

We also establish theoretical result on how the sequence of decisions generated from Algorithm 3 is
always a valid sequence of decisions for Algorithm 1. To this end, we define a valid molecular graph
as follows.

Definition 1. A valid molecular graph G = (A,B, E) is a connected bipartite graph where the
number of vertices adjacent to any bond vertex b ∈ B is exactly two, i.e., |N (b)| = 2.

Such a definition implies how a molecule should have exactly two atoms connected to a bond.
Combined with additional conditions to guarantee the well-behavior of Algorithm 1 on sequence of
decisions, we obtain the following result.

Theorem 1. Let G = (A,B, E), S , and L be a graph, a stack of vertices, and a list of vertices being
updated by Algorithm 1 and a sequence of decisions d1, . . . , dT . If the sequence of decisions satisfies
the criteria defined by Algorithm 3, the following properties are satisfied.

P1 At the t-th step of Algorithm 1, |S| > 0 if dt = ")".

P2 At the t-th step of Algorithm 1, dt ∈ L if dt ∈ A ∪ B.

P3 When dT = [eos], the graph G is a valid molecular graph.

Here, P1 and P2 implies how the operations in Algorithm 1 are well-defined for d1, . . . , dT .

14

Published as a conference paper at ICLR 2022

Proof. First, P1 is enforced by the step in Algorithm 3 which forbids the decision value of ")" when
the stack S is empty. Next, P2 is enforced by the step selecting decision values from the current list
of vertices L.

To enforce P3, when dT = [eos], G (a) has to be a connected bipartite graph and (b) the number of
vertices adjacent to any bond vertex has to be exactly two. For (a), Algorithm 3 allows the decision of
dt ∈ Xatom ∪ L only when the pointer vertex is a bond vertex, i.e., d ∈ Xbond. Similarly, dt ∈ Xbond
is allowed only when d ∈ Xatom ∪ {"*", "("}. For (b), the algorithm does not allow adding a bond
vertex b ∈ B to the list of vertices L, which is required for any vertex with degree higher than two.
Termination is not allowed when there exists a bond vertex with degree smaller than two.

15

Published as a conference paper at ICLR 2022

C ALGORITHM FOR VALENCE MASKING

To consider chemical validity of molecules, our framework offers the ability to constrain its generation
on molecules that satisfy the valence rule for each atom. That is, the generated graph G = (A,B, E)
satisfies the constraint v(xa) ≥

∑
b∈N (a) o(xb) for every atom vertex a ∈ A where v(xa) denotes

the valence of an atom type xa and o(xb) denotes the bond order.

To this end, we propose an algorithm which iteratively updates a record r(a) of available valence for
each atom vertex a ∈ A. The key idea is to (a) update the record accordingly for each addition of
atom and bond orders and (b) pre-allocate valence for the branch start and res atom operations
by the amount of minimum bond order minx∈Xbond

o(x). The second part (b) is required since the
branch start and res atom operations indicate future bond vertices to be added as a neighbor of
the current atom vertex. We provide the full description in Algorithm 4.

Algorithm 4 Determination of valence rule violation

1: Input: Intermediate tree T = (AT ,BT , ET), current pointer vertex ipoint, previous pointer vertex ĩpoint,
current decision d, previous decision d̃, and record r(·) of available valence.

2: Output: Newly updated r and the list D of decisions that violates the valence rule.
3: if d ∈ Xatom then
4: Set r(ipoint)← v(d). . Initialize record by atom valence.
5: Set r(ipoint)← r(ipoint)− o(d̃). . Update record using previously added bond vertex.
6: Set D ← {x|x ∈ Xbond, o(x) > r(ipoint)}. . Reject bond orders higher than the record.
7: if r(ipoint) < minx∈Xbond o(x) then
8: Set D ← D ∪ {"(", "*"}. . Reject decisions requiring minimal amount of valence.

9: if d ∈ Xbond then
10: if d̃ 6= "(" then
11: Set r(̃ipoint)← r(̃ipoint)− o(d). . Update record of previously added atom vertex.
12: else
13: Set r(̃ipoint)← r(̃ipoint)− o(d) + minx∈Xbond o(x).

. Update previously added atom vertex considering pre-allocated valence.

14: Set D ← {x|x ∈ Xatom, v(x) < r(ipoint))}. . Reject atom valence lower than bond order.
15: Set D ← D ∪ {x|x ∈ Lres, r(x) < o(d)−minx∈Xbond o(x)}.

. Reject residual edge candidates with valence lower than bond order.

16: if d = "(" then
17: Set r(ipoint)← r(ipoint)−minx∈Xbond o(x). . Pre-allocate minimum bond order.
18: Set D ← {x|x ∈ Xbond, o(x) > r(ipoint)}. . Reject bond orders higher than the record.

19: if d = ")" then
20: Set D ← ∅
21: if d = "*" then
22: Set r(ipoint)← r(ipoint)−minx∈Xbond o(x). . Pre-allocate minimum bond order.
23: Set D ← {x|x ∈ Xbond, o(x) > r(ipoint)}. . Reject bond orders higher than the record.

24: if d ∈ Lres then
25: Set r(d)← r(d) + minx∈Xbond o(x)− o(xipoint). . Update record of previously added atom vertex.
26: Set D ← ∅.

Given Algorithm 3 and 4, we establish the following theoretical guarantee.

Definition 2. A valid molecular graph G = (A,B, E) satisfies the valency rule if v(xa) ≥∑
b∈N (a) o(xb) for every atom vertex a ∈ A.

Theorem 2. Let G = (A,B, E) be a graph being updated by Algorithm 1 and a sequence of
decisions d1, . . . , dT . If the sequence of decisions satisfies the criteria defined by Algorithm 3 and 4,
the corresponding graph G satisfies the valency rule.

16

Published as a conference paper at ICLR 2022

Proof. To prove the validity of our algorithms, we show that (1) r(a) ≤ v(xa)−
∑
b∈N (a) o(xb) and

(2) r(a) > 0 at any time-step applying Algorithm 4 to the sequence of decisions d1, . . . , dT .

For (1), we note that a record of an atom a is initialized as v(xa)−
∑
b∈N (a) o(xb) whenever it is newly

added to the graph G by a decision. Furthermore, whenever a new edge is added by attach bond and
res bond operation, the corresponding bond order o(xb) is deducted from the record. Importantly,
a minimum bond order minx∈Xbond

o(x) is also added to the record for a attach bond operation
consecutive to a branch start operation or a res bond operation. We note how this does not harm
(1) since the minimum bond order has already been deducted (or pre-allocated) by the corresponding
branch start and res atom operations, respectively.

For the case of (2), one can observe that Algorithm 4 filters out the atoms and bonds that will deduct
the record of the corresponding atom to be negative. This completes proves the correctness of our
theorem.

17

Published as a conference paper at ICLR 2022

D IMPLEMENTATION DETAILS

In this section, we provide specific details on how we implement the STGG framework for our
experiments.

Training detail. For all the experiments, we train the Transformer under STGG framework for 100
epochs with batch size of 128 for all the dataset. We use the AdamW (Loshchilov & Hutter, 2019)
optimizer with constant learning rate of 10−4. We use three and six Transformer layers for {QM9,
ZINC250K} and MOSES, respectively. The rest of Transformer-related configurations follow that
of the original work (Vaswani et al., 2017); we use the attention module with embedding size of 1024
with eight heads, MLP with dimension of 2048, and dropout with probability of 0.1. Using a single
Quadro RTX 6000 GPU, it takes approximately three, ten, and 96 hours to fully train the models on
QM9, ZINC250K, and MOSES datasets, respectively.

Pre-processing. For the whole dataset, we use the following set of atom vocabularies Xatom: {
"CH", "CH2", "CH-", "CH2-", "C", "N-", "NH-", "N", "NH", "N+", "NH+", "NH2+", "NH3+", "O-",
"O", "O+", "OH+", "F", "P", "PH", "PH2", "P+", "PH+", "S-", "S", "S+", "SH", "SH+", "Cl",
"Br", "I", }. Note that we assign different features for the same atom numbers with different
number of explicit hydrogens and formal charges. This allows our algorithm to properly allocate
maximum valence for each atom feature. Next, we use the bond vocabularyXbond = {"-", "=", "#"},
corresponding to bond orders of single, double, and triple, respectively. For explicit calculation of
the atom valence during molecular construction, we train our models on kekulized molecules, i.e.,
aromatic bonds are fixed to single or double bonds.

18

Published as a conference paper at ICLR 2022

E EXAMPLE OF GENERATED MOLECULES

Figure 7: Example of molecules generated from the QM9 dataset.

Figure 8: Example of molecules generated from the ZINC250K dataset.

Figure 9: Example of molecules generated from the MOSES dataset.

19

Published as a conference paper at ICLR 2022

F OFFLINE OPTIMIZATION OF MOLECULES

In this section, we describe our offline molecular optimization algorithm mainly inspired by existing
works in offline reinforcement learning (Schmidhuber, 2019; Chen et al., 2021; Janner et al., 2021)
and offline model-based optimization (Kumar & Levine, 2020).

For maximizing a reward function defined on a molecule, our algorithm consists of two simple steps.
First, our offline optimization algorithm trains a conditional generative model pθ(m|γ) where m is
the molecule and γ is the reward function evaluated on the offline dataset of molecules. Next, the
reward-conditional generative model samples highly-rewarding molecules by generation conditioned
on high values of γ. In particular, we set the value of γ to extrapolate outside the training dataset.
Based on the highly expressive power of Transformer architecture, our algorithm can successfully
generate highly-rewarding molecules.

20

Published as a conference paper at ICLR 2022

G ADDITIONAL EXPERIMENTAL RESULTS ON MOLECULAR OPTIMIZATION

Figure 10: Top-16 molecules generated under condition γ = 4.

Figure 11: Top-16 molecules generated under condition γ = 5.

Figure 12: Top-16 molecules generated under condition γ = 6.

Figure 13: Top-16 molecules generated under condition γ = 7.

21

Published as a conference paper at ICLR 2022

H COMPARISON WITH CG-VAE

Table 6: Experimental results for the QM9 benchmark.

METHOD VALID UNIQUE NOVEL FCD (↓) SNN (↑) FRAG (↑) SCAF (↑)
CG-VAE (Liu et al., 2018) 1.0000 0.9857 0.9435 1.8515 0.3940 0.9484 0.6628
STGG (ours) 1.0000 0.9561 0.6978 0.5851 0.9998 0.9984 0.9416

Table 7: Experimental results for the ZINC benchmark.

METHOD VALID UNIQUE NOVEL FCD (↓) SNN (↑) FRAG (↑) SCAF (↑)
CG-VAE (Liu et al., 2018) 1.0000 1.0000 0.9982 11.335 0.2656 0.8118 0.2411
STGG (ours) 1.0000 0.9996 0.9978 0.2778 0.4664 0.9932 0.7192

In this section, we additionally compare our STGG framework with the CG-VAE model (Liu et al.,
2018), which is another atom-by-atom graph generative model that allows masking out the action
space to generate molecules satisfying the valence rules. Compared to Table 2, we additionally use
the FCD, SNN, Frag, Scaf metrics to measure the faithfulness of the generative models for learning
the underlying distribution of molecules. Note that the VALID metric used in Table 2 is insufficient to
compare the faithfulness of STGG and CG-VAE since they both enjoy the guarantee to generate
molecules satisfying the valence rule.

In Table 6 and 7, one can observe that our algorithm highly outperforms the CG-VAE in terms of
faithfully learning the underlying distribution of molecules at the cost of relatively lower UNIQUE.
For example, FCD score of our STGG for learning the ZINC dataset is 0.2775 while that of the
CG-VAE is 11.33. This highlights the expressive power of our STGG framework.

22

	Introduction
	Spanning Tree-based Generation of Graphs (STGG)
	Overview
	Decision process for spanning tree-based graph generation
	Masking out invalid decisions for a valid molecular graph

	Transformer Architecture for Tree-based Generation
	Tree-based positional encoding for multi-head attention layers
	Attention for updating residual edges.

	Related Works
	Experiment
	Molecule generation on ZINC250k and QM9 datasets
	Molecule generation on the MOSES benchmark
	Molecular optimization for penalized octanol-water partition coefficient

	Conclusion
	Reproducibility Statement
	Extracting sequence of decisions from a molecular graph
	Algorithms for graph masking
	Algorithm for valence masking
	Implementation details
	Example of generated molecules
	Offline optimization of molecules
	Additional experimental results on molecular optimization
	Comparison with CG-VAE

