
Collab-Overcooked: Benchmarking and Evaluating
Large Language Models as Collaborative Agents

Anonymous ACL submission

Abstract

Large language models (LLMs) based agent001
systems have made great strides in real-002
world applications beyond traditional NLP003
tasks. This paper proposes a new LLM-004
powered Multi-Agent System (LLM-MAS)005
benchmark, Collab-Overcooked, built on the006
popular Overcooked-AI game with more appli-007
cable and challenging tasks in interactive envi-008
ronments. Collab-Overcooked extends existing009
benchmarks from two novel perspectives. First,010
it provides a multi-agent framework support-011
ing diverse tasks and objectives and encourages012
collaboration through natural language commu-013
nication. Second, it introduces a spectrum of014
process-oriented evaluation metrics to assess015
the fine-grained collaboration capabilities of016
different LLM agents, a dimension often over-017
looked in prior work. We conduct extensive018
experiments over 11 popular LLMs and show019
that, while the LLMs present a strong ability020
in goal interpretation, there is a significant dis-021
crepancy in active collaboration and continuous022
adaptation which are critical for efficiently ful-023
filling complicated tasks. Notably, we highlight024
the strengths and weaknesses in LLM-MAS025
and provide insights for improving and evaluat-026
ing LLM-MAS on a unified and open-sourced027
benchmark. The environments, 30 open-ended028
tasks, and the evaluation package are pub-029
licly available at https://anonymous.4open.030
science/r/Collab-Overcooked-E6C7.031

1 Introduction032

Leveraging the remarkable zero-shot and few-shot033

learning ability of Large Language Models (LLMs),034

LLM-based agents are demonstrating their poten-035

tial in complex task decomposition and planning036

(Wang et al., 2023a,c; Li et al., 2024b). Inspired by037

human collaborative behaviors in social activities,038

recent research reveals that multi-agent systems039

can significantly enhance task efficiency and tackle040

challenges surpassing single-agent capabilities (Li041

et al., 2023a; Hong et al., 2023; Zhang et al., 2023).042

To effectively address complex real-world tasks, 043

LLM-powered Multi-Agent Systems (LLM-MAS) 044

require three essential collaboration capabilities 045

beyond goal interpretation: (a) Competence bound- 046

ary awareness: the ability to analyze task flows 047

and environmental states to determine feasible ac- 048

tions, recognize limitations, and identify when ex- 049

ternal assistance is needed; (b) Communication: 050

proficiency in utilizing standardized protocols for 051

transmitting task-critical information and resource 052

requests; and (c) Dynamic adaptation: responsive- 053

ness to collaboration requests and dynamically ad- 054

justing their action sequences accordingly. 055

Given these fundamental requirements, establish- 056

ing evaluation frameworks becomes crucial for as- 057

sessing LLM-MAS collaboration effectiveness. Re- 058

searchers have developed specialized benchmarks 059

to quantify collaborative agents in specific envi- 060

ronments. Representative platforms like (Agashe 061

et al., 2023), RocoBench (Mandi et al., 2024), and 062

LLMARENA (Chen et al., 2024) create virtual 063

scenarios requiring collaborative problem-solving 064

through intricate workflows. These frameworks 065

are complemented by novel metrics, such as Col- 066

laboration Score (CoS) (Gong et al., 2023), which 067

evaluates end-to-end collaboration capability. 068

Despite recent progress in evaluating LLM-MAS 069

collaboration capability, existing approaches ex- 070

hibit three critical limitations. First, they priori- 071

tize task completion efficiency without imposing 072

strict collaboration requirements, allowing individ- 073

ual agents to accomplish tasks that are nominally 074

“collaborative” independently. This design flaw in- 075

troduces assessment biases by obscuring the role 076

of collaboration in performance gains, which con- 077

trasts with real-world applications where collab- 078

oration is often essential for task success. Sec- 079

ond, existing benchmarks conflate collaboration 080

capability with end-to-end metrics, such as task 081

completion rates, which are frequently used as 082

proxies for collaboration effectiveness in platforms 083

1

https://anonymous.4open.science/r/Collab-Overcooked-E6C7
https://anonymous.4open.science/r/Collab-Overcooked-E6C7
https://anonymous.4open.science/r/Collab-Overcooked-E6C7

Virtual Environment Various Task
Complexities Scalability Collaboration

Definition
Forced

Collaboration
Collaboration

Evaluation
RocoBench (Mandi et al.’s (2024)) NA/6 ✗ NA Partial E2E
VillagerBench (Dong et al.’s (2024)) 3/9 ✗ E2E ✗ E2E
LLMARENA (Chen et al.’s (2024)) NA/7 ✗ PO ✗ E2E
CivRealm (Qi et al.’s (2024)) NA/100k ✓ NA ✗ E2E
BattleAgentBench (Wang et al.’s (2024)) 3/3 ✗ E2E ✗ E2E
TDW-MAT (Zhang et al.’s (2023)) NA/2 ✗ E2E ✗ E2E
CuisineWorld (Gong et al.’s (2023)) 13/39 ✓ E2E ✗ E2E
Collab-Overcooked (Ours) 6/30 ✓ PO ✓ E2E&PO

Table 1: Existing statistics on benchmarks for evaluating LLM-MAS collaboration capability. If no data is available,
it is marked as “NA”. Statistics in “Various Task Complexities” are presented in the format “Level Num / Task
Num”. “E2E” refers to end-to-end, while “PO” refers to process-oriented.

like CuisineWorld (Gong et al., 2023) and Vil-084

lagerBench (Dong et al., 2024). However, this085

approach overlooks two critical issues: divergent086

definitions of “success” across environments un-087

dermine comparability, and the absence of process-088

oriented metrics obscures actionable insights for089

optimizing collaborative strategies. Third, the lack090

of a fine-grained evaluation prevents a comprehen-091

sive, multi-perspective analysis of LLM agents’092

capabilities, making it difficult to interpret their093

strengths and limitations effectively, thus falling094

short of insightful research suggestions.095

To address the limitations of existing LLM-MAS096

benchmarks, we propose the Collab-Overcooked097

Benchmark, designed to provide a fine-grained098

analysis of collaborative interactions. Unlike prior099

benchmarks that focus primarily on task comple-100

tion, our benchmarks evaluate the capability of101

initiating and responding to collaboration during102

the collaboration process. Specifically, the Collab-103

Overcooked extends Overcooked-AI (Carroll et al.,104

2019) to a chef-and-assistant collaborating environ-105

ment and introduces 30 sequential process-specific106

tasks across 6 complexity levels. Each agent op-107

erates in an isolated environment with distinct ac-108

tion spaces, so task completion depends on effec-109

tive communication and resource exchange, there-110

fore collaboration is strictly required. Furthermore,111

we propose the Trajectory Efficiency Score (TES)112

and Incremental Trajectory Efficiency Score (ITES)113

to assess the collaboration capabilities from both114

coarse and fine perspectives. Through comprehen-115

sive experiments on 11 LLMs of varying sizes, in-116

cluding both open-source and closed-source LLMs,117

we reveal significant performance gaps in collabo-118

ration capabilities across different LLMs. We iden-119

tify attention misalignment as a key factor affecting120

collaboration performance. Our results show that,121

in collaborative tasks, correcting attention alone 122

can improve outcomes, revealing core limitations 123

of current LLM-MAS and pointing to future direc- 124

tions such as collaborative memory and attention- 125

guided fine-tuning. 126

To summarize, our contributions are as follows: 127

• We develop and open-source a lightweight and 128

extensible LLM-MAS benchmark, Collab- 129

Overcooked, which features 30 tasks across 130

6 complexity levels that encourage collabora- 131

tion, thus facilitating the evaluation of MAS 132

collaboration in a unified environment with 133

diverse, complex tasks. 134

• We define collaboration capability in LLM- 135

MAS as comprising both initiating collabora- 136

tion and responding collaboration. We intro- 137

duce 3 trajectory efficiency-related metrics to 138

evaluate collaboration capabilities from both 139

coarse and fine-grained perspectives. 140

• We conduct a comprehensive evaluation of a 141

wide range of popular LLM agents, reveal- 142

ing collaboration and adaptation bottlenecks 143

under varying task complexities, and identi- 144

fying key limitations of LLM-MAS through 145

analysis of attention distribution. 146

2 Related Work 147

LLM-Powered Multi-Agent System LLM- 148

MAS enables agents to collaboratively engage in 149

planning, discussing, and decision-making. Col- 150

laboration is a pivotal capability in task-oriented 151

LLM-MAS, as it not only enhances task comple- 152

tion efficiency (Zhang et al., 2024b; Tao et al., 153

2024) but also enables the pursuit of complex goals 154

beyond the reach of a single agent (Park et al., 2023; 155

Hong et al., 2023). Recent methods for improving 156

collaboration can be broadly categorized into (a) 157

2

Structural optimization (e.g., DyLAN’s (Liu et al.,158

2023) dynamic framework), (b) Role specialization159

(e.g., AutoGen’s (Wu et al., 2023) personas and160

AgentVerse’s (Chen et al., 2023) role assignments),161

and (c) Communication paradigm (e.g., MetaGPT’s162

(Hong et al., 2023) message pool). Despite these163

advancements, the inherent complexity and diver-164

sity of multi-agent tasks make it difficult to com-165

pare methods directly, driving the emergence of166

standardized benchmarks that enable quantitative167

evaluations under unified conditions.168

LLM-MAS Benchmark and Evaluation169

Benchmark testing in virtual environments is170

the primary method for evaluating multi-agent171

collaboration capability. As shown in Table172

1, existing studies establish diverse tasks and173

commonly use End-to-End (E2E) metrics to assess174

LLM-MAS collaboration capability, with some175

benchmarks offering environmental scalability.176

However, several limitations persist. A key issue is177

the lack of a formal collaboration definition in most178

benchmarks, leading to ambiguous assessments179

and inconsistent comparisons across different180

benchmarks. Furthermore, the absence of enforced181

collaboration mechanisms allows agents to achieve182

objectives independently (e.g., in CuisineWorld,183

where many tasks can be completed by a single184

agent), undermining the true assessment of185

collaboration. Finally, the predominant focus on186

outcome-based metrics such as E2E performance187

overlooks the critical role of process-driven188

dynamics. Approaches like (Song et al., 2024),189

LTC (Wang et al., 2023b), and EvoMAC (Hu et al.,190

2024) suggest refining LLMs through process191

behaviors to enhance adaptation and collaboration,192

indicating that incorporating process-oriented193

metrics could offer more comprehensive insights.194

3 Task-Oriented Collaboration195

3.1 Collaboration Capability196

A task in LLM-MAS can be formulated as a 4-tuple:197

T = (G,E,P,R), where G is a natural language198

description of the task goal, such as “make a dish199

of tomato soup”; E is a description of the environ-200

ment, which can be either the layout of a simulated201

scenario or the visual input of real-world surround-202

ings; P is optional natural language guidance, pro-203

viding recipes, helpful hints, or task constraints;204

and R is a Referential Action Trajectory (RAT)205

that leads to the successful completion of the task206

and is used to assess the agents’ performance. It is207

worth noting that there are often multiple RATs for 208

a task, especially in dynamic environments. 209

Collaboration often involves agents relying on 210

each other to solve tasks. As shown in Figure 1 211

Part I, we define collaboration capability as com- 212

prising two essential components: the capability to 213

initiate collaboration, where agents, upon realizing 214

that their boundary prevents them from completing 215

the task according to G and P at environmental 216

state st ∈ E at time t, generate a request for col- 217

laborative actions areq to solicit assistance from 218

other agents; and the capability to respond to col- 219

laboration, where agents, upon receiving areq from 220

another agent, adjust their action sequence based 221

on st and generate collaborative actions aresp. 222

3.2 TES and ITES 223

3.2.1 TES 224

Trajectory Efficiency Score (TES) is designed to 225

compare the difference between two trajectories 226

and is defined as: 227

TES(hk) = max
j

{
(1 + β2)Dj

max(hk, g
j
k)

mk + β2nk

}
(1) 228

where hk = {a1k, a2k, . . . , aTk } is the historical ac- 229

tion sequence up to timestep T of agent k, gjk = 230

{gi}mk
i=1 ∈ R is j-th RAT of agent k, β is the hy- 231

perparameter balancing the weight of task progress 232

and redundancy, and Dj
max(hk, g

j
k) computes the 233

length of the longest order-preserving subsequence 234

in hk that matches gjk: 235

Dj
max = max

d
{d | ∀ 1 ≤ i1 < · · · < id ≤ nk, 236

s.t. ai1 = g1, ai2 = g2, . . . , aik = gk} (2) 237

Unlike other sequence alignment scores (such 238

as ROUGE-L (Lin, 2004)), TES takes into account 239

sequence order and redundancy punishment simul- 240

taneously, therefore suitable for assessing a planned 241

action sequence (detailed in Appendix B.1). 242

3.2.2 ITES 243

Incremental Trajectory Efficiency Score (ITES) in- 244

troduces an incremental assessment to quantify the 245

task-progress contribution of an individual collabo- 246

rative action. The ITES is computed as: 247

ITES(a, hk) = TES(hk ∪ a)− TES(hk) (3) 248

3

Task
Description

1. Slice a potato

2. Bake the potato

3. Deliver the potato

Dispenser
Pot
Agent Bob

Oven

Delivery location

Chopping Board

Dish

Agent Alice
Blender

Counter

Environment

Analysis & Collaboration Executing Action

🥔

🥔

Instructions

Hello! Could you first slice a
potato?

Since I can’t get potato, I should
ask Alice to slice the potato.

Hello Alice! Could you first
pickup and slice a potato?

Certainly! I will take a potato
first and then slice it.

Bob request I slice the potato, it
can be done in my environment.

Part I. Collaboration Example Part II. Overcooked-Collaboration Benchmark

Initiating Collaboration
⟨G, P, st⟩ → areq

Agent Bob :

1. request(pickup 🥔 from)

2. request(place 🥔 on)

3. request(cut 🥔 on)

areq

I am Alice, I received your []. In my []
I have [resource]. I will help you by []

areq st
aresp

I am Bob, based on [,].
I need [resource]. Could you help me []

st G, P
areq

, st G, P

Responding to Collaboration
⟨st, areq⟩ → aresp

Collaboration
Capability

in LLM-MAS

Initiating
Collaboration

Responding to
Collaboration

Task: Baked Potato Slices

Agent Alice :

1. pickup 🥔 from

2. place 🥔 on

3. cut 🥔 on

aresp

Next

Loop

Environment State st Task & Description G, P

Agent Bob have:
[resource], …

Agent Alice have:
[resource], …

Step 1: Get [resource]

Step 2: Boil
[resource] with [resource]

…

Task:
Make a

[goal dish]

Figure 1: Part I presents the collaboration process, which is divided into initiating collaboration and responding to
collaboration. Part II outlines the design of the Collab-Overcooked Benchmark, emphasizing its characteristics of
resource isolation and asymmetric task knowledge, and provides an example of agents’ collaboration.

where hk denotes the historical action sequence249

of agent k, and a represents the newly executed250

actions, either a collaboration request (areq) or re-251

sponse (aresp).252

This differential formulation measures the253

marginal utility of action a by evaluating its im-254

pact on trajectory alignment with the RATs. It can255

be established that: ITES(a, hk) > 0 indicates a256

advances task progress, ITES(a, hk) ≤ 0 suggests257

a fails to advance task progress (i.e., a is redundant258

/ premature action or incorrect response).259

3.3 Evaluation Metrics260

Progress Completeness (PC) Built on the TES,261

which quantifies a piece of trajectory, PC measures262

the task progress of all involved agents while pe-263

nalizing redundancy as a whole, and is defined as:264

PC =
1

K

K∑
k=1

TES(hk) (4)265

where K is the number of agents, hk =
⋃Tmax

t=0 atk266

denotes the historical action sequence of agent k at267

time Tmax, which occurs upon task completion or268

when the maximum time limit is reached. The PC269

offers a finer-grained assessment of task comple-270

tion efficiency compared to boolean success rate.271

Initiating Capability (IC) IC evaluates the cor-272

rectness of the LLM agent’s collaboration initiation.273

IC is defined as:274

IC =
1

N

N∑
i=1

I
(

ITES(a(i)req, hj) > 0
)

(5)275

where N is the number of required col- 276

laborations, I() is the indicator function. 277

I
(

ITES(a(i)req, hj) > 0
)

determines whether the 278

i-th initiating collaboration request a(i)req advances 279

the task progress, thereby indicating whether the 280

initiation is correct. 281

Responding Capability (RC) Similarly, RC as- 282

sesses the correctness of the LLM agent’s response 283

to a collaboration request: 284

RC =
1

N

N∑
i=1

I
(

ITES(a(i)resp, hj) > 0
)
. (6) 285

4 Benchmark 286

4.1 Collab-Overcooked Benchmark 287

The proposed Collab-Overcooked benchmark 288

builds upon the open-source Overcooked-AI (Car- 289

roll et al., 2019) and ProAgent (Zhang et al., 290

2024a), introducing two key upgrades: (1) The 291

environment is divided into two parts, featuring 292

resource isolation and asymmetric task knowl- 293

edge for Agent Bob and Agent Alice, respectively. 294

This contrasts with Overcooked-AI, where agents 295

mostly operate in a shared environment with iden- 296

tical items; (2) The benchmark encourages col- 297

laboration through natural language interactions, 298

with some cases enforcing collaboration as a re- 299

quirement for task success. Additionally, Collab- 300

Overcooked provides APIs to configure new tasks 301

and environmental settings, enabling the enhance- 302

ment of LLM-MAS through scenario adaptation. 303

4

4.1.1 Environment304

Our simulation environment is a grid-based kitchen305

simulation designed as a comprehensive testbed for306

analyzing collaboration behaviors in LLM-MAS.307

The environment comprises agents and config-308

urable interactive elements. The interactive ele-309

ments are dispensers, utensils, counters, and deliv-310

ery location. Agents can freely retrieve raw ma-311

terials from dispensers, place them into utensils312

for processing, and finally transfer the processed313

materials to other agents via counters or submit the314

required order through the delivery location. No-315

tably, utensils process materials according to cus-316

tomizable synthesis tables, with each utensil having317

its own distinct synthesis table. Agents can inter-318

act with these elements through predefined action319

primitives formatted as “func(args)”. For example,320

“pickup(apple, ingredient_dispenser)” clarifies ac-321

tion type, target material, and interactive element.322

Details are provided in Appendix A.1.323

The environment executes agents’ actions se-324

quentially and broadcasts the global state at each325

timestep, encompassing agents’ positions and the326

status of interactive elements. We developed a com-327

prehensive rule-based action validator that identi-328

fies invalid actions, including environment-action329

mismatches and incorrect parameters. Upon rule330

violations, the validator issues error messages,331

prompting the agent to identify the error and re-332

generate the action accordingly.333

4.1.2 Tasks Construction334

Sequential process-specific tasks are common in335

real-world scenarios (Wang et al., 2023c; Zhang336

et al., 2023; Song et al., 2024), where interdepen-337

dent actions must be completed in a specific order338

to achieve a goal. We curate 30 such tasks strati-339

fied into 6 complexity levels, requiring two agents340

to complete collaboratively. The task complex-341

ity level is determined by the minimum number342

of collaborative actions, increasing linearly with343

difficulty. To reduce LLM bias toward specific in-344

gredients, tasks at the same level share workflows345

but differ in ingredients. Each task has a time con-346

straint, set as the optimal completion time scaled347

by a time limit factor γ.348

Each task is accompanied by a natural language349

structured process description and RATs for evalu-350

ation. As the tasks are process-specific with clear351

success criteria, their RATs are fully definable and352

easily traversable, making them suitable for eval-353

uation. We manually annotated RATs for all 30354

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
0

4

8

12

16

20

Co
un

t

Min Collaboration Action Num

0

15

30

45

60

75

M
in

 C
ol

la
bo

ra
tio

n
Ti

m
es

te
p

Min Time

Figure 2: The statistics for tasks of varying complexity
levels. “Min Collaborative Action Num” denotes the
minimum number of collaborative actions performed
by the responding agent. “Min Time” represents the
shortest timesteps to complete a task at a given level.

tasks. Detailed task list, task descriptions, and RAT 355

examples are provided in the Appendix A.2. 356

4.1.3 Collaboration Designs 357

Collab-Overcooked benchmark imposes strict col- 358

laboration among agents. For this, we have two spe- 359

cial designs: (a) Resource Isolation: agents operate 360

in resource-isolated sub-environments, necessitat- 361

ing resource exchange via a shared “counter”. This 362

enforces collaborative dependency. (b) Asymmet- 363

ric Task Knowledge: Only one agent knows how 364

to complete the task. Agents must communicate to 365

synchronize task information. While our current 366

setup uses two agents to clearly expose and eval- 367

uate collaboration initiation and response, scaling 368

to multiple agents primarily introduces complexity 369

in collaboration rather than fundamentally altering 370

these core collaborative capabilities. Thus, the two- 371

agent design is optimal for isolating and analyzing 372

LLM-specific collaborative behaviors in depth. 373

4.2 Baseline 374

To evaluate LLM-MAS performance across dif- 375

ferent LLMs on our benchmark, we introduce an 376

in-context learning baseline. The baseline incor- 377

porates both memory and reflection mechanisms, 378

allowing agents to communicate and collaborate 379

freely in natural language while handling errors. 380

Figure 1 Part II illustrates an example of how agents 381

advance task progress through collaborative com- 382

munication in our benchmark. Detailed informa- 383

tion and prompts regarding the baseline can be 384

found in Appendix A.3 and Figure 7. 385

5 Experiment and Analysis 386

5.1 Benchmark Overview 387

Figure 2 presents key statistics of our benchmark, 388

summarizing the minimum completion timesteps 389

5

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
SR PC SR PC SR PC SR PC SR PC SR PC

Closed
Source

GPT-4o 94.00 85.92 86.00 84.96 68.00 76.61 34.00 44.42 2.00 29.13 4.00 22.45
o1-mini 70.00 74.18 2.00 36.36 0.00 33.60 0.00 24.80 0.00 20.28 0.00 13.07
GPT-3.5 42.00 68.20 8.00 43.42 0.00 36.44 0.00 24.74 0.00 15.21 0.00 12.03

Open
Source

DeepSeek-R1 100.00 96.53 100.00 94.40 98.00 91.10 82.00 82.75 44.00 49.79 30.00 48.33
DeepSeek-V3 88.00 77.74 76.00 71.90 56.00 66.61 22.00 50.01 4.00 30.41 6.00 33.44
Qwen2.5-72B-Instruct 78.00 76.84 64.00 68.00 14.00 46.88 8.00 30.80 0.00 22.67 0.00 18.45
Qwen2.5-32B-Instruct 64.00 73.36 44.00 62.02 14.00 40.08 4.00 33.78 2.18 22.16 0.00 18.93
Qwen2.5-14B-Instruct 32.00 50.36 4.00 26.66 0.00 24.41 0.00 19.00 0.00 14.14 0.00 14.27
Qwen2.5-7B-Instruct 8.00 44.79 0.00 13.00 0.00 9.29 0.00 8.35 0.00 5.57 0.00 4.51
Llama3.1-70B-Instruct 70.00 75.42 42.00 63.15 22.00 54.58 6.18 45.04 0.00 29.77 0.00 17.69
Llama3.1-8B-Instruct 4.00 33.03 0.00 15.49 0.00 12.33 0.00 11.24 0.00 9.05 0.00 7.45

Table 2: Performance of 11 representative LLMs with parameter sizes ranging from 7B to 671B+ across 6 task
complexity levels, evaluated using Success Rate (SR) and Progress Completeness (PC) as metrics.

and collaborative actions across 6 complexity lev-390

els, which show monotonically increasing trends391

with task complexity. Two agents perform 8 and392

6 actions, respectively. The environment layout393

indicates asymmetric interactivity, with two agents394

accessing 4 and 5 interactive elements, respectively,395

while sharing observation. Additional statistics are396

provided in Appendix A.1.397

5.2 Experiment Setting398

We leverage 11 representative LLMs with parame-399

ter sizes ranging from 7B to over 671B+ as the foun-400

dation models for LLM-MAS. The open-source401

models include DeepSeek-R1 (Guo et al., 2025),402

DeepSeek-V3 (Liu et al., 2024), different parame-403

ter versions of Qwen2.5 (7B, 14B, 32B, 72B) (Yang404

et al., 2024) and Llama3.1 (8B, 70B) (Dubey et al.,405

2024), all with instruction-tuned configurations.406

The closed-source models include: GPT-4o-1120407

(Hurst et al., 2024), o1-mini (Jaech et al., 2024),408

and GPT-3.5-turbo-0125 (Ouyang et al., 2022). For409

the open-source models except for DeepSeek-R1410

and V3, inference is performed using vLLM (Kwon411

et al., 2023) with temperature of 0.7 and top-p of412

1. For each task, the task time limit factor is set to413

γ = 1.51, and each task is evaluated through 10414

repetitions. The hyperparameter β in TES is 0.95.415

5.3 Results and Analysis416

5.3.1 Task Completion Efficiency417

Table 2 presents the Success Rate (SR) and PC418

scores of 11 LLMs across six levels. While419

DeepSeek-R1 achieves the best overall perfor-420

mance, its token usage is 18.6 times that of GPT-4o,421

indicating significantly higher computational cost.422

From these results, we derive three key insights:423

1Experiments for different γ are in Appendix C.1.

(1) Smaller LLMs (8B parameters or fewer) strug- 424

gle with simple tasks, whereas increasing model 425

size significantly enhances performance. This in- 426

dicates the existence of a clear emergent scaling 427

threshold for low-level tasks. (2) Scaling up LLMs 428

effectively improves task completion efficiency for 429

lower-level tasks but fails to enhance performance 430

on high-complexity tasks. This suggests that cur- 431

rent performance gains primarily stem from pattern 432

memorization rather than cognitive reasoning. (3) 433

When task complexity surpasses a critical thresh- 434

old (level 4+), both closed and open-source models 435

experience a performance collapse. This highlights 436

the current limitations of LLMs in modeling long 437

reasoning chains and capturing the complex, dy- 438

namic logic between tasks and environments. 439

5.3.2 Process-Oriented Evaluation 440

Figure 3 presents the process-oriented evaluation 441

of LLM-MAS, from which we derive three key in- 442

sights. First, most models (14B+) exhibit higher 443

RC than IC, indicating that LLMs are better at 444

responding to collaboration than initiating collab- 445

oration. This is a result of their strong instruction- 446

following capabilities, which make initiating col- 447

laboration the primary bottleneck for most LLMs. 448

Second, the collaboration capability of all LLMs 449

declines with increasing task complexity. More- 450

over, the decline rate is similar across all models, 451

indicating that their ability to maintain collabora- 452

tion performance is similar. Despite the scale-up of 453

the models, there is no corresponding improvement 454

in their ability to sustain collaboration capability. 455

Third, the reasoning model outperforms others on 456

simpler tasks. While its performance drops with 457

complexity and it consumes more tokens, its con- 458

sistent gains show the potential of the CoT-training 459

paradigm for improving collaboration capabilities. 460

6

1 2 3 4 5 6
Task Complexity Level

0

20

40

60

80

100

Pe
rfo

rm
an

ce
 (%

)
Closed-Source Models

Models
GPT-4o
o1-mini
GPT-3.5

Metrics
IC
RC

1 2 3 4 5 6
Task Complexity Level

0

20

40

60

80

100

Pe
rfo

rm
an

ce
 (%

)

70B+ Open-Source Models

Models
DeepSeek-R1
DeepSeek-V3
Qwen2.5-72B
Llama3.1-70B

Metrics
IC
RC

1 2 3 4 5 6
Task Complexity Level

0

20

40

60

80

100

Pe
rfo

rm
an

ce
 (%

)

7B-32B Open-Source Models

Models
Qwen2.5-32B
Qwen2.5-14B
Qwen2.5-7B
Llama3.1-8B

Metrics
IC
RC

Figure 3: The performance of 11 representative LLMs, with parameter sizes ranging from 7B to 671B+, was
evaluated across 6 task levels using the IC, and RC.

0

25

50

75

100

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Pe
rfo

rm
an

ce
 (%

)

0

25

50

75

100

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
SR PC IC RC

Figure 4: Comparison of human performance (shown
as lighter, semi-transparent bars, under a 10-second per-
timestep thinking and communication constraint) and
DeepSeek-R1 performance (shown as darker, solid bars)
across six task complexity levels in our benchmark.

5.3.3 Human Performance Evaluation461

To establish a robust performance ceiling, we con-462

ducted experiments with 10 human participants463

performing tasks spanning all six levels. As shown464

in Figure 16, 17, we designed a human-computer465

interaction interface to enable participants to simu-466

late agent behaviors within the environment. To en-467

sure a fair comparison with LLMs in time-sensitive468

scenarios, we imposed time constraints on both469

communication and decision-making during each470

timestep for participants. We further evaluated hu-471

man performance under various time limits, and472

detailed descriptions of the experimental design473

and rules are provided in Appendix C.2.474

As illustrated in Figure 4, human participants475

consistently achieved high and stable performance476

across all levels of task complexity, even under477

time constraints. In contrast, DeepSeek-R1, the478

strongest model evaluated, exhibited a marked de-479

cline in performance as task complexity increased.480

These results highlight two key limitations of cur-481

rent LLM-MAS: a lack of performance consistency482

under increasing complexity, and the insufficiency483

of model parameter scaling alone to overcome this484

gap. This advantage in human performance stems485

from participants’ ability to form high-level task486

abstractions and procedural understanding during 487

interaction, allowing them to flexibly adapt to novel 488

situations and maintain stable outcomes. In com- 489

parison, current LLM-MAS rely on shallow mem- 490

ory mechanisms that log past trajectories without 491

abstracting them into reusable strategies. Conse- 492

quently, they fail to generalize from simpler tasks 493

to more complex ones, leading to cumulative errors 494

and performance degradation as complexity rises. 495

5.3.4 Analysis of Collaboration Failures 496

Collaboration challenges are likely to arise across 497

diverse multi-agent contexts, but the resource iso- 498

lation and asymmetric task knowledge in our en- 499

vironment make such issues more prominent and 500

easier to analyze. We highlight the failure patterns 501

exposed by these conditions and discuss their sig- 502

nificance for LLM-based collaboration. 503

Collaboration Capabilities Degradation To bet- 504

ter understand collaboration capability degrada- 505

tion, we conducted further analyses presented in 506

Appendix C.4. We observe performance degra- 507

dation across models in sequential collaborative 508

steps, with initiation capabilities representing the 509

primary bottleneck. Most significantly, our experi- 510

ments demonstrate strong positional dependence- 511

collaborative steps positioned earlier in workflows 512

consistently outperform identical actions placed 513

later, suggesting pretraining biases and limited con- 514

text tracking significantly impact LLMs’ collabora- 515

tive performance in sequential tasks. 516

Attention Bias By segmenting input prompts 517

into 5 or 6 distinct parts and analyzing attention 518

weight distributions (see Figure 10), we identi- 519

fied distinct attention patterns differentiating suc- 520

cessful and failed collaborations, highlighting crit- 521

ical biases. During initiation, increased atten- 522

tion to collaboration rules correlates with success, 523

7

0

20

40

60

80

100

Pe
rc

en
ta

ge

96%

4%

91%

9%

96%

4%

100%

44%

56%

35%

65%

51%

49%

41%

59%

Correct Wrong
(Qwen 7B, Level 1)

Correct Wrong
(Qwen 7B, Level 5)

Correct Wrong
(Qwen 72B, Level 1)

Correct Wrong
(Qwen 72B, Level 5)

Effects of Attention Intervention During Initiating Collaboration
Still Correct Became Wrong Became Correct Still Wrong

0

20

40

60

80

100

Pe
rc

en
ta

ge

100%
93%

7%

96%

4%

97%

3%

56%

44%

48%

52%

64%

36%

55%

45%

Correct Wrong
(Qwen 7B, Level 1)

Correct Wrong
(Qwen 7B, Level 5)

Correct Wrong
(Qwen 72B, Level 1)

Correct Wrong
(Qwen 72B, Level 5)

Effects of Attention Intervention During Responding to Collaboration
Still Correct Became Wrong Became Correct Still Wrong

Figure 5: Results for Qwen-2.5 7B and 72B on Level 1 and Level 5 tasks. The left panel shows initiating
collaboration, and the right shows responding. “Correct” and “Wrong” indicate the model’s original output before
intervention. The results show that adjusting attention distributions can significantly improve performance on
previously incorrect cases while maintaining stability on correct ones.

whereas excessive focus on recipe information pre-524

dicts failure. This suggests a fundamental atten-525

tion bias where LLM-MAS agents overemphasize526

task execution details while undervaluing essential527

collaboration-specific information, causing errors528

in determining the appropriate collaboration ap-529

proach at a given state (see Appendix C.3). In530

the responding phase, successful outcomes feature531

heightened attention to environmental observations532

and collaboration rules. In contrast, excessive def-533

erence to partner instructions without integrating534

environmental observation and collaboration rules535

causes failed responding. These attention biases di-536

rectly contribute to redundant actions and degraded537

performance metrics (PC, IC, and RC), with their538

effects becoming more pronounced under increased539

task complexity due to error propagation.540

Attention Intervention To establish the causal541

relationship between attention distribution and col-542

laboration outcomes, we conducted attention in-543

tervention experiments by manually adjusting the544

attention allocation to align with patterns observed545

in successful cases. Using the same random seeds546

and model parameters, we then regenerated the547

outputs. As shown in Figure 5, we observed perfor-548

mance improvements of 35% to 64% in previously549

failed instances, while originally successful out-550

puts remained largely unaffected. These results551

confirm that attention bias is a key causal factor in552

collaboration failure, likely rooted in pretraining on553

single-agent execution tasks rather than on collabo-554

rative scenarios requiring joint decision-making.555

To the best of our knowledge, we are the first to556

reveal and analyze attention-driven failure modes557

in information and resource isolation environments,558

highlighting persistent biases toward task execution559

that are less evident in existing LLM-MAS collab- 560

oration benchmarks. 561

5.4 Future Challenges 562

Collaborative Memory and Experience Abstrac- 563

tion Future work should develop specialized 564

memory mechanisms for multi-agent collaboration 565

that go beyond single-agent approaches. LLM- 566

MAS requires systems that can retain and general- 567

ize collaborative patterns across diverse contexts 568

and complexity levels, enabling agents to progres- 569

sively develop more sophisticated collaboration ca- 570

pabilities through accumulated experience. 571

Attention-Guided Fine-tuning Our attention in- 572

tervention experiments demonstrate that targeted 573

attention modification alone can dramatically im- 574

prove collaborative outcomes. Future approaches 575

should incorporate mechanisms that guide models 576

to attend to critical collaboration-relevant informa- 577

tion through fine-tuning regimens or soft attention 578

constraints. These techniques could help overcome 579

the inherent single-agent execution biases currently 580

limiting LLM collaborative performance. 581

6 Conclusion 582

We introduce the Collab-Overcooked Benchmark, 583

a framework evaluating LLM-MAS collaboration 584

from end-to-end and process-oriented perspectives. 585

Experiments across 11 LLMs reveal significant 586

performance gaps, with attention misalignment to 587

collaboration-relevant instructions emerging as a 588

key bottleneck. These findings underscore the dif- 589

ficulty of achieving high performance in collabo- 590

rative tasks under training-free, zero-shot settings, 591

highlighting the need to improve attention mecha- 592

nisms for better adaptability and collaboration. 593

8

Limitations594

The Collab-Overcooked Benchmark is introduced595

in our paper and we explore methods for evaluating596

the collaboration capabilities of LLM-MAS using597

both end-to-end and process-oriented approaches.598

However, there are three limitations to our work.599

First, all of our tasks are sequential and process-600

specific. While we assume that RATs can be ex-601

haustively enumerated, making it possible to use602

exhaustive RATs as labeled data for evaluating the603

collaboration capabilities of LLM-MAS. However,604

in environments with highly complex state and ac-605

tion spaces, RATs are difficult to exhaustively enu-606

merate. In such cases, only representative RATs607

can be listed as evaluation data, which introduces608

potential bias into our evaluation methodology.609

Second, due to the complex mechanisms of LLM-610

MAS, such as communication, memory, and reflec-611

tion, the prompts are relatively long (approximately612

2,000 tokens, with variation depending on the to-613

kenizer used by the LLM). Additionally, process-614

oriented evaluation requires substantial interaction615

data, which leads to both low evaluation efficiency616

and significant token consumption, which is the617

common challenge across current methods for eval-618

uating LLM-MAS capabilities. Third, the baseline619

used to evaluate LLM-MAS is composed of rel-620

atively simple structures, with the agent possess-621

ing only basic memory and reflection mechanisms,622

leaving substantial room for optimization.623

Ethics Statement624

All human experiments were conducted with in-625

formed consent from voluntary participants. Each626

participant was compensated fairly based on the627

duration of their engagement. No personally identi-628

fiable information was collected during the experi-629

ments. As our research focuses on collaboration in630

virtual environments, no physical or psychological631

risks were posed to the participants.632

References633

Saaket Agashe, Yue Fan, and Xin Eric Wang. 2023.634
Evaluating multi-agent coordination abilities in large635
language models. arXiv preprint arXiv:2310.03903.636

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths,637
Sanjit Seshia, Pieter Abbeel, and Anca Dragan. 2019.638
On the utility of learning about humans for human-ai639
coordination. Advances in neural information pro-640
cessing systems, 32.641

Junzhe Chen, Xuming Hu, Shuodi Liu, Shiyu Huang, 642
Wei-Wei Tu, Zhaofeng He, and Lijie Wen. 2024. Ll- 643
marena: Assessing capabilities of large language 644
models in dynamic multi-agent environments. arXiv 645
preprint arXiv:2402.16499. 646

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, 647
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia 648
Qin, Yaxi Lu, Ruobing Xie, et al. 2023. Agent- 649
verse: Facilitating multi-agent collaboration and ex- 650
ploring emergent behaviors in agents. arXiv preprint 651
arXiv:2308.10848, 2(4):6. 652

Yubo Dong, Xukun Zhu, Zhengzhe Pan, Linchao Zhu, 653
and Yi Yang. 2024. Villageragent: A graph-based 654
multi-agent framework for coordinating complex 655
task dependencies in minecraft. arXiv preprint 656
arXiv:2406.05720. 657

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 658
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 659
Akhil Mathur, Alan Schelten, Amy Yang, Angela 660
Fan, et al. 2024. The llama 3 herd of models. arXiv 661
preprint arXiv:2407.21783. 662

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane 663
Durante, Yusuke Noda, Zilong Zheng, Song-Chun 664
Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. 2023. 665
Mindagent: Emergent gaming interaction. arXiv 666
preprint arXiv:2309.09971. 667

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 668
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 669
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 670
centivizing reasoning capability in llms via reinforce- 671
ment learning. arXiv preprint arXiv:2501.12948. 672

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng 673
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven 674
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023. 675
Metagpt: Meta programming for multi-agent collabo- 676
rative framework. arXiv preprint arXiv:2308.00352. 677

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui 678
Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and Siheng 679
Chen. 2024. Self-evolving multi-agent collaboration 680
networks for software development. arXiv preprint 681
arXiv:2410.16946. 682

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 683
Perelman, Aditya Ramesh, Aidan Clark, AJ Os- 684
trow, Akila Welihinda, Alan Hayes, Alec Radford, 685
et al. 2024. Gpt-4o system card. arXiv preprint 686
arXiv:2410.21276. 687

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard- 688
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, 689
Aleksander Madry, Alex Beutel, Alex Carney, et al. 690
2024. Openai o1 system card. arXiv preprint 691
arXiv:2412.16720. 692

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 693
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 694
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 695
memory management for large language model serv- 696
ing with pagedattention. In Proceedings of the 29th 697

9

Symposium on Operating Systems Principles, pages698
611–626.699

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii700
Khizbullin, and Bernard Ghanem. 2023a. Camel:701
Communicative agents for" mind" exploration of702
large language model society. Advances in Neural703
Information Processing Systems, 36:51991–52008.704

Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph705
Campbell, Dana Hughes, Michael Lewis, and Katia706
Sycara. 2023b. Theory of mind for multi-agent col-707
laboration via large language models. arXiv preprint708
arXiv:2310.10701.709

Kenneth Li, Tianle Liu, Naomi Bashkansky, David Bau,710
Fernanda Viégas, Hanspeter Pfister, and Martin Wat-711
tenberg. 2024a. Measuring and controlling instruc-712
tion (in) stability in language model dialogs. arXiv713
preprint arXiv:2402.10962.714

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui715
Wang, Yu Zhou, Sanjana Srivastava, Cem Gok-716
men, Tony Lee, Li Erran Li, Ruohan Zhang, et al.717
2024b. Embodied agent interface: Benchmarking718
llms for embodied decision making. arXiv preprint719
arXiv:2410.07166.720

Chin-Yew Lin. 2004. Rouge: A package for automatic721
evaluation of summaries. In Text summarization722
branches out, pages 74–81.723

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,724
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi725
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.726
Deepseek-v3 technical report. arXiv preprint727
arXiv:2412.19437.728

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi729
Yang. 2023. Dynamic llm-agent network: An llm-730
agent collaboration framework with agent team opti-731
mization. arXiv preprint arXiv:2310.02170.732

Zhao Mandi, Shreeya Jain, and Shuran Song. 2024.733
Roco: Dialectic multi-robot collaboration with large734
language models. In 2024 IEEE International Con-735
ference on Robotics and Automation (ICRA), pages736
286–299. IEEE.737

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,738
Carroll Wainwright, Pamela Mishkin, Chong Zhang,739
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.740
2022. Training language models to follow instruc-741
tions with human feedback. Advances in neural in-742
formation processing systems, 35:27730–27744.743

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-744
ith Ringel Morris, Percy Liang, and Michael S Bern-745
stein. 2023. Generative agents: Interactive simulacra746
of human behavior. In Proceedings of the 36th an-747
nual acm symposium on user interface software and748
technology, pages 1–22.749

Siyuan Qi, Shuo Chen, Yexin Li, Xiangyu Kong,750
Junqi Wang, Bangcheng Yang, Pring Wong, Yifan751
Zhong, Xiaoyuan Zhang, Zhaowei Zhang, et al. 2024.752

Civrealm: A learning and reasoning odyssey in civi- 753
lization for decision-making agents. arXiv preprint 754
arXiv:2401.10568. 755

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian 756
Li, and Bill Yuchen Lin. 2024. Trial and error: 757
Exploration-based trajectory optimization for llm 758
agents. arXiv preprint arXiv:2403.02502. 759

Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqiang 760
Zhang, Hongyu Zhang, and Yu Cheng. 2024. Magis: 761
Llm-based multi-agent framework for github issue 762
resolution. arXiv preprint arXiv:2403.17927. 763

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 764
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An- 765
ima Anandkumar. 2023a. Voyager: An open-ended 766
embodied agent with large language models. arXiv 767
preprint arXiv:2305.16291. 768

Kuan Wang, Yadong Lu, Michael Santacroce, Yeyun 769
Gong, Chao Zhang, and Yelong Shen. 2023b. Adapt- 770
ing llm agents through communication. arXiv 771
preprint arXiv:2310.01444. 772

Wei Wang, Dan Zhang, Tao Feng, Boyan Wang, and 773
Jie Tang. 2024. Battleagentbench: A benchmark for 774
evaluating cooperation and competition capabilities 775
of language models in multi-agent systems. arXiv 776
preprint arXiv:2408.15971. 777

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, 778
Xiaojian Ma, and Yitao Liang. 2023c. Describe, 779
explain, plan and select: Interactive planning with 780
large language models enables open-world multi-task 781
agents. arXiv preprint arXiv:2302.01560. 782

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, 783
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, 784
Xiaoyun Zhang, and Chi Wang. 2023. Auto- 785
gen: Enabling next-gen llm applications via multi- 786
agent conversation framework. arXiv preprint 787
arXiv:2308.08155. 788

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 789
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 790
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 791
nical report. arXiv preprint arXiv:2412.15115. 792

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, 793
Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei 794
Zhang, Anji Liu, Song-Chun Zhu, et al. 2024a. Proa- 795
gent: building proactive cooperative agents with large 796
language models. In Proceedings of the AAAI Con- 797
ference on Artificial Intelligence, volume 38, pages 798
17591–17599. 799

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong 800
Zhou, Yilun Du, Joshua B Tenenbaum, Tianmin Shu, 801
and Chuang Gan. 2023. Building cooperative em- 802
bodied agents modularly with large language models. 803
arXiv preprint arXiv:2307.02485. 804

Yang Zhang, Shixin Yang, Chenjia Bai, Fei Wu, Xiu 805
Li, Zhen Wang, and Xuelong Li. 2024b. Towards 806
efficient llm grounding for embodied multi-agent col- 807
laboration. arXiv preprint arXiv:2405.14314. 808

10

A Benchmark Detail809

A.1 Environment810

In this section, we provide a detailed overview of811

the Collab-Overcooked Benchmark environment812

design. We first introduce the interactive elements813

within the environment along with their layout.814

Next, we describe the action space available to815

agents. Finally, we present the methodology for816

defining layouts, enabling flexible modifications to817

the environment.818

A.1.1 Interactive Elements819

Due to our resource isolation design, the interactive820

elements available to each agent differ. Figure 6821

illustrates the interactive elements that both agents822

can engage with. We adopt the “Forced Coordi-823

nation” level design from Overcooked-AI (Carroll824

et al., 2019), where the two agents share only a825

single interactive element: the counter. This design826

necessitates resource exchange between agents to827

complete tasks.828

We categorize interactive elements into three829

types: utensils, dispensers, and others. The details830

are as follows:831

• Utensils: These interactive elements take one832

or more ingredients as input and process833

them according to a predefined synthesis table,834

transforming them into new ingredients.835

• Dispensers: Agents can retrieve ingredients or836

dishes from these elements, with the available837

items being predefined.838

• Others: The counter serves as a critical inter-839

active element for resource exchange between840

agents, allowing them to freely place or re-841

trieve ingredients. The delivery location is842

where agents submit task outcomes. If the sub-843

mitted ingredient meets the task requirements,844

the task is considered successful. Otherwise,845

incorrect submissions result in the removal846

of the submitted ingredient from the environ-847

ment, often leading to task failure.848

A.1.2 Action Space849

The action space of each agent consists of a se-850

ries of functions in the format “func(args)”, which851

facilitate interactions with the environment or col-852

laboration with other agents. Agent actions are853

categorized into shared actions and exclusive ac-854

tions. Shared actions are common to both agents855

Agent Alice Agent Bob

Interactive
Elements

Utensil

Chopping board ●
Blender ●

Pot ●
Oven ●

Dispenser
Ingredient ●

Dish ●

Others
Counter ● ●

Delivery Location ●

Figure 6: Interactive elements

and include actions such as “pickup” (for picking 856

up ingredients), “place_obj_on_counter” (for in- 857

teracting with the counter), “put_obj_in_utensil” 858

(for placing ingredients into utensils), and “wait”. 859

Exclusive actions, on the other hand, arise from 860

the differing interactive elements in each agent’s 861

environment. For example, Agent Bob has access 862

to a pot, allowing it to perform the “cook” action, 863

whereas Agent Alice, lacking a pot, cannot perform 864

this action. Conversely, Agent Alice can interact 865

with the chopping board to perform the “cut” ac- 866

tion, which Agent Bob cannot. The specific actions 867

available to Agent Alice and Agent Bob are listed 868

as follows: 869

Listing 1: Action Space List
870

Action Space for Agent Alice: 871
1. pickup(obj,place) 872
2. cut(chopping_board_name) 873
3. stir(blender_name) 874
4. place_obj_on_counter() 875
5. put_obj_in_utensil(utensil) 876
6. wait(num) 877

878
Action Space for Agent Bob: 879

1. pickup(obj,place) 880
2. cook(pot_name) 881
3. place_obj_on_counter() 882
4. put_obj_in_utensil(utensil) 883
5. fill_dish_with_food(utensil) 884
6. bake(oven_name) 885
7. deliver() 886
8. wait(num) 887888

To accurately assess collaboration capabilities, 889

we require that when an agent initiates collabo- 890

ration, the initiating agent must encapsulate the 891

desired action for the responding agent within a 892

“request”. This mechanism is utilized for calcu- 893

lating IC and RC. For example, if Agent Bob 894

wants Agent Alice to retrieve an apple for it, 895

Agent Bob will generate the following output: 896

“request(pickup(apple, ingredient_dispenser)); re- 897

quest(place_obj_on_counter())”. This request ex- 898

plicitly specifies the sequence of actions that Agent 899

Alice is expected to execute, ensuring that the col- 900

11

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Average Recipe Token Count 60.8 65.0 80.6 84.8 106.4 140.0
Minimum Actions 7 10 16 17 27 34
Minimum Collaborative Actions 2 5 7 9 14 19
Interactive Elements Used 4 5 7 6 8 8

Table 3: Statistics of recipe complexity across task levels, highlighting diversity in design, increasing difficulty, and
interaction complexity

laboration process is systematically coordinated.901

A.1.3 Layout Definition Method902

We follow the environment design principles of903

Overcooked-AI (Carroll et al., 2019) and ProA-904

gent (Zhang et al., 2024a), enabling customization905

through external layout files. Compared to these906

prior works, our framework offers a broader range907

of configurable elements. For instance, the “or-908

der_probability” parameter allows users to adjust909

the probability of tasks appearing randomly in the910

environment, while the “recipes” parameter enables911

customization of the synthesis list for each uten-912

sil. Further details can be found in the examples913

provided in our GitHub repository’s layout files.914

Through our enhancements, nearly all aspects of915

the environment can be customized via a single916

external file, significantly enhancing the flexibility917

and scalability of our framework.918

A.2 Tasks Construction919

In this section, we provide detailed information920

about tasks, including task complexity level, task921

list, task recipe, and task RATs.922

A.2.1 Task complexity level923

Table 3 presents the statistics corresponding to dif-924

ferent levels of task complexity. We have designed925

a series of task difficulty levels, ranging from basic926

ingredient transfer to complex recipe construction,927

requiring collaboration and error correction. The928

variation in external knowledge demands and en-929

vironmental configurations substantially increases930

the challenges faced by LLM agents in terms of931

both comprehension and collaboration strategy for-932

mulation. Furthermore, we have incorporated addi-933

tional interactive elements to expand the structural934

space of the tasks. The task levels demonstrate pro-935

gressive increases in average recipe token count,936

minimum action requirements, collaboration fre-937

quency, and interaction complexity.938

To characterize the complexity level of each task939

from the perspective of agent actions, we define940

four distinct types of collaborative behaviors. The 941

complexity of a task is determined by the minimum 942

number of such collaborative behaviors required 943

for successful completion. The four categories of 944

collaborative behaviors are defined as follows: 945

• Acquiring New Ingredients: This behavior 946

involves retrieving an ingredient from the In- 947

gredient Dispenser. For example, Agent Alice 948

might pick up an onion or an apple from the 949

dispenser. 950

• Processing the Ingredients: This behavior in- 951

volves placing ingredients into a cooking uten- 952

sil. For example, Agent Alice might place an 953

ingredient on a chopping board or in a blender. 954

• Acquiring a New Dish: This behavior involves 955

retrieving a new dish from the Dish Dispenser. 956

This action consists of a single step where 957

Agent Alice picks up a dish. 958

• Processing the Ingredients by Agent Bob: 959

Similar to the first behavior, but performed 960

by Agent Bob. This includes behaviors like 961

placing an ingredient into a pot or an oven. 962

Each collaborative behavior corresponds to sev- 963

eral collaborative actions. The complexity level of 964

a task is calculated by summing the total number of 965

collaborative actions required from each behavior. 966

Specifically, the number of actions in each of the 967

four categories is counted based on the task’s re- 968

quirements. This approach ensures that tasks with 969

more complex or numerous collaboration require- 970

ments are considered more difficult than those with 971

fewer actions. Table 4 provides statistical data on 972

collaborative behaviors and collaborative actions. 973

Each task’s RATs provide the exact number of 974

actions for each type of collaboration, which is 975

used to determine the total complexity level for 976

that task. The complexity calculation allows for a 977

comparison of tasks, ensuring that they are evalu- 978

ated based on their collaborative complexity. 979

12

Complexity Level Acquiring
New Ingredients

Processing the Ingredients
by Agent Alice

Acquiring
a New Dish

Processing the Ingredients
by Agent Bob

Total Number of
Collaborative Actions

Level 1 1 0 0 1 2
Level 2 1 1 1 1 5
Level 3 1 1 1 2 7
Level 4 2 1 1 2 9
Level 5 2 2 1 3 12
Level 6 3 3 1 4 17

Table 4: The number of collaborative behaviors under different complexity levels is given, as well as the total
number of corresponding collaborative actions.

A.2.2 Task List980

Table 5 presents a list of task names across 6 com-981

plexity levels, comprising a total of 30 tasks. As982

indicated by the task names, tasks within the same983

complexity level share identical workflows, with984

the only variation being the selection of ingredi-985

ents. This design aims to mitigate potential biases986

in LLMs towards specific ingredients, thereby re-987

ducing evaluation discrepancies caused by such988

biases.989

A.2.3 Recipes990

Each task corresponds to a recipe that outlines the991

workflow required to complete the task, includ-992

ing the necessary ingredients and cooking steps.993

There are two important aspects to note regard-994

ing the recipe: First, one cooking step typically995

involves multiple actions by the agents. This ne-996

cessitates that the agents carefully decompose the997

cooking step into specific actions after thoroughly998

understanding both the recipe and the environment.999

Second, some cooking steps can be executed in1000

a different order. For instance, when multiple in-1001

gredients require pre-processing, followed by com-1002

bining the processed ingredients into a utensil for1003

further preparation, the order in which the ingre-1004

dients are preprocessed can be interchanged. This1005

decision is typically made by the agents, leading to1006

the possibility of multiple valid RATs for the same1007

task. Allowing such flexibility is both reasonable1008

and aligned with real-world practices. Listing 21009

is an example of the recipe for “Baked Pumpkin1010

Soup”, which includes the recipe name, required1011

ingredients with quantities, and detailed cooking1012

instructions.1013

Listing 2: Recipe example
1014

NAME: 1015
Baked Pumpkin Soup 1016

1017
INGREDIENTS: 1018
pumpkin(1) 1019

1020
COOKING STEPs: 1021
1. Cut a pumpkin into slices. 1022
2. Place the pumpkin slices in the oven and bake 1023

for 3 timesteps. 1024
3. Transfer the baked pumpkin slices to a pot 1025

and cook for 3 timesteps. 1026
4. Fill a dish with the soup from the pot and 1027

deliver. 10281029

A.2.4 Referential Action Trajectory 1030

To evaluate the agents’ collaboration capabilities 1031

both in terms of end-to-end and process-oriented 1032

metrics, we provide the RATs for each task. Given 1033

that our tasks are sequential process-specific, we 1034

assume that the RATs can be exhaustively enumer- 1035

ated or largely known. We have annotated the RATs 1036

for each task, which include the optimal referen- 1037

tial action sequences for both agents to complete 1038

the task. Each RAT ensures that the agents can 1039

accomplish the task with a minimal number of ac- 1040

tions, while also employing the optimal strategy 1041

to parallelize certain actions for efficiency. A task 1042

may have multiple valid RATs, for example, the 1043

order in which two ingredients are retrieved may 1044

not affect the overall task completion time. Dur- 1045

ing evaluation, the TES and ITES functions select 1046

the RAT with the highest matching score as the 1047

reference for assessment. Listing 3 provides an ex- 1048

ample of the RATs for the “Baked Pumpkin Soup” 1049

task, with separate RATs for each of the two agents. 1050

Because the “Baked Pumpkin Soup” task has only 1051

one completed route, there is only one RAT. 1052

13

Listing 3: RAT of "Baked Pumpkin Soup" task
1053

"RAT_1":1054
{1055

"agent_0": [1056
"pickup(pumpkin_slices, counter)",1057
"put_obj_in_utensil(oven0)",1058
"bake(oven0)",1059
"pickup(baked_pumpkin_slices, oven0)",1060
"put_obj_in_utensil(pot0)",1061
"cook(pot0)",1062
"pickup(dish,counter)",1063
"fill_dish_with_food(pot0)",1064
"deliver()"1065

],1066
"agent_1": [1067

"pickup(pumpkin, ingredient_dispenser)",1068
"put_obj_in_utensil(chopping_board0)",1069
"cut(chopping_board0)",1070
"pickup(pumpkin_slices,chopping_board0)",1071

1072
"place_obj_on_counter()",1073
"pickup(dish,dish_dispenser)",1074
"place_obj_on_counter()"1075

]1076
}10771078

A.3 Baseline1079

In this section, we introduce the baseline structure1080

and prompt design we use to test different LLMs.1081

A.3.1 Baseline Construction1082

Figure 7 illustrates the structure of the baseline and1083

provides an example of agents interacting and col-1084

laborating to complete a task within our benchmark.1085

The baseline architecture consists of an Instruction-1086

Builder, Planner, Communication, Error-Handling,1087

Memory, and Reflection modules. The structure1088

remains identical across different agents, with vari-1089

ations arising only in the environment descriptions,1090

action spaces, and task-specific knowledge pro-1091

vided within the prompts.1092

Instruction-builder The Instruction-builder is a1093

rule-based module responsible for managing and1094

integrating the prompts for each agent. It reads the1095

state dictionary from the environment and fills in1096

a prompt template. The prompt template includes1097

both fixed prompts and slot-based prompts. Fixed1098

prompts contain: (1) game rules, such as objectives,1099

scoring workflows, functions of each kitchen uten-1100

sils, and methods for preparing dishes; (2) commu-1101

nication rules and output format specifications; and1102

(3) a definition of the agent’s action space, along1103

with a brief description of actions available to team-1104

mates. Slot-based prompts include: (1) the current1105

recipe for the task (if the agent has access to the1106

recipe); (2) the current environment observations,1107

such as kitchen layout and teammate status; (3)1108

Complexity
Level

Task Name

Level 1

Baked Bell Pepper
Baked Sweet Potato

Boiled Egg
Boiled Mushroom

Boiled Sweet Potato

Level 2

Baked Potato Slices
Baked Pumpkin Slices

Boiled Corn Slices
Boiled Green Bean Slices

Boiled Potato Slices

Level 3

Baked Bell Pepper Soup
Baked Carrot Soup

Baked Mushroom Soup
Baked Potato Soup

Baked Pumpkin Soup
Sliced Bell Pepper

and Corn Stew
Sliced Bell Pepper

and Lentil Stew

Level 4
Sliced Eggplant

and Chickpea Stew
Sliced Pumpkin

and Chickpea Stew
Sliced Zucchini

and Chickpea Stew
Mashed Broccoli
and Bean Patty
Mashed Carrot

and Chickpea Patty

Level 5
Mashed Cauliflower

and Lentil Patty
Mashed Potato
and Pea Patty

Mashed Sweet Potato
and Bean Patty
Potato Carrot

and Onion Patty
Romaine Lettuce Pea

and Tomato Patty

level 6
Sweet Potato Spinach
and Mushroom Patty

Taro Bean
and Bell Pepper Patty
Zucchini Green Pea

and Onion Patty

Table 5: The names of 30 tasks in total are divided into
6 complexity levels.

14

Error Handling
Rules

Agent Structure

Planner
LLM

Validator
Rules

Memory Reflection

Agent Bob

LLM-MAS

Benchmark

Executor
Pathfinding Algorithm

If errora1

No error

Instruction
Prompt Template

Task
Description

1. Slice a potato

2. Bake the potato

3. Deliver the potato

Dispenser
Pot
Agent Bob

Oven

Delivery location

Chopping Board

Dish

Agent Alice
Blender

Counter

Environment

Error Message
 Agent 1 cannot

 reach the oven.

Analysis & Collaboration Planning xxx Environment

🥔

🥔

❌🥔

🥔 🥔

🥔

🥔

✅

Agent Alice:

1. pickup 🥔 from

2. place 🥔 on

3. cut 🥔 on

Agent Bob:

1. wait

Agent Alice:

1. pickup 🥔 from

2. place 🥔 in

Agent Bob:

1. wait

🥔

🥔

Agent Alice:

1. pickup 🥔 from

2. place 🥔 on counter

Agent Bob:

1. pickup 🥔 from counter

🥔

🥔

🥔

Agent Alice:

1. wait

Agent Bob:

1. place 🥔 in

2. bake 🥔 in

3. pickup 🥔 from

4. deliver

🥔

🥔

🥔
🥔

Instructions

Instructions

Instructions

Analyse

Collaborate

Plan Action

Game Rules

Task & Env State

Memory & Reflection

Agent Alice

UpdateLatest K

Environment State

At
If errora2

a1 a2

Hello! Could you first slice a
potato?

Based on the task, I should ask
Alice to slice the potato.

Certainly! I will pick up and
slice the potato.

Bob request I slice the potato, I
should take it first and then slice it.

Then you should bake the
potato in oven.

I should request Alice put the
sliced potato into the oven.

OK, I will try to put it in the
oven.

I have already sliced the potato, I
should follow the instruction.

I'm sorry! I was wrong. Can
you pass me the potato?

I made a mistake, I should take the
sliced potato and bake it.

It seems that I cannot interact
with the oven.

An error have occurred. I should
discuss with Bob to solve this.

I will handle the work below,
thank you!

There no request for Alice.
Just bake it and deliver.

Hello! What can I do now?

I currently have no action, I should
ask Bob for the next action.

Error Message
U

🥔

🥔

Potato

Sliced Potato

Baked Potato🥔

Agent Bob

Agent Alice
Alice Analysis

Bob Analysis

Alice Say

Bob Say

Legend

Figure 7: The left side of the figure presents the baseline architecture used for evaluating different LLMs, where
Agent Alice and Agent Bob share the same structural design, differing only in their prompt. The right side of the
figure illustrates the interaction process between the two agents as they collaborate to complete the “Baked Potato
Slices” task within our benchmark. This includes the agents’ analytical processes as well as a record of their natural
language communication.

communication records with other agents up to the1109

current time step; and (4) memory and reflection1110

from previous time steps.1111

Planner The planner is the core decision-making1112

component for the agent. It generates three fields:1113

“Analysis”, “Say”, and “Plan”. The “Analysis” field1114

represents the agent’s assessment of the current en-1115

vironment state, task, and memories, assisting the1116

planner in making informed decisions. The “Say”1117

field determines whether collaboration is required;1118

if the planner identifies a need for collaboration, it1119

generates communication content directly in this1120

field. The “Plan” field contains the action sequence1121

that the planner has devised for the agent.1122

Communication Communication between1123

agents enables the transmission of collaborative1124

intentions or requests for assistance. When1125

communication content is detected in the “Say”1126

field, all agents enter the communication channel.1127

Within this channel, each agent speaks in sequence1128

until a special token “[END]” is generated or1129

the maximum number of interaction rounds is1130

reached. Once communication is complete, agents1131

formulate their plans based on the information1132

exchanged. 1133

Error-handling The error-handling process man- 1134

ages situations in which the generated actions are 1135

deemed invalid by the environment. When an 1136

agent receives an error message from the environ- 1137

ment, the error information is incorporated into the 1138

prompt and re-entered into the planner. This cycle 1139

continues until the generated actions are considered 1140

valid by the environment or the maximum number 1141

of attempts is reached. 1142

Memory and Reflection Memory and reflection 1143

represent the accumulation of an agent’s past ex- 1144

periences, enabling it to engage in long-term plan- 1145

ning. We implement memory and reflection using 1146

a straightforward approach. The memory logs the 1147

action sequences that the agent has completed in 1148

the past, while the reflection records the previous 1149

agent’s reflections on invalid actions. 1150

A.3.2 Prompt 1151

In this section, we provide a detailed description 1152

of the prompts used to drive LLM-based agents. 1153

Since LLM-MAS involves multiple agents inter- 1154

acting within an environment, the prompt design 1155

15

is inherently more complex than that of a single-1156

agent system. Each request to the LLM typically1157

consumes approximately 2,000 tokens, with slight1158

variations depending on the specific tokenizer used1159

by the LLM. To structure this complexity, we cat-1160

egorize the prompts into three key components:1161

game rules, action space definitions, and input-1162

output format specifications. We will elaborate on1163

each component and provide illustrative examples1164

to demonstrate their implementation.1165

Game Rules The game rules part of the prompt1166

defines the task objective, agent roles, and interac-1167

tion constraints. It outlines the step-by-step work-1168

flow for completing an order, emphasizing task di-1169

vision, coordination, and strict adherence to recipe1170

instructions. Figure 13 shows all the content of the1171

game rule prompt.1172

Action Space Definitions This part of the prompt1173

defines the action space for Agent Bob, following1174

the action specification method used in ProAgent1175

(Zhang et al., 2024a). It categorizes actions into1176

operation actions (directly executable by the agent)1177

and collaborative actions (requests for the team-1178

mate to perform an action). Figure 14 shows the1179

prompt of Agent Bob’s action space.1180

Input-Output Format The input-output format1181

part defines the structured information provided to1182

the agent at each step and the required response for-1183

mat. The input includes past action history, lessons1184

from failures, available utensils, the current order,1185

the planned sequence of actions, and past conver-1186

sations. The output consists of three fields: anal-1187

ysis (environment assessment and reasoning for1188

actions), plan (the agent’s planned actions for the1189

next step), and say (communication with the team-1190

mate, if necessary). This structured format ensures1191

that the agent can make informed decisions, coor-1192

dinate effectively, and execute tasks systematically.1193

15 shows all the content of the input-output format1194

prompt.1195

The above section outlines the key prompts used1196

to drive the LLM agents. For further details re-1197

garding prompts related to memory, reflection, and1198

other components, please refer to the comprehen-1199

sive prompts provided in our GitHub repository.1200

B Evaluation1201

B.1 Details in TES1202

The TES is formally expressed as:1203

TES(hk) = max
j

{
(1 + β2)Dj

max(hk, g
j
k)

mk + β2nk

}
(7) 1204

where hk = {a1k, a2k, . . . , aTk } is the historical ac- 1205

tion sequence up to timestep T of agent k, gjk = 1206

{gi}mk
i=1 ∈ R is j-th RAT of agent k, β is the hy- 1207

perparameter balancing the weight of task progress 1208

and redundancy, and Dj
max(hk, g

j
k) computes the 1209

length of the longest order-preserving subsequence 1210

in hk that matches gjk: 1211

Dj
max = max

d
{d | ∀ 1 ≤ i1 < · · · < id ≤ nk, 1212

s.t. ai1 = g1, ai2 = g2, . . . , aik = gk} (8) 1213

It is important to note that the TES function in- 1214

troduces modifications to the Longest Common 1215

Subsequence (LCS) calculation in ROUGE-L (Lin, 1216

2004). These modifications are driven by one main 1217

reason: Improved identification of redundant ac- 1218

tions. Listing 4 illustrates a very common scenario 1219

where, due to the agent’s incorrect choice in step 1220

four, the fifth step fails to advance the task. Specif- 1221

ically, the agent places an irrelevant item, “egg”, 1222

onto the counter, which does not contribute to the 1223

task’s progress. In this case, the standard ROUGE- 1224

L, based on LCS, would mistakenly consider the 1225

agent’s fifth action as matching the RAT, leading 1226

to an inflated evaluation score. 1227

TES overcomes this limitation by combin- 1228

ing maximal order-preserving alignment with 1229

efficiency-aware normalization, making it well- 1230

suited for collaborative tasks requiring synchro- 1231

nized, sequence-specific interactions. 1232

Listing 4: Comparison of TES with other functions
1233

Example: 1234
RAT: 1235

1. pickup(tofu, ingredient_dispenser) 1236
2. put_obj_in_utensil(chopping_board_0) 1237
3. cut(chopping_board_0) 1238
4. pickup(chopped_tofu, chopping_board_0) 1239
5. place_obj_on_counter() 1240

Agent Action Trajectory: 1241
1. pickup(tofu, ingredient_dispenser) 1242
2. put_obj_in_utensil(chopping_board_0) 1243
3. cut(chopping_board_0) 1244
4. pickup(egg, ingredient_dispenser) 1245
5. place_obj_on_counter() 1246

Result: 1247
ROUGE-L: 0.8 1248
TES: 0.6 12491250

16

B.2 Details in IC and RC1251

Initiating Capability (IC) and Responding Capabil-1252

ity (RC) are proposed to evaluate the LLM agent’s1253

capabilities to initiate and respond to collaboration,1254

respectively. Physically, these metrics represent1255

the success rate of an LLM agent in initiating or re-1256

sponding to collaborative behaviors within a given1257

task. The determination of success is based on the1258

change in ITES induced by the newly proposed ac-1259

tion compared to historical actions. Taking collab-1260

oration initiation as an example, a newly initiated1261

collaborative action a is considered successful if1262

it results in an increase in ITES, i.e., ITES > 0.1263

This reflects whether the proposed action a con-1264

tributes to the advancement of the task; if so, it is1265

deemed a successful collaboration attempt. This1266

evaluation paradigm has been widely adopted in1267

prior research (Gong et al., 2023; Hong et al., 2023;1268

Mandi et al., 2024), and thus, both IC and RC are1269

not only grounded in meaningful physical inter-1270

pretations but also serve as effective indicators of1271

real-world collaborative performance.1272

C Supplementary Experiment1273

In this section, we present supplementary exper-1274

iments that support the conclusions of the main1275

body. First, we investigate the impact of different1276

hyperparameter values for γ on the task comple-1277

tion success rate of the LLM-MAS and provide the1278

rationale for selecting γ = 1.5. Next, we describe1279

the details of the human performance evaluation,1280

including the experimental design and the human-1281

computer interaction interface. Additionally, we1282

introduce new recipes and additional results pre-1283

sented in the failure analysis section. Finally, we1284

provide case studies illustrating both successful and1285

unsuccessful task completions by the LLM-MAS.1286

C.1 Impact of Varying γ on Task Success Rate1287

The hyperparameter γ controls the task failure1288

threshold. Specifically, it determines a time con-1289

straint on the task, which is calculated by multiply-1290

ing the optimal completion time by the value of γ.1291

As γ increases, the task success rate (SR) of the1292

LLM-MAS will improve, as the system is allowed1293

more time to complete the task. However, γ cannot1294

be increased indefinitely, as doing so would lead1295

to inefficiencies in the evaluation process. An ex-1296

cessively high value of γ might artificially inflate1297

the success rate, as the extended time window may1298

not reflect the true capabilities of the model in real-1299

world scenarios, and it wastes computing resources. 1300

On the other hand, setting γ too low could result 1301

in an overly strict evaluation, where the system is 1302

unable to complete tasks even when it could have 1303

more time. Therefore, it is essential to select an 1304

optimal value for γ that balances both task success 1305

and evaluation efficiency. 1306

Figure 8 illustrates the task success rates of GPT- 1307

4o and Llama3.1-70B at 6 complexity levels under 1308

varying values of the hyperparameter γ. We ob- 1309

served that when γ = 1, which requires completing 1310

tasks along the optimal path, even the state-of-the- 1311

art GPT-4o failed to complete the majority of tasks. 1312

However, when γ was increased to 1.5 or 2, GPT- 1313

4o was able to complete most tasks at complexity 1314

levels 4 and below. We chose γ = 1.5 rather than 1315

γ = 2 because, for models with fewer parameters 1316

than GPT-4o, such as Llama3.1-70B, increasing 1317

γ does not significantly improve success rates on 1318

higher complexity tasks. In fact, most models we 1319

tested struggled to complete tasks above level 4, 1320

often requiring the maximum time limit during 1321

evaluations. By selecting γ = 1.5, we were able 1322

to save approximately 33% of computational re- 1323

sources compared to using γ = 2, thereby enabling 1324

a more efficient evaluation of the LLM’s capabili- 1325

ties. 1326

C.2 Human Performance Evaluation 1327

C.2.1 Experiment Setup 1328

To evaluate human performance on our benchmark, 1329

we invited ten volunteers to participate in our ex- 1330

periments. The participants were organized into 1331

five pairs, with each pair assigned two randomly 1332

selected tasks from each complexity level. Conse- 1333

quently, each complexity level was tested ten times. 1334

To ensure participants fully understood the game 1335

rules, the available action space, the input-output 1336

format, and the current state of the environment, 1337

we designed a dedicated human-computer interac- 1338

tion interface. This interface presented the prompts 1339

originally inputted to the agent in a human-friendly 1340

format, without revealing any additional informa- 1341

tion beyond what was accessible to the agent. Fig- 1342

ures 16 and 17 illustrate the layout of this interface. 1343

To further regulate the decision-making pro- 1344

cess and assess human performance under time- 1345

constrained conditions, we imposed temporal lim- 1346

its on each decision step. Specifically, participants 1347

were instructed to complete their communication, 1348

reasoning, and action selection within a total dura- 1349

17

表格 1

GPT-4o γ = 1 γ = 1.2 γ = 1.5 γ = 2

Level 1 0.4 0.7 1 1

Level 2 0.1 0.6 0.8 1

Level 3 0 0.2 0.7 1

Level 4 0 0 0.4 0.6

Level 5 0 0 0.1 0.4

Level 6 0 0 0 0.2

1 1.2 1.5 2

Level 1 0.3 0.5 0.7 0.9

Level 2 0.1 0.2 0.2 0.3

Level 3 0 0.1 0.1 0.3

Level 4 0 0 0.1 0.1

Level 5 0 0 0 0

Level 6 0 0 0 0

GPT-4o
Ta

sk
 S

uc
ce

ss
 R

at
e

0

0.25

0.5

0.75

1

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Llama3.1-70B

Ta
sk

 S
uc

ce
ss

 R
at

e

0

0.25

0.5

0.75

1

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

γ = 1 γ = 1.2 γ = 1.5 γ = 2

1

Figure 8: The task success rates of the GPT-4o and Llama3.1-70B at 6 complexity levels under different γ values.

Level 1 Level 2 Level 3
SR PC IC RC SR PC IC RC SR PC IC RC

10s 100.0 96.8 87.1 90.0 100.0 94.2 85.3 90.3 90 91.6 85.8 89.1
15s 100.0 96.3 90.9 91.4 100.0 96.0 89.2 90.1 100.0 94.7 86.4 87.2
20s 100.0 97.9 98.0 98.0 100.0 98.9 96.1 97.0 100.0 99.4 93.0 94.0

Level 4 Level 5 Level 6
SR PC IC RC SR PC IC RC SR PC IC RC

10s 100 93.2 86.4 86.2 90 88.5 80.3 82.5 90 85.6 78.3 82.1
15s 90.0 94.1 87.0 87.6 100.0 90.7 84.8 86.4 90.0 91.5 80.9 83.6
20s 100.0 95.8 93.5 94.5 90.0 96.6 91.5 93.0 100.0 95.1 87.5 90.5

Table 6: Human performance across 6 complexity levels under different time constraints (10s, 15s, and 20s per
step), where participants were required to complete communication, reasoning, and action selection within the
allotted duration at each time step.

tion of 10, 15, or 20 seconds per time step. Each1350

of these time limits was evaluated across trials to1351

investigate their effects. The action was considered1352

successfully generated if the participant verbally1353

expressed their intended move before the time ex-1354

pired. The subsequent process of inputting the1355

action into the environment was excluded from the1356

timing. Moreover, unlike previous implementa-1357

tions that required typed communication, partici-1358

pants in this experiment were permitted to commu-1359

nicate verbally, thereby enhancing the naturalness1360

and efficiency of interaction.1361

C.2.2 Discussion1362

Table 6 presents the performance of human partic-1363

ipants under varying time constraints imposed on1364

communication, reasoning, and action selection.1365

Although these constraints led to a measurable1366

decline in performance, human participants con-1367

sistently achieved comparable performance across1368

tasks of different complexity levels. In terms of1369

end-to-end metrics, including SR and PC, the per-1370

formance degradation was primarily reflected in 1371

an increased number of redundant actions, which 1372

resulted in a lower PC. However, SR remained rel- 1373

atively stable, as participants were generally able 1374

to recover quickly from suboptimal decisions. Re- 1375

garding process-oriented metrics, such as IC and 1376

RC, human performance showed minimal discrep- 1377

ancy between IC and RC, suggesting a balanced 1378

ability to both initiate and respond in collaborative 1379

contexts. In contrast, LLM-based agents exhibited 1380

a more pronounced gap between IC and RC, consis- 1381

tent with prior findings that highlight their difficulty 1382

in initiating collaboration (Li et al., 2023b). These 1383

results indicate that in the Collab-Overcooked en- 1384

vironment, humans are able to decompose and al- 1385

locate tasks with relative ease, whereas LLMs face 1386

substantial challenges in doing so. 1387

C.3 Supplement to Correlation Analysis 1388

Section 5.3.4 presented our analysis of attention 1389

distribution differences under successful and failed 1390

collaboration scenarios, from the perspective of 1391

18

model behavior. In this section, we provide addi-1392

tional experimental details and present more com-1393

prehensive results.1394

As shown in Figure 10, the prompt provided1395

to LLM-MAS is segmented into five or six parts,1396

depending on whether the agent is initiating or re-1397

sponding to collaboration. To compute the atten-1398

tion distribution, we measure the cumulative atten-1399

tion assigned by the model’s first generated token1400

to each prompt part. We then compare these distri-1401

butions between successful and failed collaboration1402

cases.1403

Further experimental results are illustrated in1404

Figure 12, where we report the attention distri-1405

bution differences across different collaboration1406

scenarios for Qwen-2.5 7B and 72B models at1407

both Level 1 and Level 5. Notably, both Qwen-1408

2.5 7B and 72B exhibit consistent patterns across1409

levels. When initiating collaboration, the attention1410

values on the Collaboration Rule and Recipe parts1411

are significantly correlated with collaboration suc-1412

cess or failure. When responding to collaboration,1413

the attention assigned to Collaboration Rule, Envi-1414

ronment Observation, and Collaboration Context1415

shows a similar significant correlation.1416

These findings highlight the critical role of at-1417

tention mechanisms in LLM-driven collaboration.1418

In particular, the extent to which models attend to1419

collaboration-relevant information is significantly1420

associated with the effectiveness of their collab-1421

orative behavior. This relationship holds across1422

different model sizes and task difficulty levels, sug-1423

gesting a generalizable pattern.1424

C.4 Failure Analysis1425

C.4.1 Failure Modes in Collaboration1426

Capabilities Degradation1427

To investigate the temporal dynamics and degra-1428

dation patterns in collaboration capabilities, we1429

designed an experiment focusing on both the ini-1430

tiation and response phases of collaborative ac-1431

tions. Tasks were selected from Level 3, each1432

involving five sequential collaborative actions:1433

“pickup,” “put_obj_in_utensil,” “cut/stir,” “pickup,”1434

and “place_obj_on_counter.” These actions require1435

implicit collaboration and are not parameterized1436

in advance, as their specifics vary across task in-1437

stances.1438

We selected 4 representative LLMs and evalu-1439

ated them on these five collaborative actions by1440

constructing prompts from environmental states1441

and memory fragments sampled from the agents’ 1442

interaction trajectories. For each collaborative ac- 1443

tion, five representative scenarios were extracted, 1444

and each model was tested 20 times per scenario 1445

using prompts identical to those in Section 5.3. 1446

Collaborative success was measured using the 1447

ITES function, where an ITES score greater than 0 1448

was considered a successful action. Failures were 1449

manually categorized for initiating agents into three 1450

distinct error types, and their distribution is shown 1451

in Figure 11. 1452

• Premature initiation, where the model at- 1453

tempts a collaborative action before the ap- 1454

propriate task stage; 1455

• Repetitive initiation, where the model redun- 1456

dantly issues a collaborative action that should 1457

have already occurred; 1458

• Irrelevant collaboration, where the action does 1459

not align with any expected collaboration be- 1460

havior for the task. 1461

As illustrated in Figure 9(a), all models per- 1462

formed reliably on the first collaborative action. 1463

However, performance declined in subsequent 1464

steps. Notably, GPT-4o and Llama3.1-70B exhib- 1465

ited increasing frequencies of premature and repet- 1466

itive initiation errors, particularly in later actions. 1467

This degradation is more prominent in the smaller 1468

Llama3.1-70B model. This trend is consistent with 1469

findings from (Li et al., 2024a). 1470

Additionally, a confusion matrix analysis re- 1471

vealed a strong dependency between initiation 1472

and response behaviors: inaccurate initiation often 1473

leads to failed responses. This supports the con- 1474

clusion that initiation capability is the primary bot- 1475

tleneck in sustaining effective collaboration across 1476

temporally extended tasks. The underlying issue 1477

appears to be a misalignment between the envi- 1478

ronmental state and the task’s process-specific pro- 1479

gression, which LLM agents may struggle to track 1480

consistently without explicit temporal grounding. 1481

C.4.2 Impact of Task Decomposition Ability 1482

To further investigate the phenomenon of collabora- 1483

tion capabilities degradation observed in sequential, 1484

process-specific tasks, we designed an experiment 1485

corresponding to Figure 9(b). This experiment 1486

aims to isolate the influence of planning and test 1487

whether the decline in collaboration effectiveness is 1488

purely due to poor step tracking or is also affected 1489

19

Figure 9: Figure (a) illustrates the dynamic changes in the capabilities of four LLMs in initiating collaboration
and responding to collaboration under the original task flow, with the confusion matrix depicting the relationship
between the two capabilities. Figure (b) shows the dynamic changes in collaboration capabilities after excluding
the impact of task decomposition ability on the task flow. Figure (c) highlights the sensitivity of collaboration
capabilities to position, comparing GPT-4o and Llama3.1-70B after adjusting the position of the task workflow.

Game Rule

Action List

Env Observation

Collaboration Context

Collaboration Rule

Recipe

Game Rule

Action List

Env Observation

Collaboration Context

Collaboration Rule

Initiating Collaboration Responding to Collaboration

Part 1

Part 2

Part 3

Part 4

Part 5

Part 6

Part 1

Part 2

Part 3

Part 4

Part 5

Figure 10: Segmentation of prompt components pro-
vided to agents at different stages. Notably, recipe in-
formation is omitted during response to collaboration,
establishing an asymmetry in task-relevant input. The
“Collaboration Context” encodes both prior interactions
and the current collaboration instruction

by insufficiently grounded task representations dur-1490

ing long-horizon planning.1491

Building upon the same task setting as Sec-1492

tion C.4.1, which involved five collaborative ac-1493

tions within Step 1 of a Level 3 task, we redesigned1494

the task recipes to incorporate explicit step-to-1495

action mappings. This allows each step in the1496

recipe to correspond directly to a single collabora-1497

tive action, thus removing ambiguity in planning.1498

An example of such a reformulated recipe for the1499

"Baked Bell Pepper" task is shown in Listing 5: 1500

Listing 5: Step-to-action mapping recipe of "Baked Bell
Pepper"

1501
NAME: 1502
Baked Bell Pepper 1503

1504
INGREDIENTS: 1505
bell pepper(1) 1506

1507
COOKING STEPs: 1508
1. Pick up a bell pepper. 1509
2. Place bell pepper on chopping board. 1510
3. Cut a bell pepper into slices. 1511
4. Pick up bell pepper slices. 1512
5. Place the bell pepper slices on counter. 1513
6. Place the bell pepper slices in the oven and 1514

bake for 3 timesteps. 1515
7. Transfer the baked bell pepper slices to a 1516

pot and cook for 3 timesteps. 1517
8. Fill a dish with the soup from the pot and 1518

serve. 15191520

Compared to the original recipe structure used 1521

in Section C.4.1, this revised version decomposes 1522

Step 1 into five clear sub-steps, each requiring a 1523

distinct and ordered collaborative action. This ex- 1524

plicit alignment between steps and actions was de- 1525

signed to eliminate ambiguity in high-level plan 1526

formulation, allowing the model to focus on action 1527

execution rather than inferring latent step bound- 1528

aries. 1529

20

However, as shown in Figure 9(b), despite this1530

controlled setup, our results show that collabora-1531

tion capability still declines as the task progresses1532

through the action sequence. This suggests that1533

planning ambiguity is not the sole cause of degra-1534

dation. Rather, the observed performance drop,1535

particularly in later steps, is likely due to pretrain-1536

ing biases that favor early-stage completions and1537

the model’s limited ability to maintain coherent1538

context representations across longer action chains.1539

Together with the findings of Section C.4.1, this1540

experiment reinforces our hypothesis that sequen-1541

tial dependencies and temporal tracking remain1542

key challenges for LLM agents in multi-step col-1543

laborative settings, even under explicit instruction-1544

following scenarios.1545

C.4.3 Sequence Dependence in Collaboration1546

Performance1547

To examine the extent to which collaboration per-1548

formance is influenced by step position rather than1549

content or complexity, we conducted an experiment1550

corresponding to Figure 9(c). This experiment1551

builds directly upon the structure of Section C.4.2,1552

which provided explicit step-to-action mappings,1553

and focuses on determining whether poor perfor-1554

mance in later steps is attributable to their position1555

in the sequence rather than inherent task complex-1556

ity.1557

We reordered the steps of the “Baked Bell Pep-1558

per” recipe such that each collaborative action pre-1559

viously occurring later in the sequence was moved1560

to Step 1. The goal was to evaluate whether this po-1561

sitional shift would lead to improved performance1562

for actions that previously suffered from degrada-1563

tion. Listing 6 presents an example where the ac-1564

tion originally in Step 2 (i.e., place bell pepper on1565

chopping board) is now assigned to Step 1. For clar-1566

ity, the square brackets annotate the original step1567

numbers and were not visible to models during the1568

experiment:1569

Listing 6: Step-to-action mapping recipe of "Baked Bell
Pepper"

1570
NAME: 1571
Baked Bell Pepper 1572

1573
INGREDIENTS: 1574
bell pepper(1) 1575

1576
COOKING STEPs: 1577
1. Pick up a bell pepper. 1578
2. Place bell pepper on chopping board. 1579
3. Cut a bell pepper into slices. 1580
4. Pick up bell pepper slices. 1581
5. Place the bell pepper slices on counter. 1582
6. Place the bell pepper slices in the oven and 1583

bake for 3 timesteps. 1584
7. Transfer the baked bell pepper slices to a 1585

pot and cook for 3 timesteps. 1586
8. Fill a dish with the soup from the pot and 1587

serve. 15881589

The results demonstrated a significant increase 1590

in collaboration performance when previously un- 1591

derperforming actions were moved to earlier steps. 1592

Actions that had shown degradation in their origi- 1593

nal later positions now performed comparably to 1594

the original Step 1, and the overall pattern of per- 1595

formance decline across the sequence largely dis- 1596

appeared. 1597

These findings suggest that the observed degra- 1598

dation in collaborative capabilities is not solely due 1599

to action difficulty or planning ambiguity but is 1600

strongly influenced by positional effects. This posi- 1601

tional dependence may stem from two key factors: 1602

(1) Pretraining biases in LLMs that favor earlier 1603

sequence completions (e.g., next-token prediction 1604

dominance at sequence heads), and (2) Limited 1605

ability to maintain coherent task context across ex- 1606

tended action chains, especially when no explicit 1607

memory or reasoning loop is enforced. By isolat- 1608

ing position as a variable, it is demonstrated that 1609

early-sequence placement alone can substantially 1610

boost performance in collaborative tasks, highlight- 1611

ing a structural limitation in current LLM planning 1612

and grounding mechanisms when applied to long- 1613

horizon collaboration. 1614

C.5 Case Study 1615

We present case studies of agent collaboration pro- 1616

cesses, using the DeepSeek-V3 model to illus- 1617

trate four scenarios: successful initiating and re- 1618

sponding, successful initiating but failed respond- 1619

ing, failed initiating but successful responding, and 1620

failed initiating and responding. For each case, 1621

we provide the agent’s environmental state inputs, 1622

along with the output of the agent, including the 1623

agent’s analysis, dialogue, and collaborative ac- 1624

21

表格 1

Level 4 GPT-4o o1-mini Llama3.1-70B Qwen2.5-32B Successful Collaboration Premature Initiation Repetitive Initiation

Action 1 100 94 96 95 100 0 0

Action 2 85 76 62 56 85 11 0

Action 3 79 41 52 35 79 10 7

Action 4 72 24 47 23 72 7 13

Action 5 65 15 35 22 70 0 18

GPT-4o o1-mini Llama3.1-70B Qwen2.5-32B

Action 1 99 95 93 92

Action 2 88 80 75 63

Action 3 84 66 69 47

Action 4 80 48 54 33

Action 5 75 37 49 34

Level 4

In
iti

at
in

g
C

ol
la

bo
ra

tio
n

Ac
cu

ra
cy

 (%
)

0

25

50

75

100

GPT-4o o1-mini Llama3.1-70B Qwen2.5-32B

GPT-4o
Pe

rc
en

ta
ge

0

25

50

75

100

Action 1 Action 2 Action 3 Action 4 Action 5

Llama3.1-70B

Pe
rc

en
ta

ge

0

25

50

75

100

Action 1 Action 2 Action 3 Action 4 Action 5

Successful Collaboration Premature Initiation Repetitive Initiation Irrelevant Collaboration

Re
sp

on
di

ng

C
ol

la
bo

ra
tio

n
Ac

cu
ra

cy
 (%

)

0

25

50

75

100

GPT-4o o1-mini Llama3.1-70B Qwen2.5-32B
Action 1 Action 2 Action 3 Action 4 Action 5

1

Figure 11: The error condition of GPT-4o and Llama3.1-70B initiating collaboration.

tions.1625

Case 1: Successful Initiating and Responding1626

Listing 7, 8, and 9 present the input from Agent1627

Bob and the output from Agent Alice in Case 1. To1628

prepare the order, Bob requires Alice’s assistance1629

in obtaining ingredients for further processing. As1630

indicated by Bob’s analysis field, it correctly under-1631

stood the first step of the recipe, which is to retrieve1632

a bell pepper from the ingredient dispenser. Fur-1633

thermore, Bob recognized that it could not access1634

the dispenser and thus requested Alice to retrieve1635

the bell pepper on its behalf. Ultimately, Bob cor-1636

rectly initiated the collaborative action by request-1637

ing Alice to take the bell pepper from the ingredient1638

dispenser and place it on the counter. Therefore,1639

Bob’s initiation was accurate. Similarly, Alice’s1640

plan field correctly generated the two collaborative1641

actions initiated by Bob, which will be executed1642

subsequently. As a result, Alice appropriately re-1643

sponded to the collaboration.1644

Listing 7: Case 1 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:baked_bell_pepper
Scene 0: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [] Kitchen states: <
pot0> is empty; <chopping_board0> is empty;
<oven0> is empty; <blender0> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing

Listing 8: Case 1 Agent Bob’s output
Bob analysis: The order is for a baked bell

pepper. According to the recipe, the first
step is to pick up a bell pepper. Since only
the Alice can pick up ingredients from the
ingredient dispenser, I need to request the
Alice to perform this action. Once the bell
pepper is on the counter, I can proceed to
place it in the oven and bake it.

Bob plan: request('pickup(bell_pepper,
ingredient_dispenser)'); request('
place_obj_on_counter()')

Bob say: Alice, please pick up a bell pepper
from the ingredient dispenser and place it
on the counter. [END]

Listing 9: Case 1 Agent Alice’s output
Alice analysis: The Bob has instructed me to

pick up a bell pepper from the ingredient
dispenser and place it on the counter. Since
I am the Alice and only I can pick up
ingredients from the ingredient dispenser, I
will follow the Bob's instructions. The
ingredient dispenser is in my space, so I
can perform this action directly. After
picking up the bell pepper, I will place it
on the counter so the Bob can access it.

Alice plan: pickup(bell_pepper,
ingredient_dispenser); place_obj_on_counter
()

Alice say: [NOTHING]

Case 2: Successful Initiating but Failed Re- 1645

sponding Listing 10, 11, and 12 present the input 1646

from Agent Bob and the output from Agent Alice 1647

in Case 2. In this scenario, Bob was supposed to re- 1648

quest Alice to retrieve the pumpkin from the ingre- 1649

dient dispenser and place it on the chopping board 1650

(chopping_board0) for cutting. However, before re- 1651

questing Alice to “cut”, Bob neglected to generate 1652

the action “put_obj_in_utensil(chopping_board0)” 1653

to place the ingredient on the chopping board. 1654

Since the ingredient must be placed on the chop- 1655

22

ping board before it can be cut, Bob’s collaborative1656

request was incorrect. Although Alice recognized1657

Bob’s intention, it identified the missing action1658

“put_obj_in_utensil(chopping_board0)” during its1659

planning phase and included it. This correction1660

enabled the successful completion of the task of1661

cutting the pumpkin. Therefore, Alice’s response1662

was successful, as it corrected Bob’s mistake.1663

Listing 10: Case 2 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:sliced_pumpkin_and_chickpea_stew
Scene 11: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [pickup(pumpkin,
ingredient_dispenser),place_on_counter(),
pickup(chickpea, ingredient_dispenser)]
Kitchen states: <pot0> is empty; <
chopping_board0> is empty; <oven0> is empty;
<blender0> is empty; 3 counters can be

visited by <Bob>. Their states are as
follows: counters have nothing.

Listing 11: Case 2 Agent Bob’s output
Bob analysis: The recipe for Sliced Pumpkin and

Chickpea Stew requires us to first cut the
pumpkin into slices, then place the pumpkin
slices and chickpea in a pot, cook them, and
finally fill a dish with the stew and serve

. The Alice is currently planning to pick up
the pumpkin and chickpea from the

ingredient dispenser. Once the Alice has the
ingredients, they will need to place them

on the counter for me to handle. I will need
to pick up the pumpkin from the counter and
cut it into slices using the chopping board

, but since the chopping board is in the
Alice's space, I will need to request them
to perform the cutting action.

Bob plan: request('cut(chopping_board0)'); wait
(1)

Bob say: Alice, please cut the pumpkin on the
chopping board after picking it up. [END]

Listing 12: Case 2 Agent Alice’s output
Alice analysis: Based on the Bob's instruction

in the conversation history, I need to pick
up the pumpkin from the ingredient dispenser
and then cut it on the chopping board. The
Alice space includes a chopping_board0,
which is available for use. Since the Bob
has not provided further instructions, I
will focus on these two tasks. The planned
sequence of actions for the Alice already
includes picking up the pumpkin and chickpea
, but the Bob specifically mentioned cutting
the pumpkin first. Therefore, I will
prioritize picking up the pumpkin and
cutting it.

Alice plan: pickup(pumpkin, ingredient_dispenser
), put_obj_in_utensil(chopping_board0),cut(
chopping_board0)

Alice say: [NOTHING]

Case 3: Failed Initiating but Successful Re- 1664

sponding Listing 13, 14, and 15 present the input 1665

from Agent Bob and the output from Agent Alice 1666

in Case 3. In this scenario, Bob correctly requested 1667

Alice to retrieve the cauliflower from the ingredi- 1668

ent dispenser and place it on the chopping board 1669

(chopping_board0) for cutting, and the collabora- 1670

tive actions generated were also correct. There- 1671

fore, the initiation of collaboration was accurate. 1672

However, Alice’s first action, “pickup(cauliflower, 1673

dispenser)”, contained an incorrect parameter, as 1674

“dispenser” was not a valid option. This error in the 1675

first action prevented the execution of subsequent 1676

actions, resulting in an incorrect response to the 1677

collaboration. 1678

Listing 13: Case 3 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:mashed_cauliflower_and_lentil_patty
Scene 0: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [] Kitchen states: <
pot0> is empty; <chopping_board0> is empty;
<oven0> is empty; <blender0> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing
.

23

Listing 14: Case 3 Agent Bob’s output
Bob analysis: According to the recipe, we need

to start by cutting the cauliflower into
slices. Since I don't have access to the
chopping board or the ingredient dispenser,
I need to ask the Alice to pick up the
cauliflower and cut it. The Alice can
perform these actions in their space. Once
the cauliflower is sliced, it needs to be
placed in a pot to cook, which is in my
space. I will request the Alice to pick up
the cauliflower and cut it, then place it on
the counter so I can transfer it to the pot

.
Bob plan: request('pickup(cauliflower,

ingredient_dispenser)'); request('
put_obj_in_utensil(chopping_board0)');
request('cut(chopping_board0)'); request('
place_obj_on_counter()')

Bob say: Please pick up the cauliflower from the
ingredient dispenser, cut it on the

chopping board, and place it on the counter
for me to handle next. [END]

Listing 15: Case 3 Agent Alice’s output
Alice analysis: The Bob has instructed me to

pick up the cauliflower from the ingredient
dispenser, cut it on the chopping board, and
place it on the counter. I need to follow

this sequence since I do not have the recipe
and must rely on the Bob's guidance.

Currently, I am not holding anything, and
all utensils in my space are empty. I will
start by picking up the cauliflower from the
ingredient dispenser, then proceed to cut

it on the chopping board, and finally place
it on the counter for the Bob to handle next
.

Alice plan: pickup(cauliflower, dispenser);
put_obj_in_utensil(chopping_board0); cut(
chopping_board0); place_obj_on_counter()

Alice say: [NOTHING]

Case 4: Failed Initiating and Responding List-1679

ing 16, 17, and 18 present the input from Agent1680

Bob and the output from Agent Alice in Case 4.1681

In this scenario, Bob requested Alice to cut the1682

eggplant on “chopping_board0” and place it on1683

the counter. However, the collaborative actions1684

generated were incomplete, as they omitted the ac-1685

tions “put_obj_in_utensil(chopping_board0)” and1686

“place_obj_on_counter()”. As a result, these ac-1687

tions could not be executed, making them incor-1688

rect. Although Alice understood Bob’s intention, it1689

failed to notice the missing actions in Bob’s request1690

and directly replicated his generated actions. Con-1691

sequently, the response to the collaboration was1692

also incorrect, leading to a failure in the collabora-1693

tion. 1694

Listing 16: Case 4 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:sliced_eggplant_and_chickpea_stew
Scene 4: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds one eggplant.
The planned sequence of actions (yet to be
performed) for Alice is [request('
place_obj_on_counter()')] Kitchen states: <
pot0> is empty; <chopping_board0> is empty;
<oven0> is empty; <blender0> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing
.

Listing 17: Case 4 Agent Bob’s output
Bob analysis: The recipe requires preparing a

Sliced Eggplant and Chickpea Stew. The Alice
currently holds an eggplant and plans to
place it on the counter. I need to instruct
the Alice to cut the eggplant into slices
and then place them in the pot, along with
the chickpea. Since the Alice is in charge
of handling the ingredients, I will focus on
managing the cooking process in the pot and
ensuring the dish is served correctly.

Bob plan: request('cut(chopping_board0)');
request('place_obj_on_counter()')

Bob say: Please cut the eggplant into slices
using the chopping board and then place the
slices on the counter. [END]

Listing 18: Case 4 Agent Alice’s output
Alice analysis: I am currently holding an

eggplant, and the Bob has instructed me to
cut it into slices using the chopping board
and then place the slices on the counter.
The chopping board is in my space, so I can
perform the cutting action. After cutting, I
will place the slices on the counter for
the Bob to use in the next steps.

Alice plan: cut(chopping_board0);
place_obj_on_counter()

Alice say: [NOTHING]

24

Corr = -0.08

P = 0.72

Corr = 0.70

P = 0.00 Corr = 0.08

P = 0.72
Corr = -0.18

P = 0.43

Corr = -0.43

P = 0.05

Corr = -0.03

P = 0.87

Corr = -0.25

P = 0.29

Corr = 0.72

P = 0.00

Corr = -0.07

P = 0.77

Corr = -0.33

P = 0.15 Corr = -0.45

P = 0.05

Corr = -0.01

P = 0.96

Corr = -0.03

P = 0.87

Corr = 0.74

P = 0.00 Corr = 0.31

P = 0.18

Corr = -0.69

P = 0.00

Corr = -0.37

P = 0.11

Corr = -0.01

P = 0.96

Corr = -0.21

P = 0.38

Corr = 0.72

P = 0.00

Corr = -0.36

P = 0.12

Corr = -0.51

P = 0.02 Corr = 0.20

P = 0.40

Corr = 0.08

P = 0.72

(a) Initiating Collaboration

Corr = -0.08

P = 0.72

Corr = 0.56

P = 0.01 Corr = 0.36

P = 0.11

Corr = 0.70

P = 0.00

Corr = -0.65

P = 0.00

Corr = -0.11

P = 0.65

Corr = 0.53

P = 0.02 Corr = -0.03

P = 0.89

Corr = 0.75

P = 0.00

Corr = -0.44

P = 0.05

Corr = 0.22

P = 0.35

Corr = 0.47

P = 0.03 Corr = -0.06

P = 0.81

Corr = 0.63

P = 0.00

Corr = -0.67

P = 0.00

Corr = 0.19

P = 0.43

Corr = 0.60

P = 0.01 Corr = 0.03

P = 0.89
Corr = 0.76

P = 0.00

Corr = -0.59

P = 0.01

(b) Responding to Collaboration

Figure 12: Attention distributions over different parts of the prompt during successful and failed attempts at
initiating and responding to collaboration, evaluated for Qwen-2.5 models (7B and 72B). “Corr” denotes the
Pearson correlation coefficient between attention patterns and ITES-based success labels, and “P” indicates the
corresponding p-value.

25

You are an intelligent agent planner; you must generate output and create plans in the specified format, based on the game rules
and the environmental status.

System

Suppose you are a Chef proficient in an adapted version of the Overcooked game. Your goal is to cooperate with your teammate, who is
also a large language model agent, to complete a single order.

You have recipe, so you need to direct yourself and your teammates to complete the order.

Due to the numerous settings that differ from the original Overcooked game, you must strictly adhere to the following game rules:

Game Rules:

- The Overcooked_AI game requires two players (the chef and assistant) in separate environments to work together with the goal of
completing an order in the shortest time.

- To finish one order, your team needs to follow these steps:

 1. Pick raw ingredients from the ingredient dispenser.

 2. Place the ingredients in the correct utensil according to the chef's recipe and initiate cooking using the appropriate action.

 3. Your team may need to repeat Step 2 using several utensils according to the chef's recipe. After cooking, you need to pick up the
cooked ingredients and decide whether to move somewhere else.

 4. Check if you need a dish to hold the cooked food. If so, the chef must pick up a dish first and then fill it with food from the utensil.
Otherwise, the chef can directly pick up the cooked food from the utensil.

 5. Deliver the food to the serving location immediately.

*You cannot complete all of these steps alone. You need to think about what you can do in the situation and what you need your
teammate to help you with.*

- - The usual workflow for the chef is:

 1. Read the cooking process from your recipe. All of your decisions must be strictly guided by the recipe and should not lead to
unfounded behavior.

 2. Ask the assistant to pick up ingredients from the ingredient dispenser and use the correct utensil to handle them according to the
recipe. Since you do not have access to all the objects, you need to assign

some tasks to the assistant while you perform other tasks in parallel.

 3. Work in parallel with the assistant to finish the order in the shortest time possible, unless there is nothing you can do in the current
situation. If you have nothing to do, you can wait.

 4. Serve the dish (optional). If the recipe specifies that the dish needs to be served on a plate, you must use
`fill_dish_with_food(utensil_name)` to serve the dish from the utensil first; otherwise, just pick up the

food from the utensil.

 5. Use deliver().

- The recipe contains all the steps necessary to complete the order. Every choice you make must be based on the recipe.

- You only need to complete one order, so focus solely on the progress of that dish.

- Only the assistant can pick up ingredients from the ingredient dispenser, which has an unlimited supply.

- The utensil is a stationary unit that cannot be moved.

- After placing an ingredient into a utensil, you need to use the correct action to start cooking.

- As long as there is something on the counter, both the chef and assistant can directly pick it up.

- If you wish to place something in another position, first check if you are holding it by verifying through "<Chef> holds XXX" or
"<Assistant> holds XXX." Each player can only pick up one item at a time.

- Players can only pass items by placing them on the counter; there is no direct "pass" action. To pass an item to your teammate, you

need to pick it up, then use `place_obj_on_counter()`, and instruct your teammate to pick it up.

User

Game Rule Prompt

Figure 13: Prompt for game rules.

26

Skill: In this game, you can ONLY perform the following allowed
actions. Do not attempt to use any other actions that are not listed
here. If there are parameters (like steps, utensil), you need to fill them
without using quotation marks, angle brackets, etc. There are 2 kinds
of actions: 'operation actions' and 'requests'. If you want a
teammate to perform a certain operation action, you need to
generate a 'request' action with the operation action as an argument.

'Operation actions':

def pickup(obj, place):

 if object_in_hand() == "nothing":

 if place in utensil_list or place == "counter" or place ==
"dish_dispenser" or place == “ingredient_dispenser":

 if object_in_place(obj, place):

 return

def cook(pot_name):

 """ To start cooking in the pot """

 if has_food(pot_name):

 return

def place_obj_on_counter():

 if object_in_hand() != "nothing":

 return

def put_obj_in_utensil(utensil):

 if object_in_hand() != "nothing":

 if utensil in utensil_list:

 return

def fill_dish_with_food(utensil):

 if object_in_hand() == "dish":

 if utensil_food_ready() or utensil_started_cooking():

 return

 """ To start oven example: bake(oven0) """

 def bake(oven_name):

 if has_food(oven_name):

 return

def deliver():

 return

def wait(num):

 # wait positive num timesteps

 if isinstance(num, int) and 0 < num <= 20:

 return

‘Collaborative action':

"""

Ask a teammate to do an operation action. Each request can only
contain one action with quotation marks, so if you need a teammate
to perform multiple actions, you need to generate multiple requests.
The detailed conversation content you want to convey is contained
in '{role} says'.

Example: request('pickup(potato, ingredient_dispenser)');
request('place_obj_on_counter()');...

"""

def request(operation_action):

 teammate.plan_list.append(operation_action)

 send_message(content=self.say, to=teammate)

 return

```

Assistant's Skill: Assistant can ONLY perform the following allowed 
actions. If you need the Assistant to perform actions, you can use 
the actions below.

def pickup(obj, place):


pass

def cut(chopping_board_name):

      pass

def stir(blender_name):


pass

def place_obj_on_counter():


pass

def put_obj_in_utensil(utensil):


pass

def wait(num):


pass

Action Space Prompt for Agent Bob
User

Figure 14: Prompt for the action space of Agent Bob.

27



Input-output Format Prompt
User

Input:

- For each step, you will receive input like the following:

  - 1.Your successful action history in the past steps is: XXX  

    - A dictionary of all actions you've successfully performed in recent time steps. Use this information to infer your past plans and 
continue forward. 

  - 2.Here are lessons learned from past failures that can guide your decisions:  

    - Reflect on past mistakes to avoid repeating them when making new plans.

  - 3.Chef space: utensil1, utensil2, utensil3, XXX  

    - The chef can only use the utensils in the Chef space; you cannot use any utensils outside this area.

  - 4.Order: order  

    - You only need to complete the current order. 

  - 5.Scene: The planned sequence of actions (yet to be performed) for you and your teammate, status of each ingredient and utensil.  

    - "The planned sequence of actions" refers to what each role intends to do in the upcoming time step, and none of these actions are 
completed yet.  

    - Based on the "Scene", gather the existing plans for both roles, along with the status of utensils and ingredients, to plan the next 
steps efficiently.  

    - If a dish is already finished, the chef should consider serving it immediately. 

  - 6.Past conversation turns:  

    - Assistant says (turn 1):XXX  

    - Chef says (turn 1):XXX  

    - Assistant says (turn 2):XXX  

    - Chef says (turn 2):XXX  

    - Each line of conversation history follows this structure: sender of the message + "says" + "turn number". Messages with the same 
turn number are grouped together.  

    - Read the conversation history from top to bottom, with the most recent messages at the bottom.  

    - You need to respond to your teammate's most recent message.

Output:

You must provide output in three fields, formatted as follows:

1. Chef analysis:xxxxx  

   - This field should include your analysis of the environmental conditions and your reasoning for the actions you plan to take. There are 
two things to focus on:  

     1. Analyze the environment step by step, considering your conversation history with your teammate if "Past conversation turn" exists. 
Understand where you are in the order and plan based on the recipe.  

     2. Analyze which actions are available to you based on the 'Chef space' and 'Assistant space'. Actions that must be done by your 
teammate should be surrounded by 'request'. 

2. Chef plan:action1(params1, params2); action2(params1); ... ; actionN(params1)  

   - This field contains the actions you intend to perform in the next time step. Four things to note:  

     1. Only generate actions for yourself. If a teammate must perform an action, generate a 'request' with the action as an argument.  

     2. The arguments for your actions must all be in your interactive space, or the action is invalid.  

     3. Actions should be written in sequence, separated by semicolons, with no additional descriptions or serial numbers. You cannot add 
any comments or actions not listed in your skill set.

3. Chef say:xxxxx  

   - This field refers to the communication you need to convey to your teammate. If you do not plan to communicate, the field should 
always be [NOTHING].  

   - You can either:  

     1. [NOTHING] — Meaning there’s no need to communicate with your teammate.  

     2. The content to pass to your teammate — If you generated a 'request' action in your plan, include a message here to tell your 
teammate what to do.  

   - If you want to end the conversation, add [END] to the last line of your response.

<input>

Your successful action history in the past steps are: []

Here are some lessons you have learned from past failures that you can use to make the right decisions:[]

Chef space:pot0  oven0  counter 

Assistant space:chopping_board0  blender0  dish_dispenser  ingredient_dispenser

Order: zucchini_green_pea_and_onion_patty

Scene 0: <Chef> holds nothing. The planned sequence of actions (yet to be performed) for Chef is [] <Assistant> holds nothing. The 
planned sequence of actions (yet to be performed) for Assistant is [] Kitchen states: <pot0> is empty; <chopping_board0> is empty; 
<oven0> is empty; <blender0> is empty; 3 counters can be visited by <Chef>. Their states are as follows: counters have nothing.

Figure 15: Prompt for the input-output format.

28



Figure 16: Human-computer interaction as Agent Alice.

Figure 17: Human-computer interaction as Agent Bob.

29


	Introduction
	Related Work
	Task-Oriented Collaboration
	Collaboration Capability
	TES and ITES
	TES
	ITES

	Evaluation Metrics

	Benchmark
	Collab-Overcooked Benchmark
	Environment
	Tasks Construction
	Collaboration Designs

	Baseline

	Experiment and Analysis
	Benchmark Overview
	Experiment Setting
	Results and Analysis
	Task Completion Efficiency
	Process-Oriented Evaluation
	Human Performance Evaluation
	Analysis of Collaboration Failures

	Future Challenges

	Conclusion
	Benchmark Detail
	Environment
	Interactive Elements
	Action Space
	Layout Definition Method

	Tasks Construction
	Task complexity level
	Task List
	Recipes
	Referential Action Trajectory

	Baseline
	Baseline Construction
	Prompt


	Evaluation
	Details in TES
	Details in IC and RC

	Supplementary Experiment
	Impact of Varying gamma on Task Success Rate
	Human Performance Evaluation
	Experiment Setup
	Discussion

	Supplement to Correlation Analysis
	Failure Analysis
	Failure Modes in Collaboration Capabilities Degradation
	Impact of Task Decomposition Ability
	Sequence Dependence in Collaboration Performance

	Case Study


