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ABSTRACT

Large-scale deep learning models with a pretraining-finetuning paradigm have led
to a surge of numerous task-specific models finetuned from a common pretrained
model. Recently, several research efforts have been made on merging these large
models into a single multi-task model, particularly with simple arithmetic on pa-
rameters. Such merging methodology faces a central challenge: interference be-
tween model parameters finetuned on different tasks. Few recent works have fo-
cused on desiging a new finetuning scheme that can lead to small parameter in-
terference, however at the cost of the performance of each task-specific finetuned
model and thereby limiting that of a merged model. To improve the performance
of a merged model, we note that a finetuning scheme should aim for (1) smaller
parameter interference and (2) better performance of each finetuned model on the
corresponding task. In this work, we aim to design a new finetuning objective
function to work towards these two goals. In the course of this process, we find
such objective function to be strikingly similar to sharpness-aware minimization
(SAM) objective function, which aims to achieve generalization by finding flat
minima. Drawing upon our observation, we propose to finetune pretrained mod-
els via SAM or its variants. The experimental and theoretical results showcase the
effectiveness and orthogonality of our proposed approach, improving performance
upon various merging and finetuning methods.

1 INTRODUCTION

Foundation model, a large deep learning model pretrained on large-scale datasets, has shown great
advancement across a wide range of downstream tasks, after finetuning on each task (Achiam et al.,
2023} |Saab et al.l 2024} Ding et al., 2023). Recent successes of the pretraining-finetuning paradigm
have given rise to a burst of task-specific open-source models in communities, such as Hugging
Face. Diversity yet ready availability of large task-specific models have naturally elicited a question
from researchers: Can we combine these large models into one, while retaining the performance on
each task?

Traditionally, a single multi-task model is obtained by jointly training on data across all tasks (Caru-
anal |1997; |Crawshaw, 2020; [Vandenhende et al., [2022). However, given the size of foundation
models and the number of tasks, joint training on all tasks incurs significant computational costs.
Motivated by the accessibility, variety, abundance, and common origin of task-specific models, sev-
eral research efforts have focused on merging multiple finetuned models into a single model via
simple arithmetic on parameters of these models, thereby removing the need for joint training (II-
harco et al., [2023; |Yadav et al., |2023}; |Yang et al.l [2024b; [Matena & Raffel, |2022; Jin et al., 2023;
Daheim et al., |2024; |Li et al.| 2023 Yang et al.l 2024a). However, a central challenge remains:
parameters of different task-specific models interfere or conflict with each other, leading to the per-
formance degradation of a merged multi-task model on each task.

To bridge such performance gap, several works have tried to reduce the parameter interference dur-
ing the process of merging (Yadav et al.| 2023} Jin et al., 2023} Yang et al.|[2024b; Wang et al.,2024;
Yu et al., 2024). Another line of works focuses on finding a new finetuning scheme that results in
task-specific models whose parameters have lower parameter interference (also often referred to as
better weight disentanglement with respect to model outputs) (Ortiz-Jimenez et al., 2023} Tang et al.,
2024; Jin et al., |2024)) and thus less performance degradation after merging. Few studies (Wortsman
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et al., [2022a} [[lharco et al.l [2023; [Wortsman et al.l 2022b) suggest that the effectiveness of linear
arithmetic on parameters in the process of merging may be owed to the linearity of finetuning pro-
cess. Conversely, Ortiz-Jimenez et al.| (2023) have refuted such hypothesis by showing that there
is a huge performance drop with approximation of finetuned models with a linearized pretrained
model. Another observation they make is that such post-hoc linearized models led to less parameter
interference. Based on this observation, few recent works |Ortiz-Jimenez et al.| (2023)); [Tang et al.
(2024); Jin et al| (2024) have tried to explicitly linearize finetuning processes in order to induce
weight disentanglement.

In this work, we note that we need to simultaneously work towards two goals for effective model
merging: (1) reducing parameter interference between finetuned models while (2) maintaining the
performance of task-specific finetuned models on respective datasets. Therefore, during finetuning
process, we aim to directly optimize for both performance on each task and weight disentanglement
with respect to performance. In the course of designing a finetuning objective function that aligns
with our goals, we find striking resemblances between our goals and sharpness-aware minimization
(SAM) (Foret et al., [2021)), which aims for better generalization by finding flat minima via mini-
mization of both loss values and loss sharpness. In particular, we find the similarities between the
minimization of both loss values and loss sharpness in SAM and joint optimization for performance
and weight disentanglement of finetuned models in our goal.

Drawing upon our observations, we propose to finetune pretrained models via SAM or its improved
variants (particularly, ASAM in this work), in order to achieve better performance on each task,
lower parameter interference, and thus better overall performance of a merged multi-task model.
Our extensive experimental results demonstrate that our proposal greatly improves the overall per-
formance of a merged model. The effectiveness of our proposed method is owed to achieving better
performance of each task-specific model and less performance gap between task-specific models
and a merged model. We further highlight the generalizability and orthogonality of our approach
by demonstrating performance improvements when applied together with various merging methods
and finetuning methods for model merging.

2 RELATED WORKS

Model Merging. The recent emergence of large foundation models and pretraining-finetuning
paradigm has motivated researchers to explore ways of merging multiple finetuned models into a
single model without retraining. Model merging, the merging of models with simple arithmetic on
parameters, has garnered a significant amount of attention for its flexibility and simplicity. However,
parameters of different task-specific models may interfere with each other during merging process,
resulting in performance degradation on each task, compared to task-specific models.

To address the parameter interference issue, researchers focus on either designing a merging pro-
cess (Utans, |1996; [lharco et al., 2023} [Yadav et al.l 2023)) or designing a finetuning process to mit-
igate the parameter interference. Initiated with simple averaging (Utans |1996; [Shoemakel |1985)),
research works on merging process focus on representing task-specific models as task vectors for
easier manipulation of knowledge (Ilharco et al.l 2023)), or weighting parameters (Matena & Raffel,
2022; Jin et al., 2023}, Yang et al., 2024b)) or selecting parameters (Yadav et al., [2023; Wang et al.,
2024;|Yu et al.}|2024) according to the estimated importance of each parameter with respect to given
tasks.

In parallel, if task-specific model parameters have less interference with each other to begin with, the
effectiveness of model merging can be amplified. As such, few recent works have focused on design-
ing a finetuning process such that resulting finetuned model parameters will have less interference
and result in less performance gap between a merged model and task-specific models. Ortiz-Jimenez
et al.[(2023) show that linearized finetuning (finetuning in the space tangent to pretrained initializa-
tion) leads to less interference (specifically better weight disentanglement with respect to model
outputs), aspring other linearized finetuning methods (Jin et al.||2024; Tang et al.| [2024).

Sharpness-Aware Minimization (SAM). |Foret et al. (2021) introduce a new optimization objec-
tive function that minimizes both loss and loss sharpness to seek flat loss minima that may lead to
better generalization performance. SAM defines loss sharpness as a maximum loss difference mea-
sured at current parameters and nearby parameters (obtained by perturbing current parameters). Sev-
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eral follow-up works have strived to improve SAM via improving perturbation methods (M et al.,
2022 [Kwon et al., [2021)), improving gradient (Wang et al., 2023 Zhao et al., [2022), or combining
other flatness-aware optimizers (Cha et al., 2021; |Kaddour et al., |2022)) for better generalization.
While previous studies have primarily focused on single-task learning, |[Phan et al.| (2022)) incorpo-
rates SAM into joint multi-task training as a regularization technique for multi-task learning. We
note that our method and|Phan et al.[(2022) target two different scenarios. |Phan et al.[(2022) target a
traditional multi-task learning scenario, where the training is performed on all tasks jointly. By con-
trast, our work tackles multi-task model merging, where the goal is to merge different task-specific
models, each of which is independently finetuned from a common pretrained model without the
knowledge of other tasks. This approach eliminates the need to train all tasks at the same time and
avoids retraining from scratch when new tasks are introduced. The lack of the knowledge of other
tasks also brings several challenges, such as parameter interference between different task-specific
models that cause degradation of single-task performance after merging.

In this work, we introduce a new objective function for single-task finetuning aimed for model merg-
ing, from which we present a new insight that draws connections between the objective of multi-task
model merging and that of sharpness-aware minimization (SAM). Furthermore, we theoretically (in
Appendix D) and empirically show that, SAM can reduce parameter interference, even without the
knowledge of other tasks during finetuning.

3 BACKGROUND

Sharpness-aware minimization (SAM). To achieve better generalization, SAM |Foret et al.| (2021)
seeks for wider minima by minimizing both loss value and loss sharpness during optimization,
where the loss sharpness is formulated as a difference between a loss at the current parameters and
the maximum loss value at nearby parameter values:

min| max L(0+¢€D)— L(6;D) |+ L(0;D), (1)
6 elell2<p N——

loss

loss sharpness
where € is a perturbation vector which is bounded above by a predefined p that controls the radius
of the neighborhood; and 6 are network parameters to be optimized for a given loss function £
over a dataset D. For efficiency, |[Foret et al.[(2021) approximates the inner maximization via Taylor
approximation. Then, along with canceling identical terms £(6; D) with opposite signs, the original
optimization is reduced to

2 VeL(6;D)

" IVoL(6: D)
However, the same neighborhood radius for all parameters may impact each parameter differently,
especially if their scales differ by several factors. To take such varying scales of parameters into
account, Adaptive SAM (ASAM) (Kwon et al.| [2021) proposes to scale the perturbation vector €
according to the scale of each parameter as follows:
¢ A p02v.9£(0; D)

ASAM = PTs 7N
IVeL(6; D)l
Adjusting the scale of perturbations according that of parameters can be even more effective in the

pretraining-finetuning paradigm, since pretrained models likely have parameters of different scales
after training on large-scale datasets.

mein L(0+ D) where € (2)

3)

Problem setting. In the pretraining-finetuning paradigm, there exists a large pretrained model f :

X x© — ), parameterized by trained parameters 6y € O, that is in turn finetuned to 7" downstream
Ny

=1

tasks. Each downstream task, indexed by t, is accompanied with a dataset D*) = {(azgt), yi(t))}

where :cgt) € X® C X is an input with a corresponding label ygt) € Y C Y. Employing
a standard loss function (e.g., cross-entropy loss for classification) and an optimizer (e.g., SGD),
finetuning a pretrained model fg, to each downstream task ¢ will lead to a task-specific model fo,

with its parameters 6,:
6, = argmin £(6; D). 4)
0
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Task arithmetic. To perform an arithmetic on model parameters and merge models into a single
model, [Ilharco et al.|(2023)) have introduced the concept of task vector, which is essentially a vector
pointing to task-specific parameters 6; from pretrained model parameters 8, obtained by taking
a difference between them: 7; = 6; — 0. Mlharco et al.| (2023) note that a task vector 7; can be
considered as the representation of the knowledge learned for a task ¢. As such, they claim that the
knowledge of each task can be manipulated by a simple arithmetic on pretrained model parameters:
6o + o 0;, where a; > 0 will add the knowledge of task ¢ while a; < 0 will result in forgetting the
knowledge of task ¢, while |a:| controls the extent of learning/forgetting. Using these task vectors T
with corresponding task coefficients oy, task-specific models can be merged into a merged multi-task
model, parameterized by @perge as follows:

T
emerge =0y + Z ATy 5
t=1

4 MITIGATING PARAMETER INTERFERENCE VIA SHARPNESS-AWARE
FINETUNING

Since a merged model is formed by simply performing linear arithmetic on task vectors, there is a
high chance for interference among tasks (Ilharco et al.,2023)). Such interference leads to the perfor-
mance degradation on downstream tasks after merging. Some works focus on reducing interference
during merging process, which is a challenging task as finetuned model parameters are fixed. On
the other hand, few recent works propose to modify a finetuning process that results in task-specific
models whose parameters have less interference with each other. In particular, they show that fine-
tuning a (partially) linearized model or its linear layers only results in less interference. However,
such linearization of finetuning results in the performance degradation of each task-specific model,
limiting the overall performance of a merged model.

In this work, we claim that we need to achieve both (1) less performance gap between a merged
model and each finetuned model (i.e., less parameter interference) and (2) generalization perfor-
mance of each finetuned model on each respective dataset. As such, we aim to design a new objective
function for finetuning to achieve these two objectives:

0, = arg min £(Oeree (0); DY) — £(8; DY) + £(6; DY), (6)
7]

Objective (1) Objective (2)

where Opmerge (6) is to demonstrate that Operee changes as 6 is optimized, while considering parame-
ters for other tasks to be fixed. While this objective function already looks similar to the SAM objec-
tive function in Equation [T} after some simplifications (deriviations are delineated in Appendix B},
we get the final objective function as follows:

6, = argmin L(0 + 20457'5 + (o — 1)7; DY), (7
0
s#t

where 4t OsTs + (o — 1) 7 represents the parameter offsets a model merging would introduce to
the parameters of a task-specific model # undergoing optimization on a task ¢. Hence, ) 2t OsTs +
(ay — 1)7 can be considered as perturbations that would cause parameter interference during model
merging, from the perspective of each task-specific model. However, we do not assume access to
other tasks, as each task-specific model is independently trained. Since other tasks are unknown, we
consider 2t QsTs + (ay — 1) 7 to be random perturbations. Furthermore, because the perturbation
ZS# asTs + (o — 1)7 depends on 7 = 6 — 6 and is thus varying during training, we use ASAM
that models € as parameter-dependent perturbation (Equation . In other words, we use €xsam as a
surrogate of Zs 2t OsTs + (ay — 1), thereby our final objective function for finetuning aimed for
model merging is Equation 2] with éxsan from Equation

From our perspective described above, we can consider parameter interference to be caused by pa-
rameter perturbations ) 2t OsTs + (ay — 1)7 that would be introduced during model merging, the
information of which is however not available during finetuning for each task. The perturbations
will bring a model to a new location in the loss landscape, away from the found local minimum.
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If the region around the local minimum is not flat enough, the new location (i.e., merged model
parameters) brought by perturbations will most likely have a higher loss, resulting in a large per-
formance gap between a merged model and a task-specific model. In other words, to minimize the
interference caused by parameter perturbations, it is essential to identify flat minima. Flat minima
can effectively prevent the loss from increasing after parameter perturbations (e.g., model merging).
Thus, we argue that finding flat minima (or equivalently, minimizing sharpness) via sharpness-aware
finetuning can greatly reduce parameter interference.

In the subsequent section, we experimentally validate our argument by showing that sharpness-
aware finetuning leads to better weight disentanglement (Figure [T] and Figure [2), better cross-task
linearity (Figure 3, and better joint-task loss linearity (Figure [ and Figure [5), which are the signs
of less parameter interference. Better performance by our proposed method, compared to standard
SGD and other finetuning schemes specifically designed for model merging, further underlines the
effectiveness of sharpness-aware finetuning in reducing parameter interference. Then, at the end of
the subsequent section, we also theoretically show that the capability of SAM to reduce the dominant
Hessian eigenvalues induces joint-task loss linearity (the linearity of loss on all joint tasks).

5 SAM MITIGATES PARAMETER INTERFERENCE

Ty: EUroSAT, T2: SUN397 (w/o ASAM)  Ty: EUroSAT, T2: SUN397 (w/ ASAM) Ty: DTD, T,: EUroSAT (w/o ASAM) T1: DTD, T3: EUroSAT (w/ ASAM)
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Figure 1: Weight disentanglement visualization of two fine-tuned models across two tasks.
Each pixel in the heatmap corresponds to the disentanglement error between interpolation Opyerge =
6o + a1 + a7 and two fine-tuned model parameter 8, = 6y + a7 and O = 0y + a7y,
evaluated on task 1 and task 2. We use CLIP ViT-B/32 on the EuroSAT-SUN397 and DTD-MNIST
task pairs to generate these visualizations. The light regions indicate low-loss areas in the parameter
space. The red box highlights the search space used to find the optimal task coefficient a of task
arithmetic.

[Ortiz-Jimenez et al] (2023) argue that for model merging via task arithmetic to be effective, weight
disentanglement (a task vector for one task not affecting the outputs of task-specific model on other
tasks) is a necessary condition. In this work, we show that SAM indeed achieves better weight
disentanglement, in comparison to a standard objective function.

Weight Disentanglement. Weight disentanglement is met when task-specific parameter update
T+ does not affect the output of task-specific models on input from other task datasets, imparting
influence on a model only on input 2(*) from a given task ¢. Ortiz-Jimenez et al.| (2023) formally
expresses the localized influence of task vectors on the input space as

T

f (.’1}; Omerge) = f x; 6y + Z AsTs )
s=1

= f(x;00+ ;) when xe X, 9)

To evaluate how well weight disentanglement is satisfied, |Ortiz-Jimenez et al.| (2023)) quantify dis-
entanglement error as the discrepancy between the output of a merged model and ¢-th task-specific
model on input data of ¢-th task. Lower disentanglement errors imply that each task contributes
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Figure 2: Weight disentanglement visualization of merged models on the eight tasks across two
tasks. Each pixel in the heatmap corresponds to the disentanglement error between the multi-task

model parameter Operge = 0o + 23:1 a7, merged from eight fine-tuned model parameters, and
each single-task fine-tuned model parameter, evaluated on tasks 1 and 2. To visualize the landscape
of the merged multi-task model on a 2D heatmap, we adjust only two task coefficients corresponding
to the evaluation tasks. We also use CLIP ViT-B/32 on the four task pair as in Figure [T]to compare
the difference between the interpolation model Oyyeroe and the merged model O yeree. The meaning of
the light regions and the red box is the same as in Figure

appropriately without adversely affecting others. |Ortiz-Jimenez et al|(2023) consider merging of
two tasks while computing weight disentanglement error as follows:

2
Elan, a0) =Y By xo [dist (f(2; 00 + aumy), (2500 + 0111 + aam))] (10)

t=1

where &(aq, ) is the disentanglement error with respect to two given tasks and visualized in Fig-
ure [T} We further stress-test and evaluate the disentanglement error while considering merging of
all task-specific models (7" = 8 in this work), thereby evaluating how well an actual merged model
achieves weight disentanglement. However, it is difficult to visualize if all T task coefficients are
adjusted. In this work, for ease of visualization, we adjust task-coefficients of two tasks while fixing
other task coefficients but still considering all task vectors:

Car(ar, 2) = (11)
2
Z]EEEX(t) dist | f(x;00 + arms), f(2;00 + a1 + a2 + Z Qs Ts) . (12)
t=1 sg{1,2}

where &y (a1, ap) represents the total disentanglement error across all tasks (visualized in Figure |2}
and dist(+, -) is a distance metric measuring the divergence between the outputs of the individually
fine-tuned model and the merged model. Small (a1, ag) or (g, an) implies that the merged
model parameter Oyree accurately reflects the individual contributions of each task, signifying re-
duced parameter interference. Indeed, the visualizations of weight disentanglement when consid-
ering two tasks in Figure [T] and all tasks (" = 8) in Figure [J] demonstrate the effectiveness of
SAM-applied finetuning in achieving better weight disentanglement. In particular, we note that the
weight disentanglement error of the model merging with standard finetuning optimization increases
significantly when considering all tasks in model merging, compared to considering two tasks. On
the other hand, SAM-applied finetuning reduces the weight disentanglement even when considering
all tasks, further higlighting the effectiveness of sharpness-aware finetuning in model merging.

Cross-Task Linearity. Cross-Task Linearity (CTL) is a property that ensures
the linear separability of task influences on the model outputs across all layers of the network.
To satisfy CTL, for every layer ¢, the model response to a combination of task vectors should be
approximately equal to the combination of the individual task responses scaled by their respective
coefficients. Formally, CTL condition can be defined as:

FO (200, + (1= N)0,) =~ AfO(x;0,) + (1 — \) f O (x;6,), (13)
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Figure 3: Verification of CTL between merged model and fine-tuned models. We compare
Ep e upo [1—cos® (x; 2A7,, 2A ;)] of each fine-tuning methods. The values for the last six blocks
are evaluated on the two task pairs DTD-MNIST and EuroSAT-SUN397. We set the scaling term A
to 0.3.

where A € R is a scaling term; € X U X ®); 0,,0, are parameters of task-specific models
finetuned on task s and ¢ respectively; and () (x; 8) represents the response (or a feature) of /-th
layer of a network f for the given input a.

This linearity at each layer implies that the influence of one task on another is minimal, thereby
facilitating effective weight disentanglement. [Zhou et al.| (2024)) demonstrate that satisfying CTL
condition leads to reducing the disentanglement error £ ().

To evaluate whether CTL is satisfied, the following cosine similarity metric is used:

cos'd (@; 2\ 7, 201,)

1 1 14)
=cos | [ ;00 + A(7s + 7)), 5 /O (200 + 247) + 5 F O ;00 + 24m) |, (

where z € X U X®),

The metric measures the cosine similarity between the model output when trained on the combined
task vectors and the averaged outputs of models trained on individual tasks. Following the settings
in (Zhou et al., 2024)), we use the metric Ep[1 — cos®) (z; 2A 75, 201)] to evaluate how well CTL is
satisfied, where smaller values of Ep[1 — cos\¥) (x; 2\ 7, 27 )| indicate stronger CTL. Since satis-
fying CTL leads to better weight disentanglement, smaller values of Ep[1 — cos®) (x; 2A7,, 2A7;)]
should result in lower disentanglement error & (v, a2 ), as noted by [Zhou et al.| (2024).

Figure [3|shows that SAM-applied finetuning reduces Ep[1 — cos'¥) (x; 2\ 7y, 2A7;)] in comparison
to standard optimization, demonstrating that SAM results in not just better weight disentanglement,
but also better cross-task linearity.

Joint-Task Loss Landscape. We empirically demonstrate that SAM-applied finetuning reduces
parameter interference by finding flatter minima across the joint tasks. Figure @] shows the joint-task
loss landscape visualizations for two fine-tuned models trained on corresponding two tasks. We
observe that SAM-applied finetuning allows models to reach flatter minima across the joint tasks
compared to SGD, particularly around the boundaries of the task coefficients search space in task
arithmetic. SAM-applied finetuning increases the likelihood of finding a merged model connected
to each fine-tuned model along a low-loss path, which indicates a smaller performance gap between
the merged model and the individual fine-tuned models. Consequently, SAM makes it easier to find
a merged model with reduced parameter interference compared to SGD.

Yet, the capability of interpolation between pre-trained weights and two task vectors may not be the
same as that of a multi-task model merged from more than two fine-tuned task-specific models due
to interference between the parameters of different models (Yadav et al.||2023). Therefore, we also
visualize the loss landscape of the multi-task model @erge built by merging all 8 tasks, denoted as

Omerge = 60 + Ztgzl oy 7. To represent the loss of the every-task-merged model on a 2D heatmap,
we vary only the two task coefficient of O yeree corresponding to the tasks being evaluated.

Figure [5] shows the loss landscape of the multi-task model built by the eight fine-tuned models.
Compared to Figure @] the minima in the landscape shrink in every case as the number of tasks to
be merged increases. However, while the minima found by SGD shrink significantly, the minima
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Figure 4: Joint-task loss landscape visualization of two fine-tuned models across two tasks.
Each pixel in the heatmap corresponds to the loss values £(Gmerge; D(l)) + L(Ormerge; D(2)) of the
interpolation @peree = 0o + 171 + T2 between pre-trained model 6y and two task vectors T
and 7y, evaluated on task 1 and task 2. The setting of the model, task pair, light regions, and red
box is the same as in Figure [T} We use CLIP ViT-B/32 on the EuroSAT-SUN397 and DTD-MNIST
task pairs to generate these visualizations. The light regions indicate low-loss areas in the parameter
space. The red box highlights the search space used to find the optimal task coefficient « of task
arithmetic.

Ty: EUroSAT, T,: SUN397 (w/o ASAM)  Ty: EUroSAT, T2: SUN397 (w/ ASAM) Ty: DTD, T,: EUroSAT (w/o ASAM) T1: DTD, T3: EuroSAT (w/ ASAM)
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Figure 5: Joint-task loss landscape visualization of merged models on the eight tasks across two
tasks. Each pixel in the heatmap corresponds to the loss values £(Omerge; D(l)) + L(Ormerge; D(Q))
of the multi-task model Operge = O + Zle a1 merged by eight fine-tuned models, evaluated
on tasks 1 and 2. We adjust only the two task coefficients corresponding to the evaluation tasks to
visualize the weight disentanglement on a 2D map, as in Figure 2] The setting of the model, task
pair, light regions, and red box is the same as in Figure d] We use CLIP ViT-B/32 on the four task
pair as in FigureElto compare the difference between the interpolation model @yere. and the merged
model Opperge.

found by our method are less affected by this shrinkage in all cases. This suggests that our method
maintains the ability to reduce parameter interference and preserve the performance of the merged
model, even as more tasks are merged.

Theoretical Results. Here, we theoretically demonstrate that SAM leads to joint-task loss linearity:

Theorem 1 (SAM Induces Joint-Task Loss Linearity (proof in Appendix [D.2). Given parameters
6, and 0;, let § be defined as the difference between the interpolated Joint-Task Loss and the convex
combination of individual losses:

6= ,CJTL(OéBS + (1 — a)Ht;D) — OZ,C‘]TL(GS;'D) — (1 — O[),C]TL(et; D) (15)
Then, it holds that:
1
6] < 50[(1 — @) Amax(05; Dg) + Amax (04 Dy))||0; — 05> + €. (16)

By Property |1|in Appendix EI, SAM reduces the dominant Hessian eigenvalues Ayax(0s; Ds) and
Amax (0t; Dy ), thereby decreasing the deviation . This reduction makes the approximation in Equa-
tion[I8]closer, thereby inducing Joint-Task Loss Linearity.
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Table 1: Multi-task performance across different finetuning methods. We report the average
absolute and normalized accuracies for three finetuning baselines: SGD, FTTS, and FTLO. Results
are shown for three finetuning methods, grouped by whether ASAM is applied. ViT-B/32 is used as
the image encoder of CLIP, with task arithmetic as the model merging method in every case across
eight tasks.

. . SGD FTTS FTLO
Finetuning method (—)
Abs. Norm. | Abs. Norm. | Abs. Norm.
w/o ASAM 6823 7547 | 7835 86.83 | 7593 85.74
w/ ASAM (Ours) 69.45 7632 | 79.38 87.72 | 77.49 88.77

Theorem [I]establishes a direct connection between the ability of SAM to reduce the dominant Hes-
sian eigenvalues and the induction of Joint-Task Loss Linearity. Through Property[Tand Theorem/[]
we can observe that the lower dominant Hessian eigenvalues for parameters 6 along the line segment
000, between the pretrained parameter 6 and the finetuned parameter 8, ensure the linearity of the
interpolated Joint-Task Loss. The merged model parameter @pcroc Via such interpolation maintains
a stable and low Joint-Task Loss due to this linearity. Consequently, since parameter interference
leads to an increase in Joint-Task Loss, the linearity induced by SAM effectively suppresses param-
eter interference. Thus, SAM induces Joint-Task Loss Linearity, which is intrinsically connected to
the reduction of parameter interference, facilitating more stable and effective model merging.

6 EXPERIMENTS

In this section, following the settings of previous works |Ortiz-Jimenez et al.| (2023)), we conduct
experiments on diverse vision tasks to demonstrate the effectiveness of SAM-applied finetuning
in improving the overall performance of a merged model. We compare against three finetuning
baselines: SGD, linearized finetuning in the tangent space (FTTS) (Ortiz-Jimenez et al., 2023),
and finetuning linear layers only (FTLO) (Jin et al) [2024). We also validate the effectiveness,
applicability, and generalizability of SAM-applied finetuning with three different model merging
methods: weighted average, task arithmetic (Ilharco et al., |2023), and TIES (Yadav et al., [2023)
across two backbones: ViT-B/32 and ViT-B/16 (Dosovitskiy et al., 2021). Moreover, we empirically
show that SAM reduces the parameter interference through the lens of joint-task loss landscape and
weight disentanglement.

6.1 TRAINING SETUP

Following the same training protocol outlined in lharco et al.|(2022), we finetune three CLIP (Rad-
ford et al.| [2021)) models: (a) ViT-B/32, (b) ViT-B/16, (c) ViT-L/14. Our experiments are conducted
across eight diverse datasets: (1) Cars (Krause et al.l 2013), (2) DTD (Cimpoi et al.l 2014), (3)
EuroSAT (Helber et al., 2019), (4) GTSRB (Stallkamp et al., |2011), (§) MNIST (Deng, |2012),
(6) RESISC45 (Cheng et al [2017), (7) SUN397 (Xiao et al., 2016)), (8) SVHN (Netzer et al.
2011). All finetuning processes begin from the same CLIP pretrained checkpoint obtained from the
open_clip (Radford et al., [2021)) repository. We finetune each model for 8000 iterations with a
batch size of 128 and a learning rate of 10~° for all backbones and all finetuning methods. The learn-
ing rate schedule follows a cosine annealing approach with 500 warm-up steps, and optimization is
performed using the AdamW (Loshchilov & Hutter, [2019). Consistent with [[lharco et al.| (2022,
we freeze the weights of the classification layer derived from encoding a standard set of zero-shot
template prompts for each dataset. This strategy ensures that no additional learnable parameters
are introduced during finetuning and does not compromise model accuracy. For more experimental
details, please refer to Appendix [A]

6.2 MAIN RESULTS

We evaluate the effectiveness of SAM-applied finetuning in closing the performance gap between a
merged model and each task-specific models, in comparison to other three finetuning baselines.

Table [T shows that SAM-applied finetuning achieves the higher absolute and normalized accuracies
in every case, compared to other finetuning methods. Normalized accuracy is defined as the abso-



Under review as a conference paper at ICLR 2025

Table 2: Multi-task performance across different model merging methods and image encoder
models. We report the average absolute and normalized accuracies for three model merging meth-
ods: weighted average, task arithmetic, and TIES merging. We also compare the performance of
two different models used as the image encoder of CLIP: ViT-B/32 and ViT-B/16. All cases are
finetuned using SGD and evaluated across eight tasks.

Merging method (—) Weighted average | Task arithmetic | TIES merging
Abs. Norm. Abs. Norm. | Abs. Norm.
| ViT-B/32
w/o ASAM 65.72 72.91 68.23 7547 | 7457 8229
w/ ASAM (Ours) 66.76 73.62 6945 7632 | 7545 82.86
‘ ViT-B/16
w/o ASAM 71.58 77.37 7340 7931 | 77.94 84.04
w/ ASAM (Ours) 71.84 77.53 76.77 82.50 | 80.14 86.23

lute accuracy divided by the corresponding accuracy of the finetuned task-specific model, evaluating
the performance gap between a merged model and task-specific models. These results suggest that
SAM-applied finetuning not only improves performance in downstream tasks but also narrows the
performance gap between the merged model and finetuned models, improving the overall perfor-
mance. Moreover, SAM-applied finetuning synergizes not only standard SGD but also with other
finetuning methods (FTTS (Ortiz-Jimenez et al., |2023) and FTLO (Jin et al., 2024)), enhancing
performance in multi-task settings during model merging, demonstrating its generalizability and ap-
plicability. In particular, FTTS (Ortiz-Jimenez et al.| [2023) and FTLO (Jin et al.,|2024) demonstrate
better multi-task performance compared to SGD, as these finetuning methods reduce interference
between tasks by encouraging weight disentanglement (Malladi et al.| 2023} [Ortiz-Jimenez et al.|
2023). Thus, the performance improvement brought by SAM-applied finetuning on top of these
finetuning methods demonstrates the orthogonality of our proposal.

In Table [2] we display the multi-task performance across different model merging methods and
image encoder models used in CLIP. Our method outperforms in every combination of model merg-
ing methods and image encoder models. Notably, our method achieves better performance in both
weighted average and task arithmetic. Weighted average is a specific case of task arithmetic, where
oy = %, while task arithmetic searches for the optimal task coefficient within a given search space.
This suggests that our method finds flatter minima that covers the task coefficients search space in
task arithmetic compared to SGD. Moreover, SAM-applied finetuning also performs better in the
case of TIES merging, indicating that interference mitigation by our method complements the miti-
gation achieved by TIES merging. As a result, applying our method to TIES merging yields the best
performance among all combinations.

7 CONCLUSION

In this work, we draw connections between two research fields of machine learning: sharpness-
aware minimization and multi-task model merging. Particularly, the connections are drawn from
the formulation of two objectives of model merging: (1) reducing parameter interference between
task-specific models and (2) achieving better generalization of each task-specific model. Upon ob-
servation, we propose to apply SAM to finetuning process to improve the overall performance of a
merged model. Experimental results demonstrate that SAM-applied finetuning indeed results in less
performance interference and better performance of a merged model, even when applied together
with other merging and finetuning methods designed for model merging. Motivated by the effec-
tiveness and applicability of our proposal, we hope that this work encourages further research on
investigating the relationship between sharpness-aware optimization and model merging, opening a
new research avenue.

10
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A EXPERIMENTAL DETAILS

A.1 FINETUNING BASELINES

We compare the following three finetuning baselines with and without SAM:

(1) SGD: This refers to standard finetuning that uses only an optimizer such as AdamW (Loshchilov
& Hutter, [2019).

(2) FineTuning in the Tangent Space (FTTS) (Ortiz-Jimenez et al.|[2023): This finetunes the model
in the tangent space at its pretrained initialization. It achieves this by linearizing the model using a
first-order Taylor expansion fii,(6; D) = f(60; D)+ (60 —0y) "V f(0y; D), where 6 represents the
parameters of the pretrained model and D is the training dataset. The method freezes 6, and updates
only 6.

(3) FineTuning Linear Layers Only (FTLO) (Jin et al., 2024): This exclusively finetunes the linear
layers within the attention module. Therefore, this method can only be applied to model architec-
tures that include attention modules such as Transformer (Vaswani et al., 2017).

We utilize ASAM (Kwon et al., 2021)) as a default SAM method in every experiments, since it finds
minima adaptively by considering correlation between generalization gap and sharpness. We set the
p value of ASAM to 0.5, following the default setup outlined in ASAM, along with all other ASAM
hyperparameters.

A.2 MERGING METHODS

We merge the models that achieve the best performance for each corresponding task. These best
models are selected based on their performance on a validation set split, which is split from the
training set at a 0.1 ratio, as specified in|Ilharco et al.[(2023].

We use the following model merging methods as baselines:

(1) Weighted Average: This merges finetuned models by averaging their parameters element-wise,

denoted as Oerge = % Zthl 6., where 0, represents the finetuned parameters for each correspond-
ing downstream task, 7" is the number of downstream tasks being merged.

(2) Task arithmetic (Ilharco et al., [2023)): This method calculates task vectors 7 = 6; — 6 for
each downstream task ¢, where 6, represents the finetuned parameters for task ¢ and 6y represents
the pretrained parameters. A linear combination of these task vectors is then added to the pre-
trained parameters, denoted as Oyerge = Oo + 23:1 oy Ty, Where o 1s a task coefficient that scales

the corresponding task vector. This method generalizes the weighted average when oy = % for
t=1,2,...,T.

Since the search space for o, becomes too large as the number of tasks increases, we set the task
coefficients to be the same for all tasks and search for the optimal coefficient within the range
[0.1,0.3,0.5,0.7,0.9, 1.0] using the validation set of each task.

(3) TIES merging (Yadav et al.,2023)): This method mitigates parameter interference before merg-
ing models. First, it trims parameters changed that change minimally during fine-tuning, as these
small changes in each model can become more pronounced after element-wise parameter merging.
Second, it resolves parameter interference due to sign conflicts by determining the sign of each
parameter through a majority election before merging the models.

We apply TIES merging to task arithmetic. To find the optimal merged model, we search for the
task coefficients in task arithmetic within the range [0.1,0.3,0.5,0.7,0.9, 1.0] and the percentile of
parameters to be pruned to zero within [0.7, 0.8, 0.9], using the validation set for each task.

A.3  VISUALIZATION SETUP
We produce the joint-task loss landscape and disentanglement error under two distinct settings: (1)

merging two finetuned models across two tasks, and (2) merging models finetuned on eight tasks
across two tasks.
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1. Two Finetuned Models Across Two Tasks: In the first setting, we define the merged model
as:

emerge = 00 + a1 + a7y,
where 71 and 75, represent the parameters of models finetuned on tasks 1 and 2, respectively.

2. Merged Models on Eight Tasks Across Two Tasks: In the second setting, we define the
merged model as:

Bmerge =00+ a1 + Ty + Z AT,
k¢{1,2}
with o = 0.3, where 7, denotes the parameters of the additional six tasks.

For both settings, we use (o, a2) pairs spanning from —0.5 to 1.5 with 21 evenly spaced points
along each axis, resulting in a 21 x21 grid.

Joint-task Loss Landscape (Figure[d) We produce the joint-task loss landscape by computing
the combined loss:
E(omergd D(l)) + ﬁ(emerge§ D(Q))v

for each (a1, o) pair on the defined grid.

Disentanglement Error We evaluate the disentanglement error £(ay, a2) for both settings to
quantify the discrepancy between the desired and actual influences of individual tasks on the merged
model’s outputs. The disentanglement error is defined as:

T
5(0417 a2) = Z Esz,ui [diSt (f(xv 0y + atTt)v f(ZL', amerge))} .
t=1

For each (a1, aq) task coefficient pair on the grid, we compute (a1, ) and visualize the error
values using contour plots to identify regions where disentanglement is effective.

Since task coefficients are real numbers, we utilize contour plots to effectively visualize the varia-
tions in loss landscape and disentanglement error across the continuous (a1, ap) parameter space.

B DERIVATION OF EQUATION m

We start with simplifying Equation [ which is the objective function that incorporates the goals of
model merging:

8; = arg min £(Onerge (8); D) — £(8; DY) + £(6; DY)
e

= arg min £(Omerge(8); DY).
0
Here, we consider task coefficients {cv,} and other task vectors {75 }s»: to be fixed. Since Then,
instead of Operge = B0 + 23:1 OsTs In Equation we express Onmeree(6) as 0 + ZS# QsTs + T,
where 7 = 0 — 0, since 0; has not been found yet during the process of optimizing 6 for task ¢.
We now have

0; = argmin L(6y + ZasTs + T D(t))

e s#t

=argmin L(Og+ 7 — T+ Z QsTs + oy T, D(t))
0 s#t

=argmin £(0 — T + ZaSTS + T D(t)) 0 =0)+T
0 s#t

= argmin £(0 + Z asTs + (ap — 1)7; DW).
]

s#t
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C ADDITIONAL RESULTS

C.1 EFFECT OF THE NUMBER OF STEPS DURING FINETUNING

SAM has the capability to increase training epochs while still improving accuracy (Foret et al.,
2021). Therefore, we conduct an ablation study to evaluate whether SAM can enhance the per-
formance of a single downstream task by doubling the number of training steps. In this study, we
employ ASAM. As shown in Table 3] it appears that SGD converges, as performance plateaus after
2000 steps. In contrast, SAM continues to improve performance consistently up to 8000 steps.

Table 3: Average accuracies of finetuned ViT-B/32 over steps across the eight tasks.

Finetuning Steps | 2000 | 4000 | 8000

SGD
ASAM

90.21
90.84

90.48
91.03

90.37
90.50

C.2 FINETUNING PERFORMANCE OF SAM VARIANTS

To empirically justify our choice of SAM variant for our main experiments, we evaluate various
SAM variants on the same datasets (i.e., eight vision tasks) as our main experiments. In particular,
we investigate how the performance of a merged model changes when applying SAM (Foret et al.,
2021), ASAM (Kwon et al.,[2021])), Friendly SAM (Li et al.,[2024), WA-SAM (Kaddour et al.;|2022),
SAGM (Wang et al.| 2023)), PGN (Zhao et al.,[2022), SSAM-F (Mi et al}2022), and SSAM-D (M1
et al 2022), as shown in Table [d The results demonstrate that ASAM brings better performance
improvement, compared to SAM and other SAM variants. As a result, ASAM shows the best single-
task performance among other variants. Therefore, we use ASAM as a default SAM variant in all
experiments.

Table 4: Average accuracy of finetuned ViT-B/32 over steps across various SAM variants and fine-
tuning methods.

SAM variants Accuracy

SGD 90.45
SAM 90.16
ASAM 91.29
Friendly SAM 90.29
WA-SAM 91.06
SAGM 90.96
PGN 90.90
SSAM-F 90.80
SSAM-D 90.60

C.3 CROSS-TASK LINEARITY

We provide additional results that demonstrate that SAM-applied finetuning satisfies cross-task lin-
earity on other pairs of datasets in Figure [l We utilize ViT-B/32 as the image encoder to visualize
this figure, just the same as Figure[3] The results show that our method achieves lower CTL scores
across all layers for various task combinations. This suggests that our approach better satisfies
CTL for a broader range of data, implying improved weight disentanglement and task arithmetic
properties. Consequently, it can be concluded that our method reduces parameter interference and
minimizes the performance gap.
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Table 5: Multi-task performance when merging a CLIP image encoder on every 8 tasks. We re-
port the average absolute and normalized accuracies for different 5 model merging methods. Results
are shown for the 6 finetuning methods, categorized by whether ASAM is applied.

Merging methods (—) Weighted average Task arithmetic TIES merging
Finetuning baselines (| Abs. Norm. Abs. Norm. Abs. Norm.
\ ViT-B/32
SGD w/o ASAM 65.72 7291 68.23 75.47 74.57 82.29
SGD w/ ASAM (Ours) 66.76 73.62 69.45 76.32 75.45 82.86
FTTS w/o ASAM 72.47 82.04 78.35 86.83 76.89 86.84
FTTS w/ ASAM (Ours) 75.10 86.10 79.38 87.72 73.77 84.46
FTLO w/o ASAM 65.96 73.83 75.93 85.74 77.39 85.89
FTLO w/ ASAM (Ours) 65.34 72.78 77.49 88.77 76.30 84.62
\ ViT-B/16
SGD w/o ASAM 71.58 77.37 73.40 79.31 77.94 84.04
SGD w/ ASAM (Ours) 71.84 77.53 76.77 82.50 80.14 86.23
FTTS w/o ASAM 77.20 84.87 79.37 87.33 81.09 89.05
FTTS w/ ASAM (Ours) 78.09 86.45 79.78 88.26 78.41 86.72
FTLO w/o ASAM 70.97 77.11 80.00 86.55 78.25 84.91
FTLO w/ ASAM (Ours) 71.03 76.78 82.59 89.11 79.49 85.92

C.4 LoOSS BETWEEN A MERGED MODEL AND FINETUNED MODELS

To demonstrate that SAM-applied finetuning indeed reduces the loss sharpness and the performance
gap between a merged model and finetuned models, we visualize loss changes as we traverse along a
linear path between a merged model and a finetuned model on a given task in Figure[7} SAM-applied
finetuning indeed results in reduced loss barrier, leading to less performance gap as exhibited in less
weight disentanglement error, better cross-task linearity, and better overall performance in our main

paper.

C.5 ADDITIONAL RESULTS OF FINTUNING BASELINES AND MODEL MERGING METHODS

Following Section [6.2] we conduct experiments on all combinations of finetuning baselines (SGD,
FTTS, FTLO) and model merging methods (weighted average, task arithmetic, TIES), as summa-
rized in Table[5] In the case of weighted average, our method leads to performance improvements in
most cases, and for task arithmetic, it achieves performance improvements in all cases. For weighted
average, our method improves performance in most cases, while task arithmetic consistently yields
performance improvements across all cases. In contrast, TIES shows performance improvements in
only half of the cases. Upon closer examination, when linear finetuning methods such as FTTS and
FTLO — which regularize the model output to satisfy linearity — are used without ASAM, TIES
generally outperforms task arithmetic. However, with ASAM applied, TIES consistently performs
worse than task arithmetic.

This seems that since the combination of linear finetuning and ASAM has already enhanced weight
disentanglement and reduced parameter interference, parameter trimming via TIES may rather re-
move critical parameters not noisy parameters, leading to performance degradation. Specifically,
with SGD, the combination of TIES and ASAM delivers the best performance. Conversely, with
FTTS and FTLO, task arithmetic paired with ASAM achieves superior results. In some instances,
TIES combined with ASAM performs similarly to weighted average. Thus, for linear finetuning
methods like FTTS and FTLO, combining ASAM with TIES can negatively impact performance.
Additional analysis of this behavior is reserved for future work.
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Table 6: Multi-task performance of task arithmetic with and without hyperparameter tun-
ing. We compare the average absolute and normalized accuracies of task arithmetic whether the
hyperparameter is tuned. The fixed hyperparameter « is 0.4 for every 8 vision tasks.

. . . w/o tuning w/ tuning w/o tuning w/ tuning
Finetuning baselines (1) Abs. Norm. Abs. Norm. Abs. Norm. Abs. Norm.
\ ViT-B/32 ViT-B/16
SGD w/o ASAM 46.34  48.72 68.23 75.47 46.91 49.98 73.40 79.31
SGD w/ ASAM (Ours) 57.27 62.06 69.45 76.32 71.37 76.34 76.77 82.50
FTTS w/o ASAM 72.89 81.97 78.35 86.83 76.69 84.05 79.37 87.33
FTTS w/ ASAM (Ours) 75.21 85.78 79.38 87.72 78.87 87.17 79.78 88.26
FTLO w/o ASAM 48.20 55.29 75.93 85.74 77.36 83.60 80.00 86.55
FTLO w/ ASAM (Ours) | 79.68 88.77 77.49 87.92 82.50 88.95 82.59 89.11

C.6 MERGING WITH FIXED oy

Previous research ([lharco et al 2023}, [Jin et al.}[2023]; [Matena & Raffel, 2022} [Yadav et al., [2023)
on model merging has focused on finding better merged models through hyperparameter tuning.
However, such methods become increasingly costly as the number of hyperparameters grows, and
they need to be re-applied whenever tasks are added or changed. Therefore, it is essential to create
a robust merged model that performs well regardless of the selected hyperparameters.

Our method achieves robustness by identifying flatter minima for joint loss and weight disentangle-
ment compared to SGD, enabling the discovery of optimal hyperparameters across a wider range
of conditions. To support this claim, we evaluate task arithmetic by fixing the task coefficients o
to 0.4 for all merging tasks, following the recommendation of [I[Tharco et al.| (2023). As shown in
Table [6] our method outperforms other fine-tuning baselines in all cases, achieving improvements
of up to 30% in both absolute accuracy and normalized accuracy. Additionally, there are several
cases where the performances are nearly identical to those of hyperparameter tuning. Therefore, our
method ensures that a merged model with reliable performance can be obtained, even when arbitrary
hyperparameters are chosen.

C.7 MULTI-TASK PERFORMANCE OF OTHER FLAT-MINIMA TECHNIQUES

Table 7: Multi-task performance across different flat-minima techniques. We compare the av-
erage absolute and normalized accuracies of ViT-B/32 for five finetuning methods including three
flat-minima techniques: SWA, RWP, and SAGM. We also compare the performance of merged
model with and without hyperparameter tuning. All cases are merged with eight vision tasks by task
arithmetic.

. . . w/o tuning w/ tuning
Finetuning baselines (1) Abs.  Norm. | Abs. Norm.
SGD | 4634 4872 | 6823 7547
SWA 4894 5246 | 68.58 76.11
RWP 3497  36.58 | 6248  73.02
SAGM 40.18 4293 | 64.36  71.16
ASAM (Ours) | 57.27  62.06 | 69.45 76.32

We also evaluate the performance of other flat-minima techniques, in addition to SAM variants like

ASAM. Flat-minima techniques, including SWA (Izmailov et al.,[2018), RWP 2022), and
SAGM [2023), are finetuning methods designed to minimize the loss while finding flat-
minima during model training. As shown in Table[7} both our method and SWA improve multi-task
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performance compared to SGD. However, RWP and SAGM show worse performance than SGD.
In addition, as discussed in Appendix we also present the results of performance evaluation
without hyperparameter tuning in Tab% Our method not only achieves the best performance
when the hyperparameters are tuned but also outperforms in cases without tuning. Furthermore, the
performance gap between our method and SGD, as well as other flat-minima techniques, widens
significantly in these scenarios. This demonstrates that our method is superior to other flat-minima
techniques and exhibits less performance degradation due to variations in parameter settings.

The primary difference among flat-minima techniques lies in the strategies used to derive pertur-
bations. This seems to influence how effectively these techniques can reduce the performance gap
between each finetuned model and merged model. Our method introduces perturbations by mini-
mizing the loss difference between the current point in the parameter space and the point with the
highest loss in its neighborhood during finetuning. This approach aligns closely with the objective
of model merging, which aims to minimize the loss difference between the merged model and the
individual finetuned models. Therefore, perturbation strategies derived from finetuning objectives
similar to the model merging objective could result in greater performance improvements compared
to other flat-minima techniques.

C.8 RESULTS IN NATURAL LANGUAGE PROCESSING

Table 8: Multi-task performance of the merged model across four natural language under-
standing tasks. We report the average absolute and normalized accuracies on four GLUE bench-
mark tasks: CoLA, MPRC, RTE, and SST-2. We finetune Flan-T5-base using either SGD or SGD
with ASAM and merged the four GLUE tasks.

Finetuning CoLA MRPC RTE SST-2 Average

baselines ({.) Abs. Norm. | Abs. Norm. | Abs. Norm. | Abs. Norm. | Abs. Norm.
SGD 58.77 75.58 |25.74 29.75 | 37.55 43.52 | 64.11 68.68 | 46.54 54.38
FTTS 66.06 92.61 |28.19 3496 | 1.81 235 |87.39 9490 | 4586 56.21
FTLO 66.83 96.67 | 67.40 79.71 0 0 13.30 14.50 | 36.88 47.72

ASAM (Ours) | 68.65 99.31 | 42.16 52.92 | 49.82 60.00 | 45.30 49.38 | 51.48 7547

To demonstrate the effectiveness of our method in other domains, we evaluate our method on NLP
tasks. Following the evaluation settings of |Ilharco et al.|(2023)), we finetune the Flan-T5-Base
fel et all, [2019; [Wei et all, 2022)) on four NLU tasks: CoLA, MRPC, RTE, and SST-2 in GLUE
benchmark (Wang et al., 2019). All finetuning processes start from the Flan-T5 pretrained check-
point available on HuggingFace. We finetune each model for 8000 iterations with a batch size of
16 and a learning rate of 10~°. AdamW is used as the optimizer, and a linear annealing approach
without warmup is applied as the learning rate scheduler. For efficient finetuning, we convert all
downstream NLP tasks into a text-to-text format, following the approach in (2024). We
measure the multi-task performance of the multi-task model merged by all four tasks using task
arithmetic.

As shown in Table [8] our method outperforms SGD on all tasks except RTE. These results indicate
that our method can enhance performance not only in vision tasks but also in NLP tasks. As shown
in Table@ our method outperforms SGD on all tasks except RTE, and on average, it achieves better
multi-task performance compared to SGD.

C.9 TRAINING COSTS OF FINETUNING.

Table 0] presents a comparison of training costs between SGD and our method across various mod-
els and finetuning methods. We use AdamW as the optimizer for all training, setting the batch
size to 64 only for finetuning ViT-B/16 using FTTS, while using a batch size of 128 for all other
cases. Additionally, all training is conducted using Nvidia GeForce RTX 3090 GPUs. Training time
approximately doubles after applying ASAM, while VRAM usage increases slightly.

Recently, there has been active research aimed at reducing the computational cost of SAM
let all 2022} [Liu et al 2022). Model merging is an approach designed to efficiently build multi-task
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Table 9: Training cost of SAM finetuning.

Fintuning baselines ({,) . . VIT-B/32 . . VIT-B/16

Time (it/s)  VRAM (GB) | Time (it/s) = VRAM (GB)
SGD 3.75 7.3 1.01 21.5
FTTS 1.93 12.6 1.07 20.9
FTLO 4.61 5.8 1.25 19.0
ASAM (Ours) 1.98 7.8 0.50 21.6

models, and since our work seeks to establish a connection between model merging and SAM, we

believe our research can significantly contribute to works focused on improving the efficiency of
SAM.

D THEORETICAL DETAILS

D.1 CONNECTION BETWEEN SAM OBJECTIVE AND PARAMETER INTERFERENCE

Definition 1 (Joint-Task Loss). Joint-Task Loss, denoted as L j1,(0; D), represents the aggregate
loss over multiple tasks. Here, 8 denotes the model parameters, and D is the combined dataset
formed by the union of individual task datasets D and D;. Formally, it is defined as:

Lyrr(0;D) = L(6; D) + L(0; Dy),
where D =D, U Dy, a7

where £(0; Ds) and L(60; D;) denote the loss functions for datasets D and D;, respectively.

Definition 2 (Joint-Task Loss Linearity). Joint-Task Loss Linearity (JTL Linearity) describes the
linear relationship between the Joint-Task Loss of an interpolated model and the weighted sum of
the individual Joint-Task Losses of task-specific models. Specifically, for datasets Dy and D;, with
their respective fine-tuned parameters 6, and 8, JTL Linearity holds if:

[,JTL(OéOS + (1 — Ot)at;D) ~~ OzEJTL(os; D) + (1 — OL)EJTL(Ot;'D), (18)

where @ € [0, 1] is a scalar coefficient. This approximation implies that the Joint-Task Loss of the
parameter combination a6+ (1— )8, is approximately equal to the weighted sum of the individual
Joint-Task Losses.

Property 1 (SAM Reduces the Dominant Hessian Eigenvalue A\p.x). Let H(0; D) = V5L(6; D)
be the Hessian matrix respect to the model parameter 8. The dominant Hessian eigenvalue
Amax(0; D) is the largest eigenvalue of H(D; 0):

Amax(0;D) = max v' H(6;D)v. (19)

llollz=1

[Agarwala & Dauphin| (2023) demonstrated that SAM provides strong regularization of the eigen-
values throughout the learning trajectory. As illustrated in Figure |8| we further discover that SAM
not only regularizes the learning trajectory but also reduces the dominant Hessian eigenvalue for pa-
rameters 6 along the line segment between the pretrained parameter 6 and the finetuned parameter
(7

D.2 PROOF OF THEOREME]
Proof. We aim to show that:
6] < —a(l — a)(As + M) [0 — 05 |° + e, (20)

)\s = )\max(es;ps)y )\t = )\max(eﬁpt) (2])

N | =

where
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Figure 8: Comparison of the dominant Hessian eigenvalue for parameters on the line segment
between the pretrained parameter and finetuned parameter. We compare the dominant Hessian
eigenvalue \yax (8; D)) of parameter @ along the line segment 6,60;, where @ = 6y + (0; — 6;)
for v € [0,1], D® denotes the dataset for task k. The line represents the mean of the dominant
Hessian eigenvalues for all tasks.

Recall that the Joint-Task Loss is defined as £ j71(0; D) = L(0; Ds) + L(0;D;), define ¢ as:
6 =Lyrr(als + (1 —a)0;; D) — alyr(0s;D) — (1 — a)Lyrr(0:; D)
= [L(aBs + (1 — a)0y;Ds) — aL(04;Ds) — (1 — ) L(Oy; D))
+ [L(aBs + (1 — @)0:; D) — aL(0s;Dy) — (1 — ) L(0;Dy))
= 68 + 5t; (22)
where 65 = L(aBs + (1 — a)0;; Ds) — aL(0s;Ds) — (1 — ) L(60; Ds),
615 = E(O{HS + (1 — a)@t;Dt) — aE(@S, Dt) — (1 — a)ﬁ(@t,Dt)
Performing a third-order Taylor expansion of £L(a8; + (1 — «)8y; D) around 0;:
L(ab, + (1 — )8y Dy) = L(05; D) + (1 — a)VeL(0s;D,) " (6, — 0s)
1
+5(1=a)*(0, — 0,) "H, (8, - 0,) + R, (23)

where Hy = V2L£(05; D;) and R, is the remainder term.

Similarly, expand £(60;; D) around Oy:

L(6;;D,) = L(0,;Ds) + VoL(8s;D,) (0, — 0,) + %(at —6,)"H,(0, —0,) +R.. (24)

Multiply both sides by (1 — «):
(1—a)L(0;;Ds) = (1 — a)L(8s;Dy) + (1 —a)VeL(0s; D) " (8, — 0,)
1

+5(1—a)(Ot—OS)THS(Ht—OS)Jr(l—a)R;. (25)

Compute J:
8s = L(aBs + (1 — )0y;D,) — aL(0s;D,) — (1 — ) L(0:;Dy)
= [L(04:Dy) + (1 —a)VeL(0s;Ds)" (0, — 0,) + %(1 —a)%(6, — 0,) "H,(0, — 0,) + R,
— al(0s;Ds) — [(1 — a)L(05;Ds) + (1 — a)VeL(05;D,) " (6 — 6s)

+ %(1—a)(9t -0, H, (0, —0,)+ (1 —-a)R,|. (26)
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Simplify the expression:
0s = L(0s;Ds) — aL(0s;Ds) — (1 — a)L(Os;Ds)
+ (1 —a)VeL(0:;D,)" (8, — 0,) — (1 — a)VeL(0s;Ds)" (6, — 0,)

1 1
+5(1- a)?(6; — 6,) "H, (6, — 6,) — (1 —a)(6, — 6,) H, (6, — 6,)
+Rs— (1 —a)R.. (27)
1
= —5a(l =) - 0,)"H,(0; — 0,) + (R, — (1—a)R,). (28)
Similarly, compute §; by expanding around 6:
1
0 =—50a(l—a)6: - 0,) "H, (6, — 0,) + (R, — aR}), (29)
where H; = V3L(0;;D;). (30)
Combining d, and 6;:
1
0= 05+ 0 = —5a(l-a)(0 - 0,)" (H, +H,)(0, — 0,) +e, (31)
where €= (Rs — (1 —a)R.) + (R; — aR}). (32)

Sil’lCC (Ot — OS)THs(gt — 05) S AgHgt — 93”2 and (Ot — OS)THt(Ot — 05) S >\t||0t — 03”2, |6‘ iS
bounded as:

1
81 < 50— )\ + A0 — 04l +e. (33)

where € = (Rs — (1 — o) R.) 4+ (R: — aR}) is the remainder term. O
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