
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIVER: UNLEASHING THE POWER OF LLMS
FOR OPTIMIZATION MODELING VIA DUAL-SIDE
VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Building mathematical optimization models is critical in operations research (OR),
while it requires substantial human expertise. Recent advancements have utilized
large language models (LLMs) to automate this modeling process. However,
existing works often struggle to verify the correctness of the generated optimiza-
tion models, without checking the rationality of the constraints and variables or
the validity of solutions to the generated models. This hampers the subsequent
verification and correction steps, and thus it severely hurts the modeling accu-
racy. To address this challenge, we propose a novel LLM-based framework with
Dual-side Verification (OptiVer) from both structure and solution perspectives,
thereby improving the modeling accuracy. The structure-side verification ensures
that the modeling structure of the generated optimization models aligns with the
original problem description, accurately capturing the problem’s constraints and
requirements. Meanwhile, the solution-side verification interprets and evaluates
the validity of the solutions, confirming that the optimization models are logically
and mathematically sound. Extensive experiments on several popular benchmarks
demonstrate that our approach significantly outperforms the state-of-the-art, achiev-
ing over 20% improvement in accuracy.

1 INTRODUCTION

Optimization problems are foundational to operations research (OR), with wide-ranging applications
in manufacturing (Jayal et al., 2010), transportation (Yin, 2002), and service industries (Berman et al.,
1994). In practice, OR problem statements are typically specified in natural language. Practitioners
must therefore (i) translate these descriptions into an appropriate mathematical optimization model
(defining objectives, decision variables, and constraints) and (ii) implement the solver code (e.g.,
SCIP (Achterberg, 2009), Gurobi (Gurobi Optimization, 2021), or Pyomo (Bynum et al., 2021; Hart
et al., 2011)) to obtain solutions. This workflow is labor-intensive, demands substantial domain
expertise in problem context, mathematical modeling, and code-level implementation or debugging,
and is consequently costly and time-consuming (Ahmaditeshnizi et al., 2024).

Given the impressive capabilities of large language models (LLMs) in natural-language understanding
and domain knowledge acquisition, a growing number of works have employed LLMs to automate the
processes of modeling, programming, and debugging. Existing approaches can be broadly grouped
into two categories. The first category, prompt-based methods, relies on pre-trained LLMs (e.g.,
GPT-4 (OpenAI, 2023) and GPT-4o (OpenAI, 2024)), which are prompted to construct mathematical
models incrementally. In practice, these methods are often implemented into a carefully designed
framework, such as multi-agent cooperation (Xiao et al., 2024; Ahmaditeshnizi et al., 2024) and
Monte Carlo tree search (Astorga et al., 2025). The second category enhances modeling capabilities
through fine-tuning, which involves constructing a large, labeled dataset for LLM training (Huang
et al., 2025; Wu et al., 2025; Jiang et al., 2025; Chen et al., 2025; Lu et al., 2025).

Beyond these two approaches, recent research has explored self-correction strategies to improve the
modeling performance (Jiang et al., 2025; Xiao et al., 2024; Ahmaditeshnizi et al., 2024). These
methods trigger correction primarily from error messages produced during code execution. However,
such strategies confine self-correction to code-level issues, and the underlying model can remain

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

flawed even when the code runs without failure. To develop more effective model verification
methods, we characterizes incorrect models by the following features. First, incorrect models often
overlook indispensable constraints that the textual problem description does not explicitly state. For
example, when formulating a maximum flow problem, an LLM might omit flow-balance constraints
at intermediate nodes simply because they are not explicitly mentioned, yielding a structurally
incomplete model. Second, incorrect models can yield solutions that are infeasible or violate basic
logical principles, even though the solver executes successfully and reports an improved objective.

Figure 1: OptiVer outperforms other baselines in
solving accuracy (SA) across the benchmarks.

To address these challenges, we propose a novel
multi-agent framework with Dual-side Verifica-
tion (OptiVer) from both the modeling structure
and solution perspectives, improving the model-
ing accuracy. This approach moves beyond sim-
ple code-execution signals by translating both
the optimization model and its resulting solu-
tions into natural language and evaluating their
semantic correctness. To the end, OptiVer in-
troduces two novel evaluation metrics for self-
correction: modeling structure consistency and
solution validity. (1) Consistency in the mod-
eling structure ensures that the mathematical
formulation (its variables, constraints, and ob-
jective) is a complete and faithful translation of
the original problem description. To evaluate
this metric, one LLM agent performs a back-
translation that abstracts the generated model
into a compact, multi-level description of its
components. A second agent then aligns this
abstraction with the structure derived from the
original specification to reveal omissions or mis-
matches. (2) Solution validity assesses whether Othe solution of the produced model is logically
and contextually sound for the real-world task. To assess it, one agent interprets the numeric solu-
tion in natural language, explaining its meaning in the context of the real-world problem. Another
agent then critiques that interpretation to expose logical absurdities or mathematical violations that
code-execution checks miss. Finally, we use the verification feedback for model refinement.

As illustrated in Figure 1, extensive experiments on five popular benchmarks showcase that our
approach significantly outperforms the state-of-the-art, achieving an average improvement of approxi-
mately 10% in solving accuracy. Notably, OptiVer is designed as a plug-and-play framework, capable
of effectively verifying and refining optimization models generated by any existing pre-trained or
fine-tuned OR LLMs.

2 RELATED WORK

Automated Optimization modeling In practice, the OR problems often arise from real-world
situations, which are typically described in natural language. Consequently, automated optimization
modeling has emerged as a critical area aimed at reducing the labor and time costs associated
with the modeling process (Chen et al., 2023; Li et al., 2023). Notable early efforts in this field
include the NL4Opt competition (Ramamonjison et al., 2021). Since then, several benchmarks
have been introduced to evaluate performance, such as ComplexOR (Xiao et al., 2024), NLP4LP
(Ahmaditeshnizi et al., 2024), Mamo (Huang et al., 2024), IndustryOR (Huang et al., 2025) and
Optibench Yang et al. (2025); Wang et al. (2024). Recent research primarily falls into two categories:
prompt-based methods and fine-tuned methods. Prompt-based approaches utilize pre-trained large
language models (LLMs) with carefully crafted prompts to iteratively construct models. For instance,
Chain-of-Experts (Xiao et al., 2024) and OptiMUS (Ahmaditeshnizi et al., 2024) frameworks employ
multi-agent cooperation, while some other methods Astorga et al. (2025) leverage Monte Carlo tree
search techniques to explore potential models. To further enhance the modeling capabilities of LLMs,
researchers also work on fine-tuning these models with extensive OR and modeling knowledge
(Huang et al., 2025; Wu et al., 2025; Jiang et al., 2025; Chen et al., 2025). For example, LLaMoCo
(Ma et al., 2024) utilizes an instruction tuning framework to adapt LLMs for solving optimization

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

problems in a code-to-code manner. ORLM (Huang et al., 2025) trains open-source LLMs specifically
designed for optimization modeling and solver code development. Additionally, advanced techniques
such as KTO (Ethayarajh et al., 2024) and data augmentation have been introduced to improve model
training (Wu et al., 2025; Jiang et al., 2025).

3 MOTIVATED RESULTS AND CASE ANALYSIS

Challenges We identify two key challenges in existing LLM-based optimization modeling methods.
(1) LLMs struggle to identify the modeling structure within the problems, including missing or
incorrect constraints and errors in variable definitions. The prevalence of such mistakes is notable
in benchmarks, with 36.0% in NL4Opt and 12.6% in ComplexOR as pointed out in OptiMUS
(Ahmaditeshnizi et al., 2024). (2) LLMs can only find the errors in the solver codes, but can hardly
find the errors in the optimization models. OptiMUS points out that “Coding errors are easier to
identify and fix. In contrast, identifying bugs in the formulation requires deeper reasoning and is
harder." In existing methods, the debugging module is typically activated only when solver codes
produce execution errors. To illustrate these challenges, we use GPT4o-mini in Figure 2, involving a
maximum flow problem (MF).

In a vast network of canals

interconnecting 9 strategic

reservoirs, engineers have

meticulously mapped out

the maximum capacities

for water transfer from

reservoirs 𝑖 to 𝑗, i.e., 𝑐𝑖𝑗 .

The challenge is to

optimize this water

distribution system to

ascertain the maximum

possible water transfer

from Reservoir 0 to

Reservoir 8 per day.

Natural Language

Description
Modeling Results Generated by LLM

 Optimization Model
Decision Variables 𝑥𝑖𝑗 : The amount of water transferred

from Reservoir 𝑖 to Reservoir 𝑗, where 𝑖, 𝑗 = 0, 1, 2,… , 8.

Objective Function: Maximize the water transfer from

Reservoir 0 to 8: 𝑍 = σ𝑗=1
8 𝑥0𝑗

Constraints:

1. Water transfer capacities: 𝑥𝑖𝑗 ≤ 𝑐𝑖𝑗 , for all 𝑖, 𝑗.

2. Non-negativity: 𝑥𝑖𝑗 ≥ 0, for all 𝑖, 𝑗.

 Code

Code Execution Result

The code runs successfully.

But provides the wrong answer 88.0.

Existing Methods Cannot

Identify the Errors

The model omits the implicit

flow balance constraints:

Flow balance:

σ𝒋=𝟎,𝒋≠𝒌
𝟖 𝒙𝒌𝒋 = σ𝒊=𝟎,𝒊≠𝒌

𝟖 𝒙𝒊𝒌in

the reservoirs.

 Struggle to identify

the modeling structure.

 Failing to identify

errors in the model.

Our Solutions

Structure-augmented

Modeling

Solution-side Verification

Structure-side Verification

Logical Error:

The inflow σ𝑗=1
8 𝑥0𝑗 is not

equal to outflow σ𝐽=1
8 𝑥𝑗8

Include a standard MF

model as a reference

Structure Error:

Missing flow balance

compared to standard MF

Figure 2: The two challenges we observed in existing optimization modeling methods.

Please identify the problem type

and write down the corresponding

optimization model.

This is a Maximum Flow

Problem. This problem has the

following constraints:

• Directed Network

• Capacity Constraints

• Flow Balance Constraints

…

Figure 3: The influence of recalling a
problem classification.

Observations on the Modeling Structures To specify
the definition and the usage of modeling structures, we
have the following observation. The LLM cannot find
the flow balance constraints at first. However, the model
can correctly identify the relevant problem classifications.
When we prompt the model to formulate the relevant prob-
lem classification (Maximum Flow Problem in this case),
it successfully identifies the flow balance constraints.

The core principle of structure-augmented modeling is
to leverage similar standard optimization models as a
reference to identify a problem’s implicit constraints. In
Operations Research, many problems in similar scenarios
share characteristics with optimization models in conven-
tional problem classifications, such as the Vehicle Routing
Problem or the Maximum Flow Problem. These classic
types have conventional mathematical formulations—–including standard variables and assumed
constraints–—which this paper refers to as modeling structures. Even when a new problem does
not neatly fit a standard problem classification, referencing the modeling structure of a similar,
well-understood problem helps the LLM uncover these implicit relationships, which are often crucial
for a correct formulation.

4 METHODOLOGY

Our work investigates how the modeling process can be enhanced through effective verification
methods on both the structural and solution sides. An overview of the framework is presented in Figure
4. We define multi-level modeling structures in Section 4.1, followed by a detailed explanation of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Structure-Augmented Modeling

Optimization Problem

Distillation Prompt

Structure Distillation Agent

Multi-Level Structure:

• High Level: Maximum flow problem

• Medium Level: Single commodity maximum flow
• Low Level:
– Directed Network
– Capacity Constraints
– Flow Conservation

Modeling Prompt

Formulation Agent

 Optimization Model

Dual-side Verification

Solution-Side

Structure-Side

Solution

Solution Interpretation Prompt

Solution
Interpreter

Interpreted

q Results

Validity Verification Prompt

Solution
Evaluation Agent

Structure Interpretation Prompt

Structure
Interpreter

Interpreted

 Structure

Consistency Verification Prompt

Refinement

Refinement Prompt

Refinement Agent

Refined model

𝐦𝐢𝐧𝒙 𝑓(𝒙)

s.t. 𝒈 𝒙 ≤ 𝟎

𝐦𝐢𝐧𝒙 𝑓(𝒙)

s.t. 𝒈 𝒙 ≤ 𝟎
Structure Evaluation Agent

Comments

Figure 4: Our OptiVer framework begins by distilling the multi-level structures from the natural
language description. These extracted structures are then combined, allowing the formulator to
generate an initial model. Then, OptiVer conducts a dual-side verification and refinement process.

structure-side verification in Section 4.2 and solution-side verification using a multi-agent cooperation
framework in Section 4.3. We first introduce some notations in this work as follows.

Let D represent the space of natural problem descriptions, and let M denote the model space
encompassing all possible optimization models. The modeling process can be viewed as a mapping
from the problem description D ∈ D to an optimization model M ∈ M. In information theory,
mutual information is defined as

I(X,Y) =
∑

x∈X ,Y ∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)
(1)

This measure quantifies the information gained about one random variable X through the observation
of another random variable Y . Here X and Y represent the space of X and Y respectively, and p(·)
is the probability mass function. A higher value of mutual information indicates a greater reduction
in uncertainty about one variable when the value of the other is known. The modeling process can be
viewed as maximizing the mutual information I(D,M).

4.1 STRUCTURE-AUGMENTED MODELING

(1) Motivation of Multi-Level Structure: Coarse-to-fine structure Analysis Before the modeling
process, human experts first analyze the problem description to identify a similar conventional problem
classification as a reference. Next, they determine the variant of the classification that best aligns with
the description. Finally, they assess special requirements in the description. This analysis follows a
coarse-to-fine approach, from high-level to low-level structure analysis.

(2) Multi-Level Modeling Structure Our framework begins by distilling the modeling structures
from the natural language descriptions. As discussed in Section 3, understanding the problem type is
crucial in the modeling process, as it serves as a foundational template for developing optimization
models. Inspired by the coarse-to-fine structure analysis process used by human experts, we further
refine the concept of modeling structures by introducing the idea of multi-level modeling structures.

• High-Level Structure: This represents the fundamental problem type within OR, such as the
maximum flow problem, set covering problem, vehicle routing problem, and knapsack problem.
Each of these problem types is associated with a basic optimization model.

• Medium-Level Structure: This pertains to the classical classification or variants of fundamental
problem types. For instance, variations of the maximum flow problem include multi-source

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

MF, multi-commodity MF, minimum-cost MF, and MF in undirected graphs. Each variant is
associated with a specific modified optimization model derived from the basic model.

• Lower-Level Structure: This level encompasses constraints in the classical optimization model
as well as specific requirements that extend beyond classical models. For instance, standard
constraints might include capacities and flow balance constraints in the MF, while special require-
ments could involve flow capacities that fluctuate over time.

As we mentioned in Section 3, even highly complex and unique industrial problems are often variants
or combinations of fundamental problem classifications recognized in operations research. The
high-level and medium-level structures in our framework are designed to capture this foundational
core, providing a solid starting point for the modeling process. Second, and most critically, the
framework’s low-level structure is specifically designed to provide the necessary flexibility to handle
unique, real-world contexts. This level is not confined to a specific problem classification and is
intended to capture the nuanced, problem-specific constraints and requirements that extend beyond
classical formulations. This design allows the framework to represent the unique aspects of any given
problem, rather than forcing it into a rigid, predefined category. We denote the multi-level modeling
structure as S. Below, we provide an example of the modeling structure we have defined.

Example: The Structure Schema Extracted by LLMs

• High Level: Maximum flow problem
• Medium Level: Single commodity maximum flow
• Low Level:

– Directed Network: The flow is directed from one reservoir to another.
– Capacity Constraints: Each edge (connection between reservoirs) has a maximum

capacity.
– Flow Conservation: The amount of water entering any intermediate reservoir must equal

the amount leaving, except for the source and sink.

(3) Structure Distillation and Structure-Augmented Modeling We use two pre-trained LLMs
(implemented by GPT4o-mini in this work) as agents to complete the structure distillation and initial
modeling tasks, guided by designed prompts. To distill the multi-level modeling structure S from
the natural language description D, we introduce an LLM agent, called the structure distillation
agent. The agent takes as input the problem description and outputs the formatted structure context.
Then, we call a formulation agent to generate an initial optimization model M guided by prompts
combining the problem description and modeling structure, i.e.,

S = Distillation_Agent(D), M = Formulation_Agent(D,S). (2)

4.2 STRUCTURE-SIDE: STRUCTURE INTERPRETATION AND CONSISTENCY VERIFICATION

(1) Motivation Structure-side verification finds the modeling errors by detecting any deviation from
the established, correct formulation for a known class of problems, catching errors of omission where
the LLM may overlook fundamental constraints and variables required for that problem classification.
Inspired by dual learning in machine translation (He et al., 2016), we assert that a correct model must
meet the following consistency criterion: when we translate the optimization model back into the
space of modeling structure, the resulting context should semantically correspond to the modeling
structure directly derived from the problem description.

(2) Structure Interpretation and Consistency Verification We introduce a structure interpretation
agent and an evaluation agent to complete the structure verification task. The two agents are also
guided with specific prompts. First, a structural interpretation agent performs a "back-translation". It
takes the generated mathematical model M and converts it back into its abstract modeling structure
S̃. Next, a structural evaluation agent acts as a critic. It compares the interpretation agent’s output S̃
with the original structure S derived from the problem description to check for semantic consistency.
The evaluation agent’s output is twofold: a binary consistency score cc and a detailed comment that

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

highlights any discrepancies. This comment provides specific, actionable feedback that is later used
to refine the model. The process can be formally summarized as

S̃ = StruInterp_Agent(M), (com, cc) = StruEval_Agent(S, S̃), (3)

where cc = 1 indicates consistency, while the comment com details any differences found between
the structures, guiding the subsequent refinement step.

Finally, we propose an analysis of the structure-side verification using mutual information. Suppose
that S̃ is the interpreted structure from optimization model M . The structure-side verification aims
to improve the consistency between structures S from the natural language description and that S̃
interpreted from the optimization model, i.e., the mutual information I(S, S̃).

Proposition 4.1. We have I(S, S̃) ≤ I(D,M). Thus, the structure-side verification optimizes the
lower bound of the mutual information between the problem description and the optimization model.

4.3 SOLUTION-SIDE: SOLUTION INTERPRETATION AND VALIDITY VERIFICATION

(1) Motivation This method works because it grounds the abstract mathematical model by assessing
whether its solution is logically feasible. A model may be syntactically correct and yield a numerical
answer, yet that answer could violate the fundamental logic of the original problem (e.g., suggesting
more water flows out of a reservoir than flows in). We argue that the semantic content of the solution
itself is a far richer source for identifying errors. Solution-side verification enhances performance
because it is designed to catch logical errors that are invisible to systems that only check for solver
execution errors. The core of this verification is to leverage the common-sense and logical reasoning
capabilities of such LLMs for improved error detection.

(2) Solution Interpretation and Validity Verification Given an optimization model M , OptiVer
executes the solver code and obtains the optimal solution x. Then, OptiVer performs solution-side

The amount of water

transferred from

Reservoir 𝑖 to

Reservoir 𝑗, where

𝑖, 𝑗 = 0, 1, 2, … , 8.

𝑥01 = 1, …

Solution
The Interpretation of

Solutions

Solution Interpretation Agent

We provide a solution to

the problem. The

amount of water from

Reservoir 0 to 1 is 1, …

Solution Evaluation Agent

The amount
of water entering a
reservoir does not equal
the amount leaving.

Figure 5: An example of solution verification.

verification using two LLM agents,
guided by designed prompts. The first
agent, a solution interpreter, translates
the raw numerical solution x into a
meaningful natural language descrip-
tion D̃ based on the original problem
context D. Next, the second agent, a
solution evaluation agent, scrutinizes
this description to identify any logical
or mathematical errors. This agent’s
output includes a binary validity score
cv and, crucially, a detailed comment
com that provides specific feedback on any flaws found. The score value is 1 if the evaluator
recognizes the validity of solution x, and 0 otherwise. This verification process can be formally
summarized as:

D̃ = SolInterp_Agent(x, D), (com, cv) = SolEval_Agent(D, D̃). (4)

Similar to the analysis of the structure-side verification, we have the following analysis of the solution-
side verification. Suppose that D̃ is the interpreted solution from optimization model M . During the
solution-side verification, we improve the mutual information I(D, D̃).

Proposition 4.2. We have I(D, D̃) ≤ I(D,M). Thus, the solution-side verification optimizes the
lower bound of the mutual information between the problem description and the optimization model.

4.4 REFINEMENT

Based on the feedback, we refine the optimization model. The refinement agent within the OptiVer
framework is a specialized LLM-based component responsible for correcting and enhancing the initial
optimization model based on insights from the dual-side verification process. Guided by a refinement
prompt, the agent takes the current formulation as input and produces a refined optimization model,
represented as M ′ = Ref_Agent(D,S,M, com).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of our method and the baselines across five popular benchmarks. Throughout
the experiments, we compare the solving accuracy (SA) of the methods.

NL4Opt Mamo ComplexLP ComplexOR IndustryOR OptMATH

Reasoning LLMs

DeepSeek-R1 82.6 67.2 68.4 32.0 33.1
OpenAI-o1 87.1 66.3 68.4 36.0 32.5

Fine-tuned Method

ORLM 85.1* 38.8* 42.1* 38.0* 2.6*
Evo-Step 84.4* 61.6* - 36.3* -
LLMOPT 80.3* 44.1* 72.7* 29.0* 12.5*
OptMATH 95.9* 54.1* - - 34.9*

SIRL 96.3* 62.1* - 33.0* 29.0*

Prompt-based Method

Standard 64.6 27.9 31.5 24.0 15.6
CoT 69.3 34.5 36.8 27.0 18.6
CoE 71.3 44.5 68.4 29.0 19.8

OptiMUS 83.0 45.0 73.6 31.0 20.2

OptiVer (Ours) 96.5 66.7 78.9 45.0 34.3

Values marked with * are from the original or reproduced papers. , and - are with missing data
because the model has not been publicly released.

5 EXPERIMENTS

Benchmarks We use five real-world operations research benchmarks: NL4Opt (Ramamonjison
et al., 2021), Mamo ComplexLP (Huang et al., 2024), ComplexOR (Xiao et al., 2024), IndustryOR
(Huang et al., 2025) and OptMATH (Lu et al., 2025). The NL4Opt benchmark, released for the
NeurIPS 2022 NL4Opt competition, consists of 289 elementary linear programming problems. Mamo
ComplexLP 211 problems. ComplexOR is a comprehensive dataset including linear and mixed-
integer programming. In alignment with the studies by (Ahmaditeshnizi et al., 2024) and (Jiang et al.,
2025), we focus on 19 specific problems from this dataset. IndustryOR has 100 challenging problems
from various industry scenarios. OptMATH has 166 challenging problems.

Implementation and Baselines In our experiments, we utilized the GPT4o-mini to implement
the agents in our method and all the prompt-based baselines. For the implementation of OptiVer,
please see Appendix F for the prompts of each agent. In our experiments, we compare OptiVer
with four available prompt-based methods and five fine-tuned operations research LLMs. The four
prompt-based baselines include Standard, Chain-of-Thoughts (CoT) (Wei et al., 2022), Chain-of-
Experts (CoE) (Xiao et al., 2024), and OptiMUS (Ahmaditeshnizi et al., 2024). The Standard
baseline represents the output of GPT without any optimization of its reasoning processes. We
include five fine-tuned open-source operations research language models as baselines, including
ORLM (Huang et al., 2025) (based on LLaMA-3-8B model), Evo-Step (Wu et al., 2025) (based on
LLaMA-3-8B model), LLMOPT (Jiang et al., 2025) (based on Qwen1.5-14B), OptMATH (Lu et al.,
2025) (based on Qwen2.5-32B), and SIRL (Chen et al., 2025) (based on Qwen2.5-7B) trained with
reinforcement learning. Additionally, we also compare our results with the pre-trained reasoning
model DeepSeek-R1 (DeepSeek-AI, 2025) and OpenAI-o1 (OpenAI, 2024).

Metrics Consistent with existing research, we employed solving accuracy (SA) to evaluate perfor-
mance. Specifically, SA represents the proportion of problems for which the methods successfully
identify the optimal solutions. The higher value of SA implies better performance.

5.1 MAIN RESULTS

To demonstrate the effectiveness of our method, we conduct experiments comparing solving accuracy
(SA) between our approach and baseline methods across various benchmarks. The results presented

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Alation studies on (1) each component and (2) each level of modeling structures in OptiVer.
Method NL4Opt Mamo ComplexLP ComplexOR IndustryOR

Ablation for the Components

OptiVer w/o struaug 91.8 54.2 63.1 34.0
OptiVer w/o stru-side 91.5 55.2 68.4 29.0
OptiVer w/o sol-side 91.8 53.1 68.4 41.0

Ablation for Each Level of the Structure

OptiVer w/o high 92.9 59.9 78.9 41.0
OptiVer w/o medium 91.1 57.0 73.6 38.0
OptiVer w/o low 91.1 54.9 73.6 30.0

OptiVer (full) 96.5 66.7 78.9 45.0

in Table 1 indicate that our method significantly outperforms the baselines, achieving an approximate
20% improvement in solving accuracy compared to Standard. For the challenging benchmarks, our
method consistently delivers outstanding performance. This demonstrates that OptiVer exhibits strong
generalization capabilities across both easy and difficult scenarios. Furthermore, OptiVer achieves
performance better than state-of-the-art reasoning LLMs, such as DeepSeek-R1 and OpenAI-o1,
despite relying on a much weaker base model, GPT4o-mini. Please see Appendices D and E for case
and error analysis.

5.2 ABLATION STUDIES

(1) The Effects of Each Component of OptiVer In this section, we examine the effects of the
three components of OptiVer: structure-augmented modeling, structure-side verification, and solution-
side verification. To assess their contributions, we implement three variants of OptiVer. The first
variant, OptiVer w/o stru-aug, omits the introduction of a modeling structure to enhance the modeling
process. For structure-side verification, instead of interpreting the model in structural terms, we
instruct an LLM agent to provide a narrative explaining the meaning of the variables, constraints, and
objectives. The second variant, OptiVer w/o stru-side, does not implement structure-side verification
at all. The third variant, OptiVer w/o sol-side, excludes the solution-side verification process. The
results, presented in Table 2, reveal a significant drop in performance in the absence of any of these
components, highlighting their essential roles in the modeling process.

(2) The Effects of Each Level of Modeling Structures Next, we investigate the impact of each
level within our proposed modeling structure. The variant OptiVer w/o high/medium/low level
excludes the use of high, medium, and low-level structures. The experimental results in Table 2
demonstrate that all three levels contribute positively to overall performance, with the medium and
low-level structures showing particularly pronounced improvements.

Takeaway Critically, the framework’s “low-level structure" is specifically designed to provide the
necessary flexibility to handle unique, real-world contexts. This level is not confined to a specific
problem type and is intended to capture the nuanced, problem-specific constraints and requirements
that extend beyond classical formulations. This design allows the framework to represent the unique
aspects of any given problem, rather than forcing it into a rigid, predefined category.

5.3 BUILDING ON DIFFERENT BASELINES AND LLMS

(1) Improving different Baselines: OptiVer was applied to the outputs of three foundational
baselines: OptiMUS and the fine-tuned ORLM model. In each case, OptiVer’s verification and
refinement process enhanced the initial models generated by these baseline methods. (2)Improving
different Base LLMs: To illustrate that the framework is not reliant on a specific backbone model,
we conducted experiments using various base LLMs with OptiVer. This approach highlights how
performance scales with the capabilities of the underlying model, including stronger models (e.g.,
GPT-4o) and weaker models (e.g., Qwen2.5-14B) The results consistently indicated significant
performance gains, as shown in Table 3. Please refer to Appendix C for detailed experiment settings.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: We build OptiVer on different baselines and backbone models.
Method NL4Opt Mamo ComplexLP ComplexOR IndustryOR

Different Baselines

ORLM 85.1 38.8 42.1 38.0
ORLM+OptiVer 92.3 59.6 73.6 42.0
OptiMUS 83.0 45.0 73.6 31.0
OptiMUS+OptiVer 96.1 61.0 78.9 45.0

Different Backbones

GPT-4o 79.4 45.0 57.8 27.0
GPT-4o+OptiVer 97.5 66.3 78.9 48.0
Qwen2.5-14B 70.3 41.2 57.8 31.0
Qwen2.5-14B+OptiVer 85.8 56.3 68.4 39.0

5.4 QUANTITY ANALYSIS OF VERIFICATIONS Table 4: Verification Precision
Verification Type Easy Medium Hard
Structure Verification 92% 89% 83%
Solution Verification 93% 91% 86%

Table 5: Verification Recall
Verification Type Easy Medium Hard
Structure Verification 86% 79% 68%
Solution Verification 83% 85% 73%

Critical Components of Verifications The
interpretation and evaluation agents are essen-
tial components of the verification process, as
they determine whether OptiVer can effectively
identify errors in the modeling process. We
conducted extensive ablation studies to quan-
titatively assess the accuracy and reliability of
these agents. Our experiments were specifically
designed to evaluate their ability to distinguish
between correct and incorrect models.

Experiment design We utilized the IndustryOR dataset for evaluation, which consists of three
difficulty levels (easy, medium, and hard) that allow us to test the generalization capabilities of
OptiVer across varying problem complexities. The hard problems can be general problems with
complex structures that fall out of the conventional problem classifications. However, this analysis
was labor-intensive, as the IndustryOR dataset does not provide detailed, step-by-step ground-truth
labels necessary for our analysis. To ensure the correctness of this evaluation, we resorted to a manual
checking process, which is time-consuming. We first manually annotated the optimization models for
the sampled problems to establish a ground truth. To facilitate our evaluation, we randomly selected
ten problems from each difficulty level. For generating incorrect models, we initially labeled the
models and extracted the structures. We then created nine negative samples for each labeled model by
randomly deleting or rewriting some of the variables and constraints. This resulted in 30 positive and
270 negative modeling samples. For structure evaluation, we collected interpreted structures from
both the positive and negative samples. The evaluator compared these interpreted structures with the
ground-truth structures and generated a binary score. For solution evaluation, we used the positive
and negative samples to generate solutions, which we then interpreted and assessed for reliability.

Results The evaluation accuracy and recall rates are presented in Tables 4 and 5. For each difficulty
level, we evaluated 10 positive samples and 90 negative samples. Both precision and recall rates for
the negative samples are high across the difficulty levels, demonstrating the reliability of the scores.
We find that the verification process still performs well for hard problems that cannot be classified
into a specific problem type, indicating the strong generalization to general problems.

6 CONCLUSION

In this paper, we propose an LLM-based verification framework designed to enhance the accuracy of
automated mathematical modeling tasks. In the structure-side verification, we assess the modeling
structures of the current model to ensure structural consistency. Meanwhile, in the solution-side
verification, we interpret the solution within the context of the problem descriptions, aiming to
identify any logical or mathematical errors in the models. Extensive experiments demonstrate the
effectiveness of our method across a wide range of benchmarks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT.

This work is designed to explore the significance of the verification process in LLM optimization
modeling. We do not foresee any direct, immediate, or negative societal impacts of our research.

REPRODUCIBILITY STATEMENT.

All the results in this work are reproducible. We have discussed the implementation details in Section
5. We also present our prompts for each agent in Appendix F.

REFERENCES

Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming Computa-
tion, 1:1–41, 2009.

Ali Ahmaditeshnizi, Wenzhi Gao, and Madeleine Udell. OptiMUS: Scalable optimization modeling
with (MI)LP solvers and large language models. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings
of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 577–596. PMLR, 21–27 Jul 2024. URL https://proceedings.
mlr.press/v235/ahmaditeshnizi24a.html.

Nicolás Astorga, Tennison Liu, Yuanzhang Xiao, and Mihaela van der Schaar. Autoformulation of
mathematical optimization models using llms. In International Conference on Machine Learning,
ICML, Proceedings of Machine Learning Research, 2025.

Oded Berman, Zvi Ganz, and Janet M. Wagner. A stochastic optimization model for planning
capacity expansion in a service industry under uncertain demand. Naval Research Lo-
gistics (NRL), 41(4):545–564, 1994. doi: https://doi.org/10.1002/1520-6750(199406)41:
4<545::AID-NAV3220410407>3.0.CO;2-Z. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/1520-6750%28199406%2941%3A4%3C545%
3A%3AAID-NAV3220410407%3E3.0.CO%3B2-Z.

Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D. Laird, Bethany L. Nicholson,
John D. Siirola, Jean-Paul Watson, and David L. Woodruff. Pyomo–optimization modeling in
python, volume 67. Springer Science & Business Media, third edition, 2021.

Hao Chen, Gonzalo E. Constante-Flores, and Can Li. Diagnosing infeasible optimization problems
using large language models, 2023. URL https://arxiv.org/abs/2308.12923.

Yitian Chen, Jingfan Xia, Siyu Shao, Dongdong Ge, and Yinyu Ye. Solver-informed rl: Grounding
large language models for authentic optimization modeling, 2025. URL https://arxiv.org/
abs/2505.11792.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learn-
ing, 2025. URL https://github.com/deepseek-ai/DeepSeek-R1/blob/main/
DeepSeek_R1.pdf.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model
alignment as prospect theoretic optimization. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=iUwHnoENnl.

LLC Gurobi Optimization. Gurobi optimizer. URL http://www. gurobi. com, 2021.

William E Hart, Jean-Paul Watson, and David L Woodruff. Pyomo: modeling and solving mathemati-
cal programs in python. Mathematical Programming Computation, 3(3):219–260, 2011.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. Dual
learning for machine translation. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/
2016/file/5b69b9cb83065d403869739ae7f0995e-Paper.pdf.

10

https://proceedings.mlr.press/v235/ahmaditeshnizi24a.html
https://proceedings.mlr.press/v235/ahmaditeshnizi24a.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6750%28199406%2941%3A4%3C545%3A%3AAID-NAV3220410407%3E3.0.CO%3B2-Z
https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6750%28199406%2941%3A4%3C545%3A%3AAID-NAV3220410407%3E3.0.CO%3B2-Z
https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6750%28199406%2941%3A4%3C545%3A%3AAID-NAV3220410407%3E3.0.CO%3B2-Z
https://arxiv.org/abs/2308.12923
https://arxiv.org/abs/2505.11792
https://arxiv.org/abs/2505.11792
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://openreview.net/forum?id=iUwHnoENnl
https://proceedings.neurips.cc/paper_files/paper/2016/file/5b69b9cb83065d403869739ae7f0995e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/5b69b9cb83065d403869739ae7f0995e-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge, Benyou
Wang, and Zizhuo Wang. Orlm: A customizable framework in training large models for automated
optimization modeling. Operations Research, 2025. doi: 10.1287/opre.2024.1233. URL https:
//doi.org/10.1287/opre.2024.1233.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Mamo: A mathematical
modeling benchmark with solvers. CoRR, abs/2405.13144, 2024.

A.D. Jayal, F. Badurdeen, O.W. Dillon, and I.S. Jawahir. Sustainable manufacturing: Modeling and
optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing
Science and Technology, 2(3):144–152, 2010. ISSN 1755-5817. doi: https://doi.org/10.1016/
j.cirpj.2010.03.006. URL https://www.sciencedirect.com/science/article/
pii/S1755581710000131. Sustainable Development of Manufacturing Systems.

Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, Jun Zhou, Aimin Zhou, and Yang Yu. LLMOPT:
Learning to define and solve general optimization problems from scratch. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=9OMvtboTJg.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai Menache. Large language models
for supply chain optimization, 2023. URL https://arxiv.org/abs/2307.03875.

Hongliang Lu, Zhonglin Xie, Yaoyu Wu, Can Ren, Yuxuan Chen, and Zaiwen Wen. Optmath:
A scalable bidirectional data synthesis framework for optimization modeling. In International
Conference on Machine Learning, ICML, Proceedings of Machine Learning Research, 2025.

Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and Yue jiao
Gong. LLaMoCo: Instruction tuning of large language models for optimization code generation.
CoRR, abs/2403.01131, 2024.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

OpenAI. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

OpenAI. Introducing Openai o1. https://openai.com/o1/, 2024.

Rindranirina Ramamonjison, Timothy T. L. Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan
Ghaddar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong
Zhang. NL4Opt competition: Formulating optimization problems based on their natural language
descriptions. In NeurIPS 2022 Competition Track, pp. 189–203, Virtual, 2021.

Zhuohan Wang, Ziwei Zhu, Yizhou Han, Yufeng Lin, Zhihang Lin, Ruoyu Sun, and Tian Ding.
Optibench: Benchmarking large language models in optimization modeling with equivalence-
detection evaluation, 2024. URL https://openreview.net/forum?id=KD9F5Ap878.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In Advances in Neural Information Processing Systems 35, pp. 24824–24837, New Orleans, LA,
2022.

Yang Wu, Yifan Zhang, Yurong Wu, Yuran Wang, Junkai Zhang, and Jian Cheng. Step-opt: Boosting
optimization modeling in llms through iterative data synthesis and structured validation, 2025.
URL https://arxiv.org/abs/2506.17637.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, and Gang Chen. Chain-of-experts: When LLMs meet
complex operations research problems. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=HobyL1B9CZ.

Zhicheng Yang, Yiwei Wang, Yinya Huang, Zhijiang Guo, Wei Shi, Xiongwei Han, Liang Feng, Linqi
Song, Xiaodan Liang, and Jing Tang. Optibench meets resocratic: Measure and improve LLMs for
optimization modeling. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=fsDZwS49uY.

11

https://doi.org/10.1287/opre.2024.1233
https://doi.org/10.1287/opre.2024.1233
https://www.sciencedirect.com/science/article/pii/S1755581710000131
https://www.sciencedirect.com/science/article/pii/S1755581710000131
https://openreview.net/forum?id=9OMvtboTJg
https://openreview.net/forum?id=9OMvtboTJg
https://arxiv.org/abs/2307.03875
https://arxiv.org/abs/2410.21276
https://openai.com/o1/
https://openreview.net/forum?id=KD9F5Ap878
https://arxiv.org/abs/2506.17637
https://openreview.net/forum?id=HobyL1B9CZ
https://openreview.net/forum?id=fsDZwS49uY

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yafeng Yin. Multiobjective bilevel optimization for transportation planning and management prob-
lems. Journal of Advanced Transportation, 36(1):93–105, 2002. doi: https://doi.org/10.1002/atr.
5670360106. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/atr.
5670360106.

12

https://onlinelibrary.wiley.com/doi/abs/10.1002/atr.5670360106
https://onlinelibrary.wiley.com/doi/abs/10.1002/atr.5670360106

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

USE OF LLMS

Large language models (LLMs) were used to aid writing polish, including refining sentence phrasing,
logical flow, and prose clarity, without altering original meanings or technical details. We use LLM to
generate the robot logos in Figure 2, 3, 4, and 5. LLMs did not participate in core research tasks (e.g.,
experiment design, data processing, model training, result analysis, or drafting key technical content).

A PROOF OF PROPOSITIONS

Proof. A property of mutual information is that I(X,Y) ≥ I(X, f(Y)) for random variables
X , Y , and function f . Thus, we have I(D,M) ≥ I(Distillation_Agent(D),M) ≥
I(S,Interp_Agent(M)) = I(S, S̃).

B MORE EXPERIMENT RESULTS

B.1 COMPARISON OF SOLVING EFFICIENCY

Table 6: Comparison of our method and base-
lines in the solving efficiency. OptiVer uses the
shortest solving time (seconds).

NL4Opt Mamo ComplexLP

CoE 58.2 72.5
OptiMUS 64.2 80.3
OptiVer 52.8 67.6

(1) Efficiency Definition We examine the solving
efficiency of OptiVer in comparison to the prompt-
based baselines CoE and OptiMUS by analyzing the
average time taken to solve a problem. We use the
same solver (Gurobi) for all methods. This ensures
fairness in efficiency comparisons. The solving time
in Table 6 contains the modeling time using LLMs
and the execution time of the solver. The solver
execution time is short (under 0.01 seconds) and
can be neglected during this process. Thus, the
solving time in Table 6 reflects the modeling time by LLMs. The results presented in Table 6 indicate
that OptiVer achieves significantly shorter solving times, showcasing its high efficiency.

(2) The Reason why OptiVer is efficient Compared to other prompt-based baselines, OptiVer
has a simpler workflow. CoE and OptiMUS are based on the multi-agent cooperation framework.
The workflow of these methods is automatically controlled by a management agent. The insufficient
decision-making ability of the management agent may lead to suboptimal decision chains. In the
experiments, we find that this method may repeatedly call the same agent. For example, for certain
complex problems, CoE may call the terminology interpreter again and again. In contrast, DeVet
does not include such a management agent, leading to a simpler workflow.

B.2 THE PROBLEMS WE TRY TO ADDRESS IS CRITICAL IN OPTIMIZATION MODELING

Table 7: The proportion of errors.
NL4Opt Mamo ComplexLP

Missing Constraints 37.3 20.0
Failure Model Debugging 51.8 40.0

The OptiVer framework is designed
and validated for broad applicability
across a wide range of problem do-
mains and model types. Our exper-
imental results provide compelling
evidence for this generalizability.

We demonstrate that the motivations and challenges we address are common and critical in the
optimization modeling field.

The missing constraints Section 4.5 of the OptiMUS paper (Ahmaditeshnizi et al., 2024) has
summarized and classified common errors, including missing or wrong constraints, incorrect model,
and coding errors. Missing or wrong constraints mean the model fails to extract all the constraints
from the model or generates wrong constraints. An incorrect model means errors, such as defining
binary variables for visiting cities instead of links in TSP. The prevalence of such mistakes is notable
in benchmarks, with 36.0% in NL4Opt and 12.6% in ComplexOR.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Incorrect model debugging This is also a common challenge. The OptiMUS paper (Ahmaditesh-
nizi et al., 2024) points out that "Coding errors are easier to identify and fix. In contrast, identifying
bugs in the formulation requires deeper reasoning and is harder." In existing methods, the debugging
module is called only when the solver codes raise execution errors.

C EXPERIMENT SETTING IN SECTION 5.3

The plug-and-play capability of OptiVer is supported by both its architectural design and empirical
results across diverse setups. We have built OptiVer based on two modeling baselines (OptiMUS and
ORLM) and two pretrained backbone LLMs (GPT-4o and Qwen2.5-14B). OptiMUS are prompt-
based methods with general LLMs as backbones (we use GPT4o-mini here), which can process
any text inputs. We first extract multi-level structures for the problems using a structure distillation
agent. These extracted structures are then appended to the problem descriptions and sent as input
to the OptiMUS. Once the baselines generate an initial formulation, we proceed with OptiVer’s
verification step. However, ORLM is a fine-tuned model designed to handle only specific input
formats. Therefore, the ORLM model is used solely to provide an initial optimization model, while
we perform the verification and refinement processes using the GPT4o-mini model.

D CASE STUDY

For the example to explain why OptiVer can mitigate the errors, we provide the following optimization
problem with output of CoT and OptiVer.

Problem (simplified version) In a vast network of canals interconnecting 9 strategic reservoirs,
engineers have meticulously mapped out the maximum capacities for water transfer from reservoirs i
to j, i.e., cij . The challenge is to optimize this water distribution system to ascertain the maximum
possible water transfer from Reservoir 0 to Reservoir 8 per day.

Optimization Formulation

Optimization Model Given by CoT:
• Decision Variables: xij : The amount of water transferred from Reservoir i to

Reservoir j, where i, j = 0, 1, 2, . . . , 8.
• Objective Function: Maximize the water transfer from Reservoir 0 to 8:

Z =

8∑
j=1

x0j

• Constraints:
1. Water transfer capacities: xij ≤ cij , for all i, j.
2. Non-negativity: xij ≥ 0, for all i, j.

This model is incorrect due to missing flow balance constraints. The verification process is outlined
as follows:

• Structure-Augmented Modeling: The model references a maximum flow problem. It
correctly formulates the flow balance constraint when recalling the standard model.

• Structure-Side Verification: The model interprets the current optimization model and
compares it with the structure of the original problems.

• Solution-Side Verification: If the model lacks flow balance constraints, the obtained
solution is represented as xij = cij . The evaluation agent in OptiVer analyzes the solutions
and determines that the inflow does not equal the outflow within the system. Consequently,
the evaluation agent identifies this discrepancy as an error.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Optimization Formulation

Optimization Model Given by OptiVer:
• Modeling structures:

– High Level: Maximum flow problem
– Medium Level: Single commodity maximum flow
– Low Level:

1. Directed Network: The flow is directed from one reservoir to another.
2. Capacity Constraints: Each edge has a maximum capacity.
3. Flow Conservation: The amount of water entering any intermediate reservoir

must equal the amount leaving.
• Decision Variables: xij : The amount of water transferred from Reservoir i to

Reservoir j.
• Objective Function: Maximize the water transfer:

Z =

8∑
j=1

x0j

• Constraints:
1. xij ≤ cij , for all i, j.
2. xij ≥ 0, for all i, j.

3. Flow Conservation:
∑8

j=0
j ̸=k

xkj =
∑8

i=0
i̸=k

xik for k in the reservoirs

Analysis The modeling structures are proposed to address the challenges of missing constraints.
The core of structure-augmented modeling is to identify a similar standard optimization model, and
identify the implicit constraints using the standard optimization model as a reference.

E ERROR ANALYSIS ON DIFFERENT PROBLEM TYPES

The results presented in Table 8 clearly demonstrate OptiVer’s strong generalization capabilities, as
it consistently and significantly outperforms the CoT baseline across five distinct and challenging
problem categories. This robust performance is particularly evident in problem types where standard
prompting methods struggle. For instance, on the Capacitated TSP, where CoT achieves a mere 5.13%
accuracy, OptiVer boosts performance to 48.72%. Similarly, for Diet, Transportation, and Maximum
Flow problems, OptiVer elevates accuracy from the 16-27% range to a much more effective 55-82%
range. This shows that OptiVer’s verification process can successfully navigate complex problem
structures that are difficult for LLMs to model correctly. Furthermore, even in cases where the
CoT baseline is already strong in some problems, such as the Facility Location-Allocation Problem
(80.65%), OptiVer still provides a significant improvement, pushing the accuracy to 93.55%. The
consistent and substantial performance lift across this diverse set of problems underscores that
OptiVer’s adaptive verification framework is a broadly applicable and effective strategy, rather than a
technique tailored to a specific problem type.

Table 8: The performance on each problem category on the MAMO ComplexLP dataset
Problem Category CoT OptiVer
Diet Problem 27.27% 81.82%
Transportation Problem 23.53% 70.59%
Capacitated TSP 5.13% 48.72%
Maximum Flow Problem 16.28% 55.81%
Facility Location-Allocation Problem 80.65% 93.55%

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F THE PROMPT DESIGN

F.1 STRUCTURE DISTILLATION

1 interpretation_prompt=[
2 """
3 You are a mathematical formulator working with a team of optimization

↪→ experts. The objective is to tackle a complex optimization problem.
4 """,
5 """
6 Please interpret and explain the following problem description.
7

8 {problem}
9

10 - What is the specific problem type of this OR and CO problem? What
↪→ specific kind of OR problem?

11 """,
12 """
13 This is the base formulation of the problem
14

15 {base_formulation}
16

17 - What is the subdivision of different kinds of this problem?
18 - Is this base formulation correct?
19 """,
20 """
21 - Is there any implicit constraints in the problem, including but not

↪→ limited to the logical selection relation, if/else and if/then
↪→ relation?

22 """,
23 """
24 Please summarize and write in JSON Format. For ’subdivision’, please find

↪→ the ones matching this problem description
25

26 ‘‘‘json
27 {{
28 "problem_type": ..,
29 "specific_type": ...,
30 "subdivisions": {{
31 subdivision 1: description,
32 subdivision 2: description,
33 ...
34 }},
35 "implicit_constraints": {{
36 implicit constraint 1: description,
37 implicit constraint 2: description,
38 ...
39 }},
40 }}
41 ‘‘‘
42

43 - Note that I’m going to use python json.loads() function to parse the
↪→ json file, so please make sure the format is correct (don’t add ’,’
↪→ before enclosing ’}}’ or ’]’ characters.

44 - Generate the complete json file and don’t omit anything.
45 - Use ’‘‘‘json’ and ’‘‘‘’ to enclose the json file.
46 """
47]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F.2 STRUCTURE-AUGMENTED MODELING

1 formulation_prompt = [
2 """
3 You are an expert mathematical formulator and an optimization professor

↪→ at a top university. Your task is to model the problem in the
↪→ standard LP or MILP form.

4 """,
5 """
6 Here is the description of the problem to be formulated.
7

8 {problem}
9

10 - Please summarize the parameters and their tensor sizes.
11 - Please explain the definition of the parameters.
12 - Please keep the answer brief and concise.
13 """,
14 """
15 please write in JSON Format. Make sure the bracket is closed, especially

↪→ when processing the matrices. Do not transpose the matrices and
↪→ keep the shape of the matrices.

16

17 {{
18 "parameters": [
19 {
20 "symbol": "mathematical symbol of the parameters",
21 "definition": "definition of the parameters","
22 "value": the value of the parameters,
23 "shape": [],
24 },
25 {
26 "symbol": "mathematical symbol of the parameters",
27 "definition": "definition of the parameters",
28 "value": the value of the parameters,
29 "shape": [],
30 },
31 ...
32],
33 }}
34

35 - Use CamelCase and full words for new variable symbols, and do not
↪→ include indices in the symbol (e.g. ItemsSold instead of itemsSold
↪→ or items_sold or ItemsSold_i)

36 - Note that I’m going to use python json.loads() function to parse the
↪→ json file, so please make sure the format is correct (don’t add ’,’
↪→ before enclosing ’}}’ or ’]’ characters.

37 - Use ’‘‘‘json’ and ’‘‘‘’ to enclose the json file.
38 """,
39 """
40 Here are some of the cases when we need auxiliary variables. Do we need

↪→ to include auxiliary binary variables in the formulation?
41

42 - Logical Conditions: When a decision depends on a binary condition (e.g.,
↪→ whether to open a facility or not, use a kind of transportation or
↪→ not ,and so on), auxiliary binary variables can represent these
↪→ conditions.

43 - Modeling step costs: Using binary variables involves creating a
↪→ mathematical formulation where costs change based on specific
↪→ thresholds or levels of activity.

44 - Disjunctive Constraints: When a problem involves "either-or" situations,
↪→ binary variables can be used to model these disjunctions
↪→ effectively (Combined with the big M method).

45 - Capacity Constraints: In problems involving limited resources, binary
↪→ variables can indicate whether a resource is being utilized or not,
↪→ allowing for better modeling of capacity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

46 - Selection Problems: In scenarios where a fixed set of items or
↪→ variables can be selected (e.g., choosing a subset of projects to
↪→ fund), binary variables indicate the selection status.

47 - Scheduling Order: When determining the sequence in which tasks are
↪→ performed, binary variables can indicate the order of tasks (e.g.,
↪→ Task A before Task B). This is often used in job-shop scheduling or
↪→ project scheduling.

48 - Penalty Costs: In scheduling with penalties for delays (like tardiness
↪→ or unmet deadlines), binary variables can help track whether a task
↪→ incurs a penalty, allowing for cost minimization.

49 - Job Switching: In scenarios where workers or machines can switch
↪→ between tasks, binary variables can indicate if a switch occurs,
↪→ helping to manage transition times and costs.

50 """,
51 """
52 This problem is a {problem_type} problem with structures
53

54 {structure}
55

56 To analyze the description carefully, here is the base formulation of
↪→ this problem (which can be correct or needs to be modified)

57

58 {base_formulation}
59

60 Now take a deep breath and formulate this problem according to the
↪→ description and base formulation.

61

62 - Consider whether we need to introduce auxiliary binary variables, note
↪→ that do not include redundant variables.

63 - For variables, use integer type for discrete items (such as production,
↪→ unit, people) and continuous ones for continuous items (water,
↪→ land, time, grams, and so on).

64 - Your formulation should be in LaTeX mathematical format (do not include
↪→ the $ symbols).

65 - Important: You can not define new parameters. You can only define new
↪→ variables. Use CamelCase and full words for new variable symbols,
↪→ and do not indices in the symbol (e.g. ItemsSold instead of
↪→ itemsSold or items_sold or ItemsSold_i). You can include indices in
↪→ the constraint and objective formulations.

66 - Make sure that you do not use the numeric number in the formulation
↪→ except when necessary, instead, you use the parameter name (you can
↪→ include indices in the constraint and objective formulations).

67 - Always use non-strict inequalities (e.g. \\leq instead of <), even if
↪→ the constraint is strict.

68

69

70 Take a deep breath and solve the problem step by step.
71 """
72]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F.3 STRUCTURE INTERPRETATION AND STRUCTURE CONSISTENCY VERIFICATION

1 modification_prompt = [
2 """
3 You are an expert mathematical formulator and an optimization professor

↪→ at a top university. Your task is to model and fix the problem in
↪→ the standard LP or MILP form.

4 """,
5 """
6 This is a {problem_type} problem with parameters
7

8 {parameters}
9

10 The formulation is as follows
11

12 {formulation_interpretation}
13

14 Does this problem consistent with the characteristics of the following
↪→ structure description? If yes, please say "Yes" directly.

15 If not, please give your comments to modify the formulation.
16

17 {original_problem_interpretation}
18 """,
19 """
20 Please reformulate the problem to make the formulation consistent with

↪→ the structure description.
21

22 - Consider whether we need to introduce extra binary variables or
↪→ linearization for a piece-wise linear function.

23 - Your formulation should be in LaTeX mathematical format (do not include
↪→ the $ symbols).

24 - Important: You can not define new parameters. You can only define new
↪→ variables. Use CamelCase and full words for new variable symbols,
↪→ and do not include indices in the symbol (e.g. ItemsSold instead of
↪→ itemsSold or items_sold or ItemsSold_i). You can include indices
↪→ in the constraint and objective formulations.

25 - Make sure that you do not use a numeric number in the formulation
↪→ except where necessary; instead, you use the parameter name (you
↪→ can include indices in the constraint and objective formulations).

26 - Always use non-strict inequalities (e.g. \\leq instead of <), even if
↪→ the constraint is strict.

27

28 Take a deep breath and solve the problem step by step.
29 """
30]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F.4 SOLUTION INTERPRETATION AND SOLUTION VALIDITY VERIFICATION

1 solution_prompt = [
2 """
3 You are an expert mathematical formulator and an optimization professor

↪→ at a top university. Your task is to model and fix the problem
↪→ using the solution information in the standard LP or MILP form.

4 """,
5 """
6 This is a {problem_type} problem with solutions
7

8 {solutions}
9

10 The formulation is as follows
11

12 {formulation_interpretation}
13

14 Please interpret the meaning of the solution.
15 """,
16 """
17 Here is the problem description.
18

19 {original_problem_interpretation}
20

21 Is this solution the optimal solution? The optimal solution should be
↪→ mathematical sound and logical coherence:

22 - We cannot find a better solution.
23 - The solution should meet the constraints of the problem description.
24

25 If yes, please say "Yes" directly.
26 If not, please give your comments to modify the formulation.
27 """,
28 """
29 Please reformulate the problem to make the formulation consistent with

↪→ the structure description.
30

31 - Consider whether we need to introduce extra binary variables or
↪→ linearization for a piece-wise linear function.

32 - Your formulation should be in LaTeX mathematical format (do not include
↪→ the $ symbols).

33 - Important: You can not define new parameters. You can only define new
↪→ variables. Use CamelCase and full words for new variable symbols,
↪→ and do not include indices in the symbol (e.g. ItemsSold instead of
↪→ itemsSold or items_sold or ItemsSold_i). You can include indices
↪→ in the constraint and objective formulations.

34 - Make sure that you do not use a numeric number in the formulation
↪→ except where necessary; instead, you use the parameter name (you
↪→ can include indices in the constraint and objective formulations).

35 - Always use non-strict inequalities (e.g. \\leq instead of <), even if
↪→ the constraint is strict.

36

37 Take a deep breath and solve the problem step by step.
38 """
39]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G MORE EXAMPLES

G.1 NL4OPT

Example in NL4Opt

Natural Language Description:
A fishery wants to transport their catch. They can either use local sled dogs or trucks. Local
sled dogs can take 100 fish per trip while trucks can take 300 fish per trip. The cost per trip
for sled dogs is $50 while the cost per trip for a truck is $100. The budget is at most $1000
and the number of sled dog trips must be less than the number of truck trips. Formulate an
LP to maximize the number of fish that can be transported.

Modeling Structure Given by OptiVer:

1 {
2 "problem_type": "Linear Programming",
3 "specific_type": "Resource Allocation Problem",
4 "subdivisions": {
5 "transportation optimization": "Optimizing the transport

↪→ of goods or resources using various modes of
↪→ transport.",

6 "resource allocation": "Distributing limited resources to
↪→ achieve the best possible outcome.",

7 "cost minimization and profit maximization": "Balancing
↪→ costs against outputs to maximize profit or benefits
↪→ ."

8 },
9 "implicit_constraints": {

10 "non-negative trips": "The number of trips (x and y)
↪→ cannot be negative.",

11 "integer trips": "The number of trips should generally be
↪→ an integer value."

12 }
13 }

Optimization Model Given by OptiVer:

1 {
2 "constraints": [
3 {
4 "name": "Budget Constraint",
5 "description": "The total cost of trips must not

↪→ exceed the budget.",
6 "formulation": "CostPerSledDogTrip \\cdot

↪→ NumberOfSledDogTrips + CostPerTruckTrip \\cdot
↪→ NumberOfTruckTrips \\leq TotalBudget"

7 },
8 {
9 "name": "Trip Comparison Constraint",

10 "description": "The number of sled dog trips must
↪→ not exceed the number of truck trips.",

11 "formulation": "NumberOfSledDogTrips \\leq
↪→ NumberOfTruckTrips"

12 },

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

13 {
14 "name": "Non-negativity Constraints",
15 "description": "The number of trips must be non-

↪→ negative.",
16 "formulation": "NumberOfSledDogTrips \\geq 0"
17 },
18 {
19 "name": "Non-negativity Constraints",
20 "description": "The number of trips must be non-

↪→ negative.",
21 "formulation": "NumberOfTruckTrips \\geq 0"
22 },
23 {
24 "name": "Integer Constraints for Sled Dog Trips",
25 "description": "The number of sled dog trips must be

↪→ an integer.",
26 "formulation": "NumberOfSledDogTrips \\in \\mathbb{Z

↪→ }"
27 },
28 {
29 "name": "Integer Constraints for Truck Trips",
30 "description": "The number of truck trips must be an

↪→ integer.",
31 "formulation": "NumberOfTruckTrips \\in \\mathbb{Z}"
32 }
33],
34 "variables": [
35 {
36 "definition": "Integer variable representing the

↪→ number of sled dog trips.",
37 "symbol": "NumberOfSledDogTrips",
38 "type": "integer",
39 "shape": []
40 },
41 {
42 "definition": "Integer variable representing the

↪→ number of truck trips.",
43 "symbol": "NumberOfTruckTrips",
44 "type": "integer",
45 "shape": []
46 }
47],
48 "objective": [
49 {
50 "description": "Maximize the total number of fish

↪→ transported.",
51 "formulation": "Z = FishPerSledDogTrip \\cdot

↪→ NumberOfSledDogTrips + FishPerTruckTrip \\cdot
↪→ NumberOfTruckTrips",

52 "objective_sense": "Maximize"
53 }
54]
55 }

Solver Code Given by OptiVer:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1 import json
2 import numpy as np
3 import math
4 import gurobipy as gp
5 from gurobipy import GRB
6

7 # Create a new model
8 model = gp.Model(’model’)
9

10 # Define parameters
11 parameters = {
12 "CostPerSledDogTrip": 50,
13 "CostPerTruckTrip": 100,
14 "FishPerSledDogTrip": 100,
15 "FishPerTruckTrip": 300,
16 "TotalBudget": 1000
17 }
18

19 # Define variables
20 NumberOfSledDogTrips = model.addVar(vtype=GRB.INTEGER, name="

↪→ NumberOfSledDogTrips")
21 NumberOfTruckTrips = model.addVar(vtype=GRB.INTEGER, name="

↪→ NumberOfTruckTrips")
22

23 # Add variables to the model
24 model.update()
25

26 # Constraints
27 # Budget Constraint
28 model.addConstr(
29 parameters["CostPerSledDogTrip"] * NumberOfSledDogTrips +
30 parameters["CostPerTruckTrip"] * NumberOfTruckTrips <=
31 parameters["TotalBudget"],
32 name="BudgetConstraint"
33)
34

35 # Trip Comparison Constraint
36 model.addConstr(
37 NumberOfSledDogTrips <= NumberOfTruckTrips,
38 name="TripComparisonConstraint"
39)
40

41 # Non-negativity Constraints
42 model.addConstr(NumberOfSledDogTrips >= 0, name="

↪→ NonNegativitySledDogTrips")
43 model.addConstr(NumberOfTruckTrips >= 0, name="

↪→ NonNegativityTruckTrips")
44

45 # Set the objective
46 model.setObjective(
47 parameters["FishPerSledDogTrip"] * NumberOfSledDogTrips +
48 parameters["FishPerTruckTrip"] * NumberOfTruckTrips,
49 GRB.MAXIMIZE
50)
51

52 # Optimize the model
53 model.optimize()
54 status = model.status
55

56 obj_val = None
57 # Check whether the model is infeasible, has infinite solutions, or

↪→ has an optimal solution

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

58 if status == gp.GRB.INFEASIBLE:
59 obj_val = "infeasible"
60 elif status == gp.GRB.UNBOUNDED:
61 obj_val = "unbounded"
62 elif status == gp.GRB.OPTIMAL:
63 obj_val = model.objVal
64

65 print("Objective Value:", obj_val)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.2 MAMO COMPLEXLP

Example in Mamo ComplexLP

Natural Language Description:
In a scenario involving a salesperson who needs to visit five different cities to conduct
business, each city is uniquely numbered from 1 to 5. The salesperson’s objective is to
minimize the total travel expenses, which could be influenced by factors such as distance,
fuel costs, or transportation fees. The salesperson can start their journey from any of these
cities but must ensure they visit each city exactly once before returning to their starting point.

The travel costs between the cities are as follows:
- From City 1, the travel costs are 58 units to City 2, 15 units to City 3, 75 units to City 4, and
91 units to City 5.
- From City 2, it costs 58 units to City 1, 54 units to City 3, 85 units to City 4, and 11 units to
City 5.
- Traveling from City 3, the expenses are 15 units to City 1, 54 units to City 2, 28 units to
City 4, and 61 units to City 5.
- From City 4, the costs are 75 units to City 1, 85 units to City 2, 28 units to City 3, and 47
units to City 5.
- Lastly, from City 5, it costs 91 units to City 1, 11 units to City 2, 61 units to City 3, and 47
units to City 4.

Given this setup, what is the minimum total travel cost for the salesperson to visit each city
exactly once and then return to the starting city?

Modeling Structure Given by OptiVer:

1 {
2 "problem_type": "Combinatorial Optimization Problem",
3 "specific_type": "Traveling Salesman Problem (TSP)",
4 "subdivisions": {
5 "Hamiltonian cycle": "Path that visits each vertex exactly

↪→ once and returns to the starting vertex",
6 "Weighted graph": "Graph with weights on edges

↪→ representing travel costs between cities",
7 "Directed graph": "Graph where edges have a direction,

↪→ indicating the cost of travel from one city to
↪→ another"

8 },
9 "implicit_constraints": {

10 "subtour elimination": "Explicit constraints to prevent
↪→ subtours in the solution",

11 "start_end city constraint": "Salesperson must start and
↪→ end at the same city"

12 }
13 }

Optimization Model Given by OptiVer:

1 {
2 "constraints": [
3 {
4 "name": "Each City Visited Once",

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

5 "description": "Each city must be visited exactly
↪→ once by the salesperson.",

6 "formulation": "\\sum_{j \\in Cities} x_{ij} = 1\\
↪→ quad \\forall i \\in Cities"

7 },
8 {
9 "name": "Return to Start City",

10 "description": "The salesperson must return to the
↪→ starting city after visiting all cities.",

11 "formulation": "\\sum_{i \\in Cities} x_{ji} = 1\\
↪→ quad \\forall j \\in Cities"

12 },
13 {
14 "name": "Subtour Elimination",
15 "description": "Constraints to prevent subtours in

↪→ the solution.",
16 "formulation": "u_i - u_j + (|Cities|) \\cdot x_{ij}

↪→ \\leq |Cities| - 1\\quad \\forall i, j \\in
↪→ Cities, \\; i \\neq j"

17 },
18 {
19 "name": "Position Constraints",
20 "description": "Position variables must be within

↪→ valid range.",
21 "formulation": "2 \\leq u_i \\leq |Cities| \\quad \\

↪→ forall i \\in Cities"
22 }
23],
24 "variables": [
25 {
26 "definition": "Binary variable indicating whether

↪→ the salesperson travels from city i to city j
↪→ .",

27 "symbol": "x_ij",
28 "type": "binary",
29 "shape": [
30 5,
31 5
32]
33 },
34 {
35 "definition": "Auxiliary continuous variable

↪→ representing the position of city i in the
↪→ tour.",

36 "symbol": "u_i",
37 "type": "continuous",
38 "shape": [
39 5
40]
41 }
42],
43 "objective": [
44 {
45 "description": "Minimize the total travel cost for

↪→ the salesperson.",

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

46 "formulation": "Z = \\sum_{i \\in Cities} \\sum_{j
↪→ \\in Cities} d_{ij} \\cdot x_{ij}",

47 "objective_sense": "Minimize"
48 }
49]
50 }

Solver Code Given by OptiVer:

1 import json
2 import numpy as np
3 import math
4 import gurobipy as gp
5 from gurobipy import GRB
6

7 # Create a new model
8 model = gp.Model(’model’)
9

10 # Define parameters
11 parameters = {
12 "Cities": [1, 2, 3, 4, 5],
13 "TravelCosts": [
14 [0, 58, 15, 75, 91],
15 [58, 0, 54, 85, 11],
16 [15, 54, 0, 28, 61],
17 [75, 85, 28, 0, 47],
18 [91, 11, 61, 47, 0]
19]
20 }
21

22 Cities = parameters["Cities"]
23 TravelCosts = parameters["TravelCosts"]
24 num_cities = len(Cities) # Number of cities
25

26 # Define variables
27 x = model.addVars(num_cities, num_cities, vtype=GRB.BINARY, name="x

↪→ ") # Binary variables for routes
28 u = model.addVars(num_cities, vtype=GRB.CONTINUOUS, name="u") #

↪→ Continuous variables for subtour elimination
29

30 # Constraints: Each City Visited Once
31 for i in range(num_cities):
32 model.addConstr(gp.quicksum(x[i, j] for j in range(num_cities)

↪→ if i != j) == 1, f"VisitOnce_Cities[{i}]")
33

34 # Constraints: Return to Start City
35 for j in range(num_cities):
36 model.addConstr(gp.quicksum(x[i, j] for i in range(num_cities)

↪→ if i != j) == 1, f"ReturnToStart_Cities[{j}]")
37

38 # Subtour Elimination Constraints
39 for i in range(1, num_cities):
40 for j in range(1, num_cities):
41 if i != j:
42 model.addConstr(u[i] - u[j] + num_cities * x[i, j] <=

↪→ num_cities - 1, f"SubtourElimination_Cities[{i}][{j
↪→ }]")

43

44 # Position Constraints

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

45 for i in range(num_cities):
46 model.addConstr(u[i] >= 2, f"LowerBound_u[{i}]")
47 model.addConstr(u[i] <= num_cities, f"UpperBound_u[{i}]")
48

49 # Objective: Minimize total travel cost
50 model.setObjective(gp.quicksum(TravelCosts[i][j] * x[i, j] for i in

↪→ range(num_cities) for j in range(num_cities)), GRB.MINIMIZE)
51

52 # Optimize the model
53 model.optimize()
54 status = model.status
55

56 obj_val = None
57 # Check whether the model is infeasible, has infinite solutions, or

↪→ has an optimal solution
58 if status == gp.GRB.INFEASIBLE:
59 obj_val = "infeasible"
60 elif status == gp.GRB.UNBOUNDED:
61 obj_val = "unbounded"
62 elif status == gp.GRB.OPTIMAL:
63 obj_val = model.objVal
64

65 print("Objective Value:", obj_val)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

G.3 COMPLEXOR

Example in ComplexOR

Natural Language Description:
The capacitated warehouse location problem involves determining the optimal locations
for a set number of warehouses to service customers at minimum cost, taking into account
warehouse capacities, operating costs, and customer demand.
The capacitated warehouse location problem is the problem of locating NumberOfLocations
warehouses which have to service NumberOfCustomers customers, at minimum cost. Each
customer has an associated demand CustomerDemand. There are constraints on the total
demand that can be met from a warehouse, as specified by WarehouseCapacity. Costs are
incurred when allocating service to customers from warehouses ServiceAllocationCost, and
warehouses have a fixed operating cost WarehouseFixedCost. Additionally, there is a lower
limit MinimumDemandFromWarehouse on the amount of demand that a warehouse must
meet if it is opened, as well as constraints on the minimum MinimumOpenWarehouses and
maximum MaximumOpenWarehouses number of warehouses that can be operational.
The total number of potential warehouse locations is 10. The total number of customers to
be serviced is 20. The demand of each customer is [117, 86, 69, 53, 110, 74, 136, 140, 126,
79, 54, 86, 114, 76, 136, 73, 144, 51, 53, 120]. The cost of allocating service from each
warehouse to each customer is [[80, 94, 44, 51, 190, 44, 129, 178, 129, 91, 172, 119, 177,
150, 90, 51, 53, 97, 184, 87], [139, 33, 104, 135, 50, 176, 97, 121, 47, 29, 186, 163, 149, 108,
156, 169, 100, 160, 153, 85], [153, 36, 18, 170, 18, 181, 178, 68, 171, 106, 159, 110, 21, 106,
91, 29, 144, 140, 155, 116], [103, 59, 78, 125, 14, 11, 152, 95, 76, 173, 36, 148, 75, 132, 59,
153, 113, 74, 185, 71], [193, 186, 130, 145, 114, 150, 33, 154, 20, 75, 103, 30, 137, 131,
167, 32, 53, 150, 176, 166], [159, 130, 156, 65, 36, 59, 199, 124, 104, 72, 180, 73, 43, 152,
143, 90, 161, 65, 172, 141], [173, 121, 110, 127, 22, 159, 195, 137, 47, 10, 87, 11, 154, 66,
126, 60, 152, 54, 20, 25], [181, 34, 186, 152, 109, 195, 133, 198, 30, 65, 69, 19, 109, 143,
108, 196, 59, 133, 10, 123], [82, 113, 147, 21, 88, 24, 38, 16, 70, 122, 148, 192, 116, 108,
18, 20, 143, 18, 116, 142], [176, 170, 87, 91, 195, 183, 124, 89, 72, 97, 89, 23, 45, 196, 97,
27, 83, 81, 171, 148]]. The total capacity for each warehouse is [3010, 2910, 4530, 4720,
4920, 3750, 4930, 2970, 3310, 2460]. The lower limit on the demand that must be met from
a warehouse if it is to be operational is [64, 55, 27, 71, 93, 90, 89, 87, 43, 50]. The minimum
number of warehouses that need to be operational is 3. The maximum number of warehouses
that can be operational is 8. The fixed operating cost of each warehouse is [8517, 5068, 9433,
6127, 6033, 5966, 7762, 9406, 6602, 7040].

Modeling Structure Given by OptiVer:

1 {
2 "problem_type": "Mixed Integer Linear Programming",
3 "specific_type": "Capacitated Warehouse Location Problem",
4 "subdivisions": {
5 "1": "Location Optimization",
6 "2": "Capacity Planning",
7 "3": "Cost Minimization"
8 },
9 "implicit_constraints": {

10 "1": "Each customer’s demand must be fully met.",
11 "2": "A warehouse that is opened must meet a specified

↪→ minimum demand."
12 }
13 }

Optimization Model Given by OptiVer:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

1 {
2 "constraints": [
3 {
4 "name": "Demand Meeting",
5 "description": "Each customer’s demand must be fully

↪→ met.",
6 "formulation": "\\sum_{j=1}^{NumberOfLocations} y_{

↪→ ij} = CustomerDemand[i] \\quad \\forall i"
7 },
8 {
9 "name": "Capacity Limit",

10 "description": "The total demand served from each
↪→ warehouse cannot exceed its capacity.",

11 "formulation": "\\sum_{i=1}^{NumberOfCustomers} y_{
↪→ ij} \\leq WarehouseCapacity[j] \\cdot x_j \\
↪→ quad \\forall j"

12 },
13 {
14 "name": "Minimum Demand",
15 "description": "A warehouse that is opened must meet

↪→ a specified minimum demand.",
16 "formulation": "y_{ij} \\geq

↪→ MinimumDemandFromWarehouse[j] \\cdot x_j \\
↪→ quad \\forall j, \\forall i"

17 },
18 {
19 "name": "Minimum Open Warehouses",
20 "description": "At least a minimum number of

↪→ warehouses must be operational.",
21 "formulation": "\\sum_{j=1}^{NumberOfLocations} x_j

↪→ \\geq MinimumOpenWarehouses"
22 },
23 {
24 "name": "Maximum Open Warehouses",
25 "description": "At most a maximum number of

↪→ warehouses can be operational.",
26 "formulation": "\\sum_{j=1}^{NumberOfLocations} x_j

↪→ \\leq MaximumOpenWarehouses"
27 }
28],
29 "variables": [
30 {
31 "definition": "Binary variable indicating whether

↪→ warehouse j is opened (1) or not (0)",
32 "symbol": "x_j",
33 "type": "binary",
34 "shape": [
35 10
36]
37 },
38 {
39 "definition": "Continuous variable representing the

↪→ amount of demand served from warehouse j to
↪→ customer i",

40 "symbol": "y_{ij}",
41 "type": "continuous",

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

42 "shape": [
43 20,
44 10
45]
46 }
47],
48 "objective": [
49 {
50 "description": "Minimize the total cost of servicing

↪→ customers, including service allocation and
↪→ operating costs of warehouses.",

51 "formulation": "Z = \\sum_{j=1}^{NumberOfLocations}
↪→ WarehouseFixedCost[j] \\cdot x_j + \\sum_{i=1}
↪→ ^{NumberOfCustomers} \\sum_{j=1}^{
↪→ NumberOfLocations} ServiceAllocationCost[j][i]
↪→ \\cdot y_{ij}",

52 "objective_sense": "Minimize"
53 }
54]
55 }

Solver Code Given by OptiVer:

1

2 import json
3 import numpy as np
4 import math
5 import gurobipy as gp
6 from gurobipy import quicksum # Import quicksum
7

8 # Create a Gurobi model
9 model = gp.Model(’model’)

10

11 # Parameters
12 NumberOfLocations = 10
13 NumberOfCustomers = 20
14

15 CustomerDemand = [117, 86, 69, 53, 110, 74, 136, 140, 126, 79,
16 54, 86, 114, 76, 136, 73, 144, 51, 53, 120]
17

18 ServiceAllocationCost = [
19 [80, 94, 44, 51, 190, 44, 129, 178, 129, 91, 172, 119, 177, 150,

↪→ 90, 51, 53, 97, 184, 87],
20 [139, 33, 104, 135, 50, 176, 97, 121, 47, 29, 186, 163, 149, 108,

↪→ 156, 169, 100, 160, 153, 85],
21 [153, 36, 18, 170, 18, 181, 178, 68, 171, 106, 159, 110, 21, 106,

↪→ 91, 29, 144, 140, 155, 116],
22 [103, 59, 78, 125, 14, 11, 152, 95, 76, 173, 36, 148, 75, 132,

↪→ 59, 153, 113, 74, 185, 71],
23 [193, 186, 130, 145, 114, 150, 33, 154, 20, 75, 103, 30, 137,

↪→ 131, 167, 32, 53, 150, 176, 166],
24 [159, 130, 156, 65, 36, 59, 199, 124, 104, 72, 180, 73, 43, 152,

↪→ 143, 90, 161, 65, 172, 141],
25 [173, 121, 110, 127, 22, 159, 195, 137, 47, 10, 87, 11, 154, 66,

↪→ 126, 60, 152, 54, 20, 25],
26 [181, 34, 186, 152, 109, 195, 133, 198, 30, 65, 69, 19, 109, 143,

↪→ 108, 196, 59, 133, 10, 123],

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

27 [82, 113, 147, 21, 88, 24, 38, 16, 70, 122, 148, 192, 116, 108,
↪→ 18, 20, 143, 18, 116, 142],

28 [176, 170, 87, 91, 195, 183, 124, 89, 72, 97, 89, 23, 45, 196,
↪→ 97, 27, 83, 81, 171, 148]

29]
30

31 WarehouseCapacity = [3010, 2910, 4530, 4720, 4920, 3750, 4930, 2970,
↪→ 3310, 2460]

32

33 WarehouseFixedCost = [8517, 5068, 9433, 6127, 6033, 5966, 7762,
↪→ 9406, 6602, 7040]

34

35 MinimumDemandFromWarehouse = [64, 55, 27, 71, 93, 90, 89, 87, 43,
↪→ 50]

36

37 MinimumOpenWarehouses = 3
38 MaximumOpenWarehouses = 8
39

40 # Variables
41 x = model.addVars(NumberOfLocations, vtype=gp.GRB.BINARY, name="x")
42 y = model.addVars(NumberOfCustomers, NumberOfLocations, vtype=gp.

↪→ GRB.CONTINUOUS, name="y")
43

44 # Objective function
45 model.setObjective(
46 quicksum(WarehouseFixedCost[j] * x[j] for j in range(

↪→ NumberOfLocations)) +
47 quicksum(quicksum(ServiceAllocationCost[j][i] * y[i, j] for j in

↪→ range(NumberOfLocations)) for i in range(
↪→ NumberOfCustomers)),

48 gp.GRB.MINIMIZE
49)
50

51 # Constraints
52 for i in range(NumberOfCustomers):
53 model.addConstr(
54 quicksum(y[i, j] for j in range(NumberOfLocations)) ==

↪→ CustomerDemand[i],
55 name=f"demand_meeting_{i}"
56)
57

58 for j in range(NumberOfLocations):
59 model.addConstr(
60 quicksum(y[i, j] for i in range(NumberOfCustomers)) <=

↪→ WarehouseCapacity[j] * x[j],
61 name=f"capacity_limit_{j}"
62)
63

64 for j in range(NumberOfLocations):
65 model.addConstr(
66 quicksum(y[i, j] for i in range(NumberOfCustomers)) >=

↪→ MinimumDemandFromWarehouse[j] * x[j],
67 name=f"minimum_demand_{j}"
68)
69

70 model.addConstr(
71 quicksum(x[j] for j in range(NumberOfLocations)) >=

↪→ MinimumOpenWarehouses,
72 name="minimum_open_warehouses"
73)
74

75 model.addConstr(

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

76 quicksum(x[j] for j in range(NumberOfLocations)) <=
↪→ MaximumOpenWarehouses,

77 name="maximum_open_warehouses"
78)
79

80 # Optimize the model
81 model.optimize()
82

83 # Check the optimization status
84 status = model.status
85

86 obj_val = None
87 if status == gp.GRB.INFEASIBLE:
88 obj_val = "infeasible"
89 elif status == gp.GRB.UNBOUNDED:
90 obj_val = "unbounded"
91 elif status == gp.GRB.OPTIMAL:
92 obj_val = model.objVal
93

94 print("Objective Value:", obj_val)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

G.4 COMPLEXOR

Example in ComplexOR

Natural Language Description:
The Knapsack Problem involves selecting the most valuable combination of items to fit in a
knapsack without exceeding its weight limit. The Knapsack Problem is a classic optimization
problem in operations research and computer science. The problem is to determine the
most valuable combination of items to include in a knapsack, given a set of TotalItems with
different values and weights represented by ItemValues and ItemWeights respectively, and a
maximum weight capacity of the knapsack MaxKnapsackWeight. The goal is to maximize
the total value of the items in the knapsack, represented by ItemValues, without exceeding its
weight capacity MaxKnapsackWeight. The available kinds of items is 6. The value of each
kind of item is [17, 4, 10, 21, 12, 18]. The weight of each item is [23, 6, 14, 30, 15, 25]. The
maximum weight capacity of the knapsack is 60. The total weight of the selected items must
not exceed MaxKnapsackWeight. Multiple items in one kind can be selected. No more than
TotalItems kinds of items can be considered for selection. Maximize the total value of the
items in the knapsack.

Modeling Structure Given by OptiVer:

1 {
2 "problem_type": "Combinatorial Optimization",
3 "specific_type": "Bounded Knapsack Problem",
4 "subdivisions": {
5 "Subdivision 1": "0/1 Knapsack Problem",
6 "Subdivision 2": "Bounded Knapsack Problem",
7 "Subdivision 3": "Multi-dimensional Knapsack Problem"
8 },
9 "implicit_constraints": {

10 "implicit constraint 1": "x_i must be an integer",
11 "implicit constraint 2": "MaxKnapsackWeight must be non-

↪→ negative"
12 }
13 }

Optimization Model Given by OptiVer:

1 {
2 "constraints": [
3 {
4 "name": "Weight Limit Constraint",
5 "description": "The total weight of selected items

↪→ must not exceed the maximum weight capacity of
↪→ the knapsack.",

6 "formulation": "\\sum_{i=1}^{TotalItems}
↪→ ItemWeights_i \\cdot ItemQuantities_i \\leq
↪→ MaxKnapsackWeight"

7 },
8 {
9 "name": "Non-negativity and Integer Constraints",

10 "description": "The quantity of each item selected
↪→ must be non-negative and integer.",

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

11 "formulation": "ItemQuantities_i \\geq 0\\quad \\
↪→ text{and integer for }i = 1,2,\\ldots,
↪→ TotalItems"

12 }
13],
14 "variables": [
15 {
16 "definition": "Number of items of type i selected (i

↪→ = 1to TotalItems)",
17 "symbol": "ItemQuantities_i",
18 "type": "integer",
19 "shape": []
20 }
21],
22 "objective": [
23 {
24 "description": "Maximize the total value of the

↪→ selected items in the knapsack.",
25 "formulation": "Z = \\sum_{i=1}^{TotalItems}

↪→ ItemValues_i \\cdot ItemQuantities_i",
26 "objective_sense": "Maximize"
27 }
28]
29 }

Solver Code Given by OptiVer:

1

2 import json
3 import numpy as np
4 import math
5 import gurobipy as gp
6

7 # Create a new model
8 model = gp.Model(’model’)
9

10 # Parameters
11 TotalItems = 6
12 ItemValues = [17, 4, 10, 21, 12, 18]
13 ItemWeights = [23, 6, 14, 30, 15, 25]
14 MaxKnapsackWeight = 60
15

16 # Variables: ItemQuantities_i (integer variables)
17 ItemQuantities = model.addVars(TotalItems, vtype=gp.GRB.INTEGER,

↪→ name="ItemQuantities")
18

19 # Objective: Maximize Z = sum(ItemValues_i * ItemQuantities_i)
20 model.setObjective(gp.quicksum(ItemValues[i] * ItemQuantities[i]

↪→ for i in range(TotalItems)), gp.GRB.MAXIMIZE)
21

22 # Constraints
23 # Weight Limit Constraint: sum(ItemWeights_i * ItemQuantities_i) <=

↪→ MaxKnapsackWeight
24 model.addConstr(gp.quicksum(ItemWeights[i] * ItemQuantities[i] for

↪→ i in range(TotalItems)) <= MaxKnapsackWeight, "WeightLimit")
25

26 # Non-negativity and Integer Constraints are inherently defined by
↪→ the variable type

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

27 # ItemQuantities_i >= 0 and ItemQuantities_i in Z
28 # Gurobi automatically treats integer variables as non-negative, so

↪→ no additional constraint is needed for non-negativity.
29

30 # Optimize the model
31 model.optimize()
32 status = model.status
33

34 obj_val = None
35 # Check whether the model is infeasible, has infinite solutions, or

↪→ has an optimal solution
36 if status == gp.GRB.INFEASIBLE:
37 obj_val = "infeasible"
38 elif status == gp.GRB.UNBOUNDED:
39 obj_val = "unbounded"
40 elif status == gp.GRB.OPTIMAL:
41 obj_val = model.objVal
42

43 print("Objective Value:", obj_val)

36

	Introduction
	Related Work
	Motivated Results and Case Analysis
	Methodology
	Structure-Augmented Modeling
	Structure-Side: Structure Interpretation and Consistency Verification
	Solution-Side: Solution Interpretation and Validity Verification
	Refinement

	Experiments
	Main Results
	Ablation Studies
	Building on Different Baselines and LLMs
	Quantity Analysis of Verifications

	Conclusion
	Proof of Propositions
	More Experiment Results
	Comparison of Solving Efficiency
	The Problems We Try to Address is Critical in Optimization Modeling

	Experiment Setting in Section 5.3
	Case Study
	Error Analysis on Different Problem Types
	The Prompt Design
	Structure Distillation
	Structure-Augmented Modeling
	Structure Interpretation and Structure Consistency Verification
	Solution Interpretation and Solution Validity Verification

	More Examples
	NL4Opt
	Mamo ComplexLP
	ComplexOR
	ComplexOR

