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ABSTRACT

Building mathematical optimization models is critical in operations research (OR),
while it requires substantial human expertise. Recent advancements have utilized
large language models (LLMs) to automate this modeling process. However,
existing works often struggle to verify the correctness of the generated optimiza-
tion models, without checking the rationality of the constraints and variables or
the validity of solutions to the generated models. This hampers the subsequent
verification and correction steps, and thus it severely hurts the modeling accu-
racy. To address this challenge, we propose a novel LLM-based framework with
Dual-side Verification (OptiVer) from both structure and solution perspectives,
thereby improving the modeling accuracy. The structure-side verification ensures
that the modeling structure of the generated optimization models aligns with the
original problem description, accurately capturing the problem’s constraints and
requirements. Meanwhile, the solution-side verification interprets and evaluates
the validity of the solutions, confirming that the optimization models are logically
and mathematically sound. Extensive experiments on several popular benchmarks
demonstrate that our approach significantly outperforms the state-of-the-art, achiev-
ing over 20% improvement in accuracy.

1 INTRODUCTION

Optimization problems are foundational to operations research (OR), with wide-ranging applications
in manufacturing (Jayal et al., 2010), transportation (Yin, 2002), and service industries (Berman et al.,
1994). In practice, OR problem statements are typically specified in natural language. Practitioners
must therefore (i) translate these descriptions into an appropriate mathematical optimization model
(defining objectives, decision variables, and constraints) and (ii) implement the solver code (e.g.,
SCIP (Achterberg, 2009), Gurobi (Gurobi Optimization, 2021), or Pyomo (Bynum et al., 2021; Hart
et al., 2011)) to obtain solutions. This workflow is labor-intensive, demands substantial domain
expertise in problem context, mathematical modeling, and code-level implementation or debugging,
and is consequently costly and time-consuming (Ahmaditeshnizi et al., 2024).

Given the impressive capabilities of large language models (LLMs) in natural-language understanding
and domain knowledge acquisition, a growing number of works have employed LLMs to automate the
processes of modeling, programming, and debugging. Existing approaches can be broadly grouped
into two categories. The first category, prompt-based methods, relies on pre-trained LLMs (e.g.,
GPT-4 (OpenAI, 2023) and GPT-4o (OpenAI, 2024)), which are prompted to construct mathematical
models incrementally. In practice, these methods are often implemented into a carefully designed
framework, such as multi-agent cooperation (Xiao et al., 2024; Ahmaditeshnizi et al., 2024) and
Monte Carlo tree search (Astorga et al., 2025). The second category enhances modeling capabilities
through fine-tuning, which involves constructing a large, labeled dataset for LLM training (Huang
et al., 2025; Wu et al., 2025; Jiang et al., 2025; Chen et al., 2025; Lu et al., 2025).

Beyond these two approaches, recent research has explored self-correction strategies to improve the
modeling performance (Jiang et al., 2025; Xiao et al., 2024; Ahmaditeshnizi et al., 2024). These
methods trigger correction primarily from error messages produced during code execution. However,
such strategies confine self-correction to code-level issues, and the underlying model can remain
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flawed even when the code runs without failure. To develop more effective model verification
methods, we characterizes incorrect models by the following features. First, incorrect models often
overlook indispensable constraints that the textual problem description does not explicitly state. For
example, when formulating a maximum flow problem, an LLM might omit flow-balance constraints
at intermediate nodes simply because they are not explicitly mentioned, yielding a structurally
incomplete model. Second, incorrect models can yield solutions that are infeasible or violate basic
logical principles, even though the solver executes successfully and reports an improved objective.

Figure 1: OptiVer outperforms other baselines in
solving accuracy (SA) across the benchmarks.

To address these challenges, we propose a novel
multi-agent framework with Dual-side Verifica-
tion (OptiVer) from both the modeling structure
and solution perspectives, improving the model-
ing accuracy. This approach moves beyond sim-
ple code-execution signals by translating both
the optimization model and its resulting solu-
tions into natural language and evaluating their
semantic correctness. To the end, OptiVer in-
troduces two novel evaluation metrics for self-
correction: modeling structure consistency and
solution validity. (1) Consistency in the mod-
eling structure ensures that the mathematical
formulation (its variables, constraints, and ob-
jective) is a complete and faithful translation of
the original problem description. To evaluate
this metric, one LLM agent performs a back-
translation that abstracts the generated model
into a compact, multi-level description of its
components. A second agent then aligns this
abstraction with the structure derived from the
original specification to reveal omissions or mis-
matches. (2) Solution validity assesses whether Othe solution of the produced model is logically
and contextually sound for the real-world task. To assess it, one agent interprets the numeric solu-
tion in natural language, explaining its meaning in the context of the real-world problem. Another
agent then critiques that interpretation to expose logical absurdities or mathematical violations that
code-execution checks miss. Finally, we use the verification feedback for model refinement.

As illustrated in Figure 1, extensive experiments on five popular benchmarks showcase that our
approach significantly outperforms the state-of-the-art, achieving an average improvement of approxi-
mately 10% in solving accuracy. Notably, OptiVer is designed as a plug-and-play framework, capable
of effectively verifying and refining optimization models generated by any existing pre-trained or
fine-tuned OR LLMs.

2 RELATED WORK

Automated Optimization modeling In practice, the OR problems often arise from real-world
situations, which are typically described in natural language. Consequently, automated optimization
modeling has emerged as a critical area aimed at reducing the labor and time costs associated
with the modeling process (Chen et al., 2023; Li et al., 2023). Notable early efforts in this field
include the NL4Opt competition (Ramamonjison et al., 2021). Since then, several benchmarks
have been introduced to evaluate performance, such as ComplexOR (Xiao et al., 2024), NLP4LP
(Ahmaditeshnizi et al., 2024), Mamo (Huang et al., 2024), IndustryOR (Huang et al., 2025) and
Optibench Yang et al. (2025); Wang et al. (2024). Recent research primarily falls into two categories:
prompt-based methods and fine-tuned methods. Prompt-based approaches utilize pre-trained large
language models (LLMs) with carefully crafted prompts to iteratively construct models. For instance,
Chain-of-Experts (Xiao et al., 2024) and OptiMUS (Ahmaditeshnizi et al., 2024) frameworks employ
multi-agent cooperation, while some other methods Astorga et al. (2025) leverage Monte Carlo tree
search techniques to explore potential models. To further enhance the modeling capabilities of LLMs,
researchers also work on fine-tuning these models with extensive OR and modeling knowledge
(Huang et al., 2025; Wu et al., 2025; Jiang et al., 2025; Chen et al., 2025). For example, LLaMoCo
(Ma et al., 2024) utilizes an instruction tuning framework to adapt LLMs for solving optimization
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problems in a code-to-code manner. ORLM (Huang et al., 2025) trains open-source LLMs specifically
designed for optimization modeling and solver code development. Additionally, advanced techniques
such as KTO (Ethayarajh et al., 2024) and data augmentation have been introduced to improve model
training (Wu et al., 2025; Jiang et al., 2025).

3 MOTIVATED RESULTS AND CASE ANALYSIS

Challenges We identify two key challenges in existing LLM-based optimization modeling methods.
(1) LLMs struggle to identify the modeling structure within the problems, including missing or
incorrect constraints and errors in variable definitions. The prevalence of such mistakes is notable
in benchmarks, with 36.0% in NL4Opt and 12.6% in ComplexOR as pointed out in OptiMUS
(Ahmaditeshnizi et al., 2024). (2) LLMs can only find the errors in the solver codes, but can hardly
find the errors in the optimization models. OptiMUS points out that “Coding errors are easier to
identify and fix. In contrast, identifying bugs in the formulation requires deeper reasoning and is
harder." In existing methods, the debugging module is typically activated only when solver codes
produce execution errors. To illustrate these challenges, we use GPT4o-mini in Figure 2, involving a
maximum flow problem (MF).

In a vast network of canals 

interconnecting 9 strategic 

reservoirs, engineers have 

meticulously mapped out 

the maximum capacities 

for water transfer from 

reservoirs 𝑖 to 𝑗, i.e., 𝑐𝑖𝑗 .

The challenge is to 

optimize this water 

distribution system to 

ascertain the maximum 

possible water transfer 

from Reservoir 0 to 

Reservoir 8 per day.

Natural Language 

Description
Modeling Results Generated by LLM

 Optimization Model
Decision Variables 𝑥𝑖𝑗 : The amount of water transferred 

from Reservoir 𝑖 to Reservoir 𝑗, where 𝑖, 𝑗 = 0, 1, 2,… , 8.

Objective Function: Maximize the water transfer from 

Reservoir 0 to 8: 𝑍 = σ𝑗=1
8 𝑥0𝑗

Constraints:

1. Water transfer capacities: 𝑥𝑖𝑗 ≤ 𝑐𝑖𝑗 , for all 𝑖, 𝑗.

2. Non-negativity: 𝑥𝑖𝑗 ≥ 0, for all 𝑖, 𝑗.

 Code

Code Execution Result

The code runs successfully.

But provides the wrong answer 88.0.

Existing Methods Cannot 

Identify the Errors

The model omits the implicit 

flow balance constraints:

Flow balance: 

σ𝒋=𝟎,𝒋≠𝒌
𝟖 𝒙𝒌𝒋 = σ𝒊=𝟎,𝒊≠𝒌

𝟖 𝒙𝒊𝒌in 

the reservoirs.

  Struggle to identify 

the modeling structure.

  Failing to identify

errors in the model.

Our Solutions

Structure-augmented 

Modeling

Solution-side Verification

Structure-side Verification

Logical Error:

The inflow σ𝑗=1
8 𝑥0𝑗 is not 

equal to outflow σ𝐽=1
8 𝑥𝑗8

Include a standard MF 

model as a reference

Structure Error:

Missing flow balance 

compared to standard MF

Figure 2: The two challenges we observed in existing optimization modeling methods.

Please identify the problem type 

and write down the corresponding 

optimization model.

This is a Maximum Flow 

Problem. This problem has the 

following constraints:

• Directed Network

• Capacity Constraints

• Flow Balance Constraints

…

Figure 3: The influence of recalling a
problem classification.

Observations on the Modeling Structures To specify
the definition and the usage of modeling structures, we
have the following observation. The LLM cannot find
the flow balance constraints at first. However, the model
can correctly identify the relevant problem classifications.
When we prompt the model to formulate the relevant prob-
lem classification (Maximum Flow Problem in this case),
it successfully identifies the flow balance constraints.

The core principle of structure-augmented modeling is
to leverage similar standard optimization models as a
reference to identify a problem’s implicit constraints. In
Operations Research, many problems in similar scenarios
share characteristics with optimization models in conven-
tional problem classifications, such as the Vehicle Routing
Problem or the Maximum Flow Problem. These classic
types have conventional mathematical formulations—–including standard variables and assumed
constraints–—which this paper refers to as modeling structures. Even when a new problem does
not neatly fit a standard problem classification, referencing the modeling structure of a similar,
well-understood problem helps the LLM uncover these implicit relationships, which are often crucial
for a correct formulation.

4 METHODOLOGY

Our work investigates how the modeling process can be enhanced through effective verification
methods on both the structural and solution sides. An overview of the framework is presented in Figure
4. We define multi-level modeling structures in Section 4.1, followed by a detailed explanation of
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Structure-Augmented Modeling

Optimization Problem

Distillation Prompt

Structure Distillation Agent

Multi-Level Structure:

• High Level: Maximum flow problem

• Medium Level: Single commodity maximum flow
• Low Level:
– Directed Network
– Capacity Constraints
– Flow Conservation

Modeling Prompt

Formulation Agent

 Optimization Model

Dual-side Verification 

Solution-Side

Structure-Side

Solution

Solution Interpretation Prompt

Solution 
Interpreter

Interpreted  

q  Results

Validity Verification Prompt

Solution 
Evaluation Agent

Structure Interpretation Prompt

Structure 
Interpreter

Interpreted 

     Structure

Consistency Verification Prompt

Refinement

Refinement Prompt

Refinement Agent

Refined model

𝐦𝐢𝐧𝒙 𝑓(𝒙)

s.t.  𝒈 𝒙 ≤ 𝟎

𝐦𝐢𝐧𝒙 𝑓(𝒙)

s.t.  𝒈 𝒙 ≤ 𝟎
Structure Evaluation Agent

Comments

Figure 4: Our OptiVer framework begins by distilling the multi-level structures from the natural
language description. These extracted structures are then combined, allowing the formulator to
generate an initial model. Then, OptiVer conducts a dual-side verification and refinement process.

structure-side verification in Section 4.2 and solution-side verification using a multi-agent cooperation
framework in Section 4.3. We first introduce some notations in this work as follows.

Let D represent the space of natural problem descriptions, and let M denote the model space
encompassing all possible optimization models. The modeling process can be viewed as a mapping
from the problem description D ∈ D to an optimization model M ∈ M. In information theory,
mutual information is defined as

I(X,Y ) =
∑

x∈X ,Y ∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)
(1)

This measure quantifies the information gained about one random variable X through the observation
of another random variable Y . Here X and Y represent the space of X and Y respectively, and p(·)
is the probability mass function. A higher value of mutual information indicates a greater reduction
in uncertainty about one variable when the value of the other is known. The modeling process can be
viewed as maximizing the mutual information I(D,M).

4.1 STRUCTURE-AUGMENTED MODELING

(1) Motivation of Multi-Level Structure: Coarse-to-fine structure Analysis Before the modeling
process, human experts first analyze the problem description to identify a similar conventional problem
classification as a reference. Next, they determine the variant of the classification that best aligns with
the description. Finally, they assess special requirements in the description. This analysis follows a
coarse-to-fine approach, from high-level to low-level structure analysis.

(2) Multi-Level Modeling Structure Our framework begins by distilling the modeling structures
from the natural language descriptions. As discussed in Section 3, understanding the problem type is
crucial in the modeling process, as it serves as a foundational template for developing optimization
models. Inspired by the coarse-to-fine structure analysis process used by human experts, we further
refine the concept of modeling structures by introducing the idea of multi-level modeling structures.

• High-Level Structure: This represents the fundamental problem type within OR, such as the
maximum flow problem, set covering problem, vehicle routing problem, and knapsack problem.
Each of these problem types is associated with a basic optimization model.

• Medium-Level Structure: This pertains to the classical classification or variants of fundamental
problem types. For instance, variations of the maximum flow problem include multi-source

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

MF, multi-commodity MF, minimum-cost MF, and MF in undirected graphs. Each variant is
associated with a specific modified optimization model derived from the basic model.

• Lower-Level Structure: This level encompasses constraints in the classical optimization model
as well as specific requirements that extend beyond classical models. For instance, standard
constraints might include capacities and flow balance constraints in the MF, while special require-
ments could involve flow capacities that fluctuate over time.

As we mentioned in Section 3, even highly complex and unique industrial problems are often variants
or combinations of fundamental problem classifications recognized in operations research. The
high-level and medium-level structures in our framework are designed to capture this foundational
core, providing a solid starting point for the modeling process. Second, and most critically, the
framework’s low-level structure is specifically designed to provide the necessary flexibility to handle
unique, real-world contexts. This level is not confined to a specific problem classification and is
intended to capture the nuanced, problem-specific constraints and requirements that extend beyond
classical formulations. This design allows the framework to represent the unique aspects of any given
problem, rather than forcing it into a rigid, predefined category. We denote the multi-level modeling
structure as S. Below, we provide an example of the modeling structure we have defined.

Example: The Structure Schema Extracted by LLMs

• High Level: Maximum flow problem
• Medium Level: Single commodity maximum flow
• Low Level:

– Directed Network: The flow is directed from one reservoir to another.
– Capacity Constraints: Each edge (connection between reservoirs) has a maximum

capacity.
– Flow Conservation: The amount of water entering any intermediate reservoir must equal

the amount leaving, except for the source and sink.

(3) Structure Distillation and Structure-Augmented Modeling We use two pre-trained LLMs
(implemented by GPT4o-mini in this work) as agents to complete the structure distillation and initial
modeling tasks, guided by designed prompts. To distill the multi-level modeling structure S from
the natural language description D, we introduce an LLM agent, called the structure distillation
agent. The agent takes as input the problem description and outputs the formatted structure context.
Then, we call a formulation agent to generate an initial optimization model M guided by prompts
combining the problem description and modeling structure, i.e.,

S = Distillation_Agent(D), M = Formulation_Agent(D,S). (2)

4.2 STRUCTURE-SIDE: STRUCTURE INTERPRETATION AND CONSISTENCY VERIFICATION

(1) Motivation Structure-side verification finds the modeling errors by detecting any deviation from
the established, correct formulation for a known class of problems, catching errors of omission where
the LLM may overlook fundamental constraints and variables required for that problem classification.
Inspired by dual learning in machine translation (He et al., 2016), we assert that a correct model must
meet the following consistency criterion: when we translate the optimization model back into the
space of modeling structure, the resulting context should semantically correspond to the modeling
structure directly derived from the problem description.

(2) Structure Interpretation and Consistency Verification We introduce a structure interpretation
agent and an evaluation agent to complete the structure verification task. The two agents are also
guided with specific prompts. First, a structural interpretation agent performs a "back-translation". It
takes the generated mathematical model M and converts it back into its abstract modeling structure
S̃. Next, a structural evaluation agent acts as a critic. It compares the interpretation agent’s output S̃
with the original structure S derived from the problem description to check for semantic consistency.
The evaluation agent’s output is twofold: a binary consistency score cc and a detailed comment that
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highlights any discrepancies. This comment provides specific, actionable feedback that is later used
to refine the model. The process can be formally summarized as

S̃ = StruInterp_Agent(M), (com, cc) = StruEval_Agent(S, S̃), (3)

where cc = 1 indicates consistency, while the comment com details any differences found between
the structures, guiding the subsequent refinement step.

Finally, we propose an analysis of the structure-side verification using mutual information. Suppose
that S̃ is the interpreted structure from optimization model M . The structure-side verification aims
to improve the consistency between structures S from the natural language description and that S̃
interpreted from the optimization model, i.e., the mutual information I(S, S̃).

Proposition 4.1. We have I(S, S̃) ≤ I(D,M). Thus, the structure-side verification optimizes the
lower bound of the mutual information between the problem description and the optimization model.

4.3 SOLUTION-SIDE: SOLUTION INTERPRETATION AND VALIDITY VERIFICATION

(1) Motivation This method works because it grounds the abstract mathematical model by assessing
whether its solution is logically feasible. A model may be syntactically correct and yield a numerical
answer, yet that answer could violate the fundamental logic of the original problem (e.g., suggesting
more water flows out of a reservoir than flows in). We argue that the semantic content of the solution
itself is a far richer source for identifying errors. Solution-side verification enhances performance
because it is designed to catch logical errors that are invisible to systems that only check for solver
execution errors. The core of this verification is to leverage the common-sense and logical reasoning
capabilities of such LLMs for improved error detection.

(2) Solution Interpretation and Validity Verification Given an optimization model M , OptiVer
executes the solver code and obtains the optimal solution x. Then, OptiVer performs solution-side

The amount of water 

transferred from 

Reservoir 𝑖 to 

Reservoir 𝑗, where 

𝑖, 𝑗 =  0, 1, 2, … , 8. 

𝑥01  =  1, … 

Solution
The Interpretation of 

Solutions

Solution Interpretation Agent

We provide a solution to 

the problem. The 

amount of water from 

Reservoir 0 to 1 is 1, …

Solution Evaluation Agent

The amount 
of water entering a 
reservoir does not equal 
the amount leaving.

Figure 5: An example of solution verification.

verification using two LLM agents,
guided by designed prompts. The first
agent, a solution interpreter, translates
the raw numerical solution x into a
meaningful natural language descrip-
tion D̃ based on the original problem
context D. Next, the second agent, a
solution evaluation agent, scrutinizes
this description to identify any logical
or mathematical errors. This agent’s
output includes a binary validity score
cv and, crucially, a detailed comment
com that provides specific feedback on any flaws found. The score value is 1 if the evaluator
recognizes the validity of solution x, and 0 otherwise. This verification process can be formally
summarized as:

D̃ = SolInterp_Agent(x, D), (com, cv) = SolEval_Agent(D, D̃). (4)

Similar to the analysis of the structure-side verification, we have the following analysis of the solution-
side verification. Suppose that D̃ is the interpreted solution from optimization model M . During the
solution-side verification, we improve the mutual information I(D, D̃).

Proposition 4.2. We have I(D, D̃) ≤ I(D,M). Thus, the solution-side verification optimizes the
lower bound of the mutual information between the problem description and the optimization model.

4.4 REFINEMENT

Based on the feedback, we refine the optimization model. The refinement agent within the OptiVer
framework is a specialized LLM-based component responsible for correcting and enhancing the initial
optimization model based on insights from the dual-side verification process. Guided by a refinement
prompt, the agent takes the current formulation as input and produces a refined optimization model,
represented as M ′ = Ref_Agent(D,S,M, com).
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Table 1: Comparison of our method and the baselines across five popular benchmarks. Throughout
the experiments, we compare the solving accuracy (SA) of the methods.

NL4Opt Mamo ComplexLP ComplexOR IndustryOR OptMATH

Reasoning LLMs

DeepSeek-R1 82.6 67.2 68.4 32.0 33.1
OpenAI-o1 87.1 66.3 68.4 36.0 32.5

Fine-tuned Method

ORLM 85.1* 38.8* 42.1* 38.0* 2.6*
Evo-Step 84.4* 61.6* - 36.3* -
LLMOPT 80.3* 44.1* 72.7* 29.0* 12.5*
OptMATH 95.9* 54.1* - - 34.9*

SIRL 96.3* 62.1* - 33.0* 29.0*

Prompt-based Method

Standard 64.6 27.9 31.5 24.0 15.6
CoT 69.3 34.5 36.8 27.0 18.6
CoE 71.3 44.5 68.4 29.0 19.8

OptiMUS 83.0 45.0 73.6 31.0 20.2

OptiVer (Ours) 96.5 66.7 78.9 45.0 34.3

Values marked with * are from the original or reproduced papers. , and - are with missing data
because the model has not been publicly released.

5 EXPERIMENTS

Benchmarks We use five real-world operations research benchmarks: NL4Opt (Ramamonjison
et al., 2021), Mamo ComplexLP (Huang et al., 2024), ComplexOR (Xiao et al., 2024), IndustryOR
(Huang et al., 2025) and OptMATH (Lu et al., 2025). The NL4Opt benchmark, released for the
NeurIPS 2022 NL4Opt competition, consists of 289 elementary linear programming problems. Mamo
ComplexLP 211 problems. ComplexOR is a comprehensive dataset including linear and mixed-
integer programming. In alignment with the studies by (Ahmaditeshnizi et al., 2024) and (Jiang et al.,
2025), we focus on 19 specific problems from this dataset. IndustryOR has 100 challenging problems
from various industry scenarios. OptMATH has 166 challenging problems.

Implementation and Baselines In our experiments, we utilized the GPT4o-mini to implement
the agents in our method and all the prompt-based baselines. For the implementation of OptiVer,
please see Appendix F for the prompts of each agent. In our experiments, we compare OptiVer
with four available prompt-based methods and five fine-tuned operations research LLMs. The four
prompt-based baselines include Standard, Chain-of-Thoughts (CoT) (Wei et al., 2022), Chain-of-
Experts (CoE) (Xiao et al., 2024), and OptiMUS (Ahmaditeshnizi et al., 2024). The Standard
baseline represents the output of GPT without any optimization of its reasoning processes. We
include five fine-tuned open-source operations research language models as baselines, including
ORLM (Huang et al., 2025) (based on LLaMA-3-8B model), Evo-Step (Wu et al., 2025) (based on
LLaMA-3-8B model), LLMOPT (Jiang et al., 2025) (based on Qwen1.5-14B), OptMATH (Lu et al.,
2025) (based on Qwen2.5-32B), and SIRL (Chen et al., 2025) (based on Qwen2.5-7B) trained with
reinforcement learning. Additionally, we also compare our results with the pre-trained reasoning
model DeepSeek-R1 (DeepSeek-AI, 2025) and OpenAI-o1 (OpenAI, 2024).

Metrics Consistent with existing research, we employed solving accuracy (SA) to evaluate perfor-
mance. Specifically, SA represents the proportion of problems for which the methods successfully
identify the optimal solutions. The higher value of SA implies better performance.

5.1 MAIN RESULTS

To demonstrate the effectiveness of our method, we conduct experiments comparing solving accuracy
(SA) between our approach and baseline methods across various benchmarks. The results presented
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Table 2: Alation studies on (1) each component and (2) each level of modeling structures in OptiVer.
Method NL4Opt Mamo ComplexLP ComplexOR IndustryOR

Ablation for the Components

OptiVer w/o struaug 91.8 54.2 63.1 34.0
OptiVer w/o stru-side 91.5 55.2 68.4 29.0
OptiVer w/o sol-side 91.8 53.1 68.4 41.0

Ablation for Each Level of the Structure

OptiVer w/o high 92.9 59.9 78.9 41.0
OptiVer w/o medium 91.1 57.0 73.6 38.0
OptiVer w/o low 91.1 54.9 73.6 30.0

OptiVer (full) 96.5 66.7 78.9 45.0

in Table 1 indicate that our method significantly outperforms the baselines, achieving an approximate
20% improvement in solving accuracy compared to Standard. For the challenging benchmarks, our
method consistently delivers outstanding performance. This demonstrates that OptiVer exhibits strong
generalization capabilities across both easy and difficult scenarios. Furthermore, OptiVer achieves
performance better than state-of-the-art reasoning LLMs, such as DeepSeek-R1 and OpenAI-o1,
despite relying on a much weaker base model, GPT4o-mini. Please see Appendices D and E for case
and error analysis.

5.2 ABLATION STUDIES

(1) The Effects of Each Component of OptiVer In this section, we examine the effects of the
three components of OptiVer: structure-augmented modeling, structure-side verification, and solution-
side verification. To assess their contributions, we implement three variants of OptiVer. The first
variant, OptiVer w/o stru-aug, omits the introduction of a modeling structure to enhance the modeling
process. For structure-side verification, instead of interpreting the model in structural terms, we
instruct an LLM agent to provide a narrative explaining the meaning of the variables, constraints, and
objectives. The second variant, OptiVer w/o stru-side, does not implement structure-side verification
at all. The third variant, OptiVer w/o sol-side, excludes the solution-side verification process. The
results, presented in Table 2, reveal a significant drop in performance in the absence of any of these
components, highlighting their essential roles in the modeling process.

(2) The Effects of Each Level of Modeling Structures Next, we investigate the impact of each
level within our proposed modeling structure. The variant OptiVer w/o high/medium/low level
excludes the use of high, medium, and low-level structures. The experimental results in Table 2
demonstrate that all three levels contribute positively to overall performance, with the medium and
low-level structures showing particularly pronounced improvements.

Takeaway Critically, the framework’s “low-level structure" is specifically designed to provide the
necessary flexibility to handle unique, real-world contexts. This level is not confined to a specific
problem type and is intended to capture the nuanced, problem-specific constraints and requirements
that extend beyond classical formulations. This design allows the framework to represent the unique
aspects of any given problem, rather than forcing it into a rigid, predefined category.

5.3 BUILDING ON DIFFERENT BASELINES AND LLMS

(1) Improving different Baselines: OptiVer was applied to the outputs of three foundational
baselines: OptiMUS and the fine-tuned ORLM model. In each case, OptiVer’s verification and
refinement process enhanced the initial models generated by these baseline methods. (2)Improving
different Base LLMs: To illustrate that the framework is not reliant on a specific backbone model,
we conducted experiments using various base LLMs with OptiVer. This approach highlights how
performance scales with the capabilities of the underlying model, including stronger models (e.g.,
GPT-4o) and weaker models (e.g., Qwen2.5-14B) The results consistently indicated significant
performance gains, as shown in Table 3. Please refer to Appendix C for detailed experiment settings.
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Table 3: We build OptiVer on different baselines and backbone models.
Method NL4Opt Mamo ComplexLP ComplexOR IndustryOR

Different Baselines

ORLM 85.1 38.8 42.1 38.0
ORLM+OptiVer 92.3 59.6 73.6 42.0
OptiMUS 83.0 45.0 73.6 31.0
OptiMUS+OptiVer 96.1 61.0 78.9 45.0

Different Backbones

GPT-4o 79.4 45.0 57.8 27.0
GPT-4o+OptiVer 97.5 66.3 78.9 48.0
Qwen2.5-14B 70.3 41.2 57.8 31.0
Qwen2.5-14B+OptiVer 85.8 56.3 68.4 39.0

5.4 QUANTITY ANALYSIS OF VERIFICATIONS Table 4: Verification Precision
Verification Type Easy Medium Hard
Structure Verification 92% 89% 83%
Solution Verification 93% 91% 86%

Table 5: Verification Recall
Verification Type Easy Medium Hard
Structure Verification 86% 79% 68%
Solution Verification 83% 85% 73%

Critical Components of Verifications The
interpretation and evaluation agents are essen-
tial components of the verification process, as
they determine whether OptiVer can effectively
identify errors in the modeling process. We
conducted extensive ablation studies to quan-
titatively assess the accuracy and reliability of
these agents. Our experiments were specifically
designed to evaluate their ability to distinguish
between correct and incorrect models.

Experiment design We utilized the IndustryOR dataset for evaluation, which consists of three
difficulty levels (easy, medium, and hard) that allow us to test the generalization capabilities of
OptiVer across varying problem complexities. The hard problems can be general problems with
complex structures that fall out of the conventional problem classifications. However, this analysis
was labor-intensive, as the IndustryOR dataset does not provide detailed, step-by-step ground-truth
labels necessary for our analysis. To ensure the correctness of this evaluation, we resorted to a manual
checking process, which is time-consuming. We first manually annotated the optimization models for
the sampled problems to establish a ground truth. To facilitate our evaluation, we randomly selected
ten problems from each difficulty level. For generating incorrect models, we initially labeled the
models and extracted the structures. We then created nine negative samples for each labeled model by
randomly deleting or rewriting some of the variables and constraints. This resulted in 30 positive and
270 negative modeling samples. For structure evaluation, we collected interpreted structures from
both the positive and negative samples. The evaluator compared these interpreted structures with the
ground-truth structures and generated a binary score. For solution evaluation, we used the positive
and negative samples to generate solutions, which we then interpreted and assessed for reliability.

Results The evaluation accuracy and recall rates are presented in Tables 4 and 5. For each difficulty
level, we evaluated 10 positive samples and 90 negative samples. Both precision and recall rates for
the negative samples are high across the difficulty levels, demonstrating the reliability of the scores.
We find that the verification process still performs well for hard problems that cannot be classified
into a specific problem type, indicating the strong generalization to general problems.

6 CONCLUSION

In this paper, we propose an LLM-based verification framework designed to enhance the accuracy of
automated mathematical modeling tasks. In the structure-side verification, we assess the modeling
structures of the current model to ensure structural consistency. Meanwhile, in the solution-side
verification, we interpret the solution within the context of the problem descriptions, aiming to
identify any logical or mathematical errors in the models. Extensive experiments demonstrate the
effectiveness of our method across a wide range of benchmarks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT.
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USE OF LLMS

Large language models (LLMs) were used to aid writing polish, including refining sentence phrasing,
logical flow, and prose clarity, without altering original meanings or technical details. We use LLM to
generate the robot logos in Figure 2, 3, 4, and 5. LLMs did not participate in core research tasks (e.g.,
experiment design, data processing, model training, result analysis, or drafting key technical content).

A PROOF OF PROPOSITIONS

Proof. A property of mutual information is that I(X,Y ) ≥ I(X, f(Y )) for random variables
X , Y , and function f . Thus, we have I(D,M) ≥ I(Distillation_Agent(D),M) ≥
I(S,Interp_Agent(M)) = I(S, S̃).

B MORE EXPERIMENT RESULTS

B.1 COMPARISON OF SOLVING EFFICIENCY

Table 6: Comparison of our method and base-
lines in the solving efficiency. OptiVer uses the
shortest solving time (seconds).

NL4Opt Mamo ComplexLP

CoE 58.2 72.5
OptiMUS 64.2 80.3
OptiVer 52.8 67.6

(1) Efficiency Definition We examine the solving
efficiency of OptiVer in comparison to the prompt-
based baselines CoE and OptiMUS by analyzing the
average time taken to solve a problem. We use the
same solver (Gurobi) for all methods. This ensures
fairness in efficiency comparisons. The solving time
in Table 6 contains the modeling time using LLMs
and the execution time of the solver. The solver
execution time is short (under 0.01 seconds) and
can be neglected during this process. Thus, the
solving time in Table 6 reflects the modeling time by LLMs. The results presented in Table 6 indicate
that OptiVer achieves significantly shorter solving times, showcasing its high efficiency.

(2) The Reason why OptiVer is efficient Compared to other prompt-based baselines, OptiVer
has a simpler workflow. CoE and OptiMUS are based on the multi-agent cooperation framework.
The workflow of these methods is automatically controlled by a management agent. The insufficient
decision-making ability of the management agent may lead to suboptimal decision chains. In the
experiments, we find that this method may repeatedly call the same agent. For example, for certain
complex problems, CoE may call the terminology interpreter again and again. In contrast, DeVet
does not include such a management agent, leading to a simpler workflow.

B.2 THE PROBLEMS WE TRY TO ADDRESS IS CRITICAL IN OPTIMIZATION MODELING

Table 7: The proportion of errors.
NL4Opt Mamo ComplexLP

Missing Constraints 37.3 20.0
Failure Model Debugging 51.8 40.0

The OptiVer framework is designed
and validated for broad applicability
across a wide range of problem do-
mains and model types. Our exper-
imental results provide compelling
evidence for this generalizability.

We demonstrate that the motivations and challenges we address are common and critical in the
optimization modeling field.

The missing constraints Section 4.5 of the OptiMUS paper (Ahmaditeshnizi et al., 2024) has
summarized and classified common errors, including missing or wrong constraints, incorrect model,
and coding errors. Missing or wrong constraints mean the model fails to extract all the constraints
from the model or generates wrong constraints. An incorrect model means errors, such as defining
binary variables for visiting cities instead of links in TSP. The prevalence of such mistakes is notable
in benchmarks, with 36.0% in NL4Opt and 12.6% in ComplexOR.
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Incorrect model debugging This is also a common challenge. The OptiMUS paper (Ahmaditesh-
nizi et al., 2024) points out that "Coding errors are easier to identify and fix. In contrast, identifying
bugs in the formulation requires deeper reasoning and is harder." In existing methods, the debugging
module is called only when the solver codes raise execution errors.

C EXPERIMENT SETTING IN SECTION 5.3

The plug-and-play capability of OptiVer is supported by both its architectural design and empirical
results across diverse setups. We have built OptiVer based on two modeling baselines (OptiMUS and
ORLM) and two pretrained backbone LLMs (GPT-4o and Qwen2.5-14B). OptiMUS are prompt-
based methods with general LLMs as backbones (we use GPT4o-mini here), which can process
any text inputs. We first extract multi-level structures for the problems using a structure distillation
agent. These extracted structures are then appended to the problem descriptions and sent as input
to the OptiMUS. Once the baselines generate an initial formulation, we proceed with OptiVer’s
verification step. However, ORLM is a fine-tuned model designed to handle only specific input
formats. Therefore, the ORLM model is used solely to provide an initial optimization model, while
we perform the verification and refinement processes using the GPT4o-mini model.

D CASE STUDY

For the example to explain why OptiVer can mitigate the errors, we provide the following optimization
problem with output of CoT and OptiVer.

Problem (simplified version) In a vast network of canals interconnecting 9 strategic reservoirs,
engineers have meticulously mapped out the maximum capacities for water transfer from reservoirs i
to j, i.e., cij . The challenge is to optimize this water distribution system to ascertain the maximum
possible water transfer from Reservoir 0 to Reservoir 8 per day.

Optimization Formulation

Optimization Model Given by CoT:
• Decision Variables: xij : The amount of water transferred from Reservoir i to

Reservoir j, where i, j = 0, 1, 2, . . . , 8.
• Objective Function: Maximize the water transfer from Reservoir 0 to 8:

Z =

8∑
j=1

x0j

• Constraints:
1. Water transfer capacities: xij ≤ cij , for all i, j.
2. Non-negativity: xij ≥ 0, for all i, j.

This model is incorrect due to missing flow balance constraints. The verification process is outlined
as follows:

• Structure-Augmented Modeling: The model references a maximum flow problem. It
correctly formulates the flow balance constraint when recalling the standard model.

• Structure-Side Verification: The model interprets the current optimization model and
compares it with the structure of the original problems.

• Solution-Side Verification: If the model lacks flow balance constraints, the obtained
solution is represented as xij = cij . The evaluation agent in OptiVer analyzes the solutions
and determines that the inflow does not equal the outflow within the system. Consequently,
the evaluation agent identifies this discrepancy as an error.
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Optimization Formulation

Optimization Model Given by OptiVer:
• Modeling structures:

– High Level: Maximum flow problem
– Medium Level: Single commodity maximum flow
– Low Level:

1. Directed Network: The flow is directed from one reservoir to another.
2. Capacity Constraints: Each edge has a maximum capacity.
3. Flow Conservation: The amount of water entering any intermediate reservoir

must equal the amount leaving.
• Decision Variables: xij : The amount of water transferred from Reservoir i to

Reservoir j.
• Objective Function: Maximize the water transfer:

Z =

8∑
j=1

x0j

• Constraints:
1. xij ≤ cij , for all i, j.
2. xij ≥ 0, for all i, j.

3. Flow Conservation:
∑8

j=0
j ̸=k

xkj =
∑8

i=0
i̸=k

xik for k in the reservoirs

Analysis The modeling structures are proposed to address the challenges of missing constraints.
The core of structure-augmented modeling is to identify a similar standard optimization model, and
identify the implicit constraints using the standard optimization model as a reference.

E ERROR ANALYSIS ON DIFFERENT PROBLEM TYPES

The results presented in Table 8 clearly demonstrate OptiVer’s strong generalization capabilities, as
it consistently and significantly outperforms the CoT baseline across five distinct and challenging
problem categories. This robust performance is particularly evident in problem types where standard
prompting methods struggle. For instance, on the Capacitated TSP, where CoT achieves a mere 5.13%
accuracy, OptiVer boosts performance to 48.72%. Similarly, for Diet, Transportation, and Maximum
Flow problems, OptiVer elevates accuracy from the 16-27% range to a much more effective 55-82%
range. This shows that OptiVer’s verification process can successfully navigate complex problem
structures that are difficult for LLMs to model correctly. Furthermore, even in cases where the
CoT baseline is already strong in some problems, such as the Facility Location-Allocation Problem
(80.65%), OptiVer still provides a significant improvement, pushing the accuracy to 93.55%. The
consistent and substantial performance lift across this diverse set of problems underscores that
OptiVer’s adaptive verification framework is a broadly applicable and effective strategy, rather than a
technique tailored to a specific problem type.

Table 8: The performance on each problem category on the MAMO ComplexLP dataset
Problem Category CoT OptiVer
Diet Problem 27.27% 81.82%
Transportation Problem 23.53% 70.59%
Capacitated TSP 5.13% 48.72%
Maximum Flow Problem 16.28% 55.81%
Facility Location-Allocation Problem 80.65% 93.55%
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F THE PROMPT DESIGN

F.1 STRUCTURE DISTILLATION

1 interpretation_prompt=[
2 """
3 You are a mathematical formulator working with a team of optimization

↪→ experts. The objective is to tackle a complex optimization problem.
4 """,
5 """
6 Please interpret and explain the following problem description.
7

8 {problem}
9

10 - What is the specific problem type of this OR and CO problem? What
↪→ specific kind of OR problem?

11 """,
12 """
13 This is the base formulation of the problem
14

15 {base_formulation}
16

17 - What is the subdivision of different kinds of this problem?
18 - Is this base formulation correct?
19 """,
20 """
21 - Is there any implicit constraints in the problem, including but not

↪→ limited to the logical selection relation, if/else and if/then
↪→ relation?

22 """,
23 """
24 Please summarize and write in JSON Format. For ’subdivision’, please find

↪→ the ones matching this problem description
25

26 ‘‘‘json
27 {{
28 "problem_type": ..,
29 "specific_type": ...,
30 "subdivisions": {{
31 subdivision 1: description,
32 subdivision 2: description,
33 ...
34 }},
35 "implicit_constraints": {{
36 implicit constraint 1: description,
37 implicit constraint 2: description,
38 ...
39 }},
40 }}
41 ‘‘‘
42

43 - Note that I’m going to use python json.loads() function to parse the
↪→ json file, so please make sure the format is correct (don’t add ’,’
↪→ before enclosing ’}}’ or ’]’ characters.

44 - Generate the complete json file and don’t omit anything.
45 - Use ’‘‘‘json’ and ’‘‘‘’ to enclose the json file.
46 """
47 ]
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F.2 STRUCTURE-AUGMENTED MODELING

1 formulation_prompt = [
2 """
3 You are an expert mathematical formulator and an optimization professor

↪→ at a top university. Your task is to model the problem in the
↪→ standard LP or MILP form.

4 """,
5 """
6 Here is the description of the problem to be formulated.
7

8 {problem}
9

10 - Please summarize the parameters and their tensor sizes.
11 - Please explain the definition of the parameters.
12 - Please keep the answer brief and concise.
13 """,
14 """
15 please write in JSON Format. Make sure the bracket is closed, especially

↪→ when processing the matrices. Do not transpose the matrices and
↪→ keep the shape of the matrices.

16

17 {{
18 "parameters": [
19 {
20 "symbol": "mathematical symbol of the parameters",
21 "definition": "definition of the parameters","
22 "value": the value of the parameters,
23 "shape": [],
24 },
25 {
26 "symbol": "mathematical symbol of the parameters",
27 "definition": "definition of the parameters",
28 "value": the value of the parameters,
29 "shape": [],
30 },
31 ...
32 ],
33 }}
34

35 - Use CamelCase and full words for new variable symbols, and do not
↪→ include indices in the symbol (e.g. ItemsSold instead of itemsSold
↪→ or items_sold or ItemsSold_i)

36 - Note that I’m going to use python json.loads() function to parse the
↪→ json file, so please make sure the format is correct (don’t add ’,’
↪→ before enclosing ’}}’ or ’]’ characters.

37 - Use ’‘‘‘json’ and ’‘‘‘’ to enclose the json file.
38 """,
39 """
40 Here are some of the cases when we need auxiliary variables. Do we need

↪→ to include auxiliary binary variables in the formulation?
41

42 - Logical Conditions: When a decision depends on a binary condition (e.g.,
↪→ whether to open a facility or not, use a kind of transportation or
↪→ not ,and so on), auxiliary binary variables can represent these
↪→ conditions.

43 - Modeling step costs: Using binary variables involves creating a
↪→ mathematical formulation where costs change based on specific
↪→ thresholds or levels of activity.

44 - Disjunctive Constraints: When a problem involves "either-or" situations,
↪→ binary variables can be used to model these disjunctions
↪→ effectively (Combined with the big M method).

45 - Capacity Constraints: In problems involving limited resources, binary
↪→ variables can indicate whether a resource is being utilized or not,
↪→ allowing for better modeling of capacity.
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46 - Selection Problems: In scenarios where a fixed set of items or
↪→ variables can be selected (e.g., choosing a subset of projects to
↪→ fund), binary variables indicate the selection status.

47 - Scheduling Order: When determining the sequence in which tasks are
↪→ performed, binary variables can indicate the order of tasks (e.g.,
↪→ Task A before Task B). This is often used in job-shop scheduling or
↪→ project scheduling.

48 - Penalty Costs: In scheduling with penalties for delays (like tardiness
↪→ or unmet deadlines), binary variables can help track whether a task
↪→ incurs a penalty, allowing for cost minimization.

49 - Job Switching: In scenarios where workers or machines can switch
↪→ between tasks, binary variables can indicate if a switch occurs,
↪→ helping to manage transition times and costs.

50 """,
51 """
52 This problem is a {problem_type} problem with structures
53

54 {structure}
55

56 To analyze the description carefully, here is the base formulation of
↪→ this problem (which can be correct or needs to be modified)

57

58 {base_formulation}
59

60 Now take a deep breath and formulate this problem according to the
↪→ description and base formulation.

61

62 - Consider whether we need to introduce auxiliary binary variables, note
↪→ that do not include redundant variables.

63 - For variables, use integer type for discrete items (such as production,
↪→ unit, people) and continuous ones for continuous items (water,
↪→ land, time, grams, and so on).

64 - Your formulation should be in LaTeX mathematical format (do not include
↪→ the $ symbols).

65 - Important: You can not define new parameters. You can only define new
↪→ variables. Use CamelCase and full words for new variable symbols,
↪→ and do not indices in the symbol (e.g. ItemsSold instead of
↪→ itemsSold or items_sold or ItemsSold_i). You can include indices in
↪→ the constraint and objective formulations.

66 - Make sure that you do not use the numeric number in the formulation
↪→ except when necessary, instead, you use the parameter name (you can
↪→ include indices in the constraint and objective formulations).

67 - Always use non-strict inequalities (e.g. \\leq instead of <), even if
↪→ the constraint is strict.

68

69

70 Take a deep breath and solve the problem step by step.
71 """
72 ]
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F.3 STRUCTURE INTERPRETATION AND STRUCTURE CONSISTENCY VERIFICATION

1 modification_prompt = [
2 """
3 You are an expert mathematical formulator and an optimization professor

↪→ at a top university. Your task is to model and fix the problem in
↪→ the standard LP or MILP form.

4 """,
5 """
6 This is a {problem_type} problem with parameters
7

8 {parameters}
9

10 The formulation is as follows
11

12 {formulation_interpretation}
13

14 Does this problem consistent with the characteristics of the following
↪→ structure description? If yes, please say "Yes" directly.

15 If not, please give your comments to modify the formulation.
16

17 {original_problem_interpretation}
18 """,
19 """
20 Please reformulate the problem to make the formulation consistent with

↪→ the structure description.
21

22 - Consider whether we need to introduce extra binary variables or
↪→ linearization for a piece-wise linear function.

23 - Your formulation should be in LaTeX mathematical format (do not include
↪→ the $ symbols).

24 - Important: You can not define new parameters. You can only define new
↪→ variables. Use CamelCase and full words for new variable symbols,
↪→ and do not include indices in the symbol (e.g. ItemsSold instead of
↪→ itemsSold or items_sold or ItemsSold_i). You can include indices
↪→ in the constraint and objective formulations.

25 - Make sure that you do not use a numeric number in the formulation
↪→ except where necessary; instead, you use the parameter name (you
↪→ can include indices in the constraint and objective formulations).

26 - Always use non-strict inequalities (e.g. \\leq instead of <), even if
↪→ the constraint is strict.

27

28 Take a deep breath and solve the problem step by step.
29 """
30 ]
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F.4 SOLUTION INTERPRETATION AND SOLUTION VALIDITY VERIFICATION

1 solution_prompt = [
2 """
3 You are an expert mathematical formulator and an optimization professor

↪→ at a top university. Your task is to model and fix the problem
↪→ using the solution information in the standard LP or MILP form.

4 """,
5 """
6 This is a {problem_type} problem with solutions
7

8 {solutions}
9

10 The formulation is as follows
11

12 {formulation_interpretation}
13

14 Please interpret the meaning of the solution.
15 """,
16 """
17 Here is the problem description.
18

19 {original_problem_interpretation}
20

21 Is this solution the optimal solution? The optimal solution should be
↪→ mathematical sound and logical coherence:

22 - We cannot find a better solution.
23 - The solution should meet the constraints of the problem description.
24

25 If yes, please say "Yes" directly.
26 If not, please give your comments to modify the formulation.
27 """,
28 """
29 Please reformulate the problem to make the formulation consistent with

↪→ the structure description.
30

31 - Consider whether we need to introduce extra binary variables or
↪→ linearization for a piece-wise linear function.

32 - Your formulation should be in LaTeX mathematical format (do not include
↪→ the $ symbols).

33 - Important: You can not define new parameters. You can only define new
↪→ variables. Use CamelCase and full words for new variable symbols,
↪→ and do not include indices in the symbol (e.g. ItemsSold instead of
↪→ itemsSold or items_sold or ItemsSold_i). You can include indices
↪→ in the constraint and objective formulations.

34 - Make sure that you do not use a numeric number in the formulation
↪→ except where necessary; instead, you use the parameter name (you
↪→ can include indices in the constraint and objective formulations).

35 - Always use non-strict inequalities (e.g. \\leq instead of <), even if
↪→ the constraint is strict.

36

37 Take a deep breath and solve the problem step by step.
38 """
39 ]
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G MORE EXAMPLES

G.1 NL4OPT

Example in NL4Opt

Natural Language Description:
A fishery wants to transport their catch. They can either use local sled dogs or trucks. Local
sled dogs can take 100 fish per trip while trucks can take 300 fish per trip. The cost per trip
for sled dogs is $50 while the cost per trip for a truck is $100. The budget is at most $1000
and the number of sled dog trips must be less than the number of truck trips. Formulate an
LP to maximize the number of fish that can be transported.

Modeling Structure Given by OptiVer:

1 {
2 "problem_type": "Linear Programming",
3 "specific_type": "Resource Allocation Problem",
4 "subdivisions": {
5 "transportation optimization": "Optimizing the transport

↪→ of goods or resources using various modes of
↪→ transport.",

6 "resource allocation": "Distributing limited resources to
↪→ achieve the best possible outcome.",

7 "cost minimization and profit maximization": "Balancing
↪→ costs against outputs to maximize profit or benefits
↪→ ."

8 },
9 "implicit_constraints": {

10 "non-negative trips": "The number of trips (x and y)
↪→ cannot be negative.",

11 "integer trips": "The number of trips should generally be
↪→ an integer value."

12 }
13 }

Optimization Model Given by OptiVer:

1 {
2 "constraints": [
3 {
4 "name": "Budget Constraint",
5 "description": "The total cost of trips must not

↪→ exceed the budget.",
6 "formulation": "CostPerSledDogTrip \\cdot

↪→ NumberOfSledDogTrips + CostPerTruckTrip \\cdot
↪→ NumberOfTruckTrips \\leq TotalBudget"

7 },
8 {
9 "name": "Trip Comparison Constraint",

10 "description": "The number of sled dog trips must
↪→ not exceed the number of truck trips.",

11 "formulation": "NumberOfSledDogTrips \\leq
↪→ NumberOfTruckTrips"

12 },
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13 {
14 "name": "Non-negativity Constraints",
15 "description": "The number of trips must be non-

↪→ negative.",
16 "formulation": "NumberOfSledDogTrips \\geq 0"
17 },
18 {
19 "name": "Non-negativity Constraints",
20 "description": "The number of trips must be non-

↪→ negative.",
21 "formulation": "NumberOfTruckTrips \\geq 0"
22 },
23 {
24 "name": "Integer Constraints for Sled Dog Trips",
25 "description": "The number of sled dog trips must be

↪→ an integer.",
26 "formulation": "NumberOfSledDogTrips \\in \\mathbb{Z

↪→ }"
27 },
28 {
29 "name": "Integer Constraints for Truck Trips",
30 "description": "The number of truck trips must be an

↪→ integer.",
31 "formulation": "NumberOfTruckTrips \\in \\mathbb{Z}"
32 }
33 ],
34 "variables": [
35 {
36 "definition": "Integer variable representing the

↪→ number of sled dog trips.",
37 "symbol": "NumberOfSledDogTrips",
38 "type": "integer",
39 "shape": []
40 },
41 {
42 "definition": "Integer variable representing the

↪→ number of truck trips.",
43 "symbol": "NumberOfTruckTrips",
44 "type": "integer",
45 "shape": []
46 }
47 ],
48 "objective": [
49 {
50 "description": "Maximize the total number of fish

↪→ transported.",
51 "formulation": "Z = FishPerSledDogTrip \\cdot

↪→ NumberOfSledDogTrips + FishPerTruckTrip \\cdot
↪→ NumberOfTruckTrips",

52 "objective_sense": "Maximize"
53 }
54 ]
55 }

Solver Code Given by OptiVer:
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1 import json
2 import numpy as np
3 import math
4 import gurobipy as gp
5 from gurobipy import GRB
6

7 # Create a new model
8 model = gp.Model(’model’)
9

10 # Define parameters
11 parameters = {
12 "CostPerSledDogTrip": 50,
13 "CostPerTruckTrip": 100,
14 "FishPerSledDogTrip": 100,
15 "FishPerTruckTrip": 300,
16 "TotalBudget": 1000
17 }
18

19 # Define variables
20 NumberOfSledDogTrips = model.addVar(vtype=GRB.INTEGER, name="

↪→ NumberOfSledDogTrips")
21 NumberOfTruckTrips = model.addVar(vtype=GRB.INTEGER, name="

↪→ NumberOfTruckTrips")
22

23 # Add variables to the model
24 model.update()
25

26 # Constraints
27 # Budget Constraint
28 model.addConstr(
29 parameters["CostPerSledDogTrip"] * NumberOfSledDogTrips +
30 parameters["CostPerTruckTrip"] * NumberOfTruckTrips <=
31 parameters["TotalBudget"],
32 name="BudgetConstraint"
33 )
34

35 # Trip Comparison Constraint
36 model.addConstr(
37 NumberOfSledDogTrips <= NumberOfTruckTrips,
38 name="TripComparisonConstraint"
39 )
40

41 # Non-negativity Constraints
42 model.addConstr(NumberOfSledDogTrips >= 0, name="

↪→ NonNegativitySledDogTrips")
43 model.addConstr(NumberOfTruckTrips >= 0, name="

↪→ NonNegativityTruckTrips")
44

45 # Set the objective
46 model.setObjective(
47 parameters["FishPerSledDogTrip"] * NumberOfSledDogTrips +
48 parameters["FishPerTruckTrip"] * NumberOfTruckTrips,
49 GRB.MAXIMIZE
50 )
51

52 # Optimize the model
53 model.optimize()
54 status = model.status
55

56 obj_val = None
57 # Check whether the model is infeasible, has infinite solutions, or

↪→ has an optimal solution
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58 if status == gp.GRB.INFEASIBLE:
59 obj_val = "infeasible"
60 elif status == gp.GRB.UNBOUNDED:
61 obj_val = "unbounded"
62 elif status == gp.GRB.OPTIMAL:
63 obj_val = model.objVal
64

65 print("Objective Value:", obj_val)
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G.2 MAMO COMPLEXLP

Example in Mamo ComplexLP

Natural Language Description:
In a scenario involving a salesperson who needs to visit five different cities to conduct
business, each city is uniquely numbered from 1 to 5. The salesperson’s objective is to
minimize the total travel expenses, which could be influenced by factors such as distance,
fuel costs, or transportation fees. The salesperson can start their journey from any of these
cities but must ensure they visit each city exactly once before returning to their starting point.

The travel costs between the cities are as follows:
- From City 1, the travel costs are 58 units to City 2, 15 units to City 3, 75 units to City 4, and
91 units to City 5.
- From City 2, it costs 58 units to City 1, 54 units to City 3, 85 units to City 4, and 11 units to
City 5.
- Traveling from City 3, the expenses are 15 units to City 1, 54 units to City 2, 28 units to
City 4, and 61 units to City 5.
- From City 4, the costs are 75 units to City 1, 85 units to City 2, 28 units to City 3, and 47
units to City 5.
- Lastly, from City 5, it costs 91 units to City 1, 11 units to City 2, 61 units to City 3, and 47
units to City 4.

Given this setup, what is the minimum total travel cost for the salesperson to visit each city
exactly once and then return to the starting city?

Modeling Structure Given by OptiVer:

1 {
2 "problem_type": "Combinatorial Optimization Problem",
3 "specific_type": "Traveling Salesman Problem (TSP)",
4 "subdivisions": {
5 "Hamiltonian cycle": "Path that visits each vertex exactly

↪→ once and returns to the starting vertex",
6 "Weighted graph": "Graph with weights on edges

↪→ representing travel costs between cities",
7 "Directed graph": "Graph where edges have a direction,

↪→ indicating the cost of travel from one city to
↪→ another"

8 },
9 "implicit_constraints": {

10 "subtour elimination": "Explicit constraints to prevent
↪→ subtours in the solution",

11 "start_end city constraint": "Salesperson must start and
↪→ end at the same city"

12 }
13 }

Optimization Model Given by OptiVer:

1 {
2 "constraints": [
3 {
4 "name": "Each City Visited Once",
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5 "description": "Each city must be visited exactly
↪→ once by the salesperson.",

6 "formulation": "\\sum_{j \\in Cities} x_{ij} = 1\\
↪→ quad \\forall i \\in Cities"

7 },
8 {
9 "name": "Return to Start City",

10 "description": "The salesperson must return to the
↪→ starting city after visiting all cities.",

11 "formulation": "\\sum_{i \\in Cities} x_{ji} = 1\\
↪→ quad \\forall j \\in Cities"

12 },
13 {
14 "name": "Subtour Elimination",
15 "description": "Constraints to prevent subtours in

↪→ the solution.",
16 "formulation": "u_i - u_j + (|Cities|) \\cdot x_{ij}

↪→ \\leq |Cities| - 1\\quad \\forall i, j \\in
↪→ Cities, \\; i \\neq j"

17 },
18 {
19 "name": "Position Constraints",
20 "description": "Position variables must be within

↪→ valid range.",
21 "formulation": "2 \\leq u_i \\leq |Cities| \\quad \\

↪→ forall i \\in Cities"
22 }
23 ],
24 "variables": [
25 {
26 "definition": "Binary variable indicating whether

↪→ the salesperson travels from city i to city j
↪→ .",

27 "symbol": "x_ij",
28 "type": "binary",
29 "shape": [
30 5,
31 5
32 ]
33 },
34 {
35 "definition": "Auxiliary continuous variable

↪→ representing the position of city i in the
↪→ tour.",

36 "symbol": "u_i",
37 "type": "continuous",
38 "shape": [
39 5
40 ]
41 }
42 ],
43 "objective": [
44 {
45 "description": "Minimize the total travel cost for

↪→ the salesperson.",
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46 "formulation": "Z = \\sum_{i \\in Cities} \\sum_{j
↪→ \\in Cities} d_{ij} \\cdot x_{ij}",

47 "objective_sense": "Minimize"
48 }
49 ]
50 }

Solver Code Given by OptiVer:

1 import json
2 import numpy as np
3 import math
4 import gurobipy as gp
5 from gurobipy import GRB
6

7 # Create a new model
8 model = gp.Model(’model’)
9

10 # Define parameters
11 parameters = {
12 "Cities": [1, 2, 3, 4, 5],
13 "TravelCosts": [
14 [0, 58, 15, 75, 91],
15 [58, 0, 54, 85, 11],
16 [15, 54, 0, 28, 61],
17 [75, 85, 28, 0, 47],
18 [91, 11, 61, 47, 0]
19 ]
20 }
21

22 Cities = parameters["Cities"]
23 TravelCosts = parameters["TravelCosts"]
24 num_cities = len(Cities) # Number of cities
25

26 # Define variables
27 x = model.addVars(num_cities, num_cities, vtype=GRB.BINARY, name="x

↪→ ") # Binary variables for routes
28 u = model.addVars(num_cities, vtype=GRB.CONTINUOUS, name="u") #

↪→ Continuous variables for subtour elimination
29

30 # Constraints: Each City Visited Once
31 for i in range(num_cities):
32 model.addConstr(gp.quicksum(x[i, j] for j in range(num_cities)

↪→ if i != j) == 1, f"VisitOnce_Cities[{i}]")
33

34 # Constraints: Return to Start City
35 for j in range(num_cities):
36 model.addConstr(gp.quicksum(x[i, j] for i in range(num_cities)

↪→ if i != j) == 1, f"ReturnToStart_Cities[{j}]")
37

38 # Subtour Elimination Constraints
39 for i in range(1, num_cities):
40 for j in range(1, num_cities):
41 if i != j:
42 model.addConstr(u[i] - u[j] + num_cities * x[i, j] <=

↪→ num_cities - 1, f"SubtourElimination_Cities[{i}][{j
↪→ }]")

43

44 # Position Constraints
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45 for i in range(num_cities):
46 model.addConstr(u[i] >= 2, f"LowerBound_u[{i}]")
47 model.addConstr(u[i] <= num_cities, f"UpperBound_u[{i}]")
48

49 # Objective: Minimize total travel cost
50 model.setObjective(gp.quicksum(TravelCosts[i][j] * x[i, j] for i in

↪→ range(num_cities) for j in range(num_cities)), GRB.MINIMIZE)
51

52 # Optimize the model
53 model.optimize()
54 status = model.status
55

56 obj_val = None
57 # Check whether the model is infeasible, has infinite solutions, or

↪→ has an optimal solution
58 if status == gp.GRB.INFEASIBLE:
59 obj_val = "infeasible"
60 elif status == gp.GRB.UNBOUNDED:
61 obj_val = "unbounded"
62 elif status == gp.GRB.OPTIMAL:
63 obj_val = model.objVal
64

65 print("Objective Value:", obj_val)
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G.3 COMPLEXOR

Example in ComplexOR

Natural Language Description:
The capacitated warehouse location problem involves determining the optimal locations
for a set number of warehouses to service customers at minimum cost, taking into account
warehouse capacities, operating costs, and customer demand.
The capacitated warehouse location problem is the problem of locating NumberOfLocations
warehouses which have to service NumberOfCustomers customers, at minimum cost. Each
customer has an associated demand CustomerDemand. There are constraints on the total
demand that can be met from a warehouse, as specified by WarehouseCapacity. Costs are
incurred when allocating service to customers from warehouses ServiceAllocationCost, and
warehouses have a fixed operating cost WarehouseFixedCost. Additionally, there is a lower
limit MinimumDemandFromWarehouse on the amount of demand that a warehouse must
meet if it is opened, as well as constraints on the minimum MinimumOpenWarehouses and
maximum MaximumOpenWarehouses number of warehouses that can be operational.
The total number of potential warehouse locations is 10. The total number of customers to
be serviced is 20. The demand of each customer is [117, 86, 69, 53, 110, 74, 136, 140, 126,
79, 54, 86, 114, 76, 136, 73, 144, 51, 53, 120]. The cost of allocating service from each
warehouse to each customer is [[80, 94, 44, 51, 190, 44, 129, 178, 129, 91, 172, 119, 177,
150, 90, 51, 53, 97, 184, 87], [139, 33, 104, 135, 50, 176, 97, 121, 47, 29, 186, 163, 149, 108,
156, 169, 100, 160, 153, 85], [153, 36, 18, 170, 18, 181, 178, 68, 171, 106, 159, 110, 21, 106,
91, 29, 144, 140, 155, 116], [103, 59, 78, 125, 14, 11, 152, 95, 76, 173, 36, 148, 75, 132, 59,
153, 113, 74, 185, 71], [193, 186, 130, 145, 114, 150, 33, 154, 20, 75, 103, 30, 137, 131,
167, 32, 53, 150, 176, 166], [159, 130, 156, 65, 36, 59, 199, 124, 104, 72, 180, 73, 43, 152,
143, 90, 161, 65, 172, 141], [173, 121, 110, 127, 22, 159, 195, 137, 47, 10, 87, 11, 154, 66,
126, 60, 152, 54, 20, 25], [181, 34, 186, 152, 109, 195, 133, 198, 30, 65, 69, 19, 109, 143,
108, 196, 59, 133, 10, 123], [82, 113, 147, 21, 88, 24, 38, 16, 70, 122, 148, 192, 116, 108,
18, 20, 143, 18, 116, 142], [176, 170, 87, 91, 195, 183, 124, 89, 72, 97, 89, 23, 45, 196, 97,
27, 83, 81, 171, 148]]. The total capacity for each warehouse is [3010, 2910, 4530, 4720,
4920, 3750, 4930, 2970, 3310, 2460]. The lower limit on the demand that must be met from
a warehouse if it is to be operational is [64, 55, 27, 71, 93, 90, 89, 87, 43, 50]. The minimum
number of warehouses that need to be operational is 3. The maximum number of warehouses
that can be operational is 8. The fixed operating cost of each warehouse is [8517, 5068, 9433,
6127, 6033, 5966, 7762, 9406, 6602, 7040].

Modeling Structure Given by OptiVer:

1 {
2 "problem_type": "Mixed Integer Linear Programming",
3 "specific_type": "Capacitated Warehouse Location Problem",
4 "subdivisions": {
5 "1": "Location Optimization",
6 "2": "Capacity Planning",
7 "3": "Cost Minimization"
8 },
9 "implicit_constraints": {

10 "1": "Each customer’s demand must be fully met.",
11 "2": "A warehouse that is opened must meet a specified

↪→ minimum demand."
12 }
13 }

Optimization Model Given by OptiVer:

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

1 {
2 "constraints": [
3 {
4 "name": "Demand Meeting",
5 "description": "Each customer’s demand must be fully

↪→ met.",
6 "formulation": "\\sum_{j=1}^{NumberOfLocations} y_{

↪→ ij} = CustomerDemand[i] \\quad \\forall i"
7 },
8 {
9 "name": "Capacity Limit",

10 "description": "The total demand served from each
↪→ warehouse cannot exceed its capacity.",

11 "formulation": "\\sum_{i=1}^{NumberOfCustomers} y_{
↪→ ij} \\leq WarehouseCapacity[j] \\cdot x_j \\
↪→ quad \\forall j"

12 },
13 {
14 "name": "Minimum Demand",
15 "description": "A warehouse that is opened must meet

↪→ a specified minimum demand.",
16 "formulation": "y_{ij} \\geq

↪→ MinimumDemandFromWarehouse[j] \\cdot x_j \\
↪→ quad \\forall j, \\forall i"

17 },
18 {
19 "name": "Minimum Open Warehouses",
20 "description": "At least a minimum number of

↪→ warehouses must be operational.",
21 "formulation": "\\sum_{j=1}^{NumberOfLocations} x_j

↪→ \\geq MinimumOpenWarehouses"
22 },
23 {
24 "name": "Maximum Open Warehouses",
25 "description": "At most a maximum number of

↪→ warehouses can be operational.",
26 "formulation": "\\sum_{j=1}^{NumberOfLocations} x_j

↪→ \\leq MaximumOpenWarehouses"
27 }
28 ],
29 "variables": [
30 {
31 "definition": "Binary variable indicating whether

↪→ warehouse j is opened (1) or not (0)",
32 "symbol": "x_j",
33 "type": "binary",
34 "shape": [
35 10
36 ]
37 },
38 {
39 "definition": "Continuous variable representing the

↪→ amount of demand served from warehouse j to
↪→ customer i",

40 "symbol": "y_{ij}",
41 "type": "continuous",
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42 "shape": [
43 20,
44 10
45 ]
46 }
47 ],
48 "objective": [
49 {
50 "description": "Minimize the total cost of servicing

↪→ customers, including service allocation and
↪→ operating costs of warehouses.",

51 "formulation": "Z = \\sum_{j=1}^{NumberOfLocations}
↪→ WarehouseFixedCost[j] \\cdot x_j + \\sum_{i=1}
↪→ ^{NumberOfCustomers} \\sum_{j=1}^{
↪→ NumberOfLocations} ServiceAllocationCost[j][i]
↪→ \\cdot y_{ij}",

52 "objective_sense": "Minimize"
53 }
54 ]
55 }

Solver Code Given by OptiVer:

1

2 import json
3 import numpy as np
4 import math
5 import gurobipy as gp
6 from gurobipy import quicksum # Import quicksum
7

8 # Create a Gurobi model
9 model = gp.Model(’model’)

10

11 # Parameters
12 NumberOfLocations = 10
13 NumberOfCustomers = 20
14

15 CustomerDemand = [117, 86, 69, 53, 110, 74, 136, 140, 126, 79,
16 54, 86, 114, 76, 136, 73, 144, 51, 53, 120]
17

18 ServiceAllocationCost = [
19 [80, 94, 44, 51, 190, 44, 129, 178, 129, 91, 172, 119, 177, 150,

↪→ 90, 51, 53, 97, 184, 87],
20 [139, 33, 104, 135, 50, 176, 97, 121, 47, 29, 186, 163, 149, 108,

↪→ 156, 169, 100, 160, 153, 85],
21 [153, 36, 18, 170, 18, 181, 178, 68, 171, 106, 159, 110, 21, 106,

↪→ 91, 29, 144, 140, 155, 116],
22 [103, 59, 78, 125, 14, 11, 152, 95, 76, 173, 36, 148, 75, 132,

↪→ 59, 153, 113, 74, 185, 71],
23 [193, 186, 130, 145, 114, 150, 33, 154, 20, 75, 103, 30, 137,

↪→ 131, 167, 32, 53, 150, 176, 166],
24 [159, 130, 156, 65, 36, 59, 199, 124, 104, 72, 180, 73, 43, 152,

↪→ 143, 90, 161, 65, 172, 141],
25 [173, 121, 110, 127, 22, 159, 195, 137, 47, 10, 87, 11, 154, 66,

↪→ 126, 60, 152, 54, 20, 25],
26 [181, 34, 186, 152, 109, 195, 133, 198, 30, 65, 69, 19, 109, 143,

↪→ 108, 196, 59, 133, 10, 123],
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27 [82, 113, 147, 21, 88, 24, 38, 16, 70, 122, 148, 192, 116, 108,
↪→ 18, 20, 143, 18, 116, 142],

28 [176, 170, 87, 91, 195, 183, 124, 89, 72, 97, 89, 23, 45, 196,
↪→ 97, 27, 83, 81, 171, 148]

29 ]
30

31 WarehouseCapacity = [3010, 2910, 4530, 4720, 4920, 3750, 4930, 2970,
↪→ 3310, 2460]

32

33 WarehouseFixedCost = [8517, 5068, 9433, 6127, 6033, 5966, 7762,
↪→ 9406, 6602, 7040]

34

35 MinimumDemandFromWarehouse = [64, 55, 27, 71, 93, 90, 89, 87, 43,
↪→ 50]

36

37 MinimumOpenWarehouses = 3
38 MaximumOpenWarehouses = 8
39

40 # Variables
41 x = model.addVars(NumberOfLocations, vtype=gp.GRB.BINARY, name="x")
42 y = model.addVars(NumberOfCustomers, NumberOfLocations, vtype=gp.

↪→ GRB.CONTINUOUS, name="y")
43

44 # Objective function
45 model.setObjective(
46 quicksum(WarehouseFixedCost[j] * x[j] for j in range(

↪→ NumberOfLocations)) +
47 quicksum(quicksum(ServiceAllocationCost[j][i] * y[i, j] for j in

↪→ range(NumberOfLocations)) for i in range(
↪→ NumberOfCustomers)),

48 gp.GRB.MINIMIZE
49 )
50

51 # Constraints
52 for i in range(NumberOfCustomers):
53 model.addConstr(
54 quicksum(y[i, j] for j in range(NumberOfLocations)) ==

↪→ CustomerDemand[i],
55 name=f"demand_meeting_{i}"
56 )
57

58 for j in range(NumberOfLocations):
59 model.addConstr(
60 quicksum(y[i, j] for i in range(NumberOfCustomers)) <=

↪→ WarehouseCapacity[j] * x[j],
61 name=f"capacity_limit_{j}"
62 )
63

64 for j in range(NumberOfLocations):
65 model.addConstr(
66 quicksum(y[i, j] for i in range(NumberOfCustomers)) >=

↪→ MinimumDemandFromWarehouse[j] * x[j],
67 name=f"minimum_demand_{j}"
68 )
69

70 model.addConstr(
71 quicksum(x[j] for j in range(NumberOfLocations)) >=

↪→ MinimumOpenWarehouses,
72 name="minimum_open_warehouses"
73 )
74

75 model.addConstr(
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76 quicksum(x[j] for j in range(NumberOfLocations)) <=
↪→ MaximumOpenWarehouses,

77 name="maximum_open_warehouses"
78 )
79

80 # Optimize the model
81 model.optimize()
82

83 # Check the optimization status
84 status = model.status
85

86 obj_val = None
87 if status == gp.GRB.INFEASIBLE:
88 obj_val = "infeasible"
89 elif status == gp.GRB.UNBOUNDED:
90 obj_val = "unbounded"
91 elif status == gp.GRB.OPTIMAL:
92 obj_val = model.objVal
93

94 print("Objective Value:", obj_val)
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G.4 COMPLEXOR

Example in ComplexOR

Natural Language Description:
The Knapsack Problem involves selecting the most valuable combination of items to fit in a
knapsack without exceeding its weight limit. The Knapsack Problem is a classic optimization
problem in operations research and computer science. The problem is to determine the
most valuable combination of items to include in a knapsack, given a set of TotalItems with
different values and weights represented by ItemValues and ItemWeights respectively, and a
maximum weight capacity of the knapsack MaxKnapsackWeight. The goal is to maximize
the total value of the items in the knapsack, represented by ItemValues, without exceeding its
weight capacity MaxKnapsackWeight. The available kinds of items is 6. The value of each
kind of item is [17, 4, 10, 21, 12, 18]. The weight of each item is [23, 6, 14, 30, 15, 25]. The
maximum weight capacity of the knapsack is 60. The total weight of the selected items must
not exceed MaxKnapsackWeight. Multiple items in one kind can be selected. No more than
TotalItems kinds of items can be considered for selection. Maximize the total value of the
items in the knapsack.

Modeling Structure Given by OptiVer:

1 {
2 "problem_type": "Combinatorial Optimization",
3 "specific_type": "Bounded Knapsack Problem",
4 "subdivisions": {
5 "Subdivision 1": "0/1 Knapsack Problem",
6 "Subdivision 2": "Bounded Knapsack Problem",
7 "Subdivision 3": "Multi-dimensional Knapsack Problem"
8 },
9 "implicit_constraints": {

10 "implicit constraint 1": "x_i must be an integer",
11 "implicit constraint 2": "MaxKnapsackWeight must be non-

↪→ negative"
12 }
13 }

Optimization Model Given by OptiVer:

1 {
2 "constraints": [
3 {
4 "name": "Weight Limit Constraint",
5 "description": "The total weight of selected items

↪→ must not exceed the maximum weight capacity of
↪→ the knapsack.",

6 "formulation": "\\sum_{i=1}^{TotalItems}
↪→ ItemWeights_i \\cdot ItemQuantities_i \\leq
↪→ MaxKnapsackWeight"

7 },
8 {
9 "name": "Non-negativity and Integer Constraints",

10 "description": "The quantity of each item selected
↪→ must be non-negative and integer.",
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11 "formulation": "ItemQuantities_i \\geq 0\\quad \\
↪→ text{and integer for }i = 1,2,\\ldots,
↪→ TotalItems"

12 }
13 ],
14 "variables": [
15 {
16 "definition": "Number of items of type i selected (i

↪→ = 1to TotalItems)",
17 "symbol": "ItemQuantities_i",
18 "type": "integer",
19 "shape": []
20 }
21 ],
22 "objective": [
23 {
24 "description": "Maximize the total value of the

↪→ selected items in the knapsack.",
25 "formulation": "Z = \\sum_{i=1}^{TotalItems}

↪→ ItemValues_i \\cdot ItemQuantities_i",
26 "objective_sense": "Maximize"
27 }
28 ]
29 }

Solver Code Given by OptiVer:

1

2 import json
3 import numpy as np
4 import math
5 import gurobipy as gp
6

7 # Create a new model
8 model = gp.Model(’model’)
9

10 # Parameters
11 TotalItems = 6
12 ItemValues = [17, 4, 10, 21, 12, 18]
13 ItemWeights = [23, 6, 14, 30, 15, 25]
14 MaxKnapsackWeight = 60
15

16 # Variables: ItemQuantities_i (integer variables)
17 ItemQuantities = model.addVars(TotalItems, vtype=gp.GRB.INTEGER,

↪→ name="ItemQuantities")
18

19 # Objective: Maximize Z = sum(ItemValues_i * ItemQuantities_i)
20 model.setObjective(gp.quicksum(ItemValues[i] * ItemQuantities[i]

↪→ for i in range(TotalItems)), gp.GRB.MAXIMIZE)
21

22 # Constraints
23 # Weight Limit Constraint: sum(ItemWeights_i * ItemQuantities_i) <=

↪→ MaxKnapsackWeight
24 model.addConstr(gp.quicksum(ItemWeights[i] * ItemQuantities[i] for

↪→ i in range(TotalItems)) <= MaxKnapsackWeight, "WeightLimit")
25

26 # Non-negativity and Integer Constraints are inherently defined by
↪→ the variable type
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27 # ItemQuantities_i >= 0 and ItemQuantities_i in Z
28 # Gurobi automatically treats integer variables as non-negative, so

↪→ no additional constraint is needed for non-negativity.
29

30 # Optimize the model
31 model.optimize()
32 status = model.status
33

34 obj_val = None
35 # Check whether the model is infeasible, has infinite solutions, or

↪→ has an optimal solution
36 if status == gp.GRB.INFEASIBLE:
37 obj_val = "infeasible"
38 elif status == gp.GRB.UNBOUNDED:
39 obj_val = "unbounded"
40 elif status == gp.GRB.OPTIMAL:
41 obj_val = model.objVal
42

43 print("Objective Value:", obj_val)
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