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ABSTRACT

Geometric deep learning (GDL) has demonstrated enormous power in molecular
data analysis. However, GDL faces challenges in achieving high efficiency and
expressivity in molecular representations when high-order terms of the atomic
force fields are not sufficiently learned. In this work, we introduce message pass-
ing on path complexes, called the Path Complex Message Passing, for molecu-
lar prediction. Path complexes represent the geometry of paths and can model
the chemical and non-chemical interactions of atoms in a molecule across vari-
ous dimensions. Our model defines messages on path complexes and employs
neural message passing to learn simplex features, enabling feature communica-
tion within and between different dimensions. Since messages on high-order
and low-order path complexes reflect different aspects of molecular energy, they
are updated sequentially according to their order. The higher the order of the
path complex, the richer the information it contains, and the higher its prior-
ity during inference. It can thus characterize various types of molecular in-
teractions specified in molecular dynamics (MD) force fields. Our model has
been extensively validated on benchmark datasets and achieves state-of-the-art
results. The code is available at https://anonymous.4open.science/
r/Path-Complex—-Neural-Network—-32D6

1 INTRODUCTION

Accurate prediction of molecular properties is crucial in fields such as drug design [Zhang et al.
(2017); |Chen et al.| (2018); [Mak & Pichikal (2019); |Chan et al.| (2019), biology [Townshend et al.
(2021)); Jamasb et al.| (2022)), chemistry (Qiao et al. (2022), and materials science |Vlassis et al.
(2020). Geometric Deep Learning (GDL) has demonstrated significant potential in molecular sci-
ences, leading to a surge in studies employing GDL models for effective molecular representation
learning |Bronstein et al.[(2017); |Atz et al.|(2021)); Ingraham et al.[(2023). Among the three types of
representations used in GDL models—topological, geometric, and functional—the molecular graph
has become the most popular due to its simplicity, flexibility, and efficiency |Wieder et al.| (2020);
Yu & Gao| (2022); |Atz et al.| (2021)); [L1 et al.| (2022); Wang et al.| (2022b). However, relying solely
on graph representations fails to capture the many-body interactions inherent in complex systems,
thereby limiting the expressiveness and predictive power of this approach Bodnar et al.| (2021b).
This paper develops a path complex-based neural message passing for molecule prediction, where
the molecular energy of force field can be well represented.

In Graph Neural Networks (GNNs), the molecular graph is typically constructed based on covalent
bonds. Node features are usually derived from atomic properties and are updated by aggregating
information from neighboring nodes Huang et al.| (2020); |Shindo & Matsumoto| (2019); |Shui &
Karypis| (2020a); |Schiitt et al.| (2017); [Unke & Meuwly| (2019). To enhance GNN performance,
researchers have proposed several approaches. One major strategy is to design more complex
molecular graphs that incorporate non-covalent interactions. The most common method involves
introducing edges between any two atoms within a specified cutoff distance, effectively capturing
non-covalent interactions. Additionally, molecule-based line graph models have been developed,
where nodes represent atomic bonds and edges represent bond angles Choudhary & DeCost|(2021)).

The second approach focuses on incorporating global physical features and local geometric infor-
mation into GNN models. Global physical attributes such as temperature, pressure, and entropy
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have been added to GNN architectures to better characterize molecular states and environments,
as demonstrated in MEGNet [Chen et al.| (2019) and SphereNet |Liu et al.[(2022). Local geometric
features—particularly bond lengths, bond angles Schiitt et al.| (2018)); |[Flam-Shepherd et al.| (2021),
dihedral angles [Wang et al.| (2022a)), and torsion angles, which are crucial to molecular proper-
ties—have been extensively considered in models such as DimeNet |Gasteiger et al.[(2020), GemNet
Gasteiger et al.|(2021)), ALIGNN |Choudhary & DeCost| (2021), and GEM |Fang et al.| (2022)).

Another approach involves designing efficient message-passing modules for invariant features,
equivariant properties, and higher-order tensors. The expressivity of GNNs is closely related to
the message-passing mechanisms used in layers that process invariant, equivariant, or higher-order
tensor features. These three approaches are often synergistically integrated to enhance model per-
formance.
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Figure 1: Terms of the approximate equation to molecular dynamics force field correspond to path
complices of order one to three, which have been used in path complex message passing.
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Figure 2: The architecture of PCMP utilizing path complexes up to order 3 is depicted. At each
layer [, each path complex message of a given order updates its features using messages from path
complexes of the same order and adjacent orders from the previous layer [ — 1. Higher-order path
complex messages are updated before lower-order ones because the former encompass the paths of
the latter. Additionally, the interplay between high-order and low-order path complexes is learned
through message passing.

In this work, we develop path complex-based molecular representation and path complex message
passing (PCNN) model for molecular property analysis. PCNN is a neural message passing |Gilmer,
et al.|(2017) on path complices. A path is a sequence of points, and a path complex is a subset of all
possible paths. In the context of a molecule or molecular graph, a path corresponds to the geometry
defined by chemical or non-chemical bonds. Our path complexes are specifically designed — based
on molecular graphs that include both covalent and non-covalent bonds — to characterize different
types of energy specified in molecular dynamics (MD) force fields, as shown in Figure[I] The MD
potential energy Mayo et al. (1990); Gonzalez (2011); Leach| (2001) comprises bond terms (£,
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two-body interactions), bond-angle terms (£ 4, three-body interactions), and dihedral-angle terms
(Er, four-body interactions), which are effectively characterized by our 1-path, 2-path, and 3-path
features, respectively.

Each path complex is assigned a message. Similar to classical neural message passing on graphs
Gilmer et al.| (2017)) and simplicial complexes Bodnar et al. (2021afb), the propagation of messages
in a path complex is influenced by the messages of its “adjacent” path complexes at different orders.
A higher-order path complex contains longer paths and includes the shorter paths of lower-order path
complexes. Therefore, we need to update messages according to the order of the path complexes:
messages in higher-order path complexes have priority in being updated. However, since path com-
plexes of adjacent orders are interconnected, we incorporate interactions between higher-order and
lower-order path complex information during message passing. Specifically, the higher-order mes-
sage first updates the lower-order one, and then the updated lower-order message exerts a reverse
effect on the higher-order information. Figure 2]illustrates a neural message passing process among
path complexes of different orders designed based on this principle.

PCNN thus enables information passing between path complex features, using the aggregated in-
formation to predict molecular properties. Testing on benchmark datasets demonstrates promising
performance. Our contributions are as follows:

1. We have developed a path complex-based molecular representation that explicitly charac-
terizes different terms in the molecular dynamics (MD) force field.

2. We propose constructing path complexes using the unique topologies of graphs, simplicial
complexes, and hypergraphs. This method enables systematic exploration of connectivity
and interaction, offering a powerful tool for analyzing complex systems and networks.

3. Our PCMP model has been rigorously tested and validated on benchmark molecular tasks,
consistently achieving state-of-the-art results.

2 RELATED WORK

Graph Neural Networks for Molecular Property Prediction Graph neural network models have
played an pivotal role in molecular data analysis. Traditional GNN models represent molecules as
the de factor covalent-bond-based molecular graphs, and use major GNN architectures, such as GIN
Xu et al.[(2018)), GAT |Velickovic et al.| (2017), GCN |Kipf & Welling (2016a), SGCN |Danel et al.
(2020) and GTtransformerRong et al.|(2020), to learn molecular properties|Yang et al.|(2019)); Xiong
et al.| (2019); |Choudhary & DeCost (2021)); [Fang et al.| (2022). With the importance of non-covalent
bonds, cutoff-distance-based molecular graph representations have been widely employed in GNN
models, such as DimeNet|Gasteiger et al.| (2020), HMGNN [Shui & Karypis|(2020b), GeoGNN [Fang
et al. (2022), Mol-GDL |Shen et al.| (2023)), etc. Further, higher-order interactions (beyond pair-
wise forces) has been explicitly incorporated into GNN models, including ALIGNN |Choudhary
& DeCost| (2021), GEM |Fang et al.| (2022), DimeNet [Gasteiger et al.| (2020), GemNet |Gasteiger
et al.| (2021), etc, by the consideration of bond angles, dihedral angles, torsion angles, and other
local geometric information. In particular, these higher-order terms can be directly related to MD
force field information Halgren| (1996)); [Choudhary et al|(2018). Finally, pre-training process has
been adopted to further improve the accuracy of GNN models, such as N-Gram |Liu et al.| (2019),
PretrainGNN [Hu et al|(2019), GEM |Fang et al.| (2022)), MoICLR |Wang et al.| (2022b)), DMP [Zhu
et al.| (2023)), etc.

Topological Deep Learning (TDL) Topological Deep Learning (TDL) Hajij et al.[(2022)); Bodnar
(2022) leverages novel topological tools to characterize data with complicated higher-order struc-
tures. Different from graph-based data representation, TDL uses topological representations from
algebraic topology, including simplicial complexes |Bodnar| (2022); |Schaub et al.| (2022), cell com-
plexes Hajij et al.|(2020); Roddenberry et al.| (2022); (Giusti et al.[(2023)), sheaves Hansen & Ghrist
(2019); Bodnar et al.| (2021b), hypergraphs |[Feng et al.| (2019); Kim et al.| (2020); Bai et al.| (2021)),
and combinatorial complexes |[Hajij et al.| (2022) to model not only pair-wise interactions (as in
graphs), but also higher-order interactions among three or more elements. In fact, these algebraic
topology-based molecular representations have already achieved great success in molecular data
analysis, including protein flexibility and dynamic analysis Xia & Wei| (2014)); [Sverrisson et al.
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(2021), drug design |Cang & Wei| (2017)), virus analysis |Chen et al.| (2022), materials property anal-
ysis |Reiser et al.| (2022); [Townsend et al.| (2020). Further, TDL uses a generalized message-passing
mechanism thus enables the communication of information from simplices of different dimensions.
In contrast to GNNs, where information is passing among nodes or edges, TDL allows information
to propagate through any neighborhood relation Roddenberry et al.| (2021)).

Recently, path complex and its related models, including path homology |Grigor’yan et al.| (2018),
persistent path homology |(Chowdhury & Mémoli| (2018); |Liu et al.| (2023); |Chen et al.| (2023)), path
Laplacian [Wang & Wei| (2023)), a special path-complex-based topological message passing model
Truong & Chin| (2024) has been developed and demonstrated great potential for the analysis of
molecular structures.

Geometric Deep Learning and Molecular Representation Generally speaking, molecules in
GDL models are characterized by three types of molecular representations, including topological
representations (such as molecular graphs), geometric representation (such as molecular surfaces),
and function representation (such as molecular density). Deep learning models including (3D) con-
volutional neural networks, graph neural networks (GNNs), recurrent neural networks, and others,
have been constructed based on these representations |\Wieder et al.| (2020); 'Yu & Gao, (2022); |Atz
et al.| (2021); [L1 et al| (2022); Wang et al| (2022b). With its simplicity, flexibility and efficiency,
molecular graphs are the most popular of various types of GNN models have been proposed, includ-
ing graph recurrent neural networks (GraphRNN) |You et al.| (2018), graph convolutional networks
(GCN) Welling & Kipf] (2016), graph autoencoders [Kipf & Welling| (2016b), graph transformers
Yun et al.[(2019), etc. These GNN models have been widely used in molecular data analysis.

3 PATH COMPLEX MESSAGE PASSING

Path complex was originally developed on directed graph (or digraph) and set, by Grigoryan, Lin,
Muranov and Yau in 2012 |Grigor’yan et al.| (2012). They also proposed a new homology theory
for path complex, called path homology, and use it to explore topological invariant information of
digraphs |Grigor’yan et al.[(2014). Mathematically, path homology provides a novel framework to
systematically explore intrinsic topological information of more general structures |Grigor’yan et al.
(2019); |Grigor’yan et al.| (2020). Details of path complex and path homology can be found in the

Appendix [B]

Here we propose a generalized way to construct path complex based on undirected graph, simplicial
complex, and hypergraph. On undirected graph, we propose graph collapse and expansion oper-
ations, and use them to systematically study graph isomorphism by their path complex homology
groups. We found that the path complex homology is a graph weak isomorphism invariant. For
simplicial complex and hypergraph, we propose simplex- and hyperedge- based path complex.

3.1 GENERALIZED PATH COMPLEX

Path complex for undirected-graph Firstly, we give the construction of path complex for undi-
rected graphs. Secondly, we introduce the graph weak isomorphism and related mathematical prop-
erties. Finally, we states the weak isomorphism invariance of path complex homology for graphs.

Definition 3.1 (Path). Given a simple undirected graph G = (V, E) over the verset set V', an n-path
oy, of G is defined as any sequence of n+ 1 vertices vovy - - - v, (v; € V') such that every two vertices
are distinct and every two adjacent vertices form an edge.

Note that for each n-path o, = vgvy -+ Up, 0, = Up - - - V10 is also an n-path, we identify these
two paths as the same one. For an n-path o,, = vg - - - v, the (n — 1)-paths by removing the first
or last vertex, denoted by 8L and 8R1 respectlvely, are called the faces of 0,,. Two n-paths are

neighbors if they are faces of & common (n + 1)-path. Let N'(,,) be the set of neighbors of o,.
Definition 3.2 (Path complex from undirected graphs). Given a simple undirected graph G =
(V, E), all paths of G form a path complex Pg. We call P the path complex derived from G.
Definition 3.3 (Graph collapse and expansion ). Given a graph G = (V| E), take an edge (v1,v3) €
E such that deg(vy) = 1. Let V! = V\{v1}, E' = E\{(v1,v2)}, then G’ = (V', E') is a new
graph. We say that G’ is derived from G by a graph collapse and G is derived from G’ by a graph
expansion.
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Definition 3.4 (Weak isomorphism). Given two graphs G, G2, G1 and G5, are called weak isomor-
phic if G can be derive from G5 by a sequence of graph collapse and expansion operations.

It can be seen that two graphs are weak isomorphic if they are isomorphic.

Theorem 3.5. If two graphs G1 and G4 are weak isomorphic, then, 1) The number of connected
components of G1 and G5 are same; 2) The number of cycles of G1 and G2 are same.

Theorem 3.6. Given two graphs G1, Gs, let Pq,, Pa, be the path complexs derived from G and
G respectively. If G1 and G5 are weak isomorphic, then

Hy(Pg,) = Hy(Pg,) (k> 0)

Theorem [3.6] means the path complex homology is a graph weak isomorphism invariant. Conse-
quently, for two graphs G and Ga, if there exists k such that Hy(Pg,) % Hi(Pg,), then G; and
G2 are not weak isomorphic and not isomorphic.

The profound theoretical relationship between the Weisfeiler-Lehman (WL) graph isomorphism test
and message-passing graph neural networks (GNNs) has been extensively documented Xu et al.
(2018).

Definition 3.7 (PWL). The steps of general PWL are as follows:

1. Given a path complex P, all the paths of P are initialized with the same color.

2. For the color ¢!, of path o at iteration ¢, the color ¢! of o at the next iteration is computed
by perfectly hashing the color multi-set of the neighbors of .

3. The algorithm stops once a stable coloring is reached. Two path complexes are considered
non-isomorphic if their color histograms are different at some dimensions.

Based on the four neighbor definitions, including face neighbor B(o), coface neighbor C (o), upper
adjacent neighbor N3 (o) and lower adjacent neighbor | (o), we have four types of neighbor color
multi-sets. Let ¢! be the coloring of PWL for path complex P at iteration ¢, four types of color
multi-sets are as follows

L. ch(0) = {{ct|r € B(o)}}
2. (o) = {{ctIr € Clo)}
c%<a>={{ o)l € N (o))
L (o) = {(chy o) Ir € Ni(0)

Having the neighbor color multi-sets, we obtain the following update rule that contains all four types

of neighbors:
Co ' =HASH{cg, cg(0), ¢ (0), ¢ (o), ¢} (o)}

Actually, certain neighbors can be removed without affecting the expressive power of PWL test in
terms of path complex that can be differentiated.

Theorem 3.8. PWL with HASH{c{,, cs(0), ¢4 (o)} is as powerful as PWL with the updating strat-
egy HASH{c},, ci5(0), ¢t (a), ¢4 (o), ¢ (o) }.
Theorem 3.9. PWL is strictly more powerful than WL.

Figure [/| shows two graphs that cannot be distinguished by the WL test, but their derived path
complexes can be distinguished by PWL.

Path Complex for simplicial complex and hypergraph Generally speaking, a path complex is
a set of paths that is closed under the removing of the first or last vertices of each path. So we can
also construct path complex from simplicial complex and hypergraph by defining simplex-paths and
hyperedge-paths. Various kinds of paths can be defined by considering the lower adjacent, upper
adjacent, face and coface relations among simplices and hyperedges. Figure [3| shows examples of
path complexes constructed from graph, simplicial complex and hypergraph. Details can be found

in Appendix
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Figure 3: The path complexes of graphs, simplicial complexes, and hypergraphs. The table lists
the O-paths, 1-paths, and 2-paths, where the red arrows indicate the selected 2-paths. Specifically,
for simplicial complexes, we enumerate the path complexes from vertixes (0-simplices), edges (1-
simplices) and triangles (2-simplices), respectively.

3.2 MOLECULAR PATH COMPLEX REPRESENTATION AND PATH FEATURES

Molecular Path Complex Representation Currently, covalent-bond molecular graphs serve as
the standard for molecular topological representations. These graphs underpin the molecular force
fields used in molecular dynamics simulations, incorporating terms for both covalent bonds—such
as bond lengths, angles, and dihedral angles—and non-covalent interactions like electrostatic and
van der Waals forces. To enhance molecular representations with comprehensive force field data,
we introduce the molecular path complex. This model utilizes path simplices across different di-
mensions to distinctly represent both covalent and non-covalent bond terms. As depicted in Figure
[] the CoHgO molecule is illustrated alongside its corresponding path simplices. Specifically, our 1-
path simplex captures bond lengths, the 2-path simplex details bond angles, and the 3-path simplex
reflects dihedral angles.
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2 H dihedral Angle:
3-Path: H-C-0-H ).y
Hydrogen (H) Carbon (C) Oxygen (0)

(a) Molecule of C,HgO (b) Graph (c) Cutoff (d) Path Complex

Figure 4: Different Representations of the CoHgO Molecule. (a) displays the molecular structure
of CoHgO, including the oxygen (O), carbon (C), and hydrogen (H) atoms. (b) shows the graph
representation based on chemical bonds. (c) illustrates the nearly fully connected graph generated
based on a distance threshold (cutoff). (d) presents the representation using the path complex method
and its physical implications. In the diagrams, solid lines represent chemical bonds, while dashed
lines represent cutoff connections.

Path Features Our path (simplex) features are meticulously designed to encapsulate the various
atomic properties and interactions detailed in molecular dynamics (MD) force fields. Specifically,
our O-path features—comprising atomic number, radius, and electronegativity—are derived using
Rdkit, akin to the approach in CGCNN [Xie & Grossman|(2018). Table[5](in Appendix[A-T)) presents
a comprehensive listing of our 1-path, 2-path, and 3-path features. Importantly, our model employs
detailed local geometric properties of the path complex as path features. This method allows us to
explicitly learn covalent bond terms defined in the MD force fields, while also implicitly capturing
non-bond interactions.
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3.3 MOLECULAR PCMP MODEL

Path Complex Message Passing (PCMP) introduces a novel method for message passing in graphs
by leveraging path complexes, which are composed of paths of varying lengths. In contrast to
traditional graph neural networks (GNNs) that primarily aggregate information from local neighbors,
PCMP prioritizes message propagation along higher-order path complexes. By incorporating longer
paths, PCMP effectively captures long-range dependencies within the graph, enhancing its ability to
model complex relationships.

A key feature of PCMP is the hierarchical message passing mechanism between different orders of
path complexes. First, messages in higher-order paths are updated, reflecting the broader structure
of the graph. These updated messages are then propagated to lower-order paths, ensuring that global
information from longer paths informs to lower-order paths. After this, a feedback mechanism is
employed, where updated messages from lower-order paths influence the higher-order paths, thus
refining the representation at all levels. This bidirectional interaction between higher- and lower-
order path allows PCMP to seamlessly integrate both global and local information effectively.

Path message-passing module A central component of our PCMP model is path (simplex)
Grigor’yan et al.| (2024) message-passing module, where path features are updates based on path
neighbors (same order paths), cofaces (higher-order paths), and faces (lower-order paths). Mathe-
matically, each n-path will always have two unique (n — 1)-faces, but many n-path neighbors and
(n 4+ 1)-cofaces. In our PCMP framework, the simplex message-passing module contains two parts,
i.e., message embedding and message updating. Two message embedding modules, i.e., upper em-
bedding and lower embedding, are considered. In upper embedding module, path message will be
generated using its neighbors and cofaces, while for lower embedding module, path messages will
be generated using its neighbors and faces. The path feature will be updated using path messages
from both upper and lower embedding through a message updating module. An illustration of our
PCMP module is shown in Figure [5]

PCMP Module: Upper Embedding: Lower Embedding:
1 [0} [O) O] l l
2 hh hffr? h(o'ann) hrn habn hagn hgn
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Figure 5: The PCMP Module. O denotes the layer’s input, || concatenation, and ¢ a non-linearity.
Upper embedding and Upper interaction refer to utilizing high-order path features to update low-
order path features, while Lower embedding and Lower interaction refer to using low-order path
features to update high-order path features.

The upper embedding module generates path message based on path neighbors and cofaces. For an
n-path o, and its neighbors 7,,, we denote their path feature vectors as h,, and k. respectively.
The common coface of ¢, and 7,, is denoted as (7,,, ¢, ) and h(TmU”) the associate path feature. The
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upper attention score e;” _ and upper concatenated feature z;¥ can be expressed as,

Jo, =he Wi o, =, WP fion 7 = Rionr) What,
i U 1
ea‘f,,rn = ReLU(fon +f7-n +f(z7n,7'n) )ﬂ za‘i), = [ho'n || Z N h(anﬂ'n) ]a
e Gl

where ReLU is a non-linear activation function and W},” and W,,;; are weight matrices. Note that
|| is the concatenation operator, N (c,,) denotes the neighbors of path o, and |N (0,,)| is the total
number of neighbors of path o,,.

The lower embedding module generates path message based on path neighbors and faces. For an
n-path o,,, we use 8571 and 8§n to represent its right and left faces. The lower attention score ef,‘):’an
and lower concatenated feature z/°" can be expressed as,

On
fo, =ho, Wi, for =hor Wo1, fon =hon Wy,
Conr, =ReLU(for +for +fo, ) 25 =[(hor +hor ) | he, ],

nyTn

where W% and W,,_; are weight matrices.

The path feature is updated by using message from both upper embedding and low embedding.
First, upper and lower path message is generated from the upper embedding and low embedding
respectively as follows,

up/low
cgi)/low _ ReLU(Zgﬁ/lowwzp/low + bup/low)7 aup/low _ €on,n

- up/low’
Znn eN (o) €0, ki

On,Tn

ng/low — LeakyReLU(cgf:/low + Z aup/lowcup/low),

On,Tn Tn

ThEN(0n)

then path feature is updated by using both messages as follows,

hffjl) = LeakyReLU((mff'Z”)(l) + (mﬁ?j)(l)).
Note that h((,l:rl) means the updated feature vector for n-path o,, at the (I + 1)-th layer. It depends
on the upper and lower message information at the [-th layer.

Theorem 3.10. A Path Complex Message Passing (PCMP) with sufficient layers and injective neigh-
borhood aggregators achieves the same expressive power as the PWL.

4 EXPERIMENTS

4.1 BENCHMARK DATASETS AND MODELS

To thoroughly validate our PCMP model, we use three widely recognized benchmark datasets from
MoleculeNet [Wu et al.| (2018) and MolBench [Jiang et al.| (2023). During data preprocessing, we
employ the Merck molecular force field (MMFF94) function from RDKit to generate 3D molecular
structures. The datasets are split into training, validation, and test sets using the scaffold splitting
method, with a ratio of 8:1:1. Detailed descriptions of the datasets, preprocessing steps, and splitting
method are provided in Appendix

We compare the performance of our PCMP model against state-of-the-art GNN models, both with
and without pre-training. The non-pre-trained GNN models include (1) widely-used architectures
such as GIN Xu et al.| (2018)), GAT |Velickovic et al.|(2017), and GCN |Kipf & Welling| (2016a); (2)
recent models incorporating 3D molecular geometry, including SGCN Danel et al.| (2020)), DimeNet
Gasteiger et al.| (2020), and HMGNN [Shui & Karypis| (2020b)); and (3) architectures specifically
designed for molecular representation, such as D-MPNN |Yang et al.[ (2019), AttentiveFP |Xiong
et al.[ (2019), and Mol-GDL [Shen et al.| (2023). For pre-trained models, we compare against N-
Gram |Liu et al,| (2019), PretrainGNN Hu et al.| (2019), GROVER Rong et al| (2020), GEM |[Fang
et al. (2022), DMP |Zhu et al.|(2023)), and SMPT L1 et al.| (2024)).
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Table 1: Comparison with GNN architectures. The best performance is indicated as bold, and the
subindex indicates standard deviation values. * indicates that the result is not available for the model.

Method QM7 QM9 Tox21 HIV MUV
GIN 1103(72)  0.00886(0.00005) 0.740(0.008) 0.7530.019)  0-718(0.003)
GAT 1030(44) 0~01117(0.00018) 0'745(0.006) 0.724(0‘003) 0.671(0‘011)
GCN 1000(38) 0.00923(0»00019) 0.709(0_003) 0.740(0_003) 07 16(0_004)
D-MPNN 1035(86) 0.008]2(0'00009) 0.759(0'007) 0.771(0‘005) 0.786(0‘014)
GNN Attentive FP 720(27) 0.00812(0‘00001) 0.761(0‘005) 0.757(0.014) 0‘766(()‘015)
GTransformer 161 .3(7‘1) 0.00923(0'00019) * * *
SGCN 1313316y 0.014599 00055) * * *
DimNet 95.6 (4.1) 0-01031(0,00076) * * *
HMGNN 101.6 (55 0012399 00001 # # #
Mol-GDL 622000y  0.009520.00013) 0.791(0.005 0-808(0.007)  0.675(0.014)
N—Grame 928(40) 0~01037(0.00016) 0.743(0'004> 0.772(0‘001 0.769(0‘007)
N-Gramygp 81 .9(1‘9) 0.00964(0'00031) 0.758(0'0()9) 0.787(0.004 0.748(0(002)
PretrainGNN 1132(06) 0.00922(0.00004) 0-781(0.006) 0.799(0007 0.813(0'021)
GROVERye 945335  0.00986000055 0.743(0001) 0-625(0.000)  0.673(0.015)

)

)

)

. )

Pretrain_.GNN GROVER]‘%‘rge 92.0(0_9) 0.00986(0_00025) 0.735(0_001) 0.682(0_011) 0~673(0.018)

- )

)

)

MolCLR 66.8(2.3) 0.750(0.002) 0.781(0.005)  0.796(0.019)
GEM 589(08) 0.00746(0‘00001) 0.781(0'001) 0.806(0.009 0.817(0005)
DMP 7441 ) * 0.791(0.000)  0.814(0.004 *
SMPT * * 0.797 (0.001) 0.812 (0.001) 0.822 (0.008)
PCMP 53.6(2_1) 0.00683(0_00005) 0.801(0_002> 0.823(0_004) 0.827(0_015)

4.2 RESULTS

The comparison of our PCMP model with existing models on benchmark datasets is presented in Ta-
ble[T} Detailed parameter settings for PCMP can be found in Section[A.3|(Appendix A). Our PCMP
model shows a significant performance advantage across datasets, mainly due to its advanced fea-
ture extraction capabilities and superior recognition of complex molecular structures. The message-
passing mechanism in PCMP is organized into two distinct layers: the upper embedding, which
considers upper adjacent neighbors, and the lower embedding, which incorporates both upper ad-
jacent and face neighbors. This dual-layered approach integrates path information from multiple
perspectives, enhancing the model’s ability to capture both local and global graph structures. Each
path is updated not only based on the features of its constituent nodes but also by incorporating in-
formation from both higher-order and lower-order connected paths. This sophisticated mechanism
enables the model to detect subtle structural variations within molecules that are often difficult to
distinguish. Compared to models that rely heavily on traditional pre-training, PCMP reduces com-
putational demands by bypassing extensive pre-training phases while achieving excellent results,
making it a promising solution for molecular property prediction.

4.3 ABLATION STUDY OF PCMP

Impact of Message Passing Mechanisms In the PCMP model, high-order features are first up-
dated and then used as inputs to update low-order features, with the updated low-order features
subsequently used to update high-order features. To evaluate the significance of this interaction,
we introduced three variant models: PCMP-PARAL, PCMP-HL, and PCMP-LH, each limiting the
information exchange between different feature levels. Specifically, PCMP-PARAL restricts both
high-to-low and low-to-high feature updates; PCMP-HL limits message passing from high-order
to low-order features; and PCMP-LH restricts message passing from low-order to high-order fea-
tures. Table [2| compares the performance of these models—PCMP-PARAL, PCMP-HL, PCMP-
LH—against the standard PCMP on benchmark datasets.

Impact of Input Path The PCMP model integrates various path-based features to improve its abil-
ity to accurately capture molecular structures. These paths, ranging from 0-path to 3-path, represent
different levels of molecular interaction complexity, from the simplest to the most intricate. Table
[3] shows the performance results for different path inputs on the benchmark datasets. As indicated,
incorporating higher-order paths (2-path and 3-path) generally enhances the model’s performance,
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Table 2: Results on benchmark datasets with different message passing mechanisms.

Method QM7 QM9 Tox21 HIV MUV

PCMP-PARAL 569(15) 0.00751(0‘00015) 0'779(0008) O~794(O4016) 0.808(0'006)
PCMP-HL 548(1.0) 0.00727(0.00006) 0.796(0.002) 0-803(0.020) 0.814(0.012)
PCMP-LH 553(1.0)  0.00764(0.00005) 0.793(0.004) 0.793(0.009)  0.806(0.004)
PCMP 53.6(2'1) 0.00683(000005) 0.801(0'004) 0.823(0‘004) 0.827(0'015)

with the inclusion of the 3-path yielding the best results across all datasets. This underscores its
effectiveness in capturing complex molecular interactions. However, the slight performance degra-
dation when excluding the 2-path and 3-path elements suggests that lower-order information remains
crucial, especially for the QM7 dataset, where simpler molecular representations are sufficient.

Table 3: The results for input different path of the benchmark datasets.

Input-Path QM7 QM9 Tox21 HIV MUV

{O,l}—path 570(14) 0.00898(()‘00012) 0.786(0‘006) 0.782(()‘007) 0.767(0003)
{0,1,2}-path 569(11) 0~00700(0,00006) 0.792(0‘002) 0.803(0'005) 0.815(0,012)
{0,1,2,3}—path 53.6(2'1) 0.00683(()‘00005) 0.801(0.002) 0.823(0004) 0.827(()‘015)

Impact of Readout Path To investigate whether feature outputs at different levels can improve
model performance, we designed several output strategies. As shown in Table [ utilizing outputs
from multiple levels allows the PCMP model to capture both low-order and high-order molecular
features, significantly enhancing the model’s ability to represent complex structures and improving
its overall expressiveness.

Table 4: The results for Readout different path of the benchmark datasets.

Output-Path QM7 QM9 Tox21 HIV MUV

{0}—path 568(12) 0.00697(0.00004) 0.789(0008) 0.784(01010) 0.806(0'018)
{0,1}-path 564(15) 0.00698(0‘0001@ 0.793(0,009) 0.800(0‘007) 0.808(0'007)
{O,l,Z}—path 53.6(21) 0.00683(0.00005) 0.801(()‘002) 0.823(0004) 0.827(0'015)

We examined the model’s sensitivity to various hyperparameters, and the experimental results are
presented in Table[§]

5 CONCLUSION

In this study, we introduced the path complex message passing, a novel model for molecular struc-
ture representation based on path complexes, designed to predict molecular properties. By inte-
grating force fields with path complexes, the model enhances our understanding of the relationship
between molecular structure and function, offering valuable insights for both theoretical research
and practical applications in molecular design and materials science. The PCMP model employs
0-paths for atomic properties, 1-paths for pairwise interactions, 2-paths for bond angle terms, and
3-paths for dihedral angle information. These paths are used to compute attention scores, enabling
efficient message propagation and feature integration across various levels of molecular information.
Validation on five benchmark datasets has demonstrated the PCMP’s superior predictive capabilities.
Ablation studies further confirm that incorporating higher-order features significantly improves per-
formance, pointing to promising directions for future research in molecular simulation and design.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 INITIALIZATION FEATURES

To fully incorporate MD force field information into molecular representation, we propose molecular
path complex, which uses path simplices at different dimensions to explicitly characterize force field
(covalent) bond terms. More specifically, our 1-path simplex represents bond length information,
2-path simplex describe bond angles, and 3-path simplex characterizes dihedral angle.

Table 5: MD Encoder for Path Features

Features Type Description Type Size
Bond Directionality None, Beginwedge, Begindash, etc.  One-Hot 7
1-Path Bond Type Single, Double, Triple, or Aro- One-Hot 4
(bond) matic.
Bond Length Numerical length of the bond. Float 1
In Ring Indicates if the bond is part of a One-Hot 2
chemical ring.
1-Path Atom charges Atoms charges in Molecular Float 3
(non-bond) (9,45, q - 95)
cutoff=3 Distance between atoms  Distance between atoms Float 3
(1/dij> 1/d?j7 1/d11]2)
Centroid Centroid position of the triangle Float 3
2-Path formed by 2-path
Distance Three bond lengths (two for cova- Float 3
lent bond and one for non-covalent
bond)
Area Triangle area spanned by 2-path Float 1
Bond Angle Bond angle for 2-path Float 1
Volume Volume spanned by 3-path Float 1
3-Path Dihedral Dihedral angle for 3-path Float 1
Total Area Total Area of the corresponding Float 1
four triangles
Bond Length Non-covalent bond length Float 3

({v1v3}.{vava}, {vivs})

A.2 DATASET DETAILS, MIN-MAX SCALING, SPLITTING METHO AND MEAN ABSOLUTE
ERR

In this study, we analyzed five datasets from MoleculeNet Wu et al.| (2018) and MolBench Jiang
et al. (2023): QM7 |Blum & Reymond| (2009), QM9 Ruddigkeit et al.| (2012), Tox21, Hiv and Muy,
all of which are publicly available on the MoleculeNet website: |https://moleculenet.org/datasets-
1. Details about these datasets are in Table [0l Note that the subindex indicates standard deviation

Table 6: The details of the datasets. Note that the subindex indicates standard deviation values.

Dataset QM7 QM9 Tox21 HIV MUV
No. molecules 6,830 133,885 7831 41127 93808
No. average atoms 16(3) 18(3) 3623) 46(24) 43(10)
No. tasks 1 3 12 1 17
Task type Regression Regression Classification Classification Classification
Evaluation MAE MAE ROC-AUC ROC-AUC ROC-AUC

values. For instance, the element 16(13) means the number of average atoms in QM7 is 16, with
13 as its standard deviation. The QM7 dataset is a subset of the GDB-13 database Blum & Rey-
mond, (2009), which contains approximately 1 billion organic molecules with up to seven "heavy”
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atoms (C, N, O, S). The QM9 dataset, a subset of the GDB-17 database, provides twelve properties,
encompassing geometric, energetic, electronic, and thermodynamic properties. Tox21 is qualita-
tive toxicity measurements on 12 biological targets, including nuclear receptors and stress response
pathways. HIV is experimentally measured abilities to inhibit HIV replication. MUYV is subset
of PubChem BioAssay by applying a refined nearest neighbor analysis, designed for validation of
virtual screening techniques.

Min-Max Scaling Given that QM7 and QM9 involve regression, we applied min-max normaliza-
tion to scale target values between 0 and 1. In multiple-target regression tasks, Min-Max Scaling is
commonly used to normalize the targets. This technique linearly transforms the target values to a
specified range between a minimum and maximum value. The transformation follows the formula:
_ Y — Ymin
Y= —""——5  Yscal = Ymax — Ymin (1
Ymax — Ymin
Here, y represents the normalized target value, y is the original target value, Yy, is the minimum
value of the target, and ¥,y is the maximum value of the target.

During prediction, the normalized predictions obtained from the model need to be transformed back
to the original scale of the target values. The transformation is performed using the formula:

U=19" Yscal + Ymins ¥ =Y Yscal T Ymin 2
where ¢ is the model output, and § and y are used for loss function computation and evaluation.

This normalization process ensures that all target values are scaled within a fixed range, typically
between 0 and 1. It facilitates better convergence during model training and helps in handling targets
with varying scales effectively. Furthermore, Min-Max Scaling maintains the relative relationships
between target values while bringing them into the desired range, making it a suitable choice for
multiple-target regression tasks.

Splitting Method Following the work of Bharath Ramsundar Ramsundar et al.| (2019), we em-
ployed scaffold splitting to partition all datasets. This method segments molecules based on their
scaffolds (molecular substructures). Scaffold splitting is a more challenging partitioning approach
that can better evaluate a model’s generalization ability on out-of-distribution data samples. To en-
sure a fair comparison with other models, we adopted the same scaffold splitting method to divide
the task datasets into training, validation, and test sets with a ratio of 8:1:1.

MAE (Mean Absolute Error) The Mean Absolute Error (MAE) is defined as:
N
AE = — i AZ‘ 3
M N ;:1 yi — Uil 3)

where 7; and §j; represent the true value and predicted value of the i*" sample respectively. MAE is a
commonly used metric for evaluating regression performance. A lower MAE value indicates higher
prediction accuracy, with a decrease in MAE typically suggesting improved model performance.

Table 7: Hyperparameters set up.

Dataset QM7 QM9 Tox21 HIV MUV
Learning rate le-4 le-3 1.5e-4 le-3 le-4
Batch size 512 64 512 512 512
No.heads 1 6 6 2 1
No.layers 2 2 2 2 2
Train/Valid/Test 8:1:1 8:1:1 8:1:1 8:1:1 8:1:1
Loss function L1 L1 BCE BCE BCE
Optimizer ADAM ADAM ADAM ADAM ADAM
Epochs 500 500 1000 1000 1000
Seed 42 42 42 42 42
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A.3 HYPERPARAMETERS SETUP

Hyperparameters We have set up a set of hyperparameters for training the model are summarized
in Table [/] Inaddition, the optimizer selected as ADAM, and the loss function chosen as L1. All
models are trained using NVIDIA RTX A5000 32GB GPUs.

Sensitivity of Hyperparameters We explored the model’s sensitivity to hyperparameters and the
experimental results are displayed in Table [§] According to the results, the model’s performance
metrics are generally stable across different hyperparameters settings.

Table 8: Sensitivity of hyperparameters for benchmark datasets.

Hyperparameters QM7 QM9 Tox21 HIV MUV
1 53.6(2'1) 0.00931(0400007) 0.748(0'006) 0.793(0'004) 0.827(0,015)
2 54718y  0.007470.00006) 0.754(0.007)  0.823(0.004) 0.787(0.019)
Head 4 559(10) 0~00721(0.00006) 0.759(0_005) 0.799(0_013) 0.801(0_017)
6 58305 0.00683000005 08010000 0.807(0010 0.814(0.013)
8 58512 0.00826(00000s) 0.765(0.004) 0.808(0.004)  0.783(0.008)

64 59607 0.008680.00012) 0.78%0.004) 0.79(0.003  0.785(0.007)

Batch Size 128 57.5(1.00 0.01040(0.00007y 0.778(0.003)  0.803(0.007y  0.819(0.016)
256 543(09) 0.00756(0.00014) 0.778(0_003) 0.807(0_015) 0.789(0_022)

512 53.6021) 0.00683(000004) 0.801(000s) 0.823(000s) 0.827(0 015)

5e-3 585(12) 0.00784(0400004) 0.782(0_004) 0.805(0.009) 0.808(01014)
LR le-3 562(14) 0.00683(0.00005) 0.791(0.009) 0.81 ](0'013) 0.827(0.015)
Se-4 54743 0.008800.00006) 0.781(0.012) 082310005 0.814(0.012)
le-4  53.601) 0.0096200.00012) 0.789%0.006) 0.7990.018) 0.822(0.013)
5e-5 649031 0.00784(0.00011) 0.7240.007) 0.788(0.024)  0.818(0.010)

B MATHEMATICAL ANALYSIS OF PATH COMPLEX

B.1 PATH COMPLEX

Definition B.1 (Elementary path Grigor’yan et al.|(2012)). Given a set V, an elementary n-path of
V is any sequence of n 4 1 elements vgv; - - - vy, of V, denoted by o, = vovy - - - v,

Definition B.2 (Path complex Grigor’yan et al.| (2012)). A path complex P over the vertex set
V is a collection of elementary paths of V' such that Vo, = vovy---v, € P, v1---v, €
P,vgvy - -vp_1 € P.

The element o,, of P that has n 4 1 vertices is called an n-path of P. The path ¢ is called a face of
the path 7 if o is derived from 7 by removing the first or last vertex. The n-path 7, is called a coface
of (n — 1)-path o, if 0,1 is a face of 7,,. Two n-paths are upper adjacent if they are faces of a
common (n+ 1)-path, lower adjacent if they have a common (n — 1)-path as face. For an n-path o,
let B(o,) be the set of faces of oy, C(0,) be the set of cofaces of o,,, N4 (c,) be the set of n-paths
that are upper adjacent with o,, \V| (¢,,) be the set of n-paths that are lower adjacent with ,,. Note
that we can use the above four relations, including face-relation, coface-relation, upper adjacency
and lower adjacency, to define the neighbors of an n-path o,,. We give construction of path complex
from graphs, simplicial complexes and hypergraphs. We give construction of path complex from
graphs, simplicial complexes and hypergraphs.

B.1.1 PATH COMPLEX FROM GRAPHS

Definition B.3 (Path). Given an undirected graph G = (V, E') over the verset set V, we define the
n-path o,, of G as any sequence of n + 1 vertices vovy - - - v, (v; € V) satisfying the following
conditions:

1. VZ(O <1< ’I’L), (UiarUz’-&-l) € For (Ui+1,’Ui) € F.
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2. VZ#],UZ #’Uj.

Note that for each n-path o, = vgvy -+ Up, 0, = Up - - - V1V is also an n-path, we identify these
two paths as the same one.

Definition B.4 (Path complex from graphs). Given an undirected graph G = (V, E), let P, be the
set of all n-paths of G, then Py = J,, P, form a path complex. We call P the path complex
derived from G.

It can be seen that the path complex Pg derived from G is determined by Py and P;.

B.1.2 PATH COMPLEX FROM SIMPLICIAL COMPLEX

Definition B.5 (Simplicial complex). A simplicial complex K over the vertex set V' is a collection
of vertex subsets of V satisfying thatif o € K, 7 C 0,7 € K.

The element oy, of K that has k£ + 1 vertices is called an k-simplex. A simplex o is called a face of
the simplex 7 and 7 is called a coface of ¢ if ¢ C 7. For any two k-simplices oy, 7. € K, o and 7
are called upper adjacent if they are both faces of an (k + 1)-simplex a1 € K. Two k-simplices
oy, Ty, are called lower adjacent if they share a common (k — 1)-simplex as faces.

Definition B.6 (Path). Given a simplicial complex K, we define an (k, n)-path X of K as a sequence
of n + 1 k-simplices o{a}, - - - o satisfying the following conditions:

1. Vi (0 <4 < n), o} and o) are upper adjacent.
2. Vi#j,a,i;éo',i

We can also use lower adjacent, face and the coface relation to define paths. Note that for each
(k,n)-path oQo} - - - o, there is an (k,n)-path o7 - - - o2. We identify these two paths as the same
one.

Definition B.7 (Path complex from simplicial complex). Given a simplicial complex K, let P be
the set of all (k, n)-paths of K, then P =, P¥ form a path complex.

For the simplicial complex K, its one-skeleton forms a graph K1, we have P¢, = P2.

B.1.3 PATH COMPLEX FROM HYPERGRAPHS

Definition B.8 (Hypergraph). A hypergraph H over the vertex set V' is a collection of vertex subsets
of V.

The element o, of H that has k + 1 vertices is called an k-hyperedge. Two hyperedges are called
lower adjacent if their intersection is not empty.

Definition B.9 (Path). Given a hypergraph H over the vertex set V', we define an n-path of H as a
sequence of n+ 1 hyperedges c’c - - - o™ such that any two adjacent hyperedges are lower adjacent

and any two hyperedges are not same.

Definition B.10 (Path complex from hypergraphs). Given a hypergraph , let P, be the set of all
n-paths of 7, then Py, = | J,, P, form a path complex.

B.2 HOMOLOGY OF PATH COMPLEX

The homology of path complex is a new homology theory that breaks the landscape of classical
homology theory in algebraic topology, introducing a new framework for exploring the topology of
more general mathematical structures |Grigor’yan et al.[(2012);|Grigor’yan et al.[(2014;2020). This
homology theory was initially called path homology and renamed GLMY homology in 2022, which
advances the study of topological foundations for complex networks Chowdhury & Mémoli| (2018);
Chowdhury et al.| (2022) and has been successfully applied in complex disease [Wu et al.| (2023),
biology and material sciences |Chen et al| (2023). Next, we give the construction of homology of
path complexes.
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Given a path complex P over V', We fix a field coefficient F, let A,,(P) be the vector space spanned
by all the elementary n-paths of P. Considering the standard boundary operator 9,, : A, (P) —
A,—1(P)

Vo, =vovr-- vy, € P, Op(on) = Z(—l)ivo S Vi1t Up
i=0
We have 0,,0,,+1 = 0. Let A, (P) be the vector space spanned by all the n-paths of P, usually
O(Ay) ¢ Apn—1(P). We consider the following subspace §2,,(P) of A,,(P)

2, (P) = {u € A (P)|0(u) € An—1(P)}
Then we have 0,,(2,,(P)) C Q,,_1(P). Consequently, we get a chain complex (€2..(P), 0x)

On On
o= Q1 (P) 55 Q,(P) =5 Qi (P) — - -

Definition B.11 (Homology of path complex). Given a path complex P, its k-homology is defined
as the k-th homology of the chain complex (Q.(P), 0,)

Hy,(P) = Hi (2, 0x))

This definition can be directly applied to the path complexes derived from graphs, simplicial com-
plexes and hypergraphs.

B.3 WEAK ISOMORPHISM INVARIANCE OF THE PATH COMPLEX HOMOLOGY
For an undirected graph G = (V, E), the degree of a vertex v € V is the number of edges that
contain v and we denoted it by deg(v).

Definition B.12 (Graph collapse and expansion). Given a graph G = (V, E), take an edge (v1,v2) €
E such that deg(v1) = 1. Let V! = V\{v1}, E' = E\{(v1,v2)}, then G' = (V' E’) is a new
graph. We say that G’ is derived from G by a graph collapse and G is derived from G’ by a graph
expansion.

Definition B.13 (Weak isomorphic). Given two graphs GG1, G2, G; and G are called weak isomor-
phic if G; can be derive from G by a sequence of graph collapse and expansion operations.

It is obvious that two graphs are weak isomorphic if they are isomorphic.
Theorem B.14. If two graphs G1 and G are weak isomorphic, then

1. The number of connected components of G1 and G4 are same.

2. The number of cycles of G1 and G2 are same.
Proof. Let G1 = (V1, E1), Gy = (Va, Es), without loss of generality, we can assume that G5 is
derived by collapsing an edge (v1,v2) € E; from G and deg(vy) = 1.

1. This is obvious.

2. Let C(G;) be the set of cycles of G;, then we have C(G2) C C(G1) because Gz is a
subgraph of G1. Ve € C(Gy), ¢ is a sequence of vertices such that the degree of each
vertex is 2. So vy is not contained in ¢, ¢ € C'(G3). Consequently,

C(G1) = C(Ga)

O

Theorem B.15. Given two graphs G1, Gs, let Pg, , Pa, be the path complexs derived from G, and
G respectively. If G1 and G5 are weak isomorphic, then

Hy(Pg,) = Hy(Pg,) (k> 0)

Proof. Let Gy = (W1, E1), Gy = (Va, E3), without loss of generality, we can assume that G is
derived by collapsing an edge (v1,v2) € F; from Gy and deg(vy) = 1.
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1. k=0
Qo(PG1)=< (%1 >@Qo(PG2), Qo(PG2) =< U"UE‘/Q >
Ql(PGl) =< V12 > D Ql(PGQ), Ql(PGQ) =< 6‘ ee by >
We have Ker@\go(pcl) =< v > & K€T8|Qo(pc2), Im8|Ql(pG1) =< vy — v >
® Imd|q, (ps,) = < v1 > ® Imd|q,(pg,)- Consequently,
K8T6|Qo(pcl)
Ho(Pe,) Imd|a, (ps,)
<v > @ K€T8|Qo(pG2)

<v>P Ima‘gl(pc2)

Kerdlo,(ps,)
Im8|Q1(PG2)
= HO(PGz)

2. k=1
0 (Pg,) =< vivg > B N (Pg,), N(Pg,)=<e|le€ FEy>
The degree of vertex v, is one means vy only appears in the 1-path (vy,v3), so (vq,v2)
cannot be contained in the kernel of 9 on € (Pg, ), which means that

K6T8|91(PG1) = K6T8|91(PG2)
Ao(Pg,) =< vivav|ve £ v € Vo > @ Ay(Pg,)
Note that (v1,v) is not a 1-path for any v € Va(v # v2), so
Qs (Pg,) = Q2(Pag,)
Consequently,
Ker8|91(pcl)
Hi(Fe,) = Im8|92(pGl)
_ Kerdlg, (pg,)
 Imdlay(po,)
= Hi(Pg,)

3. k > 2. It suffices to prove that
Q(Pa,) = u(Pa,) (k > 2)
It is obvious that Q(Pg,) C Q(Pg,). So we only need to prove that Q(Pg,) C
Qi (Pa,)-
(a) We prove that
Qk(PGl) C Ak(PG2)

Vwi € Qi(Pa,), wi € Ax(Pay), O(wk) € Ag—1(Pg, ). Note that every k-path in
Pg, is either an k-path in Pg, or starts with v;v3, S0 wy, can be represented as

Wg = V1V2€k—2 + €k
where e o € Ai_2(Pg,) is a linear combination of (k — 2)-paths > v v;, -+ Vs, _,
(viy # v1) of Pg, and ey, is an k-path of Pg,. We have
O(wy) = (v2 — v1)eg—2 + v1v20(ek—2) + O(ex)

Note that vie;_o is a linear combination of (k — 1)-paths viv;, -+ vs,_, (V1 # v4,).
Since vyv;, is not an edge, these paths are not contained in Pg,, but d(wy) €
Ai—1(Pg, ), s0 v1ei_o must add some item in the right part to become zero. There
is not any item in the right part of the equation has vyv;, - - - v;,_,, S0 v1e,_2 must be
zero, which means that ej_o is zero. Consequently,

W =€ € .Ak(sz)
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Figure 6: Illustration of the graph weak isomorphism. GG can be derived by doing the graph collapse
operations on G through {7, (1,7)}, {6, (5,6)} and {8, (3,8)} one by one, so G; and G2 are weak
isomorphic.

(b) We prove that
Qk(PG2) = Ak(PGz) N Qk(PGl)
It is obvious that Q(Pg,) C Ai(Pa,) N Qk(Pg, ). so we only need to prove that
Ar(Pa,) Nk (Pa,) € Qk(Pa, ).
Ve € Ai(Pg,) N Qi (Pg, ), Since e € Ay (Pg,), v1 will not appear in e, which means
e is a path of Pg,. Note that e € Qi (Pg, ), so d(e) € Ax_1(Pcg, ), with the property
that e € Pg,, we have d(e) € Ay_1(Pg,), which means

e c Qk(PGQ)
Combining the results of (a) and (b), we have
Qu(Pa,) € A(Pa,) N (Pa,) = Qu(Pa,)

O

Theorem [B.15| means the path complex homology is a graph weak isomorphism invariant. Conse-
quently, for two graphs G and Ga, if there exists & such that Hy(Pg,) % Hi(Pg,), then G; and
G2 are not weak isomorphic and not isomorphic.

Figure [6] illustrates an example of the graph weak isomorphism. As
shown in Figure 1, Gy = (Vi,E;) where Vi = {0,1,2,3,4,5}, E; =
{(0,1),(1,2),(2,3),(3,4),(4,5),(0,5)}. Go = (Va, Ey) where Vo = {0,1,2,3,4,5,6,7,8} and
By = {(0,1),(1,2), (2,3), (3,4), (4, 5), (0,5), (5,6), (1,7), (3,8)}. G1 can be derived by doing
the graph collapse operation on G through {7, (1,7)}, {6, (5,6)} and {8, (3, 8)} one by one, so G
and G, are weak isomorphic. It can be seen that (G; and G5 both have one cycle and one connected
component.

C PATH WEISFEILER LEHMAN (PWL) TEST

C.1 PATH COMPLEX

Definition C.1 (Path Complex Isomorphism). Given two path complexes P;, P» over the vertices
V1, Va. Py and P; are called isomorphic if there is a map f : V3 — V5 such that o, = vgvy -+ - vy, €
Py <= f(o) = f(vo)f(v1)-- f(vn) € P

Theorem C.2. Given two graphs G1, G, let Pg,, Pq, be the path complexes derived from G1,Ga

respectively. We have
G12Gy <— PGl = PG2

C.2 PATH COMPLEX COLORING

Definition C.3 (Path Coloring). A path coloring is a map c such that for each path complex P and
any path o of P, c(o) is a color from a fixed color table. We denote this color by cZ.
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We will often omit P in the subscript when the underlying path complex is arbitrary.
Definition C.4. Given two path complexes P;, P, and a path coloring ¢. P, and P, are called
c-similar, denoted by ¢t = ¢!, if for any dimension 7, we have the color multi-sets equality

{cbr|dim(o) = n,0 € P}y = {c2|dim(1) = n, 7 € Pa}}

Definition C.5 (PWL). We give a path complex version of the WL test to derive a message passing
procedure that can retain the expressive power of the test. We call this the Path WL (PWL), the steps
of general PWL are as follows:

1. Given a path complex P, all the paths of P are initialized with the same color.

2. For the color cﬁ, of path ¢ at iteration ¢, the color cf,“ of o at the next iteration is computed
by perfectly hashing the color multi-set of the neighbors of o.

3. The algorithm stops once a stable coloring is reached. Two path complexes are considered
non-isomorphic if their color histograms are different at some dimensions.

Neighbor Color Multi-set Based on the four neighbor definitions, we have four types of neighbor
color multi-sets. Let ¢! be the coloring of PWL for path complex P at iteration ¢, four types of color
multi-sets are as follows

L. ch0) = {{ct|r € B(o)})

2. (o) = {ctlr € Clo)}

3. () = {{(ch by )| € Ny (o))
4. ¢ (0) = {{(c. chor)l7 € Ny (o)}

Having the neighbor color multi-sets, we obtain the following update rule that contains all four types
of neighbors:
C?l - HASH{CZ? C% (U)a CtC (U)v C%(O’), CfL(O—)}

Actually, certain neighbors can be removed without affecting the expressive power of PWL test in
terms of path complex that can be differentiated.

Theorem C.6. PWL with HASH{c},, cjz(0), (o)} is as powerful as PWL with the four-neighbor-
updating strategy HASH{c/,, ci5(0), ¢ (), ¢4 (o), ¢| (o) }.

Theorem C.7. PWL is strictly more powerful than WL.

Theorem C.8. PWL is no less powerful than SWL |Bodnar et al.|(2021b) with the clique complex
lifting.

C.3 PATH COMPLEX MESSAGE PASSING

We propose a general Path Complex Message Passing (PCMP) using the following messages passing
operations. For a path ¢ in P, we have

mi’;rl (U) = AGGTEB(U) (MB(hf-n hfr)) “4)
m%r-H (CT) = AGGTEJ\M(U) (MT(hztfv hiv hzthT)) (5)

Then, the updating function considers these two types of messages and the previous color of ¢
W (o) = U(hg, mis(0), mi(0)) (6)

After L layers of the message passing process, the readout function takes the color multi-sets at all
dimensions as input:

hP = READOUT({{hg}}dim(a):Oa ) {{h£ }}dim(T):p) (7)

Theorem C.9. PCMP with sufficient layers and injective neighborhood aggregators are as powerful
as PWL.
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C.4 PROOF OF MAIN RESULTS

In order to prove the main results, we give some notations.

Definition C.10 (Path Coloring Refinement). A path coloring c refines a path coloring d, denoted
by ¢ C d, if for any path complex P, P, and 0 € Py, 7 € Py, c¢ft = 2 implies d = dr=.
Additionally, if d C ¢, we say that ¢ and d are equivalent.

Lemma C.11. Given two path complexes Py, P, with A C P, B C P,. Assume c and d are
two path coloring such that ¢ T d. If {{d'|o € A}} # {d22|r € B}}, then {{c['|o € A}} #
{cf?|m € BY}.

Proof. Let Cy = {{clr|o € AY}, Cy = {{cl2|7 € B}Ii Assume Cy = Cy, then there is a bijection
f:A— BsuchthatVo € A, 7 = f( , we have cI* = 2. From ¢ C d we know d* = dfz.

Consequently, {{d2 |0 € A}} = {{df(a)|a €AY} = {{df2|7' € B}}, which contradicts with the
condition that {{d" |0 € A}} # {{dF?|r € B}}. Hence the assumption is wrong. O

Corollary C.12. Given two path colorings c and d such that ¢ C d. If d™ # d*2, then ¢t # cP.

Proof. This follows by replacing the subsets A, B by the sets of n-paths of P; and P, respectively
in the proof of Lemma [C.11] O

The above corollary means that if c refines d, then c is able to distinguish all the path complex
pairs that d can distinguish. In this sense, we can say that c is at least as powerful as d. If ¢ and d
are equivalent, we say they have the same expressive power.

Proof of Theorem|[C.2] It is easy to see that if Gy = G, then Pg, = Pg,. The inverse statement
follows from the fact that any graph is a subcomplex of its derived path complex by considering the
0-paths and 1-paths. O

Proof of Theorem|[C.6] Let a* be the coloring at iteration t of the updating startegy
HASH{ag, ap(0), ag(0), a4 (o), a| (o)}
b® be the coloring at iteration t of the updating strategy
HASH{¥. , bl (o), b?(a), bi(o)}
¢’ be the coloring at iteration t of the updating strategy
HASH({cl,, cis(0), (o)}
We firstly prove that a* and b are equivalent, then prove that b* and ¢! are equivalent.

t t t

1. a' and b' are equivalent. We have a' T b' because a® contains additional colors of its
coface neighbors in the color updating rule. It suffices to prove that b* T af. We do this
by induction. The base case holds since all the paths are initialized with the same color.
Assume the result holds for t = k, we prove that b+l C gF*l Leto € Pyand T € P,

be two n-paths from two arbitrary path complexes, suppose b = b**+1, we prove that
aktl = qk+t,

The equation b¥*! = bE*! means that the hash function at iteration t+1 have the same
arguments. Consequently, b} = b%, bi(0) = bjs(7), bf(0) = bi(7), bf(0) = b(7). We
prove that bfs (o) = bE(7).

We have b’;(o') = bk(T) and
b (o) = (b2, bpue)le € Np(o) 1}, b5 (m) = {{(0F, bfe)le € Ny (7))} (8)

Replacing the first component of the tuple by the same color, we have

{{(= bouolle € Ni(o) ) = {{(= brue)le € N (1)} )
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By the definition of upper adjacency and coface we have

be(0) = {{bhlw € C(0)}} = {{bhiele € Ni(a) (10)
be(r) = {blw € C(1)}} = {{bFicle € N ()} (1)
Combining Equation (8), (9), (10), (1 1), we have b%(o) = bfi(7).
From the induction hypothesis, we have a® = a¥, af(0) = af(7), al(o) = al(r),

alf(o) = a’T“(T), a’j(a) = a’j( T), SO ag

k41 _ gh+1

artt,

2. b’ and ¢! are equivalent. Similarly we have b* C ¢, we further prove that ¢ T b. We
do this by induction. The base case is obvious because all the paths are initialized with the
same color. Assume the results holds for t = k, we prove that ¢?**2 C p**! Leto € P,
and 7 € P, be two n-paths from two arbitrary path complexes, suppose c2F+2 = ¢2k+2,
we prove that bE+1 = pE+1,

2k+2 2k _

For ¢ = c%’”z by going back two steps of the hash function, we have ¢ =
cfﬁc%’“( ) = ¢ (1), 3" (0) = & (7). We want to prove that ¢} () = ¢} ().

Assume c] k(o) # c ¥ (1), then there is a color pair (cg, ¢;) such that (¢, 1) appears more
times in ¢} k(o) (w1th0ut loss of generality) than in cfk (7). For any path § and A, define

A(9) = {{(Cik =co, 3" =c1)|lp €COO) P} (12)
Cx = {1400l € BV} (13)
Then we have
Co = {{|A0)]1d € B(o)}} = {I(c5" = co, 5" = c))ll6 € o1 0 }} (14)
Cr = {lAO)I6 € B(n)}} = {I(c3" = co,c5" = e1)l|d € N 7Y} (15)

So C, # C,.

Considering the path coloring d(6) = |A(d)|. For two n-paths 91, da, if d(d1) # d(d2),
we can assume that |A(d1)| > |A(d2)| without loss of generality, then the number of up-
per adjacent neighbors of §; and 5 up to color pair (cg, 1) are different, which means

C%k (61) # ¢3¥(d2). So chH + cgfﬂ, which means c?**1 C d.

Applying Lemma|[C.11]to B(c) and B(7), we have
{{e5 101 € Blo)}} # {162 € B()}} (16)

The above multi-sets are exactly the color multi-sets of the faces of ¢ and 7, which means
(o) # ¢ (7). Consequently, c2¥+2 # ¢2¥+2_ which contradicts with the induction
hypothesis, so ¢}* (o) = ¢} (7).

From the induction hypothesis, we have b = b%, bjs (o) = bjs(1), b5 (o) = b5 (1), b (0) =
by (7), so bt = bt

O

Proof of Theorem Given a path complex P, let a® be the coloring of the vertices of P at iteration
tof WL and b* be the coloring of the same vertices at iteration t of PWL. We firstly prove that b* C a?,
then give a pair of graphs to show that they cannot be differentiated by WL but can be differentiated
by PWL.

1. b C a'. We do this by induction. The base case holds because all vertices are initialized
with the same color. Suppose the result holds for ¢ = k, we prove that b*+1 C aF*1. Let
v and w be two vertices of two arbitrary path complexes P, P, suppose b¥ 1 = pE+1 we
prove that a®*+1 = gk+1.
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Note that vertices only has upper adjacent neighbors, so we have bk = bl bk (v) = b (w).
The second equation means

{{oz1(v, —) € bF(v)}} = {{byl(by, —) € b (w)}}
This can be equivalently written as

{bile € Ny (0)}} = {{blly € Nr(w)}}

k _

v —

{{aflz € Nr(v)}} = {{ayly € Ny (w)}}

These are the arguments of the hash function for WL to compute the colors of v and w in
the next iteration, so af+1 = af+L,

From the induction hypothesis, we have a aF and

2. Considering the graphs in Figure[/| they cannot be differentiated by WL test. In PWL test,
the path complex derived from the right graph has not any 3-path while the derived path
complex from the left graph has 3-paths.

Figure 7: Two graphs that cannot be distinguished by WL but can be differentiated by PWL.

O

Proof of Theorem|C.8] Considering the graphs in Figure [§] they cannot be differentiated by SWL
test. In PWL test, the path complex derived from the right graph has not any 4-path while the
derived path complex from the left graph has 4-paths. [

Figure 8: Two graphs that cannot be distinguished by SWL but can be differentiated by PWL.

Proof of Theorem|C.9] Let b and d' be the coloring at iteration t of PWL and the t-th layer of an
PCMP respectively. Assume the PCMP has L layers and assume d' = d”(t > L). We use induction
to prove that d* C b'. The base case holds by definition. Suppose the result holds for ¢ = k, when
t = k + 1, we prove that d**1 C b**1. For any two n-paths o, 7 of any two path complexes Py, P,
such that d®*1 = d@**+1, we prove that b*+1 = pF+1,

The condition means all the update, aggregate and message functions are injective, so their compo-
sition is also injective. Hence dff = df, djs(o) = dj3(7), d§ (o) = df().

dg (o) = di(7) means

{{dils € B(o)}} = {di|t € B(r)}}
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d¥ (o) = di (1) means
{{(dS, diuo)ls € Nay(o) 3 = {{(dF, di )t € Ny(m)

By the induction hypothesis, we have b* = b%.

{vl]s € B(o)}} = {{bi]t € B(7)}}

{05, bEuo)|s € Ni(o) ) = {{(0F, b, )t € N (m) )
So bE = b, bl (o) = bl (7), b’%(o) = b’{f(’]’), these are the arguments of the hash function in PWL,
s0 bF 1 = phtl,

O
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