OPTIVER: UNLEASHING THE POWER OF LLMS FOR OPTIMIZATION MODELING VIA DUAL-SIDE VERIFICATION

Anonymous authorsPaper under double-blind review

ABSTRACT

Building mathematical optimization models is critical in operations research (OR), while it requires substantial human expertise. Recent advancements have utilized large language models (LLMs) to automate this modeling process. However, existing works often struggle to verify the correctness of the generated optimization models, without checking the rationality of the constraints and variables or the validity of solutions to the generated models. This hampers the subsequent verification and correction steps, and thus it severely hurts the modeling accuracy. To address this challenge, we propose a novel LLM-based framework with Dual-side Verification (OptiVer) from both structure and solution perspectives, thereby improving the modeling accuracy. The structure-side verification ensures that the modeling structure of the generated optimization models aligns with the original problem description, accurately capturing the problem's constraints and requirements. Meanwhile, the solution-side verification interprets and evaluates the validity of the solutions, confirming that the optimization models are logically and mathematically sound. Extensive experiments on several popular benchmarks demonstrate that our approach significantly outperforms the state-of-the-art, achieving over 20% improvement in accuracy.

1 Introduction

Optimization problems are foundational to operations research (OR), with wide-ranging applications in manufacturing (Jayal et al., 2010), transportation (Yin, 2002), and service industries (Berman et al., 1994). In practice, OR problem statements are typically specified in natural language. Practitioners must therefore (i) translate these descriptions into an appropriate mathematical optimization model (defining objectives, decision variables, and constraints) and (ii) implement the solver code (e.g., SCIP (Achterberg, 2009), Gurobi (Gurobi Optimization, 2021), or Pyomo (Bynum et al., 2021; Hart et al., 2011)) to obtain solutions. This workflow is labor-intensive, demands substantial domain expertise in problem context, mathematical modeling, and code-level implementation or debugging, and is consequently costly and time-consuming (Ahmaditeshnizi et al., 2024).

Given the impressive capabilities of large language models (LLMs) in natural-language understanding and domain knowledge acquisition, a growing number of works have employed LLMs to automate the processes of modeling, programming, and debugging. Existing approaches can be broadly grouped into two categories. The first category, prompt-based methods, relies on pre-trained LLMs (e.g., GPT-4 (OpenAI, 2023) and GPT-4o (OpenAI, 2024)), which are prompted to construct mathematical models incrementally. In practice, these methods are often implemented into a carefully designed framework, such as multi-agent cooperation (Xiao et al., 2024; Ahmaditeshnizi et al., 2024) and Monte Carlo tree search (Astorga et al., 2025). The second category enhances modeling capabilities through fine-tuning, which involves constructing a large, labeled dataset for LLM training (Huang et al., 2025; Wu et al., 2025; Jiang et al., 2025; Chen et al., 2025; Lu et al., 2025).

Beyond these two approaches, recent research has explored self-correction strategies to improve the modeling performance (Jiang et al., 2025; Xiao et al., 2024; Ahmaditeshnizi et al., 2024). These methods trigger correction primarily from error messages produced during code execution. However, such strategies confine self-correction to code-level issues, and the underlying model can remain

055

056

057

058

059

060

062

063

064

065

066

067

068

069

071

072

073

074

075

076

077

079

080

081

083

084

085

087

880

090

091 092

093

094

096

098

100

101

102

103

104

105

106

107

flawed even when the code runs without failure. To develop more effective model verification methods, we characterizes incorrect models by the following features. First, incorrect models often overlook indispensable constraints that the textual problem description does not explicitly state. For example, when formulating a maximum flow problem, an LLM might omit flow-balance constraints at intermediate nodes simply because they are not explicitly mentioned, yielding a structurally incomplete model. Second, incorrect models can yield solutions that are infeasible or violate basic logical principles, even though the solver executes successfully and reports an improved objective.

To address these challenges, we propose a novel multi-agent framework with Dual-side Verification (OptiVer) from both the modeling structure and solution perspectives, improving the modeling accuracy. This approach moves beyond simple code-execution signals by translating both the optimization model and its resulting solutions into natural language and evaluating their semantic correctness. To the end, OptiVer introduces two novel evaluation metrics for selfcorrection: modeling structure consistency and solution validity. (1) Consistency in the modeling structure ensures that the mathematical formulation (its variables, constraints, and objective) is a complete and faithful translation of the original problem description. To evaluate this metric, one LLM agent performs a backtranslation that abstracts the generated model into a compact, multi-level description of its components. A second agent then aligns this abstraction with the structure derived from the original specification to reveal omissions or mis-

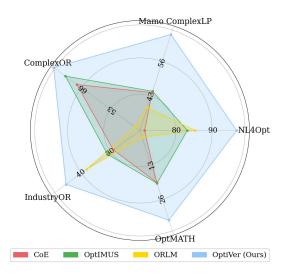


Figure 1: OptiVer outperforms other baselines in solving accuracy (SA) across the benchmarks.

matches. (2) **Solution validity** assesses whether Othe solution of the produced model is logically and contextually sound for the real-world task. To assess it, one agent interprets the numeric solution in natural language, explaining its meaning in the context of the real-world problem. Another agent then critiques that interpretation to expose logical absurdities or mathematical violations that code-execution checks miss. Finally, we use the verification feedback for model refinement.

As illustrated in Figure 1, extensive experiments on five popular benchmarks showcase that our approach significantly outperforms the state-of-the-art, achieving an average improvement of approximately 10% in solving accuracy. Notably, OptiVer is designed as a plug-and-play framework, capable of effectively verifying and refining optimization models generated by any existing pre-trained or fine-tuned OR LLMs.

2 RELATED WORK

Automated Optimization modeling In practice, the OR problems often arise from real-world situations, which are typically described in natural language. Consequently, automated optimization modeling has emerged as a critical area aimed at reducing the labor and time costs associated with the modeling process (Chen et al., 2023; Li et al., 2023). Notable early efforts in this field include the NL4Opt competition (Ramamonjison et al., 2021). Since then, several benchmarks have been introduced to evaluate performance, such as ComplexOR (Xiao et al., 2024), NLP4LP (Ahmaditeshnizi et al., 2024), Mamo (Huang et al., 2024), IndustryOR (Huang et al., 2025) and Optibench Yang et al. (2025); Wang et al. (2024). Recent research primarily falls into two categories: prompt-based methods and fine-tuned methods. Prompt-based approaches utilize pre-trained large language models (LLMs) with carefully crafted prompts to iteratively construct models. For instance, Chain-of-Experts (Xiao et al., 2024) and OptiMUS (Ahmaditeshnizi et al., 2024) frameworks employ multi-agent cooperation, while some other methods Astorga et al. (2025) leverage Monte Carlo tree search techniques to explore potential models. To further enhance the modeling capabilities of LLMs, researchers also work on fine-tuning these models with extensive OR and modeling knowledge (Huang et al., 2025; Wu et al., 2025; Jiang et al., 2025; Chen et al., 2025). For example, LLaMoCo (Ma et al., 2024) utilizes an instruction tuning framework to adapt LLMs for solving optimization

problems in a code-to-code manner. ORLM (Huang et al., 2025) trains open-source LLMs specifically designed for optimization modeling and solver code development. Additionally, advanced techniques such as KTO (Ethayarajh et al., 2024) and data augmentation have been introduced to improve model training (Wu et al., 2025; Jiang et al., 2025).

3 MOTIVATED RESULTS AND CASE ANALYSIS

Challenges We identify two key challenges in existing LLM-based optimization modeling methods. (1) LLMs struggle to identify the modeling structure within the problems, including missing or incorrect constraints and errors in variable definitions. The prevalence of such mistakes is notable in benchmarks, with 36.0% in NL4Opt and 12.6% in ComplexOR as pointed out in OptiMUS (Ahmaditeshnizi et al., 2024). (2) LLMs can only find the errors in the solver codes, but can hardly find the errors in the optimization models. OptiMUS points out that "Coding errors are easier to identify and fix. In contrast, identifying bugs in the formulation requires deeper reasoning and is harder." In existing methods, the debugging module is typically activated only when solver codes produce execution errors. To illustrate these challenges, we use GPT4o-mini in Figure 2, involving a maximum flow problem (MF).

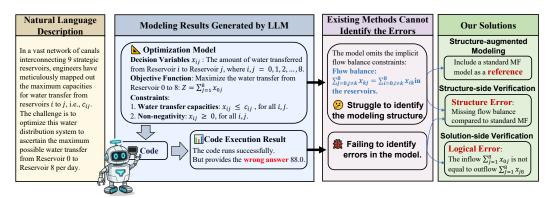


Figure 2: The two challenges we observed in existing optimization modeling methods.

Observations on the Modeling Structures To specify the definition and the usage of modeling structures, we have the following observation. The LLM cannot find the flow balance constraints at first. However, the model can correctly identify the relevant problem classifications. When we prompt the model to formulate the relevant problem classification (Maximum Flow Problem in this case), it successfully identifies the flow balance constraints.

The core principle of structure-augmented modeling is to leverage similar standard optimization models as a reference to identify a problem's implicit constraints. In Operations Research, many problems in similar scenarios share characteristics with optimization models in conventional problem classifications, such as the Vehicle Routing Problem or the Maximum Flow Problem. These classic

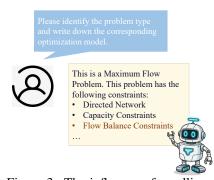


Figure 3: The influence of recalling a problem classification.

types have conventional mathematical formulations—including standard variables and assumed constraints—which this paper refers to as **modeling structures**. Even when a new problem does not neatly fit a standard problem classification, referencing the modeling structure of a similar, well-understood problem helps the LLM uncover these implicit relationships, which are often crucial for a correct formulation.

4 METHODOLOGY

Our work investigates how the modeling process can be enhanced through effective verification methods on both the structural and solution sides. An overview of the framework is presented in Figure 4. We define multi-level modeling structures in Section 4.1, followed by a detailed explanation of

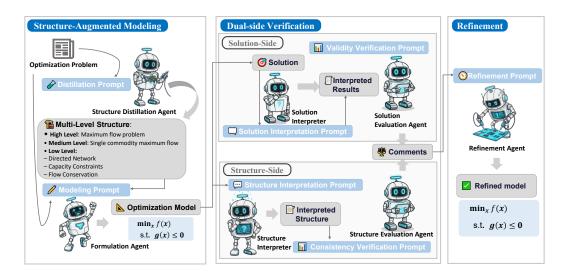


Figure 4: Our OptiVer framework begins by distilling the multi-level structures from the natural language description. These extracted structures are then combined, allowing the formulator to generate an initial model. Then, OptiVer conducts a dual-side verification and refinement process.

structure-side verification in Section 4.2 and solution-side verification using a multi-agent cooperation framework in Section 4.3. We first introduce some notations in this work as follows.

Let $\mathcal D$ represent the space of natural problem descriptions, and let $\mathcal M$ denote the model space encompassing all possible optimization models. The modeling process can be viewed as a mapping from the problem description $D \in \mathcal D$ to an optimization model $M \in \mathcal M$. In information theory, mutual information is defined as

$$I(X,Y) = \sum_{x \in \mathcal{X}, Y \in \mathcal{Y}} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$
 (1)

This measure quantifies the information gained about one random variable X through the observation of another random variable Y. Here \mathcal{X} and \mathcal{Y} represent the space of X and Y respectively, and $p(\cdot)$ is the probability mass function. A higher value of mutual information indicates a greater reduction in uncertainty about one variable when the value of the other is known. The modeling process can be viewed as maximizing the mutual information I(D,M).

4.1 STRUCTURE-AUGMENTED MODELING

- (1) Motivation of Multi-Level Structure: Coarse-to-fine structure Analysis Before the modeling process, human experts first analyze the problem description to identify a similar conventional problem classification as a reference. Next, they determine the variant of the classification that best aligns with the description. Finally, they assess special requirements in the description. This analysis follows a coarse-to-fine approach, from high-level to low-level structure analysis.
- (2) Multi-Level Modeling Structure Our framework begins by distilling the modeling structures from the natural language descriptions. As discussed in Section 3, understanding the problem type is crucial in the modeling process, as it serves as a foundational template for developing optimization models. Inspired by the coarse-to-fine structure analysis process used by human experts, we further refine the concept of modeling structures by introducing the idea of multi-level modeling structures.
 - High-Level Structure: This represents the fundamental problem type within OR, such as the maximum flow problem, set covering problem, vehicle routing problem, and knapsack problem. Each of these problem types is associated with a basic optimization model.
 - Medium-Level Structure: This pertains to the classical classification or variants of fundamental problem types. For instance, variations of the maximum flow problem include multi-source

MF, multi-commodity MF, minimum-cost MF, and MF in undirected graphs. Each variant is associated with a specific modified optimization model derived from the basic model.

Lower-Level Structure: This level encompasses constraints in the classical optimization model
as well as specific requirements that extend beyond classical models. For instance, standard
constraints might include capacities and flow balance constraints in the MF, while special requirements could involve flow capacities that fluctuate over time.

As we mentioned in Section 3, even highly complex and unique industrial problems are often variants

or combinations of fundamental problem classifications recognized in operations research. The

high-level and **medium-level structures** in our framework are designed to capture this foundational core, providing a solid starting point for the modeling process. Second, and most critically, the framework's **low-level structure** is specifically designed to provide the necessary flexibility to handle unique, real-world contexts. This level is not confined to a specific problem classification and is intended to capture the nuanced, problem-specific constraints and requirements that extend beyond classical formulations. This design allows the framework to represent the unique aspects of any given problem, rather than forcing it into a rigid, predefined category. We denote the multi-level modeling structure as *S*. Below, we provide an example of the modeling structure we have defined.

Example: The Structure Schema Extracted by LLMs

• High Level: Maximum flow problem

• Medium Level: Single commodity maximum flow

• Low Level:

Dina stad

- Directed Network: The flow is directed from one reservoir to another.

- Capacity Constraints: Each edge (connection between reservoirs) has a maximum capacity.

Flow Conservation: The amount of water entering any intermediate reservoir must equal
the amount leaving, except for the source and sink.

(3) Structure Distillation and Structure-Augmented Modeling We use two pre-trained LLMs (implemented by GPT4o-mini in this work) as agents to complete the structure distillation and initial modeling tasks, guided by designed prompts. To distill the multi-level modeling structure S from the natural language description D, we introduce an LLM agent, called the structure distillation agent. The agent takes as input the problem description and outputs the formatted structure context. Then, we call a formulation agent to generate an initial optimization model M guided by prompts combining the problem description and modeling structure, i.e.,

$$S = \text{Distillation_Agent}(D), \quad M = \text{Formulation_Agent}(D, S).$$
 (2)

4.2 STRUCTURE-SIDE: STRUCTURE INTERPRETATION AND CONSISTENCY VERIFICATION

(1) Motivation Structure-side verification finds the modeling errors by detecting any deviation from the established, correct formulation for a known class of problems, catching errors of omission where the LLM may overlook fundamental constraints and variables required for that problem classification. Inspired by dual learning in machine translation (He et al., 2016), we assert that a correct model must meet the following consistency criterion: when we translate the optimization model back into the space of modeling structure, the resulting context should semantically correspond to the modeling structure directly derived from the problem description.

(2) Structure Interpretation and Consistency Verification
We introduce a structure interpretation agent and an evaluation agent to complete the structure verification task. The two agents are also guided with specific prompts. First, a structural interpretation agent performs a "back-translation". It takes the generated mathematical model M and converts it back into its abstract modeling structure \tilde{S} . Next, a structural evaluation agent acts as a critic. It compares the interpretation agent's output \tilde{S} with the original structure S derived from the problem description to check for semantic consistency. The evaluation agent's output is twofold: a binary consistency score c_c and a detailed comment that

highlights any discrepancies. This comment provides specific, actionable feedback that is later used to refine the model. The process can be formally summarized as

$$\tilde{S} = \text{StruInterp_Agent}(M), \quad (com, c_c) = \text{StruEval_Agent}(S, \tilde{S}),$$
 (3)

where $c_c = 1$ indicates consistency, while the comment com details any differences found between the structures, guiding the subsequent refinement step.

Finally, we propose an analysis of the structure-side verification using mutual information. Suppose that \tilde{S} is the interpreted structure from optimization model M. The structure-side verification aims to improve the consistency between structures S from the natural language description and that \tilde{S} interpreted from the optimization model, i.e., the mutual information $I(S, \tilde{S})$.

Proposition 4.1. We have $I(S, \tilde{S}) \leq I(D, M)$. Thus, the structure-side verification optimizes the lower bound of the mutual information between the problem description and the optimization model.

4.3 SOLUTION-SIDE: SOLUTION INTERPRETATION AND VALIDITY VERIFICATION

(1) Motivation This method works because it grounds the abstract mathematical model by assessing whether its solution is logically feasible. A model may be syntactically correct and yield a numerical answer, yet that answer could violate the fundamental logic of the original problem (e.g., suggesting more water flows out of a reservoir than flows in). We argue that the semantic content of the solution itself is a far richer source for identifying errors. Solution-side verification enhances performance because it is designed to catch logical errors that are invisible to systems that only check for solver execution errors. The core of this verification is to leverage the **common-sense and logical reasoning capabilities** of such LLMs for improved error detection.

(2) Solution Interpretation and Validity Verification Given an optimization model M, OptiVer executes the solver code and obtains the optimal solution x. Then, OptiVer performs solution-side

verification using two LLM agents, guided by designed prompts. The first agent, a solution interpreter, translates the raw numerical solution \boldsymbol{x} into a meaningful natural language description \tilde{D} based on the original problem context D. Next, the second agent, a solution evaluation agent, scrutinizes this description to identify any logical or mathematical errors. This agent's output includes a binary validity score c_v and, crucially, a detailed comment

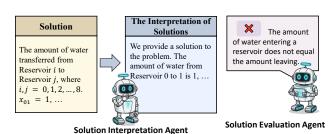


Figure 5: An example of solution verification.

com that provides specific feedback on any flaws found. The score value is 1 if the evaluator recognizes the validity of solution x, and 0 otherwise. This verification process can be formally summarized as:

$$\tilde{D} = \text{SolInterp_Agent}(\boldsymbol{x}, D), \quad (com, c_v) = \text{SolEval_Agent}(D, \tilde{D}).$$
 (4)

Similar to the analysis of the structure-side verification, we have the following analysis of the solution-side verification. Suppose that \tilde{D} is the interpreted solution from optimization model M. During the solution-side verification, we improve the mutual information $I(D, \tilde{D})$.

Proposition 4.2. We have $I(D, \tilde{D}) \leq I(D, M)$. Thus, the solution-side verification optimizes the lower bound of the mutual information between the problem description and the optimization model.

4.4 REFINEMENT

Based on the feedback, we refine the optimization model. The refinement agent within the OptiVer framework is a specialized LLM-based component responsible for correcting and enhancing the initial optimization model based on insights from the dual-side verification process. Guided by a refinement prompt, the agent takes the current formulation as input and produces a refined optimization model, represented as $M' = \text{Ref_Agent}(D, S, M, com)$.

Table 1: Comparison of our method and the baselines across five popular benchmarks. Throughout the experiments, we compare the solving accuracy (SA) of the methods.

	NL4Opt	Mamo ComplexLP	ComplexOR	IndustryOR	OptMATH	
Reasoning LLMs						
DeepSeek-R1	82.6	67.2	68.4	32.0	33.1	
OpenAI-o1	87.1	66.3	68.4	36.0	32.5	
Fine-tuned Method						
ORLM	85.1*	38.8*	42.1*	38.0*	2.6*	
Evo-Step	84.4*	61.6*	-	36.3*	-	
LLMOPT	80.3*	44.1*	72.7*	29.0*	12.5*	
OptMATH	95.9*	54.1*	-	-	34.9*	
SIRL	96.3*	62.1*	-	33.0*	29.0*	
Prompt-based Method						
Standard	64.6	27.9	31.5	24.0	15.6	
CoT	69.3	34.5	36.8	27.0	18.6	
CoE	71.3	44.5	68.4	29.0	19.8	
OptiMUS	83.0	45.0	73.6	31.0	20.2	
OptiVer (Ours)	96.5	66.7	78.9	45.0	34.3	

Values marked with * are from the original or reproduced papers. , and - are with missing data because the model has not been publicly released.

5 EXPERIMENTS

Benchmarks We use five real-world operations research benchmarks: NL4Opt (Ramamonjison et al., 2021), Mamo ComplexLP (Huang et al., 2024), ComplexOR (Xiao et al., 2024), IndustryOR (Huang et al., 2025) and OptMATH (Lu et al., 2025). The NL4Opt benchmark, released for the NeurIPS 2022 NL4Opt competition, consists of 289 elementary linear programming problems. Mamo ComplexLP 211 problems. ComplexOR is a comprehensive dataset including linear and mixed-integer programming. In alignment with the studies by (Ahmaditeshnizi et al., 2024) and (Jiang et al., 2025), we focus on 19 specific problems from this dataset. IndustryOR has 100 challenging problems from various industry scenarios. OptMATH has 166 challenging problems.

Implementation and Baselines In our experiments, we utilized the GPT4o-mini to implement the agents in our method and all the prompt-based baselines. For the implementation of OptiVer, please see Appendix F for the prompts of each agent. In our experiments, we compare OptiVer with four available prompt-based methods and five fine-tuned operations research LLMs. The four prompt-based baselines include Standard, Chain-of-Thoughts (CoT) (Wei et al., 2022), Chain-of-Experts (CoE) (Xiao et al., 2024), and OptiMUS (Ahmaditeshnizi et al., 2024). The Standard baseline represents the output of GPT without any optimization of its reasoning processes. We include five fine-tuned open-source operations research language models as baselines, including ORLM (Huang et al., 2025) (based on LLaMA-3-8B model), Evo-Step (Wu et al., 2025) (based on LLaMA-3-8B model), LLMOPT (Jiang et al., 2025) (based on Qwen1.5-14B), OptMATH (Lu et al., 2025) (based on Qwen2.5-32B), and SIRL (Chen et al., 2025) (based on Qwen2.5-7B) trained with reinforcement learning. Additionally, we also compare our results with the pre-trained reasoning model DeepSeek-R1 (DeepSeek-AI, 2025) and OpenAI-o1 (OpenAI, 2024).

Metrics Consistent with existing research, we employed solving accuracy (SA) to evaluate performance. Specifically, SA represents the proportion of problems for which the methods successfully identify the optimal solutions. The higher value of SA implies better performance.

5.1 Main Results

To demonstrate the effectiveness of our method, we conduct experiments comparing solving accuracy (SA) between our approach and baseline methods across various benchmarks. The results presented

Table 2: Alation studies on (1) each component and (2) each level of modeling structures in OptiVer.

OptiVer (full)	96.5	66.7	78.9	45.0
OptiVer w/o low	91.1	54.9	73.6	30.0
OptiVer w/o medium	91.1	57.0	73.6	38.0
OptiVer w/o high	92.9	59.9	78.9	41.0
	Ablation fo	r Each Level of the Str	ructure	
OptiVer w/o sol-side	91.8	53.1	68.4	41.0
OptiVer w/o stru-side	91.5	55.2	68.4	29.0
OptiVer w/o struaug	91.8	54.2	63.1	34.0
	Ablati	on for the Component	cs .	
Method	NL4Opt	Mamo ComplexLP	ComplexOR	IndustryOR

in Table 1 indicate that our method significantly outperforms the baselines, achieving an approximate 20% improvement in solving accuracy compared to Standard. For the challenging benchmarks, our method consistently delivers outstanding performance. This demonstrates that OptiVer exhibits strong generalization capabilities across both easy and difficult scenarios. Furthermore, OptiVer achieves performance better than state-of-the-art reasoning LLMs, such as DeepSeek-R1 and OpenAI-o1, despite relying on a much weaker base model, GPT4o-mini. Please see Appendices D and E for case and error analysis.

5.2 ABLATION STUDIES

- (1) The Effects of Each Component of OptiVer In this section, we examine the effects of the three components of OptiVer: structure-augmented modeling, structure-side verification, and solution-side verification. To assess their contributions, we implement three variants of OptiVer. The first variant, OptiVer w/o stru-aug, omits the introduction of a modeling structure to enhance the modeling process. For structure-side verification, instead of interpreting the model in structural terms, we instruct an LLM agent to provide a narrative explaining the meaning of the variables, constraints, and objectives. The second variant, OptiVer w/o stru-side, does not implement structure-side verification at all. The third variant, OptiVer w/o sol-side, excludes the solution-side verification process. The results, presented in Table 2, reveal a significant drop in performance in the absence of any of these components, highlighting their essential roles in the modeling process.
- (2) The Effects of Each Level of Modeling Structures Next, we investigate the impact of each level within our proposed modeling structure. The variant OptiVer w/o high/medium/low level excludes the use of high, medium, and low-level structures. The experimental results in Table 2 demonstrate that all three levels contribute positively to overall performance, with the medium and low-level structures showing particularly pronounced improvements.

Takeaway Critically, the framework's "low-level structure" is specifically designed to provide the necessary flexibility to handle unique, real-world contexts. This level is not confined to a specific problem type and is intended to capture the nuanced, problem-specific constraints and requirements that extend beyond classical formulations. This design allows the framework to represent the unique aspects of any given problem, rather than forcing it into a rigid, predefined category.

5.3 BUILDING ON DIFFERENT BASELINES AND LLMS

(1) Improving different Baselines: OptiVer was applied to the outputs of three foundational baselines: OptiMUS and the fine-tuned ORLM model. In each case, OptiVer's verification and refinement process enhanced the initial models generated by these baseline methods. (2)Improving different Base LLMs: To illustrate that the framework is not reliant on a specific backbone model, we conducted experiments using various base LLMs with OptiVer. This approach highlights how performance scales with the capabilities of the underlying model, including stronger models (e.g., GPT-40) and weaker models (e.g., Qwen2.5-14B) The results consistently indicated significant performance gains, as shown in Table 3. Please refer to Appendix C for detailed experiment settings.

Table 3: We build OptiVer on different baselines and backbone models.

Method	NL4Opt	Mamo ComplexLP	ComplexOR	IndustryOR	
Different Baselines					
ORLM	85.1	38.8	42.1	38.0	
ORLM+OptiVer	92.3	59.6	73.6	42.0	
OptiMUS	83.0	45.0	73.6	31.0	
OptiMUS+OptiVer	96.1	61.0	78.9	45.0	
Different Backbones					
GPT-40	79.4	45.0	57.8	27.0	
GPT-4o+OptiVer	97.5	66.3	78.9	48.0	
Qwen2.5-14B	70.3	41.2	57.8	31.0	
Qwen2.5-14B+OptiVer	85.8	56.3	68.4	39.0	

5.4 QUANTITY ANALYSIS OF VERIFICATIONS

Critical Components of Verifications The interpretation and evaluation agents are essential components of the verification process, as they determine whether OptiVer can effectively identify errors in the modeling process. We conducted extensive ablation studies to quantitatively assess the accuracy and reliability of these agents. Our experiments were specifically designed to evaluate their ability to distinguish between correct and incorrect models.

S Table 4: Verification Precision				
Verification	туре	Easy	Medium	Hard
Structure V		92%	89%	83%
Solution Ve	erification	93%	91%	86%

Table 5: Verification RecallVerification TypeEasyMediumHardStructure Verification86%79%68%Solution Verification83%85%73%

Experiment design We utilized the IndustryOR dataset for evaluation, which consists of three difficulty levels (easy, medium, and hard) that allow us to test the generalization capabilities of OptiVer across varying problem complexities. *The hard problems can be general problems with complex structures that fall out of the conventional problem classifications*. However, this analysis was labor-intensive, as the IndustryOR dataset does not provide detailed, step-by-step ground-truth labels necessary for our analysis. To ensure the correctness of this evaluation, we resorted to a manual checking process, which is time-consuming. We first manually annotated the optimization models for the sampled problems to establish a ground truth. To facilitate our evaluation, we randomly selected ten problems from each difficulty level. For generating incorrect models, we initially labeled the models and extracted the structures. We then created nine negative samples for each labeled model by randomly deleting or rewriting some of the variables and constraints. This resulted in 30 positive and 270 negative modeling samples. For **structure evaluation**, we collected interpreted structures from both the positive and negative samples. The evaluator compared these interpreted structures with the ground-truth structures and generated a binary score. For **solution evaluation**, we used the positive and negative samples to generate solutions, which we then interpreted and assessed for reliability.

Results The evaluation accuracy and recall rates are presented in Tables 4 and 5. For each difficulty level, we evaluated 10 positive samples and 90 negative samples. Both precision and recall rates for the negative samples are high across the difficulty levels, demonstrating the reliability of the scores. We find that the verification process still performs well for hard problems that cannot be classified into a specific problem type, indicating the strong generalization to general problems.

6 Conclusion

In this paper, we propose an LLM-based verification framework designed to enhance the accuracy of automated mathematical modeling tasks. In the structure-side verification, we assess the modeling structures of the current model to ensure structural consistency. Meanwhile, in the solution-side verification, we interpret the solution within the context of the problem descriptions, aiming to identify any logical or mathematical errors in the models. Extensive experiments demonstrate the effectiveness of our method across a wide range of benchmarks.

ETHICS STATEMENT.

This work is designed to explore the significance of the verification process in LLM optimization modeling. We do not foresee any direct, immediate, or negative societal impacts of our research.

REPRODUCIBILITY STATEMENT.

All the results in this work are reproducible. We have discussed the implementation details in Section 5. We also present our prompts for each agent in Appendix F.

REFERENCES

- Tobias Achterberg. Scip: solving constraint integer programs. *Mathematical Programming Computation*, 1:1–41, 2009.
- Ali Ahmaditeshnizi, Wenzhi Gao, and Madeleine Udell. OptiMUS: Scalable optimization modeling with (MI)LP solvers and large language models. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 577–596. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/ahmaditeshnizi24a.html.
- Nicolás Astorga, Tennison Liu, Yuanzhang Xiao, and Mihaela van der Schaar. Autoformulation of mathematical optimization models using llms. In *International Conference on Machine Learning, ICML*, Proceedings of Machine Learning Research, 2025.
- Oded Berman, Zvi Ganz, and Janet M. Wagner. A stochastic optimization model for planning capacity expansion in a service industry under uncertain demand. Naval Research Logistics (NRL), 41(4):545–564, 1994. doi: https://doi.org/10.1002/1520-6750(199406)41: 4<545::AID-NAV3220410407>3.0.CO;2-Z. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6750%28199406%2941%3A4%3C545%3A%3AAID-NAV3220410407%3E3.0.CO%3B2-Z.
- Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D. Laird, Bethany L. Nicholson, John D. Siirola, Jean-Paul Watson, and David L. Woodruff. *Pyomo–optimization modeling in python*, volume 67. Springer Science & Business Media, third edition, 2021.
- Hao Chen, Gonzalo E. Constante-Flores, and Can Li. Diagnosing infeasible optimization problems using large language models, 2023. URL https://arxiv.org/abs/2308.12923.
- Yitian Chen, Jingfan Xia, Siyu Shao, Dongdong Ge, and Yinyu Ye. Solver-informed rl: Grounding large language models for authentic optimization modeling, 2025. URL https://arxiv.org/abs/2505.11792.
- DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf.
- Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model alignment as prospect theoretic optimization. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=iUwHnoENnl.
- LLC Gurobi Optimization. Gurobi optimizer. URL http://www. gurobi. com, 2021.
- William E Hart, Jean-Paul Watson, and David L Woodruff. Pyomo: modeling and solving mathematical programs in python. *Mathematical Programming Computation*, 3(3):219–260, 2011.
- Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. Dual learning for machine translation. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/5b69b9cb83065d403869739ae7f0995e-Paper.pdf.

- Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge, Benyou Wang, and Zizhuo Wang. Orlm: A customizable framework in training large models for automated optimization modeling. *Operations Research*, 2025. doi: 10.1287/opre.2024.1233. URL https://doi.org/10.1287/opre.2024.1233.
 - Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Mamo: A mathematical modeling benchmark with solvers. *CoRR*, abs/2405.13144, 2024.
 - A.D. Jayal, F. Badurdeen, O.W. Dillon, and I.S. Jawahir. Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. *CIRP Journal of Manufacturing Science and Technology*, 2(3):144–152, 2010. ISSN 1755-5817. doi: https://doi.org/10.1016/j.cirpj.2010.03.006. URL https://www.sciencedirect.com/science/article/pii/S1755581710000131. Sustainable Development of Manufacturing Systems.
 - Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, Jun Zhou, Aimin Zhou, and Yang Yu. LLMOPT: Learning to define and solve general optimization problems from scratch. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=90MvtboTJg.
 - Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai Menache. Large language models for supply chain optimization, 2023. URL https://arxiv.org/abs/2307.03875.
 - Hongliang Lu, Zhonglin Xie, Yaoyu Wu, Can Ren, Yuxuan Chen, and Zaiwen Wen. Optmath: A scalable bidirectional data synthesis framework for optimization modeling. In *International Conference on Machine Learning, ICML*, Proceedings of Machine Learning Research, 2025.
 - Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and Yue jiao Gong. LLaMoCo: Instruction tuning of large language models for optimization code generation. *CoRR*, abs/2403.01131, 2024.
 - OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023.
 - OpenAI. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.
 - OpenAI. Introducing Openai o1. https://openai.com/o1/, 2024.
 - Rindranirina Ramamonjison, Timothy T. L. Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghaddar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang. NL4Opt competition: Formulating optimization problems based on their natural language descriptions. In *NeurIPS 2022 Competition Track*, pp. 189–203, Virtual, 2021.
 - Zhuohan Wang, Ziwei Zhu, Yizhou Han, Yufeng Lin, Zhihang Lin, Ruoyu Sun, and Tian Ding. Optibench: Benchmarking large language models in optimization modeling with equivalence-detection evaluation, 2024. URL https://openreview.net/forum?id=KD9F5Ap878.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In *Advances in Neural Information Processing Systems 35*, pp. 24824–24837, New Orleans, LA, 2022.
 - Yang Wu, Yifan Zhang, Yurong Wu, Yuran Wang, Junkai Zhang, and Jian Cheng. Step-opt: Boosting optimization modeling in llms through iterative data synthesis and structured validation, 2025. URL https://arxiv.org/abs/2506.17637.
 - Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin Fu, Tao Zhong, Jia Zeng, Mingli Song, and Gang Chen. Chain-of-experts: When LLMs meet complex operations research problems. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=HobyL1B9CZ.
 - Zhicheng Yang, Yiwei Wang, Yinya Huang, Zhijiang Guo, Wei Shi, Xiongwei Han, Liang Feng, Linqi Song, Xiaodan Liang, and Jing Tang. Optibench meets resocratic: Measure and improve LLMs for optimization modeling. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=fsDZwS49uY.

USE OF LLMS

Large language models (LLMs) were used to aid writing polish, including refining sentence phrasing, logical flow, and prose clarity, without altering original meanings or technical details. We use LLM to generate the robot logos in Figure 2, 3, 4, and 5. LLMs did not participate in core research tasks (e.g., experiment design, data processing, model training, result analysis, or drafting key technical content).

A PROOF OF PROPOSITIONS

Proof. A property of mutual information is that $I(X,Y) \geq I(X,f(Y))$ for random variables X, Y, and function f. Thus, we have $I(D,M) \geq I(\text{Distillation_Agent}(D),M) \geq I(S,\text{Interp_Agent}(M)) = I(S,\tilde{S}).$

B MORE EXPERIMENT RESULTS

B.1 COMPARISON OF SOLVING EFFICIENCY

(1) Efficiency Definition We examine the solving efficiency of OptiVer in comparison to the prompt-based baselines CoE and OptiMUS by analyzing the average time taken to solve a problem. We use the same solver (Gurobi) for all methods. This ensures fairness in efficiency comparisons. The solving time in Table 6 contains the modeling time using LLMs and the execution time of the solver. The solver execution time is short (under 0.01 seconds) and can be neglected during this process. Thus, the

Table 6: Comparison of our method and baselines in the solving efficiency. OptiVer uses the shortest solving time (seconds).

	NL4Opt	Mamo ComplexLP
СоЕ	58.2	72.5
OptiMUS	64.2	80.3
OptiVer	52.8	67.6

solving time in Table 6 reflects the modeling time by LLMs. The results presented in Table 6 indicate that OptiVer achieves significantly shorter solving times, showcasing its high efficiency.

(2) The Reason why OptiVer is efficient Compared to other prompt-based baselines, OptiVer has a simpler workflow. CoE and OptiMUS are based on the multi-agent cooperation framework. The workflow of these methods is automatically controlled by a management agent. The insufficient decision-making ability of the management agent may lead to suboptimal decision chains. In the experiments, we find that this method may repeatedly call the same agent. For example, for certain complex problems, CoE may call the terminology interpreter again and again. In contrast, DeVet does not include such a management agent, leading to a simpler workflow.

B.2 THE PROBLEMS WE TRY TO ADDRESS IS CRITICAL IN OPTIMIZATION MODELING

The OptiVer framework is designed and validated for broad applicability across a wide range of problem domains and model types. Our experimental results provide compelling evidence for this generalizability.

Tuble 7. The proportion of errors.			
	NL4Opt	Mamo ComplexLP	
Missing Constraints	37.3 51.8	20.0	
Failure Model Debugging	31.0	40.0	

Table 7: The proportion of errors.

We demonstrate that the motivations and challenges we address are common and critical in the optimization modeling field.

The missing constraints Section 4.5 of the OptiMUS paper (Ahmaditeshnizi et al., 2024) has summarized and classified common errors, including missing or wrong constraints, incorrect model, and coding errors. Missing or wrong constraints mean the model fails to extract all the constraints from the model or generates wrong constraints. An incorrect model means errors, such as defining binary variables for visiting cities instead of links in TSP. The prevalence of such mistakes is notable in benchmarks, with 36.0% in NL4Opt and 12.6% in ComplexOR.

Incorrect model debugging This is also a common challenge. The OptiMUS paper (Ahmaditeshnizi et al., 2024) points out that "Coding errors are easier to identify and fix. In contrast, identifying bugs in the formulation requires deeper reasoning and is harder." In existing methods, the debugging module is called only when the solver codes raise execution errors.

C EXPERIMENT SETTING IN SECTION 5.3

The plug-and-play capability of OptiVer is supported by both its architectural design and empirical results across diverse setups. We have built OptiVer based on two modeling baselines (OptiMUS and ORLM) and two pretrained backbone LLMs (GPT-40 and Qwen2.5-14B). OptiMUS are prompt-based methods with general LLMs as backbones (we use GPT40-mini here), which can process any text inputs. We first extract multi-level structures for the problems using a structure distillation agent. These extracted structures are then appended to the problem descriptions and sent as input to the OptiMUS. Once the baselines generate an initial formulation, we proceed with OptiVer's verification step. However, ORLM is a fine-tuned model designed to handle only specific input formats. Therefore, the ORLM model is used solely to provide an initial optimization model, while we perform the verification and refinement processes using the GPT40-mini model.

D CASE STUDY

For the example to explain why OptiVer can mitigate the errors, we provide the following optimization problem with output of CoT and OptiVer.

Problem (simplified version) In a vast network of canals interconnecting 9 strategic reservoirs, engineers have meticulously mapped out the maximum capacities for water transfer from reservoirs i to j, i.e., c_{ij} . The challenge is to optimize this water distribution system to ascertain the maximum possible water transfer from Reservoir 0 to Reservoir 8 per day.

Optimization Formulation

Optimization Model Given by CoT:

- **Decision Variables:** x_{ij} : The amount of water transferred from Reservoir i to Reservoir j, where i, j = 0, 1, 2, ..., 8.
- Objective Function: Maximize the water transfer from Reservoir 0 to 8:

$$Z = \sum_{j=1}^{8} x_{0j}$$

- Constraints:
 - 1. Water transfer capacities: $x_{ij} \leq c_{ij}$, for all i, j.
 - 2. Non-negativity: $x_{ij} \geq 0$, for all i, j.

This model is incorrect due to missing flow balance constraints. The verification process is outlined as follows:

- **Structure-Augmented Modeling:** The model references a maximum flow problem. It correctly formulates the flow balance constraint when recalling the standard model.
- **Structure-Side Verification:** The model interprets the current optimization model and compares it with the structure of the original problems.
- Solution-Side Verification: If the model lacks flow balance constraints, the obtained solution is represented as $x_{ij} = c_{ij}$. The evaluation agent in OptiVer analyzes the solutions and determines that the inflow does not equal the outflow within the system. Consequently, the evaluation agent identifies this discrepancy as an error.

Optimization Formulation

Optimization Model Given by OptiVer:

- Modeling structures:
 - High Level: Maximum flow problem
 - Medium Level: Single commodity maximum flow
 - Low Level:
 - 1. Directed Network: The flow is directed from one reservoir to another.
 - 2. Capacity Constraints: Each edge has a maximum capacity.
 - 3. Flow Conservation: The amount of water entering any intermediate reservoir must equal the amount leaving.
- **Decision Variables:** x_{ij} : The amount of water transferred from Reservoir i to Reservoir j.
- Objective Function: Maximize the water transfer:

$$Z = \sum_{j=1}^{8} x_{0j}$$

- Constraints:
 - 1. $x_{ij} \leq c_{ij}$, for all i, j.
 - 2. $x_{ij} \geq 0$, for all i, j.
 - 3. Flow Conservation: $\sum_{\substack{j=0\\j\neq k}}^8 x_{kj} = \sum_{\substack{i=0\\i\neq k}}^8 x_{ik}$ for k in the reservoirs

Analysis The modeling structures are proposed to address the challenges of missing constraints. The core of structure-augmented modeling is to identify a similar standard optimization model, and identify the implicit constraints using the standard optimization model as a reference.

E ERROR ANALYSIS ON DIFFERENT PROBLEM TYPES

The results presented in Table 8 clearly demonstrate OptiVer's strong generalization capabilities, as it consistently and significantly outperforms the CoT baseline across five distinct and challenging problem categories. This robust performance is particularly evident in problem types where standard prompting methods struggle. For instance, on the Capacitated TSP, where CoT achieves a mere 5.13% accuracy, OptiVer boosts performance to 48.72%. Similarly, for Diet, Transportation, and Maximum Flow problems, OptiVer elevates accuracy from the 16-27% range to a much more effective 55-82% range. This shows that OptiVer's verification process can successfully navigate complex problem structures that are difficult for LLMs to model correctly. Furthermore, even in cases where the CoT baseline is already strong in some problems, such as the Facility Location-Allocation Problem (80.65%), OptiVer still provides a significant improvement, pushing the accuracy to 93.55%. The consistent and substantial performance lift across this diverse set of problems underscores that OptiVer's adaptive verification framework is a broadly applicable and effective strategy, rather than a technique tailored to a specific problem type.

Table 8: The performance on each problem category on the MAMO ComplexLP dataset

Problem Category	CoT	OptiVer
Diet Problem	27.27%	81.82%
Transportation Problem	23.53%	70.59%
Capacitated TSP	5.13%	48.72%
Maximum Flow Problem	16.28%	55.81%
Facility Location-Allocation Problem	80.65%	93.55%

F THE PROMPT DESIGN

810

811 812

813

F.1 STRUCTURE DISTILLATION

```
814
          interpretation_prompt=[
815
       You are a mathematical formulator working with a team of optimization
816
          → experts. The objective is to tackle a complex optimization problem.
817
818
       . . . .
819
       Please interpret and explain the following problem description.
820
       {problem}
821
822
       - What is the specific problem type of this OR and CO problem? What
823
          → specific kind of OR problem?
824
825
       This is the base formulation of the problem
826
827
       {base_formulation}
828
829
       - What is the subdivision of different kinds of this problem?
830
       - Is this base formulation correct?
831
       \pi \ \pi \ \pi
832
       - Is there any implicit constraints in the problem, including but not
833
          \hookrightarrow limited to the logical selection relation, if/else and if/then
834
          → relation?
       . . . .
835
       . . . .
836
       Please summarize and write in JSON Format. For 'subdivision', please find
837
          \hookrightarrow the ones matching this problem description
838
839
       '''json
       { {
840
         "problem_type": ..,
841
        "specific_type": ...,
842
        "subdivisions": {{
843
         subdivision 1: description,
844
          subdivision 2: description,
845
          . . .
        }},
846
        "implicit_constraints": {{
847
          implicit constraint 1: description,
848
          implicit constraint 2: description,
849
          . . .
        } } ,
850
       }}
851
852
853
       - Note that I'm going to use python json.loads() function to parse the
854
           \hookrightarrow json file, so please make sure the format is correct (don't add ','
           → before enclosing '}}' or ']' characters.
855
       - Generate the complete json file and don't omit anything.
856
       - Use '\''json' and '\''' to enclose the json file.
857
       и и и
858
       1
859
```

F.2 STRUCTURE-AUGMENTED MODELING

864

```
866
       formulation_prompt = [
867
       You are an expert mathematical formulator and an optimization professor
868
           \hookrightarrow at a top university. Your task is to model the problem in the
869
           \hookrightarrow standard LP or MILP form.
870
       ....
871
872
       Here is the description of the problem to be formulated.
873
       {problem}
874
875
       - Please summarize the parameters and their tensor sizes.
876
       - Please explain the definition of the parameters.
877
       - Please keep the answer brief and concise.
       """,
878
879
       please write in JSON Format. Make sure the bracket is closed, especially
880
           \hookrightarrow when processing the matrices. Do not transpose the matrices and
881
           \hookrightarrow keep the shape of the matrices.
882
883
           "parameters": [
884
885
                 "symbol": "mathematical symbol of the parameters",
886
                 "definition": "definition of the parameters", "
                 "value": the value of the parameters,
887
                 "shape": [],
888
              },
290
                 "symbol": "mathematical symbol of the parameters",
891
                 "definition": "definition of the parameters",
                 "value": the value of the parameters,
892
                 "shape": [],
893
              },
894
895
          ],
896
       } }
897
       - Use CamelCase and full words for new variable symbols, and do not
898
           \hookrightarrow include indices in the symbol (e.g. ItemsSold instead of itemsSold
899
           → or items_sold or ItemsSold_i)
900
       - Note that I'm going to use python json.loads() function to parse the
901
           → json file, so please make sure the format is correct (don't add ','

    before enclosing '}}' or ']' characters.

- Use '``json' and '``' to enclose the json file.
902
903
       """,
904
905
       Here are some of the cases when we need auxiliary variables. Do we need
906

→ to include auxiliary binary variables in the formulation?

907
       - Logical Conditions: When a decision depends on a binary condition (e.g.,
908
           \hookrightarrow whether to open a facility or not, use a kind of transportation or
909
           \hookrightarrow not ,and so on), auxiliary binary variables can represent these
910
           \hookrightarrow conditions.
911
       - Modeling step costs: Using binary variables involves creating a
912
           → mathematical formulation where costs change based on specific

→ thresholds or levels of activity.

913
       - Disjunctive Constraints: When a problem involves "either-or" situations,
914
           \hookrightarrow binary variables can be used to model these disjunctions
915
           \hookrightarrow effectively (Combined with the big M method).
916
       - Capacity Constraints: In problems involving limited resources, binary
917
           → variables can indicate whether a resource is being utilized or not,
           → allowing for better modeling of capacity.
```

```
918
       - Selection Problems: In scenarios where a fixed set of items or
919
           \hookrightarrow variables can be selected (e.g., choosing a subset of projects to
920
           \hookrightarrow fund), binary variables indicate the selection status.
       - Scheduling Order: When determining the sequence in which tasks are
921
           → performed, binary variables can indicate the order of tasks (e.g.,
922
           → Task A before Task B). This is often used in job-shop scheduling or
923
           \hookrightarrow project scheduling.
924
       - Penalty Costs: In scheduling with penalties for delays (like tardiness
925
           \hookrightarrow or unmet deadlines), binary variables can help track whether a task
926

→ incurs a penalty, allowing for cost minimization.

       - Job Switching: In scenarios where workers or machines can switch
927
           \hookrightarrow between tasks, binary variables can indicate if a switch occurs,
928
           \hookrightarrow helping to manage transition times and costs.
929
930
       0.00
       This problem is a {problem_type} problem with structures
931
932
       {structure}
933
934
       To analyze the description carefully, here is the base formulation of
935

→ this problem (which can be correct or needs to be modified)

936
       {base_formulation}
937
938
       Now take a deep breath and formulate this problem according to the
939
           \hookrightarrow description and base formulation.
940
       - Consider whether we need to introduce auxiliary binary variables, note
941
           \hookrightarrow that do not include redundant variables.
942
       - For variables, use integer type for discrete items (such as production,
943
           → unit, people) and continuous ones for continuous items (water,
944
           \hookrightarrow land, time, grams, and so on).
945
       - Your formulation should be in LaTeX mathematical format (do not include
           \hookrightarrow the $ symbols).
946
       - Important: You can not define new parameters. You can only define new
947
           → variables. Use CamelCase and full words for new variable symbols,
948
           \hookrightarrow and do not indices in the symbol (e.g. ItemsSold instead of
949
           \hookrightarrow itemsSold or items_sold or ItemsSold_i). You can include indices in
950
           \hookrightarrow the constraint and objective formulations.
       - Make sure that you do not use the numeric number in the formulation
951
           \hookrightarrow except when necessary, instead, you use the parameter name (you can
952
           \hookrightarrow include indices in the constraint and objective formulations).
953
       - Always use non-strict inequalities (e.g. \\leq instead of <), even if
954
           \hookrightarrow the constraint is strict.
955
956
       Take a deep breath and solve the problem step by step.
957
958
959
```

F.3 STRUCTURE INTERPRETATION AND STRUCTURE CONSISTENCY VERIFICATION

```
974
       modification_prompt = [
975
       You are an expert mathematical formulator and an optimization professor
976
           \hookrightarrow at a top university. Your task is to model and fix the problem in
977
           \hookrightarrow the standard LP or MILP form.
978
       . . . .
979
       11 11 11
980
       This is a {problem_type} problem with parameters
981
       {parameters}
982
983
       The formulation is as follows
984
985
       {formulation_interpretation}
986
       Does this problem consistent with the characteristics of the following
987
           \hookrightarrow structure description? If yes, please say "Yes" directly.
988
       If not, please give your comments to modify the formulation.
989
990
       {original_problem_interpretation}
991
       . . . .
992
       Please reformulate the problem to make the formulation consistent with
993
           \hookrightarrow the structure description.
994
995
       - Consider whether we need to introduce extra binary variables or
           \hookrightarrow linearization for a piece-wise linear function.
996
       - Your formulation should be in LaTeX mathematical format (do not include
997
           \hookrightarrow the $ symbols).
998
       - Important: You can not define new parameters. You can only define new
999
           → variables. Use CamelCase and full words for new variable symbols,
1000
           \hookrightarrow and do not include indices in the symbol (e.g. ItemsSold instead of
           \hookrightarrow itemsSold or items_sold or ItemsSold_i). You can include indices
1001
           \hookrightarrow in the constraint and objective formulations.
1002
       - Make sure that you do not use a numeric number in the formulation
1003
           → except where necessary; instead, you use the parameter name (you
1004
           \hookrightarrow can include indices in the constraint and objective formulations).
       - Always use non-strict inequalities (e.g. \\leq instead of <), even if
1005
           → the constraint is strict.
1006
1007
       Take a deep breath and solve the problem step by step.
1008
1009
       ]
1010
```

1027

F.4 SOLUTION INTERPRETATION AND SOLUTION VALIDITY VERIFICATION

```
1028
       solution_prompt = [
1029
       You are an expert mathematical formulator and an optimization professor
1030
          \hookrightarrow at a top university. Your task is to model and fix the problem
1031
          → using the solution information in the standard LP or MILP form.
1032
1033
1034
       This is a {problem_type} problem with solutions
1035
       {solutions}
1036
1037
       The formulation is as follows
1038
1039
       {formulation_interpretation}
1040
       Please interpret the meaning of the solution.
1041
1042
1043
       Here is the problem description.
1044
       {original_problem_interpretation}
1045
1046
       Is this solution the optimal solution? The optimal solution should be
1047
          \hookrightarrow mathematical sound and logical coherence:
1048
       - We cannot find a better solution.
1049
       - The solution should meet the constraints of the problem description.
1050
       If yes, please say "Yes" directly.
1051
       If not, please give your comments to modify the formulation.
1052
1053
       и и и
1054
      Please reformulate the problem to make the formulation consistent with
          \hookrightarrow the structure description.
1055
1056
       - Consider whether we need to introduce extra binary variables or
1057
          → linearization for a piece-wise linear function.
1058
       - Your formulation should be in LaTeX mathematical format (do not include
1059
          \hookrightarrow the $ symbols).
       - Important: You can not define new parameters. You can only define new
1060
          → variables. Use CamelCase and full words for new variable symbols,
1061
          \hookrightarrow and do not include indices in the symbol (e.g. ItemsSold instead of
1062
          → itemsSold or items_sold or ItemsSold_i). You can include indices
1063
          \hookrightarrow in the constraint and objective formulations.
       - Make sure that you do not use a numeric number in the formulation
1064
          → except where necessary; instead, you use the parameter name (you
1065
          \hookrightarrow can include indices in the constraint and objective formulations).
1066
       - Always use non-strict inequalities (e.g. \\leq instead of <), even if
1067
          \hookrightarrow the constraint is strict.
1068
       Take a deep breath and solve the problem step by step.
1069
1070
       ]
1071
1072
```

G MORE EXAMPLES

G.1 NL4Opt

1080

1081 1082

1083 1084

1085

1086

1087

1088

1089

1090

1091

1093 1094 1095

1096

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113 1114 1115

111611171118

1119 1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Example in NL4Opt

Natural Language Description:

A fishery wants to transport their catch. They can either use local sled dogs or trucks. Local sled dogs can take 100 fish per trip while trucks can take 300 fish per trip. The cost per trip for sled dogs is \$50 while the cost per trip for a truck is \$100. The budget is at most \$1000 and the number of sled dog trips must be less than the number of truck trips. Formulate an LP to maximize the number of fish that can be transported.

Modeling Structure Given by OptiVer:

```
"problem_type": "Linear Programming",
   "specific_type": "Resource Allocation Problem",
   "subdivisions": {
     "transportation optimization": "Optimizing the transport
        \hookrightarrow of goods or resources using various modes of
        "resource allocation": "Distributing limited resources to
        → achieve the best possible outcome.",
     "cost minimization and profit maximization": "Balancing

→ costs against outputs to maximize profit or benefits

        \hookrightarrow ."
   "implicit_constraints": {
     "non-negative trips": "The number of trips (x and y)

→ cannot be negative.",

     "integer trips": "The number of trips should generally be

→ an integer value."

12
  }
```

Optimization Model Given by OptiVer:

```
"constraints": [
2
           "name": "Budget Constraint",
           "description": "The total cost of trips must not

→ exceed the budget.",

           "formulation": "CostPerSledDogTrip \\cdot
              → NumberOfSledDogTrips + CostPerTruckTrip \\cdot
              → NumberOfTruckTrips \\leq TotalBudget"
        },
           "name": "Trip Comparison Constraint",
           "description": "The number of sled dog trips must
              → not exceed the number of truck trips.",
           "formulation": "NumberOfSledDogTrips \\leg
              → NumberOfTruckTrips"
12
        },
```

```
1134
1135
1136
                   "name": "Non-negativity Constraints",
1137
                   "description": "The number of trips must be non-
1138
                       → negative.",
1139
                   "formulation": "NumberOfSledDogTrips \\qeq 0"
                },
1140
1141
                   "name": "Non-negativity Constraints",
1142
                   "description": "The number of trips must be non-
1143
                       \hookrightarrow negative.",
1144
                   "formulation": "NumberOfTruckTrips \\qeq 0"
1145
1146
1147
                   "name": "Integer Constraints for Sled Dog Trips",
1148
                   "description": "The number of sled dog trips must be
1149

→ an integer.",

                   "formulation": "NumberOfSledDogTrips \\in \\mathbb{Z
1150
                       \hookrightarrow }"
1151
                },
1152
1153
                   "name": "Integer Constraints for Truck Trips",
1154
                   "description": "The number of truck trips must be an
1155
                       → integer.",
1156
                   "formulation": "NumberOfTruckTrips \\in \\mathbb{Z}"
1157
1158
1159
             "variables": [
1160
                {
1161
                   "definition": "Integer variable representing the
1162
                      → number of sled dog trips.",
                   "symbol": "NumberOfSledDogTrips",
1163
                   "type": "integer",
1164
                   "shape": []
1165
1166
1167
                   "definition": "Integer variable representing the
1168
                       → number of truck trips.",
1169
                   "symbol": "NumberOfTruckTrips",
                   "type": "integer",
1170
1171
                   "shape": []
1172
1173
             "objective": [
1174
1175
                   "description": "Maximize the total number of fish
1176

    → transported.",
1177
                   "formulation": "Z = FishPerSledDogTrip \\cdot
1178
                       \hookrightarrow NumberOfSledDogTrips + FishPerTruckTrip \\cdot
1179
                       → NumberOfTruckTrips",
1180
                   "objective_sense": "Maximize"
1181
1182
            ]
1183
1184
1185
1186
         Solver Code Given by OptiVer:
1187
```

```
1188
1189
          import json
1190
          import numpy as np
1191
          import math
          import gurobipy as gp
1192
          from gurobipy import GRB
1193
1194
          # Create a new model
1195
          model = gp.Model('model')
1196
          # Define parameters
1197
          parameters = {
1198
             "CostPerSledDogTrip": 50,
1199
             "CostPerTruckTrip": 100,
1200
             "FishPerSledDogTrip": 100,
1201
             "FishPerTruckTrip": 300,
             "TotalBudget": 1000
1202
1203
1204
          # Define variables
1205
          NumberOfSledDogTrips = model.addVar(vtype=GRB.INTEGER, name="
1206
              → NumberOfSledDogTrips")
          NumberOfTruckTrips = model.addVar(vtype=GRB.INTEGER, name="
1207
              → NumberOfTruckTrips")
1208
1209
          # Add variables to the model
1210
          model.update()
1211
          # Constraints
1212
          # Budget Constraint
1213
          model.addConstr(
1214
             parameters["CostPerSledDogTrip"] * NumberOfSledDogTrips +
1215
             parameters["CostPerTruckTrip"] * NumberOfTruckTrips <=</pre>
1216
             parameters["TotalBudget"],
             name="BudgetConstraint"
1217
1218
1219
          # Trip Comparison Constraint
1220
          model.addConstr(
1221
             NumberOfSledDogTrips <= NumberOfTruckTrips,</pre>
             name="TripComparisonConstraint"
1222
1223
1224
          # Non-negativity Constraints
1225
          model.addConstr(NumberOfSledDogTrips >= 0, name="
1226
              → NonNegativitySledDogTrips")
          model.addConstr(NumberOfTruckTrips >= 0, name="
1227
              → NonNegativityTruckTrips")
1228
1229
          # Set the objective
1230
          model.setObjective(
1231
             parameters["FishPerSledDogTrip"] * NumberOfSledDogTrips +
             parameters["FishPerTruckTrip"] * NumberOfTruckTrips,
1232
             GRB.MAXIMIZE
1233
1234
1235
          # Optimize the model
1236
          model.optimize()
          status = model.status
1237
1238
          obj_val = None
1239
          # Check whether the model is infeasible, has infinite solutions, or
1240
              \hookrightarrow has an optimal solution
1241
```

```
1242
1243
           if status == gp.GRB.INFEASIBLE:
    obj_val = "infeasible"
1244
1245
           elif status == gp.GRB.UNBOUNDED:
              obj_val = "unbounded"
1246
           elif status == gp.GRB.OPTIMAL:
1247
              obj_val = model.objVal
1248
1249
           print("Objective Value:", obj_val)
1250
1251
```

G.2 MAMO COMPLEXLP

Example in Mamo ComplexLP

Natural Language Description:

In a scenario involving a salesperson who needs to visit five different cities to conduct business, each city is uniquely numbered from 1 to 5. The salesperson's objective is to minimize the total travel expenses, which could be influenced by factors such as distance, fuel costs, or transportation fees. The salesperson can start their journey from any of these cities but must ensure they visit each city exactly once before returning to their starting point.

The travel costs between the cities are as follows:

- From City 1, the travel costs are 58 units to City 2, 15 units to City 3, 75 units to City 4, and 91 units to City 5.
- From City 2, it costs 58 units to City 1, 54 units to City 3, 85 units to City 4, and 11 units to City 5.
- Traveling from City 3, the expenses are 15 units to City 1, 54 units to City 2, 28 units to City 4, and 61 units to City 5.
- From City 4, the costs are 75 units to City 1, 85 units to City 2, 28 units to City 3, and 47 units to City 5.
- Lastly, from City 5, it costs 91 units to City 1, 11 units to City 2, 61 units to City 3, and 47 units to City 4.

Given this setup, what is the minimum total travel cost for the salesperson to visit each city exactly once and then return to the starting city?

Modeling Structure Given by OptiVer:

```
"problem_type": "Combinatorial Optimization Problem",
2
    "specific_type": "Traveling Salesman Problem (TSP)",
    "subdivisions": {
     "Hamiltonian cycle": "Path that visits each vertex exactly
         \hookrightarrow once and returns to the starting vertex",
     "Weighted graph": "Graph with weights on edges
         \hookrightarrow representing travel costs between cities",
     "Directed graph": "Graph where edges have a direction,
         → indicating the cost of travel from one city to
         → another"
    "implicit_constraints": {
     "subtour elimination": "Explicit constraints to prevent
        → subtours in the solution",
     "start_end city constraint": "Salesperson must start and

→ end at the same city"

12
  }
13
```

Optimization Model Given by OptiVer:

```
1350
1351
                    "description": "Each city must be visited exactly
1352
                       \hookrightarrow once by the salesperson.",
1353
                   "formulation": "\sum_{\{j \in Cities\}} x_{\{ij\}} = 1
1354
                       → quad \\forall i \\in Cities"
1355
1356
                   "name": "Return to Start City",
1357
                   "description": "The salesperson must return to the
1358
                       → starting city after visiting all cities.",
1359
                   "formulation": "\sum_{i \in \mathbb{Z}} x_{ji} = 1
1360
                       → quad \\forall j \\in Cities"
1361
                },
1362
1363
                   "name": "Subtour Elimination",
1364
                   "description": "Constraints to prevent subtours in
1365
                       \hookrightarrow the solution.",
1366
                   "formulation": "u_i - u_j + (|Cities|) \\cdot x_{ij}
                       → \\leq |Cities| - 1\\quad \\forall i, j \\in
                       1368
                },
1369
1370
                   "name": "Position Constraints",
1371
                   "description": "Position variables must be within
1372
                       → valid range.",
1373
                   "formulation": "2 \\leq u_i \\leq |Cities| \\quad \\
1374
                       → forall i \\in Cities"
1375
1376
             "variables": [
1377
1378
                   "definition": "Binary variable indicating whether
1379
                       \hookrightarrow the salesperson travels from city i to city j
1380
                       \hookrightarrow .",
1381
                   "symbol": "x_ij",
                   "type": "binary",
1383
                    "shape": [
1384
                       5,
1385
                       5
1386
1387
                },
1388
                   "definition": "Auxiliary continuous variable
1389
                       → representing the position of city i in the
1390
                       \hookrightarrow tour.",
1391
                   "symbol": "u_i",
1392
                   "type": "continuous",
1393
                    "shape": [
1394
1395
1396
1397
1398
             "objective": [
1399
      45
                   "description": "Minimize the total travel cost for
1400
                       \hookrightarrow the salesperson.",
1401
1402
```

```
1404
1405
                     "formulation": "Z = \\sum_{i \\in Cities} \\sum_{j
1406
                        \hookrightarrow \\in Cities} d_{ij} \\cdot x_{ij}",
1407
                     "objective_sense": "Minimize"
1408
1409
1410
1411
1412
1413
          Solver Code Given by OptiVer:
1414
1415
          import json
1416
          import numpy as np
          import math
1417
1418
          import gurobipy as gp
          from gurobipy import GRB
1419
1420
          # Create a new model
1421
          model = qp.Model('model')
1422
          # Define parameters
          parameters = {
1424
             "Cities": [1, 2, 3, 4, 5],
1425
             "TravelCosts": [
1426
                [0, 58, 15, 75, 91],
1427
                [58, 0, 54, 85, 11],
                 [15, 54, 0, 28, 61],
1428
                 [75, 85, 28, 0, 47],
1429
                 [91, 11, 61, 47, 0]
1430
             ]
1431
1432
          Cities = parameters["Cities"]
1433
          TravelCosts = parameters["TravelCosts"]
1434
          num_cities = len(Cities) # Number of cities
1435
1436
          # Define variables
1437
          x = model.addVars(num_cities, num_cities, vtype=GRB.BINARY, name="x

→ ") # Binary variables for routes
1438
          u = model.addVars(num_cities, vtype=GRB.CONTINUOUS, name="u") #
1439
              → Continuous variables for subtour elimination
1440
1441
          # Constraints: Each City Visited Once
1442
          for i in range(num_cities):
             model.addConstr(gp.quicksum(x[i, j] for j in range(num_cities)
1443
                 \hookrightarrow if i != j) == 1, f"VisitOnce_Cities[{i}]")
1444
1445
          # Constraints: Return to Start City
1446
          for j in range(num_cities):
1447
             model.addConstr(gp.quicksum(x[i, j] for i in range(num_cities)

    if i != j) == 1, f"ReturnToStart_Cities[{j}]")

1448
1449
          # Subtour Elimination Constraints
1450
          for i in range(1, num_cities):
1451
             for j in range(1, num_cities):
1452
                if i != j:
                   model.addConstr(u[i] - u[j] + num_cities * x[i, j] <=</pre>
1453
                       → num_cities - 1, f"SubtourElimination_Cities[{i}][{j
1454
1455
1456
           Position Constraints
1457
```

```
1458
1459
          for i in range(num_cities):
1460
             model.addConstr(u[i] >= 2, f"LowerBound_u[{i}]")
             model.addConstr(u[i] <= num_cities, f"UpperBound_u[{i}]")</pre>
1461
1462
          # Objective: Minimize total travel cost
1463
          model.setObjective(gp.quicksum(TravelCosts[i][j] * x[i, j] for i in
1464
             → range(num_cities) for j in range(num_cities)), GRB.MINIMIZE)
1465
1466
          # Optimize the model
          model.optimize()
1467
          status = model.status
1468
1469
          obj_val = None
1470
          # Check whether the model is infeasible, has infinite solutions, or
1471
              \hookrightarrow has an optimal solution
          if status == gp.GRB.INFEASIBLE:
1472
             obj_val = "infeasible"
1473
          elif status == gp.GRB.UNBOUNDED:
1474
             obj_val = "unbounded"
1475
          elif status == gp.GRB.OPTIMAL:
1476
             obj_val = model.objVal
1477
          print("Objective Value:", obj_val)
1478
1479
```

G.3 COMPLEXOR

Example in ComplexOR

Natural Language Description:

The capacitated warehouse location problem involves determining the optimal locations for a set number of warehouses to service customers at minimum cost, taking into account warehouse capacities, operating costs, and customer demand.

The capacitated warehouse location problem is the problem of locating NumberOfLocations warehouses which have to service NumberOfCustomers customers, at minimum cost. Each customer has an associated demand CustomerDemand. There are constraints on the total demand that can be met from a warehouse, as specified by WarehouseCapacity. Costs are incurred when allocating service to customers from warehouses ServiceAllocationCost, and warehouses have a fixed operating cost WarehouseFixedCost. Additionally, there is a lower limit MinimumDemandFromWarehouse on the amount of demand that a warehouse must meet if it is opened, as well as constraints on the minimum MinimumOpenWarehouses and maximum MaximumOpenWarehouses number of warehouses that can be operational.

The total number of potential warehouse locations is 10. The total number of customers to be serviced is 20. The demand of each customer is [117, 86, 69, 53, 110, 74, 136, 140, 126, 79, 54, 86, 114, 76, 136, 73, 144, 51, 53, 120]. The cost of allocating service from each warehouse to each customer is [[80, 94, 44, 51, 190, 44, 129, 178, 129, 91, 172, 119, 177, 150, 90, 51, 53, 97, 184, 87], [139, 33, 104, 135, 50, 176, 97, 121, 47, 29, 186, 163, 149, 108, 156, 169, 100, 160, 153, 85], [153, 36, 18, 170, 18, 181, 178, 68, 171, 106, 159, 110, 21, 106, 91, 29, 144, 140, 155, 116], [103, 59, 78, 125, 14, 11, 152, 95, 76, 173, 36, 148, 75, 132, 59, 153, 113, 74, 185, 71], [193, 186, 130, 145, 114, 150, 33, 154, 20, 75, 103, 30, 137, 131, 167, 32, 53, 150, 176, 166], [159, 130, 156, 65, 36, 59, 199, 124, 104, 72, 180, 73, 43, 152, 143, 90, 161, 65, 172, 141], [173, 121, 110, 127, 22, 159, 195, 137, 47, 10, 87, 11, 154, 66, 126, 60, 152, 54, 20, 25], [181, 34, 186, 152, 109, 195, 133, 198, 30, 65, 69, 19, 109, 143, 108, 196, 59, 133, 10, 123], [82, 113, 147, 21, 88, 24, 38, 16, 70, 122, 148, 192, 116, 108, 18, 20, 143, 18, 116, 142], [176, 170, 87, 91, 195, 183, 124, 89, 72, 97, 89, 23, 45, 196, 97, 27, 83, 81, 171, 148]]. The total capacity for each warehouse is [3010, 2910, 4530, 4720, 4920, 3750, 4930, 2970, 3310, 2460]. The lower limit on the demand that must be met from a warehouse if it is to be operational is [64, 55, 27, 71, 93, 90, 89, 87, 43, 50]. The minimum number of warehouses that need to be operational is 3. The maximum number of warehouses that can be operational is 8. The fixed operating cost of each warehouse is [8517, 5068, 9433, 6127, 6033, 5966, 7762, 9406, 6602, 7040].

Modeling Structure Given by OptiVer:

Optimization Model Given by OptiVer:

```
1566
1567
1568
            "constraints": [
1569
1570
                   "name": "Demand Meeting",
1571
                   "description": "Each customer's demand must be fully
1572
                      → met.",
1573
                   "formulation": "\\sum_{j=1}^{NumberOfLocations} y_{
1574
                      → ij} = CustomerDemand[i] \\quad \\forall i"
1575
               },
1576
                   "name": "Capacity Limit",
1577
                   "description": "The total demand served from each
1578
                      → warehouse cannot exceed its capacity.",
1579
                   "formulation": "\\sum_{i=1}^{NumberOfCustomers} y_{
1580
                      → ij} \\leq WarehouseCapacity[j] \\cdot x_j \\
1581
                      → quad \\forall j"
1582
               },
1584
                   "name": "Minimum Demand",
1585
                   "description": "A warehouse that is opened must meet

→ a specified minimum demand.",
1586
                   "formulation": "y_{ij} \\geq
1587
                      → MinimumDemandFromWarehouse[j] \\cdot x_j \\
1588
                      \hookrightarrow quad \\forall j, \\forall i"
1589
               },
1590
1591
                   "name": "Minimum Open Warehouses",
1592
                   "description": "At least a minimum number of
1593
                      → warehouses must be operational.",
1594
                   "formulation": "\\sum_{j=1}^{NumberOfLocations} x_j
1595
                      → \\geq MinimumOpenWarehouses"
1596
               },
1597
                   "name": "Maximum Open Warehouses",
                   "description": "At most a maximum number of
1599
                      → warehouses can be operational.",
1600
                   "formulation": "\\sum_{j=1}^{NumberOfLocations} x_j
1601
                      → \\leq MaximumOpenWarehouses"
1602
               }
1603
            ],
1604
            "variables": [
1605
1606
                   "definition": "Binary variable indicating whether
1607
                      \hookrightarrow warehouse j is opened (1) or not (0)",
1608
                   "symbol": "x_j"
                   "type": "binary",
1609
                   "shape": [
1610
      35
                      10
1611
1612
               },
1613
1614
                   "definition": "Continuous variable representing the
1615
                      → amount of demand served from warehouse j to
1616
                      1617
                   "symbol": "y_{ij}",
1618
                   "type": "continuous",
1619
```

1646

1647

1648

1649 1650

1651 1652

1653

1654

1655

1656

16571658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

```
1620
1621
                 "shape": [
1622
                   20,
1623
                    10
1624
1625
1626
           "objective": [
1627
1628
                 "description": "Minimize the total cost of servicing
1629
                       customers, including service allocation and
1630
                    → operating costs of warehouses.",
1631
                 "formulation": "Z = \\sum_{j=1}^{NumberOfLocations}
1632
                    → WarehouseFixedCost[j] \\cdot x_j + \\sum_{i=1}
1633
                    → ^{NumberOfCustomers} \\sum_{j=1}^{
1634
                    1635
                    1636
                 "objective_sense": "Minimize"
1637
           ]
1638
1639
1640
1641
        Solver Code Given by OptiVer:
1642
1643
```

```
import json
import numpy as np
import math
import gurobipy as gp
from gurobipy import quicksum # Import quicksum
# Create a Gurobi model
model = gp.Model('model')
# Parameters
NumberOfLocations = 10
NumberOfCustomers = 20
CustomerDemand = [117, 86, 69, 53, 110, 74, 136, 140, 126, 79,
             54, 86, 114, 76, 136, 73, 144, 51, 53, 120]
ServiceAllocationCost = [
   [80, 94, 44, 51, 190, 44, 129, 178, 129, 91, 172, 119, 177, 150,

→ 90, 51, 53, 97, 184, 87],
   [139, 33, 104, 135, 50, 176, 97, 121, 47, 29, 186, 163, 149, 108,
      → 156, 169, 100, 160, 153, 85],
   [153, 36, 18, 170, 18, 181, 178, 68, 171, 106, 159, 110, 21, 106,

→ 91, 29, 144, 140, 155, 116],
   [103, 59, 78, 125, 14, 11, 152, 95, 76, 173, 36, 148, 75, 132,

→ 59, 153, 113, 74, 185, 71],
   [193, 186, 130, 145, 114, 150, 33, 154, 20, 75, 103, 30, 137,

→ 131, 167, 32, 53, 150, 176, 166],
   [159, 130, 156, 65, 36, 59, 199, 124, 104, 72, 180, 73, 43, 152,

→ 143, 90, 161, 65, 172, 141],
   [173, 121, 110, 127, 22, 159, 195, 137, 47, 10, 87, 11, 154, 66,
      → 126, 60, 152, 54, 20, 25],
   [181, 34, 186, 152, 109, 195, 133, 198, 30, 65, 69, 19, 109, 143,
      → 108, 196, 59, 133, 10, 123],
```

```
1674
1675
             [82, 113, 147, 21, 88, 24, 38, 16, 70, 122, 148, 192, 116, 108,
1676
                 → 18, 20, 143, 18, 116, 142],
             [176, 170, 87, 91, 195, 183, 124, 89, 72, 97, 89, 23, 45, 196,
1677
                 \hookrightarrow 97, 27, 83, 81, 171, 148]
1678
1679
1680
          WarehouseCapacity = [3010, 2910, 4530, 4720, 4920, 3750, 4930, 2970,
1681
             → 3310, 2460]
1682
          WarehouseFixedCost = [8517, 5068, 9433, 6127, 6033, 5966, 7762,
1683
             → 9406, 6602, 70401
1684
1685
         MinimumDemandFromWarehouse = [64, 55, 27, 71, 93, 90, 89, 87, 43,
1686
             → 501
1687
         MinimumOpenWarehouses = 3
1688
         MaximumOpenWarehouses = 8
1689
1690
          # Variables
1691
         x = model.addVars(NumberOfLocations, vtype=gp.GRB.BINARY, name="x")
         y = model.addVars(NumberOfCustomers, NumberOfLocations, vtype=gp.
1692
             → GRB.CONTINUOUS, name="y")
1693
1694
          # Objective function
1695
         model.setObjective(
1696
             quicksum(WarehouseFixedCost[j] * x[j] for j in range(
1697
                 → NumberOfLocations)) +
             quicksum(quicksum(ServiceAllocationCost[j][i] * y[i, j] for j in
1698

→ range(NumberOfLocations)) for i in range(
1699
                 → NumberOfCustomers)),
1700
             qp.GRB.MINIMIZE
1701
1702
          # Constraints
1703
          for i in range(NumberOfCustomers):
1704
             model.addConstr(
1705
                quicksum(y[i, j] for j in range(NumberOfLocations)) ==
1706
                    name=f"demand_meeting_{i}"
1707
1708
1709
          for j in range (NumberOfLocations):
1710
             model.addConstr(
1711
                quicksum(y[i, j] for i in range(NumberOfCustomers)) <=</pre>
1712
                    \hookrightarrow WarehouseCapacity[j] * x[j],
                name=f"capacity_limit_{j}'
1713
1714
1715
          for j in range (NumberOfLocations):
1716
             model.addConstr(
1717
                quicksum(y[i, j] for i in range(NumberOfCustomers)) >=
                    → MinimumDemandFromWarehouse[j] * x[j],
1718
                name=f"minimum_demand_{{j}}"
1719
1720
1721
         model.addConstr(
             quicksum(x[j] for j in range(NumberOfLocations)) >=
1722
                 → MinimumOpenWarehouses,
1723
             name="minimum_open_warehouses"
1724
1725
1726
         model.addConstr(
1727
```

```
1728
1729
             quicksum(x[j] for j in range(NumberOfLocations)) <=</pre>
1730
                 → MaximumOpenWarehouses,
1731
             name="maximum_open_warehouses"
1732
1733
          # Optimize the model
1734
          model.optimize()
1735
1736
          # Check the optimization status
          status = model.status
1737
1738
          obj_val = None
1739
          if status == gp.GRB.INFEASIBLE:
1740
             obj_val = "infeasible"
1741
          elif status == gp.GRB.UNBOUNDED:
             obj_val = "unbounded"
1742
          elif status == gp.GRB.OPTIMAL:
1743
             obj_val = model.objVal
1744
1745
          print("Objective Value:", obj_val)
1746
1747
```

G.4 COMPLEXOR

Example in ComplexOR

Natural Language Description:

The Knapsack Problem involves selecting the most valuable combination of items to fit in a knapsack without exceeding its weight limit. The Knapsack Problem is a classic optimization problem in operations research and computer science. The problem is to determine the most valuable combination of items to include in a knapsack, given a set of TotalItems with different values and weights represented by ItemValues and ItemWeights respectively, and a maximum weight capacity of the knapsack MaxKnapsackWeight. The goal is to maximize the total value of the items in the knapsack, represented by ItemValues, without exceeding its weight capacity MaxKnapsackWeight. The available kinds of items is 6. The value of each kind of item is [17, 4, 10, 21, 12, 18]. The weight of each item is [23, 6, 14, 30, 15, 25]. The maximum weight capacity of the knapsack is 60. The total weight of the selected items must not exceed MaxKnapsackWeight. Multiple items in one kind can be selected. No more than TotalItems kinds of items can be considered for selection. Maximize the total value of the items in the knapsack.

Modeling Structure Given by OptiVer:

Optimization Model Given by OptiVer:

```
{
     "constraints": [
2
3
           "name": "Weight Limit Constraint",
            "description": "The total weight of selected items
               → must not exceed the maximum weight capacity of
               \hookrightarrow the knapsack.",
            "formulation": "\\sum_{i=1}^{TotalItems}
               → ItemWeights_i \\cdot ItemQuantities_i \\leq

→ MaxKnapsackWeight"

        },
           "name": "Non-negativity and Integer Constraints",
           "description": "The quantity of each item selected
10
               → must be non-negative and integer.",
```

1865

1866

1867

1868

1869

1870 1871

1872

1873

1874

1875 1876

1877

1878 1879

1880

1881

1882

1883

1884

1885

1886

1887

```
1836
1837
                    "formulation": "ItemQuantities_i \\geq 0\\quad \\
1838
                       \hookrightarrow text{and integer for }i = 1,2,\\ldots,
1839
                       → TotalItems"
1840
1841
             "variables": [
1842
1843
                    "definition": "Number of items of type i selected (i
1844
                       → = 1to TotalItems)",
1845
                    "symbol": "ItemQuantities i",
1846
                    "type": "integer",
1847
                    "shape": []
1848
1849
1850
             "objective": [
1851
1852
                    "description": "Maximize the total value of the
1853

→ selected items in the knapsack.",
                    "formulation": "Z = \\sum_{i=1}^{TotalItems}
1854
                       → ItemValues_i \cdot ItemQuantities_i",
1855
                    "objective_sense": "Maximize"
1856
1857
       28
             ]
1858
1859
1860
1861
         Solver Code Given by OptiVer:
1862
1863
```

```
import json
import numpy as np
import math
import gurobipy as gp
# Create a new model
model = gp.Model('model')
# Parameters
TotalItems = 6
ItemValues = [17, 4, 10, 21, 12, 18]
ItemWeights = [23, 6, 14, 30, 15, 25]
MaxKnapsackWeight = 60
# Variables: ItemQuantities_i (integer variables)
ItemQuantities = model.addVars(TotalItems, vtype=gp.GRB.INTEGER,
   → name="ItemQuantities")
# Objective: Maximize Z = sum(ItemValues_i * ItemQuantities_i)
model.setObjective(gp.quicksum(ItemValues[i] * ItemQuantities[i]
   → for i in range(TotalItems)), gp.GRB.MAXIMIZE)
# Constraints
# Weight Limit Constraint: sum(ItemWeights_i * ItemQuantities_i) <=
   model.addConstr(gp.quicksum(ItemWeights[i] * ItemQuantities[i] for
   → i in range(TotalItems)) <= MaxKnapsackWeight, "WeightLimit")</pre>
# Non-negativity and Integer Constraints are inherently defined by
   \hookrightarrow the variable type
```

```
1890
1891
          # ItemQuantities_i >= 0 and ItemQuantities_i in Z
1892
          # Gurobi automatically treats integer variables as non-negative, so
1893
              \hookrightarrow no additional constraint is needed for non-negativity.
1894
          # Optimize the model
1895
          model.optimize()
1896
          status = model.status
1897
1898
          obj_val = None
          # Check whether the model is infeasible, has infinite solutions, or
1899
             \hookrightarrow has an optimal solution
1900
          if status == gp.GRB.INFEASIBLE:
1901
             obj_val = "infeasible"
1902
          elif status == gp.GRB.UNBOUNDED:
            obj_val = "unbounded"
1903
          elif status == gp.GRB.OPTIMAL:
1904
             obj_val = model.objVal
1905
1906
          print("Objective Value:", obj_val)
1907
1908
```