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Summary
Representation learning and unsupervised skill discovery remain key challenges for train-

ing reinforcement learning agents. We show that the empowerment objective, which measures
the maximum number of distinct skills an agent can execute from some representation, enables
agents to simultaneously perform representation learning and unsupervised skill discovery.
Our theoretical analysis shows that empowerment provides a principled objective for learning
sufficient statistic representations of observations. In addition, we show that the empowerment
objective, when combined with a new approach to mutual information maximization, enables
agents to learn large skillsets.

Contribution(s)
1. We prove that for any encoder that maps observations to a learned representation, the aver-

age empowerment achieved by the encoder is upper bounded by the average empowerment
achieved by an encoder that outputs sufficient statistics of observations.
Context: Prior work has proven that the average empowerment produced by an obser-
vation encoder is upper bounded by the average empowerment conditioned on the state
representation (Capdepuy, 2011). We prove this is a looser upper bound than our own. This
bound is also not achievable in partially observable settings where agents are not able to
learn mappings from observations to underlying states.

2. We introduce a new approach to maximizing the mutual information between skills and
observations that uses bandit reinforcement learning.
Context: None

3. We provide empirical evidence that the empowerment objective can be used to jointly learn
(i) representations suitable for reinforcement learning and (ii) large sets of skills that can be
executed from the learned representations.
Context: None
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Abstract

Representation learning and unsupervised skill discovery remain key challenges for1
training reinforcement learning agents. We show that the empowerment objective,2
which measures the maximum number of distinct skills an agent can execute from3
some representation, enables agents to simultaneously perform representation learn-4
ing and unsupervised skill discovery. We provide theoretical analysis that empower-5
ment can help agents learn sufficient statistic representations of observations because6
the maximum number of distinct skills an agent can execute from a learned representa-7
tion grows when that representation does not combine multiple observations associated8
with different sufficient statistics. To jointly learn representations and skills, we use a9
new approach to mutual information maximization that uses bandit reinforcement learn-10
ing. Under this approach, the agent learns a bandit policy that maps the skill starting11
representation to a vector that contains the set of parameters that make up the skill-12
conditioned policy. The reward for a skill-conditioned policy action is the variational13
lower bound on mutual information conditioned on that policy, which measures the14
diversity of the skill-conditioned policy action. Empirically, we demonstrate that our15
approach can (i) learn significantly more skills than existing unsupervised skill discov-16
ery approaches and (ii) learn a representation suitable for downstream reinforcement17
learning applications.18

1 Introduction19

Representation learning and unsupervised skill discovery have shown to be helpful capabilities for20
reinforcement learning (RL) agents. Both capabilities can boost sample efficiency as compact rep-21
resentations can simplify the policy that an agent needs to learn (Laskin et al., 2020), and skills can22
assist with exploration (Nachum et al., 2019) and accelerate credit assignment (Levy et al., 2019).23
Despite the importance of both of these capabilities, prior work has mostly focused on only one of24
these two capabilities.25

The purpose of this work is to demonstrate that a single objective, empowerment, enables agents26
to perform both representation learning and skill discovery simultaneously. The empowerment of a27
representation, which is the maximum mutual information between skills and observations condi-28
tioned on the representation under consideration, measures the maximum number of distinct policies29
or skills that can be executed from that representation over a certain time horizon. In the context of30
empowerment, a distinct skill is one that targets a set of one or more observations that is not targeted31
by other skills in the agent’s skillset. For example, consider an agent that moves within a 2D room32
and observes its (x, y) position. The empowerment of the agent when it starts in the center of the33
room is the largest set of skills, in which each skill targets a unique precise region of the (x, y)34
space, assuming there is a small amount randomness in the transition function. Figure 1 (Left) (a)35
illustrates the trajectories that some of these skills could produce.36
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Figure 1: (Left) (a) Some of the distinct skills an agent can execute from the center of room that each
target a unique (x, y) region. (b) Assuming all observations are encoded to the same representation,
the orange box shows the (x, y) positions that could be targeted by a skill that moves the agent to
the right, and the blue box shows the (x, y) positions that could be targeted by a skill that moves
the agent down in the same scenario. Skills are highly stochastic (i.e., the boxes are large) because
the starting observation can be anywhere in the room. (c) When different observations are not
aliased, agents can learn different skillsets for different starting representations, such as when the
agents learns skills to move up and to the left when it starts in the bottom right corner (orange
square). (Right) Overview of the bandit RL approach to empowerment. The policy maps the skill
starting representation to a vector, θ, containing the parameters of the skill-conditioned policy neural
network. The reward for an skill-conditioned policy action θ is the mutual information of that policy,
which measures the diversity of the policy.

We show that the empowerment objective enables agents to perform representation learning as it37
provides a principled way to learn sufficient statistic representations of observations, which are es-38
sential for downstream reinforcement learning (RL) tasks. The empowerment objective helps agents39
learn sufficient statistic representations because it discourages agents from encoding observations40
associated with different sufficient statistics to the same representation. This type of observation41
aliasing is discouraged because it reduces the number of distinct skills that can be executed from42
a learned representation. One reason is that unnecessary aliasing can make skills more stochastic,43
which in turn can result in redundant skills that target the same observations. Figure 1 (b) illustrates44
an extreme example of this in the 2D world in which the agent has learned to encode all observations45
into the same representation. In this scenario, skills that produce different actions (such as one skill46
that moves the agent right and another that moves the agent down) now target similar observations47
and become redundant. A second reason incorrectly mapping different observations to similar en-48
codings reduces the number of distinct skills is that is forces similar skillsets to be applied to the49
aliased observations. For instance, in the 2D room, encoding observations where the agent starts in50
the top left of the room to the same representation as when the agent starts in the bottom right, forces51
the agent to execute similar skillsets in both situations, which can result in redundant skills where52
different skills cause the agent to target the same position on a wall. On the other hand, if these53
observations were mapped to different representations, the agent could learn larger skillsets tailored54
for the specific starting representation, such as moving down and to the right when the agent starts55
in the top left of the room.56

We also show that the empowerment objective, when combined with a new approach to mutual in-57
formation maximization, can be used to learn large skillsets. After the inconsistent performance58
of earlier methods that tried to discover skills using empowerment (Gregor et al., 2016; Eysenbach59
et al., 2019), recent work has moved away from maximizing a pure mutual information objective for60
learning skills, arguing that the empowerment objective is not sufficient and that additional bonus61
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terms need to be added (Laskin et al., 2022; Strouse et al., 2022; Zheng et al., 2025; Baumli et al.,62
2021; Kim et al., 2023) or that empowerment is fundamentally not capable of learning large skillsets63
in continuous settings (Park et al., 2022; 2024). We show that a key reason for the inconsistent per-64
formance of earlier empowerment methods was that they were not properly using reinforcement65
learning to optimize the mutual information objective. Earlier approaches treated the mutual infor-66
mation objective as a typical sequential decision making problem in RL in which the tuple of states67
and primitive actions is a sufficient statistic for reward. But in the mutual information objective in68
empowerment, this is not true as the reward depends on the state and the complete skill-conditioned69
policy rather than a single primitive action. Treating the tuple of states and actions as Markov with70
respect to reward when it is not results in nonstationary rewards which can make training unsta-71
ble. In addition, we show that the reward function used by prior work is also flawed as it evaluates72
skill-conditioned policies using a loose lower bound on mutual information. Given that mutual in-73
formation evaluates the diversity of a skill-conditioned policy, the loose lower bound means agents74
were often underestimating the diversity of skill-conditioned policies, which in turn made it difficult75
to learn a diverse skill-conditioned policy.76

To overcome both of these issues, we introduce a bandit RL approach to maximizing the mutual77
information between skills and observations. The bandit policy the agent learns maps the skill start-78
ing representation to a vector of the neural network parameters that make up the skill-conditioned79
policy. The reward for proposing a particular skill-conditioned policy action from some starting rep-80
resentation is a variational lower bound on the mutual information between skills and observations81
conditioned on the proposed skill-conditioned policy, which provides a tighter bound on mutual in-82
formation. Figure 1 (Right) provides an illustration of this bandit RL approach to mutual information83
maximization.84

We evaluate whether our approach can jointly learn suitable representations for RL and skills in a85
variety of experiments. In the first set of experiments, we show that our approach can learn signif-86
icantly larger skillsets than leading unsupervised skill discovery algorithms and several variants of87
our approach. In the second set of experiments, we demonstrate that the representations learned by88
our approach can serve as effective representations for downstream RL tasks.89

2 Related Work90

Related to our work are numerous other works in unsupervised skill discovery. Several of these91
works learn skills by maximizing the mutual information between skills and some function of ob-92
servations (Mohamed & Rezende, 2015; Gregor et al., 2016; Eysenbach et al., 2019; Warde-Farley93
et al., 2019; Achiam et al., 2018; Hansen et al., 2020; Sharma et al., 2020; Zhang et al., 2021; Cam-94
pos et al., 2020; Choi et al., 2021; Levy et al., 2023). Given the inconsistent performance of these95
methods, several other works emerged modifying the mutual information objective, typically adding96
particular bonus terms to the mutual information objective to help with exploration (Laskin et al.,97
2022; Zheng et al., 2025; Kim et al., 2023; Strouse et al., 2022; Baumli et al., 2021). Others works98
have claimed that empowerment is not capable of learning meaningful skillsets in continuous set-99
tings and instead argued that Lipschitz constraints (Park et al., 2022) or Wasserstein distances (Park100
et al., 2024) were superior objectives. Moreover, most prior work in unsupervised skill discovery101
does not focus on jointly learning representations to be used as inputs for skill-conditioned policies102
and downstream RL tasks. Prior work that has jointly learned representations and skills has used103
separate objectives for the two capabilities, and the representation learning objective involves image104
reconstruction which can be difficult settings with high-dimensional and noisy observations (Nair105
et al., 2018; Campos et al., 2020; Pong et al., 2020).106

Also related to our approach are several works in representation learning. The most similar algo-107
rithms have been those that have used empowerment to learn representations (Klyubin et al., 2008;108
Capdepuy, 2011; Bharadhwaj et al., 2022). Our work builds on the work by Capdepuy (2011), which109
proved that the average maximum mutual information between primitive actions and observations110
conditioned on some learned representation is upper bounded by the average mutual information111
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conditioned on the state representation. But this is too loose of an upper bound in partially ob-112
servable settings where agents cannot learn deterministic mappings from observations to states. We113
extend this result by proving a tighter and achievable bound that the average empowerment produced114
by an observation encoder is upper bounded by the average empowerment produced an encoder that115
outputs sufficient statistic representations. In addition, the mutual information term in our proof116
is between closed loop skills and observations, enabling our agents to simultaneously learn tem-117
porally extended actions and representations simultaneously. Other representation learning works118
similar to our own include methods that learn inverse dynamics models between observations and119
primitive actions (Lamb et al., 2023; Islam et al., 2022; Koul et al., 2024; Rudolph et al., 2024)120
as empowerment-based skill discovery algorithms learn similar models between observations and121
skills. A key difference from these works is again that our approach can also learn skills.122

3 Background123

3.1 Problem Setting124

We assume that agents operate in partially observable settings with Markov observations. These125
environments are defined by the tuple (S,A,O, p(s0), p(st+1|st, at), p(ot|st)). S , A, and O rep-126
resent the state, action, and observation spaces, respectively; p(s0) is the initial state distribution;127
p(st+1|st, at) is the state transition dynamics; and p(ot|st) is the observation distribution. Note128
that states are not visible to the agent. In this setting, Markov observations means that given129
the current observation ot and action at, the distribution over the next observation ot+1 is con-130
ditionally independent of the history of actions and observations ht = o0, a0, o1, . . . , at−1, ot:131
p(ot+1|ht, ot, at) = p(ot+1|ot, at). We also assume that all environments have one or more de-132
terministic functions fx : O → X that map an observation to a sufficient statistic x ∈ X of the133
observation with respect to the next observation. This means that for any (ot, xt = fx(ot)) tuple134
and any action at, the distribution over the next observation ot+1 given sufficient statistic xt and at135
is conditionally independent of the observation ot: p(ot+1|ot, xt, at) = p(ot+1|xt, at). Note that fx136
is not provided to the agent.137

3.2 Empowerment138

We define the empowerment of an observation o0 as the maximum mutual information between a139
policy random variable Π and a policy-terminating observation random variable On:140

E(o0) = max
p(π|o0)

I(Π;On|oo). (1)

Equation 1 means that empowerment measures the maximum number of distinct policies π that can141
be executed from observation o0. Because it is unclear how to learn a distribution over policies142
p(π|o0), we will instead work with a lower bound of equation 1 that is common in prior work (see143
section A for proof of the lower bound):144

E(o0) = max
πz

I(Z;On|o0, πz) (2)

In this definition, the empowerment of observation o0 is the maximum mutual information between145
a skill random variable Z and skill-terminating observation random variable On conditioned on the146
skill-conditioned policy πz : O × Z → A, which is a mapping from observations and skills to147
actions. Note that the maximum, which is with respect to πz , could also be with respect to the148
distribution over skills p(z|o0), but as in most prior work, we will assume this distribution is fixed.149
Specifically, we will assume skills are uniformly sampled from the range [−1, 1] for each of the d150
dimensions of the skill space: z ∼ U(−1, 1)d. Thus, line 2 defines empowerment as the largest151
number of distinct skills that can be executed from observation o0 using some skill-conditioned152
policy πz . The mutual information term in line 2 can be further defined153

I(Z;On|o0, πz) = Ez∼p(z),p(on|o0,πz,z)[log p(z|o0, πz, on)− log p(z)] (3)
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Given that in continuous settings computing the mutual information I(Z;On|o0, πz) is not tractable154
due to the posterior term p(z|o0, πz, on), it is common to instead work with a variational lower155
bound of mutual information, IV (Z;On|o0, πz), in which the problematic posterior is replaced156
with a variational distribution qψ(z|o0, πz, on) with trainable parameters ψ:157

IV (Z;On|o0, πz) = Ez∼p(z),on∼p(on|o0,πz,z)[log qψ(z|o0, πz, on)− log p(z)]. (4)

Note that for any skill-conditioned policy πz , the gap between the true mutual information158
I(Z;On|o0, πz) and the variational lower bound of mutual information IV (Z;On|o0, πz) is159
an average KL divergence between the true and variational posteriors: I(Z;On|o0, πz) −160
IV (Z;On|o0, πz) = Eon∼p(on|o0,πz)[DKL(p(z|o0, πz, on)||qψ(z|o0, πz, on))] (Barber & Agakov,161
2003; Poole et al., 2019). Thus, IV can accurately measure the diversity of a skillset defined by the162
skill-conditioned policy πz if the variational posterior is close to the true posterior.163

3.3 Prior Approaches to Mutual Information Maximization164

Earlier approaches to empowerment-based skill discovery sought to maximize the variational lower165
bound on mutual information IV (Z;On|o0, πz) using an approach that alternates between two166
steps (Gregor et al., 2016; Eysenbach et al., 2019; Hansen et al., 2020). In the first step of the167
update, the KL divergence between the posterior of the current skill-conditioned policy πCurrent

z ,168
p(z|o0, πCurrent

z , on) and the variational posterior qψ(z|o0, on) is minimized. In the second step, IV169
is optimized with respect to the skill-conditioned policy πz using a typical skill-conditioned RL ap-170
proach. For instance, in the first empowerment-based skill learning approach, VIC (Gregor et al.,171
2016), the reward function for training the skill-conditioned policy is 0 for the first n−1 actions and172
then the final step reward is the log variational posterior term: R(on, z) = log qψ(z|o0, on).173

There are two problems with this approach. The first issue is that in contrast to the typical skill-174
conditioned RL problem, the reward is not only a function of observations and skills (i.e., obser-175
vations and skills are not jointly sufficient statistics with respect to reward). Instead, the reward176
is also a function of the full skill-conditioned policy πz because the posterior term qψ(z|o0, on)177
depends on the true posterior p(z|o0, πz, on), which depends on πz . This is a problem because178
changes to the skill-conditioned policy for any skill z can cause changes in the reward, which can179
result in significant instability. The second problem is that the reward function is flawed because180
skill-conditioned policies πz are evaluated with a variational mutual information IV in which the181
posterior qψ(z|o0, on) is not trained to match the true posterior the skill-conditioned policy πz un-182
der consideration. That is, for πz that differ from the current skill-conditioned policy, there can be183
a gap between the true posterior of πz , p(z|o0, πz, on), and the variational posterior qψ(z|o0, on),184
which means IV can be a loose lower bound on the true mutual information and that the agent185
may be underestimating the diversity of πZ . This in turn can discourage the agent from changing186
its skill-conditioned policy even when those changes can produce a more diverse skill-conditioned187
policy.188

4 Learning Sufficient Statistic Representations with Empowerment189

In this section, we show that training an observation encoder to maximize the average empowerment190
of learned representations provides a principled way to learn sufficient statistic representations of191
observations. Sufficient statistics of observations are critical to using reinforcement learning in192
a learned representation space because they enable agents to replace potentially high-dimensional193
observations with more compact representations as policy inputs as discussed in section B.194
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4.1 Empowerment of a Learned Representation195

Prior to providing our proof that empowerment can help observation encoders learn sufficient statis-196
tic representations, we first define the empowerment of a learned representation or context c0 ∈ C:197

E(c0, fc) = max
πz

I(Z;On|c0, fc, πz). (5)

In line 5, fc : O → C refers to the encoder that maps observations to the learned representation198
space, and πz : C ×Z → A is the skill-conditioned policy that maps contexts and skills to primitive199
actions. Note than this definition of empowerment also takes as input the observation encoder fc200
because the skill-terminating observation on depends on actions that depend on fc. The mutual201
information can be further defined:202

I(Z;On|c0, fc, πz) = Ez∼p(z),on∼p(on|c0,fc,πz,z)[log p(z|c0, fc, πz, on)− log p(z)], (6)

in which the channel distribution p(on|c0, fc, πz, z) is a marginal of203
the joint distribution p(x0, a0, o1, . . . , xn−1, cn−1, an−1, on|c0, fc, πz, z) =204
p(x0|c0, fc)p(a0|c0, z)p(o1|x0, a0) . . . p(xn−1|on−1, fx)p(cn−1|on−1, fc)p(an−1|cn−1, z)p(on|xn−1, an−1).205
Note that p(x0|c0, fc) represents the distribution of sufficient statistics x0 that context c0 is aliasing.206

4.2 Theoretical Analysis207

In this section, we provide our main theoretical result and then sketch out the proof. The full proof208
is provided in the appendix.209

Theorem 1. For any observation encoder fc and encoder fx that outputs sufficient statis-210
tics of observations, the average empowerment produced by the observation encoder fc,211
Ec0∼p(c0|fc)[E(c0, fc)], is upper bounded by the average empowerment produced by the sufficient212
statistic encoder fx, Ex0∼p(x0|fx)[E(x0, fx)].213

Proof Sketch. We first show that average maximum mutual information produced by the observation214
encoder is upper bounded by the average mutual information additionally conditioned on aliased suf-215
ficient statistics x0: I(Z;On|c0, fc, π∗,c

z ) <= Ex0∼p(x0|c0,fc)[I(Z;On|c0, x0, fc, πc,∗z )], in which216
x0 ∼ p(x0|c0, fc) represents the aliased sufficient statistic and πc,∗z represents the mutual informa-217
tion maximizing policy for context c0 and encoder fc. This is an intuitive result because, as discussed218
in Figure 1 (b), skills can be less stochastic and redundant when executed from a known x0 than from219
a c0 aliasing multiple x0. Next, because we need mutual information only in terms of sufficient220
statistics x0 and the encoder fx and not c0 and fc, we show that for any tuple of (c0, x0, z), there221
is a different skill-conditioned policy π′

z such that I(Z;On|c0, x0, fc, πc,∗z ) = I(Z;On|x0, fx, π′
z).222

π′
z : X × Z → A now maps sufficient statistics and skills to actions. Finally, we can upper bound223

the resulting average of mutual information terms by replacing π′
z with the optimal skill-conditioned224

policy π∗,x
z for sufficient statistic x0 and encoder fx. This last step is equivalent to discussion of225

Figure 1 (c), in which we noted that different representations can require different optimal skill-226
conditioned policies to maximize the number of distinct skills.227

5 Maximizing Mutual Information with Bandit RL228

This section discusses our bandit reinforcement learning approach to maximizing mutual informa-229
tion. We first set aside the representation learning component and show how we use bandits to230
maximize mutual information with respect to the skill-conditioned policy only. Then we explain231
how nearly the same bandit RL approach can be used to maximize mutual information with respect232
to both the skill-conditioned policy and observation encoder simultaneously.233

To maximize mutual information with respect to the skill-conditioned policy we use a particular234
bandit reinforcement learning setup. The bandit policy fλ : O → Θz maps the skill-starting repre-235
sentation, which for now is observations, to the neural network parameters θz (i.e., the weights and236
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biases) of the skill-conditioned policy MLP. The reward for proposing a skill-conditioned policy de-237
fined by θz in o0 is the mutual information variational lower bound, IV (Z;On|o0, θz), in which the238
variational posterior qψ(z|o0, θz, on) is conditioned on the proposed action θz and trained to match239
the true posterior p(z|o0, θz, on). This bandit approach overcomes both problems from prior work:240
(i) o0 and θz are together sufficient statistics with respect to reward IV and (ii) the reward function241
IV can represent a tight bound on mutual information.242

The main challenge is how to implement this bandit RL approach in practice. A naive actor-critic243
approach, in which an actor represents the bandit policy fλ and a criticQη(o0, θz) maps o0 and θz to244
an estimate of IV (Z;On|o0, θz), is not practical because this would require a variational posterior qψ245
and a critic Qη that take as input the θz vector, which can be thousands of dimensions long. Instead,246
we will use a different actor-critic approach that “simulates" the gradient from the naive actor-critic247
method. The key insight is that in the naive approach, the gradient of the critic with respect to any248

parameter λj in the actor fλ is dQ
λj

=
∑|θz|−1
i=0

dQ
dθiz

dθiz
dλj

, in which θiz is the i-th entry of the θz vector.249
(Section D of the supplementary materials shows this for a 1-hidden layer critic.) This means that we250
can match the gradients from the naive approach if we can accurately estimate dQ

dθiz
(i.e., how mutual251

information changes from small changes to one parameter of θz assuming the other parameters are252
constant). We take this approach using a new actor-critic architecture in which we train parameter-253
specific critics Qηi(o0, πiz) to respectively approximate IV (Z;On|o0, θiz) for i = 0, . . . , |θz| − 1, in254
which θiz is a scalar representing the skill-conditioned policy in which all entries in θz take on their255
greedy values from the actor fλ(o0) except the i-th parameter which takes on value θiz . We then use256
the trained critics to update the actor fλ so that it outputs more diverse skill-conditioned policies θz .257
Figure 4 provides a visual of the parameter-specific actor-critic architecture.258

Algorithm 1 Actor-Critic Method for Maximizing I(Z;On|o0, θz) w.r.t. θz
for all dimensions i = 0, . . . , |θz| − 1 in parallel do

for M iterations do
Update qψi : ψi ← ψi − α∇ψi

(DKL(p(z|o0, θiz, on)||qψi(z|o0, θiz, on))) with noisy θiz
end for
for M iterations do

Update Qηi : ηi ← ηi − α∇ηi((Qηi(o0, θiz)− Target)2) with noisy θiz ,
Target = Ez∼p(z),on∼p(on|o0,θiz,z)[log qψi(z|o0, θiz, on)− log p(z)]

end for
end for
Update fλ: λ← λ+ α∇λ(

∑|θz|−1
i=0 Qηi(o0, θ

i
z = fλ(o0)[i]))

Algorithm 1 provides the full algorithm for the actor-critic method for maximizing mutual informa-259
tion with respect to θz . The first step is to train in parallel and until convergence all the variational260
posteriors qηi(z|o0, θiz, on) to match the true posteriors p(z|o0, θiz, on) for noisy values of θiz . The261
second step is to train all critics Qηi(o0, θiz) until convergence to approximate variational mutual262
information. The final step is to update the actor.263

Next, we discuss how we can use nearly the same bandit RL approach to jointly maximize mutual264
information with respect to both the skill-conditioned policy θz and the observation encoder fc. The265
average mutual information objective we are trying to maximize is266

max
fc,θz

Ec0∼p(c0|fc)[I
V (Z;On|c0, fc, θz)] (7)

We maximize this mutual information by alternating between two actor-critic algorithms. In the first267
algorithm, we fix the observation encoder fc and maximize the mutual information of a context c0268
with respect to θz . That is, we perform Algorithm 1 with c0 replacing o0. In the second actor-critic269
algorithm, we hold the skill-conditioned policies constant and train the observation encoder. In this270
second actor-critic, the actor fµ maps a fixed vector v to a vector containing the parameters of the271
observation encoder neural network (also referred to as fc). The parameter-specific critics Qκi(f ic)272
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Algorithm 2 Actor-Critic Method for Maximizing I(Z;On|c0, fc) w.r.t. fc
for all dimensions i = 0, . . . , |fc| − 1 in parallel do

for M iterations do
Update qωi : ωi ← ωi − α∇ψi

(DKL(p(z|o0, f ic, on)||qωi
(z|o0, f ic, on))) with noisy f ic

end for
for M iterations do

Update Qκi : κ
i ← κi − α∇κi((Qκi(f ic)− Target)2) with noisy f ic ,

Target = Ec0∼p(c0|fi
c),z∼p(z),on∼p(on|c0,fi

c,z)
[log qωi(z|c0, f ic, on)− log p(z)]

end for
end for
Update fµ: µ′ ← µ+ α∇µ(

∑|fc|−1
i=0 Qκi

(f ic = fµ(v)[i]))

approximates the average mutual information Ec0∼p(c0|fi
c)
[IV (Z;On|c0, f ic)] using the parameter-273

specific variational posteriors qωi(z|c0, f ic, on). Figure 5 provides a visual of the parameter-specific274
actor-critic architecture for training the observation encoder. Algorithm 2 provides the algorithm for275
training the observation encoder actor-critic.276

Our approach currently has one main limitation, which is that it assumes the agent has learned a277
model of the transition dynamics, which can be challenging in noisy and high-dimensional settings.278
However, existing work (provided in the attached supplementary materials) has shown that mutual279
information can be optimized without needing to learn a (potentially high-dimensional) simulator of280
the environment. Instead, the mutual information between skills and observations can be maximized281
while only learning a transition model that predicts encodings of observations. We leave for future282
work to combine our approach with this model-based approach.283

6 Experiments284

Next, we discuss the experiments we implemented to evaluate our two main claims that (i) our bandit285
RL approach to mutual information maximization can learn larger skillsets than existing approaches286
to unsupervised skill discovery and (ii) our approach can learn sufficient statistic representations of287
observations suitable for downstream RL. We implemented separate sets of experiments to evaluate288
each claim. The first set of experiments are in reward free environments in which the agent is focused289
solely on unsupervised skill learning and, if applicable, representation learning. In this first set of ex-290
periments, we evaluate agents based on the average mutual information of their learned skillsets (i.e.,291
how many unique skills are in their learned skillsets). The second set of experiments then imple-292
ment downstream RL tasks using the learned representations and, if applicable, the skillsets learned293
during the first set of experiments. For the downstream RL tasks, we implement goal-conditioned294
RL (GCRL) tasks in which the agent is tasked with achieving a wide range of observations. Agents295
that learn sufficient statistic representations of observations during the pretraining phase should be296
able to learn effective policies mapping the learned representation and goals to actions.297

6.1 Environments298

For our experiments, we implemented several domains that vary along observation dimensionality299
and stochasticity but all have low-dimensional underlying state spaces. We focus on these simpler300
domains for two reasons. The first reason is that in simple domains it is easy to visualize whether the301
mutual information maximizing skill discovery algorithm is actually working and learning skills that302
target most of the reachable observations. Most existing skill discovery work does not evaluate in303
these settings and strictly applies their approaches to much larger domains like the Ant or Humanoid304
domains in MuJoCo (Todorov et al., 2012), in which it is difficult to visualize whether the agent is305
learning skills that target most combinations of torso and joint positions and velocities. Existing un-306
supervised skill discovery work also does not report the mutual information of their learned skillsets307
(Eysenbach et al., 2019; Zheng et al., 2025; Laskin et al., 2022) so it is unclear how well these algo-308
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rithms are working. The second reason we selected settings with lower dimensional underlying state309
spaces is to save on cost as our approach is compute intensive. Larger underlying state spaces can310
mean parameter vectors θz and fc with more dimensions, which means more variational posteriors311
need to be trained in parallel.312

We implemented the following six settings for the first set of experiments. The first setting was a sim-313
ple two-dimensional square room with a two-dimensional observation space and a two-dimensional314
continuous action space. The second setting was a stochastic version of the first setting, in which315
two extra dimensions are added to the observation and these two dimensions are randomly sam-316
pled from the range [−1, 1]. The remaining four settings have high-dimensional observations that317
consist of 32x32 grayscale images (1,024 dimensions). The first of these settings is again a two-318
dimensional room in which the room is black and agent is white. The second high-dimensional319
settings is a stochastic version of the previous setting in which darker background pixels are random320
sampled from a range of black to gray colors. The third high-dimensional setting is a "plus" shaped321
intersection of a horizontal and vertical hallways. The final high-dimensional setting is a pushing322
task where the agent can move around an object if the object is within a certain distance. Figure323
6 shows sample image observations from the high-dimensional settings. In all settings, the initial324
observation can be mostly anywhere in the environment. The number of primitive actions in each325
skill n = 7 for all tasks. Section G details the key hyperparameters for our approach in all settings.326
For the second set of experiments implementing the GCRL tasks, we used all the high-dimensional327
settings except for the push task.328

6.2 Baselines329

In the first set of experiments, we compare our full approach that jointly performs representation330
learning and skill discovery to six other existing algorithms, including three from prior work and331
three ablations of our approach. The three algorithms from prior work we compare to are the ex-332
plicit version of Variational Intrinsic Control (VIC) (Gregor et al., 2016), Diversity Is All You Need333
(DIAYN) (Eysenbach et al., 2019), and Contrastive Successor Features (CSF) (Zheng et al., 2025).334
The main differences between these approaches and our approach is the learnable action space and335
how the posterior is trained. Instead of treating the skill-conditioned policy as the learnable action336
space as in our bandit RL approach, these treat the primitive action space as the trainable action337
space. In addition, instead of conditioning the posterior on the proposed skillset to achieving a338
tighter mutual information lower bound, these approach do not condition on the proposed skillset.339
VIC differs from DIAYN by using the skill-terminating observation in the mutual information term,340
while DIAYN samples observation from the entire skill trajectory. CSF differs from VIC and DI-341
AYN by training the posterior using a contrastive lower bound on mutual information. In addition,342
CSF trains the skill-conditioned policy using a modified version of mutual information that subtracts343
an “anti-exploration" term. Note that CSF is a recent approach that reports state of the art results344
and is a mutual information-based version of METRA (Park et al., 2024), which is another recent345
leading approach. Moreover, the focus of these baselines is on unsupervised skill discovery and not346
on representation learning for downstream tasks, in contrast to our approach.347

The three ablations of our approach that we compare against include (i) our approach without rep-348
resentation learning (i.e., the observation encoder is an identity function: fc(o0) = o0), (ii) our349
approach but we do not condition the variational posterior on the skill-conditioned policy as in prior350
work, and (iii) our approach but we fix the observation encoder. (Note that we only implement (i)351
for the two low-dimensional observation settings as some representation learning is needed for the352
high-dimensional settings.) We compare to (i) because per Theorem 1, if our approach is working as353
expected the average empowerment of a learned representation should be close to the average em-354
powerment of a sufficient statistic representation and in the low-dimensional settings the observation355
is a sufficient statistic. We compare to (ii) in order to evaluate the effect of training skill-conditioned356
policies using a loose lower bound on mutual information. The comparison to VIC also accom-357
plishes this but (ii) does not have the non-stationary reward issue because the skill-conditioned358
policy is used as the trainable action space. We compare to (iii) to show the importance of training359
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the observation encoder with empowerment rather than simply using a randomly initialized function360
to encode observations.361

In the second set of experiments, we implement four algorithms. One algorithm learns a goal-362
conditioned policy outputting primitive actions conditioned on a learned representation from the363
first phase of experiments. The second algorithm learns a goal-conditioned policy that outputs skills364
using the learned representation and skillsets learned during the first phase. The third algorithm365
trains a goal-conditioned policy outputting primitive actions using the representation from a fixed366
observation encoder. The fourth algorithm learns a goal-conditioned policy outputting primitive367
actions directly from pixels (i.e., does not use the observation encoder from the first phase).368

6.3 Results369

Table 1: Average (±std) variational mutual information of learned skillsets (nats)

Algorithm 2D Noisy 2D Gray Noisy Gray Plus Push

Ours 8.0± 0.0 7.6± 0.1 5.7± 0.3 4.7± 0.3 4.5± 0.1 6.4± 0.4
VIC 4.1± 1.3 4.4± 1.0 0.3± 0.6 0.5± 0.5 0.5± 0.6 −0.1± 0.6
DIAYN −0.4± 0.0 −0.4± 0.0 −0.4± 0.1 −0.4± 0.0 −0.3± 0.0 −0.7± 0.0
CSF −0.4± 0.7 −0.6± 0.2 0.3± 0.9 −0.2± 0.4 −0.6± 0.3 0.1± 0.2
No Abs 7.7± 0.3 4.6± 0.8 N/A N/A N/A N/A
Fixed Abs 7.5± 0.5 4.4± 0.7 2.4± 0.2 1.9± 0.2 2.4± 0.1 3.6± 0.4
Loose Bound 4.1± 0.8 3.6± 0.3 2.1± 0.7 2.1± 0.3 2.0± 0.3 2.8± 0.5

Table shows the variational mutual information results for all algorithms in all settings in the first set370
of experiments. Note that (i) the mutual information is shown in the logarithmic units of nats (e.g., in371
the 2D room domain, the agent learns 8.0 nats of skills or≈ 2, 980 skills) and (ii) variational mutual372
information can be negative if it is a loose lower bound on mutual information. The results show373
strong across-the-board outperformance by our approach. Relative to the approaches that used loose374
lower bounds on mutual information to evaluate skill-conditioned policies πz (i.e., VIC, DIAYN,375
CSF, and Loose Bound, which is the ablation that trains a variational posterior not conditioned on376
πz), our approach learns far larger skillsets. For instance, the best performance of these approaches377
was by VIC and Loose Bound in the low-dimensional tasks where our approach still learned 3.9378
more nats of skills (i.e., 49x more skills) and 3.2 more nats of skills (25x more skills) in the 2D379
and Noisy 2D domains, respectively. Relative to the ablation that uses a fixed observation encoder380
(i.e., Fixed Abs), our approach learned far larger skillsets except for the simplest low-dimensional381
setting where there was smaller outperformance, showing that training the observation encoder with382
empowerment performs better than using a randomly initialized function to encode observations. In-383
terestingly, our approach also outperformed the ablation in the low-dimensional settings that simply384
used the low-dimensional observation as the policy input, which in theory should serve as an upper385
bound for our approach. We believe our approach performed better in practice because in domains386
such as the Noisy 2D room in which different observations can be close in the observation space but387
need to support different skill-conditioned policies, it is helpful to learn representations that separate388
these observations in order to output different θz . Further, Figures 7, 8, and 9 provide the learning389
curves for the first set of experiments, showing that our approach learns efficiently. For instance, in390
the low-dimensional tasks our approach can learn thousands of skills in around 1000 gradient steps391
to the two actors, while the image domains required around 3000 gradient steps for agents to reach392
their peak performance.393

Qualitatively, the agents learn large distinct skillsets that target large portions of the reachable ob-394
servation space. Figure 2 and section I provide various visuals showing the diverse skillsets that are395
learned.396
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Figure 2: Some qualitative results from the 2D domain (top row) and Plus Intersection domain
(bottom row). The left column shows the trajectories from a single starting observation produced
by 45 randomly sampled skills. The center column shows the skill-terminating (x, y) positions
from 1000 randomly sampled skills when starting at the green marker. The right column shows
20 randomly sampled skills (squares), and for each skill, 5 samples (circles) from the variational
posterior qψ(z|c0, πz, on). The large state space coverage and tight variational posterior around
each skill shows the agents is learning large, diverse skillsets.

In addition to learning large skillsets, the second set of experiments provide evidence that our397
approach can learn sufficient statistics of observations as the theory suggests. Section J provides398
the learning curves for the second set of experiments, and section K provides visuals of the goal-399
conditioned trajectories. Per Figure 14, both algorithms that used the representations learned during400
the first phase of experiments were able to learn effective goal-conditioned policies as would be ex-401
pected from an approach that learned a sufficient statistic representation. The hierarchical policy was402
able to learn with the best sample efficiency, consistent with previous hierarchical RL work (Levy403
et al., 2019; McClinton et al., 2021). In addition, we observed that the algorithm that used repre-404
sentations from a randomly initialized observation encoder failed at all tasks, providing additional405
evidence that empowerment is more effective at learning representations suitable for reinforcement406
learning than some randomly initialized function.407

7 Conclusion408

Representation learning and unsupervised skill discovery remain two important problems for re-409
inforcement learning agents. Through theoretical analysis and experimentation, we show that the410
empowerment objective provides a potential solution for both problems. Future work should try411
to extend our results to partially observable settings with non-Markov observations and integrate412
model-based empowerment approaches so that a high-dimensional simulator of the environment is413
not needed.414

Appendix415

This section provides the proof for Theorem 1.416
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Proof.

Ec0∼p(c0|fc)[E(c0, fc)] = Ec0∼p(c0|fc)[I(Z;On|c0, fc, π
c,∗
z )] (8)

≤ Ec0∼p(c0|fc),x0∼p(x0|c0,fc)[I(Z;On|c0, x0, fc, π
c,∗
z )] (9)

≤ Ex0∼p(x0|fx)[I(Z;On|x0, fx, π
x
z )] (10)

≤ Ex0∼p(x0|fx)[I(Z;On|x0, fx, π
x,∗
z )] (11)

= Ex0∼p(x0|fx)[E(x0, fx)] (12)

417

Line 8 inserts the definition of the empowerment of a context c0 and observation encoder fc. Line418
9 uses the fact that mutual information is convex with respect to the channel distribution (Cover &419
Thomas, 2006). That is, if the channel distribution is a weighted average of other channels, then the420
mutual information of the mixed channel is upper bounded by the weighted average of the mutual421
information of the individual channels. In this case, the mixed channel is p(on|c0, fc, πc,∗z , z) and422
the individual channels are p(on|c0, x0, fc, πc,∗z , z) (i.e., include the aliased sufficient statistic x0)423
and are weighted by p(x0|c0, fc).424

The purpose of line 10 is to replace each mutual information I(Z;On|c0, x0, fc, πc,∗z ) with an425
equivalent mutual information term that removes c0 from the conditioning variables and re-426
places fc with the sufficient statistic observation encoder fx. This is done by first swapping427
the skill-conditioned policy πc,∗z with a particular skill-conditioned policy πxz , which uses the428
same distribution over actions as πc,∗z when in representation xt at time t while pursuing skill429
z. That is, p(at|x0, fx, xt, z) = p(at|c0, x0, fc, xt, z), in which p(at|c0, x0, fc, xt, z) is the430
marginal of the joint distribution p(ct, at|c0, x0, fc, xt, z). (Note that as long as the distribu-431
tion p(at|c0, x0, fc, xt, z) = p(at|c0, x0, fc, xt′ , z) for all at when xt = xt′ and t′ > t, then432
πxz can remain a stationary policy that does not need to take an extra t as input. If this is433
not the case, πxz will also need to take the time step t as input to avoid the conflict of map-434
ping the same policy to two different policy distributions). With πxz , we can show that for any435
(c0, x0, z), the original channel distribution p(ot|c0, x0, fc, πc,∗z , z) equals the channel distribu-436
tion p(ot|x0, fx, πxz , z) for any step t = 1, . . . , n. These marginal distributions are equal because437
the joint distributions are equal: p(xt−1, at−1, ot, xt|x0, fx, z) = p(xt−1, at−1, ot, xt|c0, x0, fc, z)438
for t = 1, . . . , n. The joint distributions are true because (i) the marginals over the prior439
sufficient statistics p(xt−1|x0, fx, z) = p(xt−1|c0, x0, fc, z) for t = 1, . . . , n, (ii) the poli-440
cies are the same by definition: p(at−1|x0, fx, z, xt−1) = p(at−1|c0, x0, fc, z, xt−1), and (iii)441
the distribution over the next observation and sufficient statistic p(ot, xt|x0, fx, z, xt−1, at−1) =442
p(ot+1, xt+1|c0, x0, fc, z, xt−1, at−1) because these only depend on xt−1 and at−1. (i) is true443
because (a) it is true at t = 0 because p(x0|x0, fx) = p(x0|c0, x0, fc) as x0 is a condition-444
ing variable in both and (b) it is true for t = 1, . . . , n − 1 because the joint distributions445
p(xt−1, at−1, ot, xt|x0, fx, z) = p(xt−1, at−1, ot, xt|c0, x0, fc, z). The reason there is an inequal-446
ity instead of an equality in line 10 is that if there are multiple I(Z;On|c0, x0, fz, πc,∗z ) terms with447
different c0 terms but the same x0 (i.e., the same sufficient statistic x0 is associated with differ-448
ent contexts c0). In this case, if the mutual information is not equal for all terms, the largest449
I(Z;On|x0, fx, πxz ) can be used in place of the rest and the inequality in line 10 becomes a strictly450
less than.451

In line 11, the skill-conditioned policy πxz is replaced with the mutual information maximizing policy452
πx,∗z for starting representation x0 and encoder fx. The inequality becomes a strictly less than if πx,∗z453
differs from πxz . The final line uses the definition of the empowerment of a context representation.454
Section C shows the same proof can be used to show the average empowerment of a sufficient455
statistic encoder is upper bounded by the average empowerment of states.456
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591

A Proof of Empowerment Objective Lower Bound592

Below is a proof that I(Z;On|o0, πz) ≤ I(Π;On|o0).593

In the below proof, let Z be the skill random variable with z ∼ p(z|o0). πz is a skill-conditioned594
policy in which p(πz|z) = p(πz) = 1.595

I(Π;On|o0) ≥ I(Z, πz;On|o0) (13)
= I(Z;On|o0, πz) (14)

In line 13, the Data Processing Inequality (Cover & Thomas, 2006) is used because given o0,596
Z, πz → Π → On form a Markov chain. This is true because the combination of a skill z and597
a skill-conditioned policy π produces some policy π that maps from observations to actions. Then,598
given o0 and π, the distribution over the terminating observation on is conditionally independent of599
z and πz as none of the intermediate states, actions, and observation depend on these quantities. In600
line 14, the skill-conditioned policy πz has been moved to the list of conditioned variables given that601
p(πz) = 1.602

B Sufficient Statistic Representations and RL603

Sufficient statistic representations of observations are critical to using reinforcement learning in604
a learned representation space because they enable agents to replace potentially high-dimensional605
observations as a policy input with more compact representations as discussed in section of the606
supplementary materials. This is because the distribution over future rewards given a sufficient607
statistic, action, encoding function, and policy is the same as the distribution over future rewards608
in which the original observation replaces the sufficient statistic (assuming rewards are functions of609
observations): p(rt+1, rt+1, . . . , rt+N |xt, at, fx, π) = p(rt+1, rt+1, . . . , rt+N |xt, ot, at, fx, π) =610
p(rt+1, rt+1, . . . , rt+N |ot, at, fx, π). This is because no future reward requires knowing ot when611
sufficient statistic xt is known. Equality in these distributions in turn means that the Q-values612
Q(ot, at) = Q(xt, at) for all (ot, xt = fx(ot), at) tuples are equal, which is why observations613
can be replaced by sufficient statistic representations.614

C Proof that Empowerment of States Upper Bounds Empowerment of615

Sufficient Statistics616

In this section, we prove that the average empowerment produced by a sufficient statistic encoder,617
Ex0∼p(x0|fx)[E(x0, fx)], is upper bounded by the average empowerment of state representations.618
This is the same proof as in 7 except the initial context variable c0 is replaced with the initial619
sufficient statistic variable x0 and the state representations st replace the sufficient statistic rep-620
resentations xt. Note that this extends the prior work of (Capdepuy, 2011) which only considered621
the empowerment objective in which the mutual information was between open loop actions and622
observations.623
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Proof.

Ex0∼p(x0|fx)[E(x0, fx)] = Ex0∼p(x0|fc)[I(Z;On|x0, fx, π
x,∗
z )] (15)

≤ Ex0∼p(x0|fx),s0∼p(s0|x0,fx)[I(Z;On|x0, s0, fx, π
x,∗
z )] (16)

≤ Es0∼p(s0)[I(Z;On|s0, π
s
z)] (17)

≤ Es0∼p(s0)[I(Z;On|s0, π
s,∗
z )] (18)

= Es0∼p(s0)[E(s0)] (19)

624

Line 15 inserts the definition of the empowerment of a sufficient statistic x0 and sufficient statistic625
encoder fx. πx,∗z is the mutual information maximizing skill-conditioned policy. This proof will626
assume πx,∗z is a non-stationary policy that takes sufficient statistics, skills, and the step number627
(e.g., 0, 1, . . . , n− 1) as input and outputs primitive actions.628

Line 16 uses the fact that mutual information is convex with respect to the channel distribution629
(Cover & Thomas, 2006). That is, if the channel distribution is a weighted average of other630
channels, than the mutual information of the mixed channel is upper bounded by the weighted631
average of the mutual information of the individual channels. In this case, the mixed channel is632
p(on|x0, fx, πx,∗z , z) and the individual channels are p(on|x0, s0, fx, πx,∗z , z) (i.e., include the state633
s0) and are weighted by p(s0|x0, fx).634

The purpose of line 17 is to replace each mutual information I(Z;On|x0, s0, fx, πx,∗z ) with an equiv-635
alent mutual information term that removes x0 and fx from the conditioning variables. This is done636
by first swapping the skill-conditioned policy πx,∗z with a particular skill-conditioned policy πsz ,637
which uses the same distribution over actions as πx,∗z when in state st at time t while pursuing638
skill z. That is, p(at|s0, st, t, z) = p(at|x0, s0, fx, st, t, z), in which p(at|x0, s0, fx, xt, t, z) is639
the marginal of the joint distribution p(xt, at|x0, s0, fx, st, t, z). With πsz , we can show that for640
any (x0, s0, z), the original channel distribution p(ot|x0, s0, fx, πx,∗z , z) equals the channel distri-641
bution p(ot|s0, πsz, z) for any step t = 1, . . . , n. These marginal distributions are equal because642
the joint distributions are equal: p(st−1, at−1, ot, st|s0, z) = p(st−1, at−1, ot, st|x0, s0, fx, z) for643
t = 1, . . . , n. The joint distributions are true because (i) the marginals over the prior states644
p(st−1|s0, z) = p(st−1|x0, s0, fx, z) for t = 1, . . . , n, (ii) the policies are the same by definition:645
p(at−1|s0, st−1, z) = p(at−1|c0, x0, fc, xt−1, z), and (iii) the distribution over the next observation646
and state p(ot, st|s0, st−1, at−1) = p(ot+1, st+1|x0, s0, fx, st−1, at−1) because these only depend647
on st−1 and at−1. (i) is true because (a) it is true at t = 0 p(s0|s0) = p(s0|x0, s0, fc) as s0 is a648
conditioning variable in both and (b) it is true for t = 1, . . . , n − 1 because the joint distributions649
p(st−1, at−1, ot, st|s0, z) = p(st−1, at−1, ot, st|x0, s0, fx, z). The reason there is an inequality650
instead of an equality in line 17 is that if there are multiple I(Z;On|x0, s0, fx, πx,∗z ) terms with dif-651
ferent x0 terms but the same s0 (i.e., the same state s0 is associated with different sufficient statistics652
x0). In this case, if the mutual information is not equal for all terms, the largest I(Z;On|s0, πxz ) can653
be used in place of the rest and the inequality in line 17 becomes a strictly less than.654

In line 18, the skill-conditioned policy πsz is replaced with the mutual information maximizing policy655
πs,∗z for starting representation s0. The inequality becomes a strictly less than if πs,∗z differs from656
πsz . The final line uses the definition of the empowerment of a state.657

D Gradient of 1-Hidden Layer Critic w.r.t. Actor658

In this section we derive the gradient of a 1-hidden layer MLP critic Qη(o0, θz = fλ(o0)) with659
respect to some parameter λj in the bandit policy actor fλ(o0). The critic will take the following660

form, which is visualized in Figure 3. The output Q = a(
∑|h|
i=1 hW1), in which a(·) is a nonlinear661

function; h is the hidden layer vector with |h| dimensions; and hW1 applies matrix multiplication662
between vector h and weight matrix W1. Next, each entry hi ∈ h is defined hi = a(

∑|θz|
i=1 θzW0).663
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Observation a0 a1 a2 a|a|. . .

h1 h2 h|h|
. . .h0

Q
Critic

W1

W0

Actor 
Parameter

Figure 3: Figure visualizes the function form of a 1 hidden layer critic. We use this visual to show
that the derivative of Q with respect to a parameter λj of the bandit policy actor depends on the
derivatives of Q with respect to the individual entries in the skill-conditioned policy vector θz .

Note that in this definition the connection between the observation o0 and hi are ignored because664
o0 has no dependence on the parameters of the bandit policy actor λ. Lastly, each entry θiz ∈ θz is665
defined θiz = f(λj , o0, λ/j). That is, each entry in θz is some function of the parameter λj under666
consideration, the initial observation o0, and the other parameters (excluding λj) in λ.667

With this functional form,668

dQ

dλj
=

dQ

d(
∑|h|−1
i=0 hW1)

( |h|−1∑
i=0

d(
∑|h|−1
i=0 hW1)

dhi

dhi

d(
∑|θz|−1
k=0 θzW0)

( |θz|−1∑
k=0

d(
∑|θz|−1
k=0 θzW0)

dθkz

dθkz
dλj

))

=

|θz|−1∑
k=0

dθkz
dλj

( |h|∑
i=0

dQ

d(
∑|h|−1
i=0 hW1)

d(
∑|h|−1
i=0 hW1)

dhi

dhi

d(
∑|θz|−1
k=0 θzW0)

d(
∑|θz|−1
k=0 θzW0)

dθkz

)

=

|θz|−1∑
k=0

dQ

dθkz

dθkz
dλj

(20)

Thus, the gradient of Q with respect to each parameter of the bandit policy actor depends on the669
gradients of Q with respect to each of the entries in θz (i.e., dQ

dθkz
for k = 0, . . . , |θz| − 1). Our670

approach uses this fact when simulating the gradient of this actor-critic using a new parameter-671
specific actor-critic architecture.672

E Visualization of New Actor-Critic Architectures673

Figure 1 visualizes how the parameter-specific critics attach to the bandit actor that outputs the674
parameters of the skill-conditioned policy.675

Figure 5 visualizes how the parameter-specific critics attach to the bandit actor that outputs the676
parameters of the observation encoder.677

F Environment Sample Observations678

Figure 6 provides sample image observations from each of the high-dimensional tasks.679
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Neural Network
𝜆

Actor

Parameter-Specific
Critics

…

Skill-starting observation 

Figure 4: Visual of how the parameter-specific critics attach to the actor. In this case, the actor maps
observations to the parameters of the skill-conditioned policy θz = [θ0z , θ

1
z , . . . , θ

|θz|−1
z ]. For each

dimension in θz , there is a critic Qηi(o0, θiz) that approximates the variational mutual information
of executing the skill-conditioned policy θiz from observation o0. θiz is a scalar representing the
skill-conditioned policy, in which all parameters j ̸= i take on the greedy value from the actor (i.e.,
fλ(o0)[j]), while the i-th parameter takes on value θiz .

Neural Network

Actor

Parameter-Specific
Critics

…

Fixed vector 

Figure 5: In this case, the actor maps a fixed vector v to the parameters of the observation encoder
fc = [f0c , f

1
c , . . . , f

|fc|−1
c ]. For each dimension in fc, there is a critic Qκi(f ic) that approximates the

average variational mutual information Ec0∼p(c0|fi
c)[I

V (Z;On|c0,fi
c)]

of using the observation encoder
f ic from context c0 ∼ p(c0|f ic).

Grayscale Room
Plus

Intersection Push
Noisy

Grayscale Room

Figure 6: Sample image observations from each of the four high-dimensional settings.
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Table 2: Environment-dependent Hyperparameters

Hyperparameter 2D Noisy 2D Gray Noisy Gray Plus Pick-and-Place

Context Dim 5 5 5 5 7 7
Skill Dim 2 2 2 2 2 4
|θz| 392 392 512 512 528 776
|fc| 424 424 440 440 472 536

Figure 7: Learning curves for the low-dimensional tasks in the first set of experiments. The x-axis
measures the number of updates to the skill-conditioned policy and observation encoder actors (i.e.,
the number of passes through Algorithms 1 and 2). The y-axis shows the average variational mutual
information I(Z;On|C0).

G Hyperparameters680

Figure 2 shows some of the notable domain-dependent hyperparameters including the dimension681
of the context space C, dimension of the skill space Z , the dimensionality of the skill-conditioned682
policy parameter vector |θz|, and the dimensionality of the observation encode parameter vector |fc|.683

Other notable parameters that were used for all domains include: (i) n = 7, in which n the number684
of primitive actions contain in a skill, (ii) M = 300, in which M is the number of gradient updates685
to the variational posterior and then to the critic in Algorithms 1 and 2, (iii) learning rates of 1.5e−5686
for the actors and 3e−4 for the critics and variational posteriors, and (iv) the skill-conditioned policy687
πz was always implemented as a 2-hidden layer MLP with 16 neurons in each hidden layer.688

H Learning Curves689

Figures 7, 8, and 9 show the learning curves for the first set of experiments. The x-axis measures the690
number of updates to the skill-conditioned policy and observation encoder actors (i.e., the number691
of passes through Algorithms 1 and 2). The y-axis shows the average variational mutual information692
I(Z;On|C0).693

I Additional Qualitative Results694

Figures 10-13 provide qualitative results for the remaining domains. In each figure, the left image695
shows trajectories from 45 randomly sampled skills starting from a fixed observation. The center696
image shows skill-terminating (x, y) positions from 1000 randomly sampled skills when the agent697
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Figure 8: Learning curves for the regular and noisy grayscale rooms tasks in the first set of experi-
ments. The x-axis measures the number of updates to the skill-conditioned policy and observation
encoder actors (i.e., the number of passes through Algorithms 1 and 2). The y-axis shows the aver-
age variational mutual information I(Z;On|C0).

Figure 9: Learning curves for the plus intersection and push tasks in the first set of experiments. The
x-axis measures the number of updates to the skill-conditioned policy and observation encoder actors
(i.e., the number of passes through Algorithms 1 and 2). The y-axis shows the average variational
mutual information I(Z;On|C0).
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Figure 10: Qualitative results for the Noisy 2D room. Left image shows trajectories from 45 ran-
domly sampled skills where the agent starts from the same observation. Center image shows skill-
terminating (x, y) positions from 1000 randomly sampled skills when the agent starts at the green
marker. Right image shows 20 skills (squares), and for each skills, 5 samples (circles) from the
variational posterior qψ(z|c0, πz, on).

Figure 11: Qualitative results for the Noisy 2D room. Left image shows trajectories from 45 ran-
domly sampled skills where the agent starts from the same observation. Center image shows skill-
terminating (x, y) positions from 1000 randomly sampled skills when the agent starts at the green
marker. Right image shows 20 skills (squares), and for each skills, 5 samples (circles) from the
variational posterior qψ(z|c0, πz, on).

starts at the green marker. The right image shows 20 skills (squares), and for each skills, 5 samples698
(circles) from the variational posterior qψ(z|c0, πz, on)699

J Phase 2 Learning Curves700

Figure 14 shows the phase 2 learning curves for the four algorithms in the three environments. The701
hierarchical policy should achieve lower cumulative reward as a result of the particular shortest path702
reward used (0 for goal achieved and -1 otherwise) and its temporally extended actions. The graphs703
also show that the hierarchical policy converges the fastest. The Fixed Abs algorithm in which the704
representation used was produced by a randomly initialized observation encoder failed at all tasks.705

K Phase 2 Qualitative Results706

Figures show the goal-conditioned trajectories in the Grayscale Room and Plus Intersection do-707
mains. Figure 15 shows the results for the algorithm learning a goal-conditioned policy outputting708
primitive actions that is conditioned on the learned representation space, while Figure 16 shows the709
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Figure 12: Qualitative results for the Noisy 2D room. Left image shows trajectories from 45 ran-
domly sampled skills where the agent starts from the same observation. Center image shows skill-
terminating (x, y) positions from 1000 randomly sampled skills when the agent starts at the green
marker. Right image shows 20 skills (squares), and for each skills, 5 samples (circles) from the
variational posterior qψ(z|c0, πz, on).

Figure 13: Qualitative results for the Noisy 2D room. Left image shows trajectories from 45 ran-
domly sampled skills. Center image shows skill-terminating (x, y) positions from 1000 randomly
sampled skills. Right image shows 20 skills (squares), and for each skills, 5 samples (circles) from
the variational posterior qψ(z|c0, πz, on)

Phase 2 Plus IntersectionPhase 2 Noisy Gray RoomPhase 2 Gray Room

Figure 14: Learning curves for the phase 2 experiments. The x-axis shows the number of updates
to the goal-conditioned policy and the y-axis shows the cumulative reward. The hierarchical policy
should achieve lower cumulative reward as a result of the particular shortest path reward used and
its temporally extended actions.
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Figure 15: Phase 2 goal-conditioned trajectories for the grayscale room (Left) and Plus Intersection
domains (Right) for the algorithm that learns a goal-conditioned policy outputting primitive actions
and is conditioned on the learned representation space. Shaded regions are the episode goal and the
line is the trajectory produced by the goal-conditioned policy.

Figure 16: Phase 2 goal-conditioned trajectories for the grayscale room (Left) and Plus Intersection
domains (Right) for the algorithm that learns a goal-conditioned policy outputting skills using the
learned representation space and skills from pretraining. Shaded regions are the episode goal and
the line is the trajectory produced by the goal-conditioned policy.
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results for the hierarchical algorithm learning a goal-conditioned policy outputting skills using the710
learned representation space and skills from pretraining.711
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