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Abstract
Conformal Prediction (CP) has proven to be an
effective post-hoc method for improving the trust-
worthiness of neural networks by providing pre-
diction sets with finite-sample guarantees. How-
ever, under adversarial attacks, classical confor-
mal guarantees do not hold anymore: this prob-
lem is addressed in the field of Robust Conformal
Prediction. Several methods have been proposed
to provide robust CP sets with guarantees under
adversarial perturbations, but, for large scale prob-
lems, these sets are either too large or the meth-
ods are too computationally demanding to be de-
ployed in real life scenarios. In this work, we
propose a new method that leverages Lipschitz-
bounded networks to precisely and efficiently es-
timate robust CP sets. When combined with a
1-Lipschitz robust network, we demonstrate that
our lip-rcp method outperforms state-of-the-art
results in both the size of the robust CP sets and
computational efficiency in medium and large-
scale scenarios such as ImageNet. Taking a differ-
ent angle, we also study vanilla1CP under attack,
and derive new worst-case coverage bounds of
vanilla CP sets, which are valid simultaneously for
all adversarial attack levels. Our lip-rcp method
makes this second approach as efficient as vanilla
CP while also allowing robustness guarantees.

1. Introduction
With the development of neural networks, and their appli-
cations in industrial settings, the study of their reliability
has become prevalent. Many approaches have been studied
to improve the trustworthiness of neural networks (Delseny
et al., 2021). One of them is Uncertainty Quantification
(UQ), which has become a key research domain for deploy-
ing safety-critical deep learning models. Its purpose is to

*Equal contribution 1IRIT 2SNCF 3Institut de Mathématiques
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provide additional information on the output of a model,
indicating the confidence in its prediction.

We focus here on a UQ framework called Conformal Pre-
diction (CP), which provides guarantees in nominal settings.
It is a finite-sample, distribution-free and model-agnostic
framework that efficiently constructs prediction sets which
contain the ground truth with high probability. The main un-
derlying assumption is mild: calibration and test data points
are assumed to be exchangeable (a lighter assumption than
independence and identical distribution) (Vovk et al., 2005).
CP has successfully been applied to numerous fields: classi-
fication (Sadinle et al., 2019; Ding et al., 2024), regression
(Papadopoulos et al., 2011; Romano et al., 2019), object de-
tection (Andéol et al., 2023; Timans et al., 2025), semantic
segmentation (Brunekreef et al., 2024; Mossina et al., 2024)
and generative models (Mohri & Hashimoto, 2024; Teneggi
et al., 2023). Overall, CP represents a powerful tool in order
to trust deep learning systems in their nominal settings.

However, research on adversarial robustness has demon-
strated that state-of-the-art models can be misled with mini-
mal adversarial input perturbations (Szegedy et al., 2014).
This vulnerability has led to extensive research into adver-
sarial robustness, focusing on both attack strategies and
defense mechanisms (Goodfellow et al., 2015; Carlini &
Wagner, 2017). However, some popular adversarial defense
strategies have been shown not to hold in the face of more
sophisticated attacks (Athalye et al., 2018). Therefore, re-
search on certifiable robustness aims to provide theoretical
worst-case guarantees for model performance under adver-
sarial attacks independently from the attack method. These
certified robustness methods also exhibit interesting prop-
erties in the domains of Reinforcement Learning (Russo
& Proutiere, 2019; Corsi et al., 2020), Differential Privacy
(Béthune et al., 2024; Wu et al., 2024), explainable AI (Ser-
rurier et al., 2024; Fel et al., 2023).

Recently, some works in robust Conformal Prediction (Li
et al., 2024; Ledda et al., 2023; Liu et al., 2024) have
demonstrated that minimal adversarial perturbations can
undermine its associated guarantees. Therefore, developing
provably robust CP methods is a crucial objective in order to
reconcile the guarantees of CP in nominal settings and the
worst-case guarantees of certifiably robust systems. Indeed,

1Throughout this paper we refer to standard CP as vanilla CP.
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Figure 1: Our framework allows different certifiable guarantees for conformal prediction sets. Through the fast estimation of worst-case
conformal prediction scores, the user can either return Cα,ϵ(x̃) which provably verifies Def. 2.2 (§ 4). Or, compute worst-case conformal
coverage bounds γ−

m
(ϵ) and γ+

m(ϵ) of vanilla CP sets on Dtest through an efficient post-hoc auditing process on a holdout dataset Deval.
This guarantee holds with probability 1− δ (§ 3). Importantly, the latter’s coverage bounds hold over all ϵ levels.

the vulnerability of CP methods to adversarial attacks raises
significant concerns for deploying CP in safety-critical set-
tings, where reliability is essential.

For this purpose, several approaches were proposed to con-
struct robust conformal sets by using randomized smoothing
methods (Gendler et al., 2022; Yan et al., 2024) or formal
verification solvers (Jeary et al., 2024). These methods in-
flate the CP sets in order for them to remain valid under
adversarial conditions. Therefore, the performance of ro-
bust CP methods is measured by their ability to provide
small and meaningful CP sets which maintain 1− α confor-
mal coverage under ϵ-bounded perturbations. Unfortunately,
these works suffer from two penalties: they lack scalability,
and/or provide conservative prediction sets that are too large
for practical usage. We address these two shortcomings
through the following set of contributions:

1. We complement theoretical guarantees on robust CP
from a different angle. We introduce a new method to
audit vanilla CP’s robustness to adversarial attacks. We
derive the first sound coverage bounds for vanilla CP
that are valid simultaneously across all attack levels.

2. We provide a simple and efficient method, called lip-
rcp, to compute lower and upper bounds on CP scores
under adversarial attacks. The method applies to any
Lipschitz-bounded network, and can be used both to
construct robust CP sets and to audit vanilla CP’s ro-
bustness. It is tailored for efficiency and compatibility
with real-time embedded systems.

3. We propose to combine lip-rcp with robust 1-Lipschitz
networks with tight certified Lipschitz bounds. This al-
lows to obtain tight estimates on worst-case variations
of conformal prediction scores.

4. We validate the whole approach across the CIFAR-10,

CIFAR-100, Tiny ImageNet and ImageNet datasets.
Our experiments showcase negligible computational
overhead compared to vanilla CP, with best-in-class
performances for both robust CP and vanilla CP’s au-
diting.

2. Background and Related Works
2.1. Split Conformal Prediction
Multiple approaches to Conformal Prediction exist (Vovk
et al., 2005; Angelopoulos & Bates, 2023). We focus on
Split Conformal Prediction (Papadopoulos et al., 2002), a
variant applied post-hoc using a separate data split. This ap-
proach has the advantage of being applicable to any model,
even pre-trained on a different dataset. Throughout this
work, we focus on classification tasks. We denote X as
the input domain for a classifier f : X → Rc which maps
inputs to class logits of labels y ∈ Y with Card(Y) = c the
number of classes. Generally lowercase letters x, y refer to
deterministic examples, while uppercase letters X,Y are
for random variables. Split CP methods construct prediction
sets Cα(x) that contain the true label with probability at
least 1−α, where α ∈

[
1

ncal+1 , 1
)

is a user-specified risk.2

For this purpose, CP defines s : X × Y → R, a non-
conformity score that measures the degree of incorrectness
of a prediction f(x) for a ground truth label y. On a hold-
out “calibration” data split Dcal ∈ (X × Y)ncal , the non-
conformity score is computed for each instance, denoted
as Ri = s(Xi, Yi) for i ∈ {1, . . . , ncal}, along with the
quantile of the score qα =

−→
R ⌈(ncal+1)(1−α)⌉ (where

−→
R

represents the Ri scores sorted in ascending order). For a

2Though some papers might mention the interval (0, 1), this
is a slight abuse of notation, since split CP methods are only well
defined for α ≥ 1/(ncal + 1).
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given example xtest, the prediction set is then defined as
Cα(xtest) = {y ∈ Y : s(xtest, y) ≤ qα}. This formulation
is quite intuitive: the prediction set Cα(xtest) is defined as
all the labels y that would lead to a non-conformity score be-
low qα, and would place among the 1− α most conforming
pairs compared to the calibration set. This set then satisfies
the following coverage guarantee.

Theorem 2.1 (Vovk et al. 2005). Let Dcal =
{(Xi, Yi)}1≤i≤ncal

and (Xtest, Ytest) be exchangeable ran-
dom variables. For any non-conformity score s : X × Y →
R and any user-specified risk α ∈

[
1

ncal+1 , 1
)

, the predic-

tion set Cα(Xtest) = {y ∈ Y : s(Xtest, y) ≤ qα} satisfies:

P (Ytest ∈ Cα(Xtest)) ≥ 1− α , (1)

where the probability is taken over the random draws of
both Dcal and (Xtest, Ytest).

This result allows turning predictions from any black-box
model f into prediction sets with a guaranteed risk level.
However, this guarantee is marginal: the error rate of α only
bounds an average error over all possible values of Xtest.

2.2. Robust Conformal Prediction
Extending the CP guarantee of Theorem 2.1 to cover ad-
versarial conditions was first explored in the seminal work
of Gendler et al. (2022). In this paper, the following def-
inition of Robust Conformal Prediction is given. For any
x ∈ X , we write Bϵ(x) = {x′ ∈ X : ∥x′ − x∥ ≤ ϵ}.

Definition 2.2 (Robust Conformal Prediction). Let Dcal =
{(Xi, Yi)}1≤i≤ncal

and (Xtest, Ytest) be exchangeable ran-
dom variables. A prediction set Cα,ϵ is said to be robust to
ϵ-bounded perturbations if for any random variable X̃test

such that X̃test ∈ Bϵ(Xtest) almost surely,

P
[
Ytest ∈ Cα,ϵ(X̃test)

]
≥ 1− α. (2)

Enforcing Def. 2.2 ensures the coverage guarantee of Theo-
rem 2.1 in worst-case adversarial conditions for any sample
under ϵ-bounded adversarial perturbations.

The initial intuition behind robust CP methods is the fol-
lowing: by computing provable lower bounds for conformal
prediction scores under attack, it is possible to guarantee
robust CP coverage as defined in Def. 2.2. We recall the
following concepts, which appear under several wordings
in the literature.

Definition 2.3. A conservative score under ϵ-bounded ad-
versarial perturbations is any function s : X ×Y → R such
that, for all (x, y) ∈ X × Y ,

s(x, y) ≤ inf
x̃∈Bϵ(x)

s(x̃, y) . (3)

Definition 2.4. Let x ∈ X . A robust prediction set (or
conservative prediction set) under ϵ-bounded adversarial
perturbations around x is defined as:

Cα,ϵ(x) = {y ∈ Y : s(x, y) ≤ qα} , (4)

where s is a conservative score under ϵ-bounded adversarial
perturbations.

General formulation Importantly, the robust prediction
set of Def. 2.4 verifies robust CP coverage as defined in
Def. 2.2, and as demonstrated in Jeary et al. (2024). More-
over, as a general rule, robust CP methods revolve around
the tight estimation of the conservative score of Eq. (3) in
order to verify robust CP coverage. We now discuss the
specifics of these computations.

2.3. Related Works
Monte-Carlo methods In order to compute robust CP
sets, the initial work of Gendler et al. (2022) leverages a
smoothed score function from the framework of randomized
smoothing (Cohen et al., 2019). The RSCP score is defined
as:

s̃(x, y) = Φ−1
(
E∆∈N (0,σ2.I)[s(x+∆, y)]

)
, (5)

with Φ−1 the inverse CDF of the standard normal dis-
tribution of standard deviation σ, which satisfies for any
(x, y) ∈ X × Y:

sRSCP(x, y) = s̃(x, y)− ϵ

σ
, (6)

therefore providing a conservative score which will be used
to enforce robust CP. However, due to the unknown nature
of the expectation in Eq. (5), it is estimated by a Monte
Carlo (MC) procedure for which no correction is applied.

Later work (Yan et al., 2024) enables provable robustness
coined as the RSCP+ method by introducing both a cor-
rective factor on the expectation estimation and accounting
for the error probability of the MC estimation process by
adjusting the calibration threshold. Additionally, this paper
introduces PTT, an extension to their method with the use of
an extra Dholdout data split to obtain better robust CP met-
rics. Similarly, the CAS method relies on CDF-Aware Sets
(Zargarbashi et al., 2024) for certifiably robust CP. These
CAS sets provide a generally tighter bound for smoothed CP
scores than RSCP. In an independent work to ours, Zargar-
bashi & Bojchevski (2025) propose a binary-certificate-
based method (BinCP) for robust CP with improved sample
efficiency and tighter binary certificate bounds.

Deterministic methods The authors of VRCP (Jeary et al.,
2024) leverage formal verification-based solvers (Katz et al.,
2017) to provide a deterministic lower bound of Eq. (3) valid
locally around x. Interestingly, they devise two methods
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to achieve robust CP: VRCP-I uses a standard vanilla CP
calibration procedure, then computes conservative scores
around each test point xtest. These scores are then used to
form the robust CP set Cα,ϵ(xtest). VRCP-C however com-
putes conservative scores around each pair (xi, yi) ∈ Dcal

and then calibrates the model using these conservative
scores to provide a robust CP guarantee which holds at
inference and requires no extra computations at test time.
Unfortunately, computing exact bounds for Eq. (3) is often
untractable for neural networks. Therefore, formal verifi-
cation methods use incomplete solvers to compute loose
bounds on small to medium size model architectures.

Independently, Ghosh et al. (2023) introduced a novel “quan-
tile of quantiles” method for robust CP based on calibration-
time operations. In order to mitigate the set size inflation
phenomenon that is inherent to robust CP, the PRCP method
provides a relaxed “average” coverage guarantee over a pre-
defined noise distribution. These guarantees are applica-
ble on top of most robust CP methods and can be seen as
orthogonal to all previously mentioned works, as argued
in Zargarbashi et al. (2024). Moreover, complementing pre-
vious methods, Aolaritei et al. (2025) propose an extended
framework that also provides robustness against global per-
turbations.

Scaling robust CP Current methods for estimating con-
servative scores exhibit severe scalability issues. Indeed,
verification methods have computational complexities that
grow quadratically with the number of neurons and layers
of the model. Moreover, randomized smoothing methods
require nmc times more memory at inference time to run an
MC estimation process. Also, some theoretical works indi-
cate that the certifiable radii of smoothing methods suffers
greatly from high input dimensionality (Wu et al., 2024).

Overall, these different limitations represent an obstacle to
scaling robust CP to larger inputs, models and generally
harder tasks such as the ImageNet dataset for example. In
this paper, we present a framework for robust CP with deter-
ministic Lipschitz bounds that has no such limitations and
avoids time or memory complexity issues at scale.

Paper Outline. The paper is organized as follows. In
Section 3 we start by complementing theoretical guarantees
on CP’s robustness by designing a new auditing process
for vanilla CP under attack. We prove coverage bounds
that are valid simultaneously across all attack levels. In
Section 4, we introduce our lip-rcp method and leverage
Lipschitz-bounded neural networks to efficiently and ac-
curately approximate local variations of CP scores. This
enables efficient robust CP set construction and vanilla CP
auditing. Finally, when combined with Lipschitz-by-design
networks, we demonstrate the efficiency and superior per-
formances of our approach on several image classification
datasets (Section 5).

3. Certifiable Coverage Bounds for Vanilla CP
Under Attack

In this section, we address the robustness of CP methods
to adversarial attacks from a different angle than in Sec-
tions 2.2 and 2.3. Instead of enlarging vanilla CP’s predic-
tion sets to make them robust by design, we provide tools
to reliably evaluate by how much the nominal 1 − α cov-
erage of vanilla CP for clean data is impacted under attack.
This can be useful when prediction sets of small size are
desired, yet knowledge of certifiable coverage guarantees
under bounded perturbations are still required. The ques-
tion of auditing vanilla CP under attacks was already raised
earlier (Gendler et al., 2022; Zargarbashi et al., 2024). We
provide a rigorous answer below. As a benefit, our guarantee
holds simultaneously for all perturbation budgets ϵ > 0.

We show in Section 4 how to efficiently implement methods
from both approaches (Section 2.2 and this section) when
working with Lipschitz-bounded neural networks.

3.1. Setting: Vanilla CP Under Attack
Let h be any function that constructs an adversarial example
h(x, ϵ) ∈ Bϵ(x) from any input x ∈ X , with an attack
budget at most of ϵ, i.e., ∥h(x, ϵ)− x∥ ≤ ϵ. We define the
coverage under attack by

γh(ϵ) = PDtest
(Ytest ∈ Cα(h(Xtest, ϵ)) , (7)

where the probability is taken with respect to the random
pair (Xtest, Ytest). In more mathematical terms, the proba-
bility is conditional to Dcal; all statements in this section are
valid for any realization of Dcal. Note that here, contrary to
robust CP, we consider the vanilla CP set Cα.

In the sequel, we show how to provide bounds on γh(ϵ).
Since the attack h is unknown, we introduce two functions
γ and γ that can be reliably approximated, and for which
γ(ϵ) ≤ γh(ϵ) ≤ γ(ϵ). To that end, we define both conserva-
tive and restrictive prediction sets as follows; Cα,ϵ(x) is a
tight version of (4), while Cα,ϵ(x) is new.

Definition 3.1 (Conservative/Restrictive Prediction Set).
Consider the two scores

s(x, y) = inf
x̃∈Bϵ(x)

s(x̃, y) (8)

s̄(x, y) = sup
x̃∈Bϵ(x)

s(x̃, y) . (9)

For any x ∈ X , we define the conservative prediction set
by Cα,ϵ(x) = {y ∈ Y : s(x, y) ≤ qα}, and the restrictive
prediction set by Cα,ϵ(x) = {y ∈ Y : s̄(x, y) ≤ qα}.

When x 7→ s(x, y) is Lipschitz, both sets can be efficiently
(and provably) approximated, as shown in Section 4.

We are now ready to introduce the two functions γ and γ,
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defined for all ϵ ≥ 0 by

γ(ϵ) = PDtest

(
Ytest ∈ Cα,ϵ(Xtest)

)
(10)

γ(ϵ) = PDtest

(
Ytest ∈ Cα,ϵ(Xtest)

)
(11)

Noting that s(x, y) ≤ s(h(x, ϵ), y) ≤ s̄(x, y) and there-
fore Cα,ϵ(·) ⊆ Cα(h(·, ϵ)) ⊆ Cα,ϵ(·), we can see that
γ(ϵ) ≤ γh(ϵ) ≤ γ(ϵ) for all ϵ ≥ 0. Therefore, though
not used by vanilla CP, the sets Cα,ϵ(Xtest) and Cα,ϵ(Xtest)
are instrumental in controlling the coverage under attack.

3.2. A Provable and Tight Control on γ and γ
The question of bounding γ(ϵ) from below, i.e., guarantee-
ing a minimal coverage of vanilla CP under attack, already
appeared in Theorem 2 by Gendler et al. (2022). We how-
ever realized that a subtle mathematical mistake (of an over-
fitting flavor) was unfortunately left aside, which impacts
the correctness of their guarantee; see Appendix A for de-
tails. The same mistake was reproduced in the second part
of Proposition 5.1 by Zargarbashi et al. (2024).

To overcome this overfitting-type issue, we work with an
additional dataset Deval of m data points drawn i.i.d. from
the same distribution but independently from Dcal. Denote
these points by (Xi, Yi)1≤i≤m.

Let 1 denote the indicator function. We define empirical
counterparts (based on Deval) of γ(ϵ) and γ(ϵ) as follows:
for all ϵ ≥ 0,

γm(ϵ) =
1

m

m∑
i=1

1{Yi ∈ Cα,ϵ(Xi)} (12)

γ
m
(ϵ) =

1

m

m∑
i=1

1{Yi ∈ Cα,ϵ(Xi)} (13)

To account for statistical deviations, next we work with
slightly corrected estimators studied earlier, e.g., by Lang-
ford & Schapire (2005). For m ≥ 1, p ∈ [0, 1], and
0 ≤ k ≤ m, we write Fm,p(k) =

∑k
j=0

(
m
j

)
pj(1− p)j for

the cumulative distribution function of the Binomial(m, p)
distribution. For any attack budget ϵ ≥ 0 and any risk level
δ ∈ (0, 1), we define

γ+m(ϵ, δ) = max
{
p ∈ [0, 1] : Fm,p

(
mγm(ϵ)

)
≥ δ

}
(14)

γ−
m
(ϵ, δ) = 1−max

{
p ∈ [0, 1] :Fm,p

(
m(1−γ

m
(ϵ))

)
≥ δ

}
(15)

Though technical at first sight, these estimators are tailored
for the binomial distribution and thus tighter than, e.g., high-
probability bounds obtained from Hoeffding’s bound. Given
γm(ϵ) and γ

m
(ϵ), they can be efficiently computed with a

binary search (by monotonicity of p 7→ Fm,p(k)).

Next we work under the following mild assumptions on the
input space X and the non-conformity score s(x, y).

Assumption 3.2.
(A1) X ⊂ Rd is convex and closed (for some d ≥ 1);

(A2) x ∈ X 7→ s(x, y) is continuous for all y ∈ Y .

The first condition (A1) is satisfied, e.g., for classical vector
spaces used to represent images (such as RH·W ·3, with H
and W respectively the height and width of the images).
Importantly, the assumption is on the underlying space X
and not on the probability distribution over it. Therefore,
in our application setting, it holds true even if the distri-
bution of images has a nonconvex support. The second
condition (A2) is satisfied whenever the score is of the form
s(x, y) = ψ(f(x), y), for a continuous model f and some
continuous function u 7→ ψ(u, y). In our setting, the as-
sumption always holds true, due to both f and s(·, y) being
Lipschitz-continuous.3

The main result of this section is the following.

Theorem 3.3. Suppose that Assumption 3.2 holds true. As-
sume also that Dcal,Deval,Dtest are made of i.i.d. pairs
(Xi, Yi). Let qα be the empirical quantile computed by
vanilla CP using Dcal, and let m ≥ 2 be the number of
points in Deval.

Let δ ∈ (0, 1) and set δ′ = δ/(2m − 2). Then, for any
attack function h and almost every Dcal,

PDeval

(
∀ϵ > 0, γ−

m
(ϵ, δ′) ≤ γh(ϵ) ≤ γ+m(ϵ, δ′)

)
≥ 1− δ,

(16)
where the probability is over the random draw of Deval.4

The proof follows by combining γ(ϵ) ≤ γh(ϵ) ≤ γ(ϵ) with
Theorems B.2 and B.3 in Appendix B (applied with the
risk level δ/2), followed by a union bound. These theo-
rems are similar in spirit to the DKW inequality (Dvoretzky
et al., 1956; Massart, 1990) or variants (Vapnik & Chervo-
nenkis, 1974; Anthony & Shawe-Taylor, 1993), which are
useful concentration inequalities to estimate an unknown
cumulative distribution function based on i.i.d. samples. In
particular, we borrow arguments from Ducoffe et al. (2020,
Theorem 1), combined with a careful treatment of disconti-
nuity points of γ and γ.

Interpretation Our result provides a probabilistic guar-
antee for robustness under adversarial attacks of arbitrary
budgets. Specifically, for any calibration set Dcal and any
attack function h (regardless of the norm), the coverage
under attack γh is bounded by γ−

m
and γ+m with probabil-

ity 1 − δ over the randomness in the holdout set Deval,
simultaneously for all perturbation budgets ϵ > 0. This

3Note that, in this section, we do not assume that x 7→ s(x, y)
is smooth (beyond continuity), contrary to scores obtained after
randomized smoothing.

4In more formal terms, the probability PDeval(·) is conditional
to Dcal, and our inequality holds almost surely.
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simultaneity strengthens the practical utility of the bounds,
as no prior assumptions about the adversary’s strategy are
required. Moreover, this result holds not only for the exact
sets Cα,ϵ and Cα,ϵ, but also for any C′

α,ϵ and C′
α,ϵ verifying

C′
α,ϵ ⊆ Cα,ϵ and Cα,ϵ ⊆ C′

α,ϵ. This allows to use approxi-
mate sets from common robustness approaches, such as that
of Section 4. Naturally, the informativeness of the bound is
directly linked to the tightness of the estimate.

4. Fast Computations for Robust and Vanilla
CP with Lipschitz bounds

In this section, we introduce Lipschitz bounds for neural
networks and use their validity across the totality of the
support of X to enable fast computations of conservative
and restrictive scores.

4.1. On the Lipschitz Constant of Neural Networks
Definition 4.1 (Lipschitz constant). A neural network clas-
sifier f : X → Rc is said to be L-Lipschitz in ℓp norm if it
verifies the following behavior:

∀(x, y) ∈ X 2, ∥f(x)− f(y)∥p ≤ L.∥x− y∥p (17)

Importantly, most deep neural networks -excluding atten-
tion based architectures (Havens et al., 2024)- are Lipschitz
continuous.

Estimating Lipschitz constants of neural networks
Computing the exact Lipschitz constant of deep neural net-
works is an NP-hard problem as stated in (Virmaux & Sca-
man, 2018). In order to mitigate this issue, some methods
like (Wang et al., 2024) compute over-estimations of the
Lipschitz constant of the network, for instance by comput-
ing the product of the Lipschitz constant of the network’s
layers. Unfortunately, these methods currently offer very
loose estimations, any breakthroughs in that field would
benefit our framework.

A more popular alternative to ad-hoc computation lies in
the field of “Lipschitz by design” architectures. This very
active field relies on the seminal work of (Anil et al., 2019)
to provide efficient weight re-parametrizations that ensure
1-Lipschitz behavior in ℓ2 norm (in general). Some notable
examples include Riemannian optimization inspired imple-
mentations (Lezcano Casado, 2019), or even performance-
focused implementations with reduced computational over-
heads during training (Araujo et al., 2023; Boissin et al.,
2025). Using Lipschitz-constrained networks introduces
the several advantages. First and foremost, Lipschitz-
constrained networks allow explicit control of their place-
ment on the robustness-accuracy trade-off (Béthune et al.,
2022). Also, additional orthogonality constraints on these
networks have been shown to result in generally tighter Lip-

Figure 2: Calibration and test time on the CIFAR-10 dataset for
different robust CP methods. Our method has negligible overhead
compared to vanilla CP. Here we use ncal = 4750, ntest = 4750
and nmc = 1024, CAS (lite) corresponds to the version of CAS that
leverages CDF-Aware smoothed Prediction Sets only at calibration
time.

schitz bounds. Finally, these constraints also mitigate the
gradient vanishing problem (Li et al., 2019) and allow for
more efficient training.

Therefore, Lipschitz-constrained networks have two main
advantages: their training objective explicitly promotes ro-
bustness and the estimation of the Lipschitz constant is
locally tight. These particular traits will be key to getting
fast and tight estimations of the conservative and restrictive
scores.

4.2. Computing Conservative and Restrictive
Conformal Scores

In this section, we use the global Lipschitz bound of our
networks to efficiently estimate the conservative and restric-
tive prediction sets at model inference. We call our method
lip-rcp. These estimations are then used to construct robust
CP sets and audit the robustness of vanilla CP as per § 3.
Our approach can be connected to the Lipschitz properties
exhibited by the smoothed classifier introduced in RSCP.

However, at inference time, most Lipschitz weight re-
parametrization schemes can be exported as a set of reg-
ular neural network weights to eliminate any computational
overhead compared to their unconstrained counterparts.

Lipschitz score bounds Assuming the non-conformity
score s(x, y) can be expressed as ψ(f(x), y) such that f is
an Ln-Lipschitz classifier and ψ(·, y) is Ls-Lipschitz in ℓp
norm for all y ∈ Y , we can write:

∀y ∈ Y, |s(x, y)− s(x+ δ, y)| ≤ Ln · Ls · ∥δ∥p. (18)

This induces the following bounds ∀x̃ ∈ Bϵ(x),∀y ∈ Y :

s(x, y)− Ln ·Ls ·ϵ︸ ︷︷ ︸
=slip-rcp(x,y)

≤ s(x̃, y) ≤ s(x, y) + Ln ·Ls ·ϵ︸ ︷︷ ︸
=slip-rcp(x,y)

(19)

Score function In the literature of CP, the Least Ambigu-
ous Classifier (LAC) score, usually based on the softmax
function, is classically used to provide conformal scores.
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Figure 3: Robust CP set sizes and empirical coverage values across different classification datasets for α = 0.1. Ideally, the best robust
CP sets are small while nearly achieving the desired coverage guarantee (bottom left corner). We plot values that were taken from the
VRCP paper with diamonds while our measurements are plotted as crosses.

One alternative we propose is to use a sigmoid based con-
formal prediction score that we call the LAC sigmoid score:

s(x, y) = 1− sigmoid
(
f(x)y − b

T

)
. (20)

Importantly, the Lipschitz constant of this score function is
Ls = 1/(4× T ) w.r.t f(x)y .

Note that this score differs from the PTT score of (Gendler
et al., 2022) given that the value of f(x)y is directly passed
through the sigmoid of temperature T and bias b. No rank-
ing transformation requiring an extra data split is applied.
Furthermore, replacing s(x, y) with 1− softmax(f(x)/T )y
would be similar in spirit. However, some experiments
suggest that it might lead to larger prediction sets; see Ap-
pendix E.

Unified calibration and test-time process The certifi-
cates provided by VRCP hold locally around data points
(Xi, Yi)Dcal

, and VRCP distinguishes two possible robust
CP procedures: robust calibration (VRCP-C) or robust in-
ference (VRCP-I). However, using global Lipschitz bounds
eliminates that need. Indeed, a robust calibration thresh-
old qα,ϵ defined on scores slip-rcp(x, y) of Eq. (19) yields
the same results as robust inference given that the quantile
computation is translation equivariant.

Efficient computation To estimate the conservative and
restrictive scores of Def. 3.1, we can simply leverage the
expression of the bounds of Eq. 19. We detail the time
complexities for the computation of a non-conformity by
different certifiably robust CP methods in Table 1. In ad-
dition, we provide runtimes for the calibration and testing
steps of different methods in Fig. 2.

Method Cal. complexity Test complexity

RSCP O(nmc) O(nmc)
CAS O(nmc) O(nmc × tb)
VRCP-I O(1) O(tv)
VRCP-C O(tv) O(1)
lip-rcp (ours) O(1) O(1)

Table 1: Time complexity for computing a single non-conformity
score. Here nmc is the number of Monte Carlo samples, tb the
CAS-bound cost, and tv the VRCP solver cost. lip-rcp is the only
method with constant-time calibration and inference.

5. Empirical Validation
To validate the performance of our method, we test our
framework across multiple classification datasets. Our net-
works are composed of a 1-Lipschitz feature extractor fol-
lowed by a classification layer that ensures that every output
respects a 1-Lipschitz condition. We provide information
about of the computational overhead of training Lipschitz-
constrained networks and the model architectures used for
other methods in Appendix F. Finally, our code will be made
available on the following github repository.

Training scheme We leverage networks with Lipschitz
and orthogonality constraints from the library introduced
in Boissin et al. (2025) to balance both performance and
minimal training overhead. More details are provided in
Appendix G.

5.1. Robust CP Comparison
We evaluate our method on the CIFAR-10, CIFAR-100 and
TinyImageNet datasets. Our methodology follows that of
the benchmark of VRCP and we adopt the same calibra-
tion, holdout and test set sizes as Jeary et al. (2024) on
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Figure 4: (Left): Comparison between vanilla CP coverage bounds using Lipschitz bounds or the CROWN method with δ = 10−4.
Approximate computation times are also provided. (Right): Corrected γ+

m and γ−
m

bounds for vanilla CP methods under ϵ bounded
adversarial noise computed on 1-Lipschitz networks given δ = 10−4. Mean prediction set size on clean data is indicated below each plot.
We take ncal = 15000 and neval = 35000 for ImageNet.

all these datasets. Also, we give the mean values of the
robust CP set sizes and the conformal coverage of these
robust sets across 25 different random samplings of Dcal

and Dtest (as well as Dholdout for PTT) that were unseen
during training. We report our results in Fig. 3 where we
also plot the measurements made by Jeary et al. (2024) with
different markers. To allow fair comparison with verifica-
tion methods, we train specific neural networks for VRCP
on the CIFAR-10 dataset according to Appendix B of the
associated paper. This allows the CROWN (Zhang et al.,
2018) method to run efficiently on this model. For CAS, we
use ResNet50 networks. Finally, we do not benchmark the
PRCP method whose robustness guarantees are specific to
the type of adversarial perturbation.

Interpretation Our method outperforms existing robust
CP approaches across all tested datasets, Fig. 3, it provides
smaller robust CP sets while maintaining conformal cover-
age close to 1− α. We give the following explanations to
these results. First, the Lipschitz-constrained model training
approach we use is more efficient at promoting robustness.
Also, neural networks with orthogonality constraints allow
tight estimations of their conservative scores. Additionally,
smoothing methods suffer from finite sample MC estima-
tions in more than one way: as both a corrective factor is
added to the smoothed scores, and the error probability of
the MC estimation also necessitates adjusting the quantile
computation. Finally, smoothing methods require an un-
realistic number of MC samplings to obtain meaningful
sets.

Scaling to the ImageNet dataset In order to evaluate
the scalability of our method, we also validate it on the
ImageNet dataset. Given the poor scalability of formal
verification methods, we were not able to apply VRCP on
the ImageNet dataset. We therefore compare our method
to CAS on a ResNet50 network, being generally the best
performing competing approach. Our model is described in
Appendix G.4.

Finally, we used a restricted set of n = 500 data points
to evaluate the CAS method as done in Zargarbashi et al.
(2024), given its intensive computational budget. For both
methods we use 40% of the data points for calibration and
the rest for testing. The obtained results are given in Table 2.

Method Set size Cov. (%) n Time (s)

CAS 1000.0 100.0 5 · 102 7.920
lip-rcp 111.0 97.4 5 · 104 0.012

Table 2: Robust CP set sizes and empirical test coverage at ϵ =
0.02, α = 0.1 on ImageNet (using CAS with nmc = 1024). One
additional run of our method at n = 5 · 102 yielded a set size of
118.5 and 97.5% coverage. The time is given per sample.

5.2. Certifiable Vanilla CP Coverage Bounds Results
In this section, we compute respectively lower and upper
bounds of γ−

m
and γ+m introduced in Section 3 by both

Lipschitz and formal verification methods. We first perform
vanilla split CP on Dcal consisting of ncal = 3000 samples.
Next, we compute empirical approximations γm and γ

m
as

in (12) and (13) on an evaluation dataset Deval with neval =
5000 samples with both Lipschitz bounds and the CROWN
formal verification method. We then compute the corrected
estimates γ+m and γ−

m
as in (14) and (15) guaranteed in

Theorem 3.3 by binary search. We repeat this process over
20 randomly sampled, non-overlapping pairs of Dcal and
Deval, and plot the mean value with an uncertainty band of
1 standard deviation. The resulting coverage metrics are
shown on Fig. 4 (left) on the CIFAR-10 dataset for both
computation methods with their associated models.

We further compute the worst-case conformal coverage
values of standard conformal prediction (CP) sets under
ϵ-bounded perturbations across all previously mentioned
datasets. Due to the larger scale of these tasks, we are only
able to compute the bounds for 1-Lipschitz models. The
results are presented in Fig. 4 (right).

8



Efficient Robust Conformal Prediction via Lipschitz-Bounded Networks

Interpretation As illustrated in Fig. 4 (left), Lipschitz-
constrained models yield less pessimistic bounds than ver-
ification for the worst-case coverage of vanilla CP under
ϵ-bounded adversarial perturbations. This can be explained
by the limited scalability of formal verification methods to
larger neural networks. Also, Fig 4 (right) uncovers how
providing coverage bounds for CP methods applied to ro-
bust networks conserves the small and informative nature
of CP sets while providing error guarantees under bounded
attacks.

6. Discussion
Conclusion In this work, we propose a novel method for
fast computation of certifiably robust prediction sets, im-
proving over SoTA methods both in terms of speed and
conformal set sizes. First, through a careful analysis of
vanilla CP under attack, we provide novel high-probability
bounds on its coverage under attack. Our novel guarantees
are valid simultaneously for all attack budgets ϵ and function
h(·, ϵ), therefore not requiring assumptions on the attacker.
Then, we use Lipschitz-bounded networks to estimate ro-
bust prediction sets, benefiting from three main advantages:
better scalability, better overall robustness and the ability
to tightly estimate worst-case variations with little compu-
tational overhead. We apply our lip-rcp approach not only
to compute efficiently bounds for vanilla CP under attack,
but also for robust CP. Finally we validate our approaches
on multiple classification datasets achieving best-in-class
performance with similar computational requirements as
vanilla CP.

Limitations and future work The method and results
presented in this paper rely on some conditions on the model
and perturbations, which would be worth generalizing.

Our approach delivers strong certifiable guarantees under
ℓ2 perturbations but does not generalize to other norms,
such as ℓ1 or ℓ∞. Integrating advances from works like
Biswas (2024) or Zhang et al. (2021) could broaden its
applicability and is left for future work. Moreover, while
our method is applicable to any network whose Lipschitz
constant is computable, we limit our study to Lipschitz-by-
design architectures—whose Lipschitz constant is tightly
controlled—to enable efficient robust conformal prediction.
Note that this approach is not fully model-agnostic as other
competing conformal methods, but that tight Lipschitz esti-
mation would restore model agnosticism and pave the way
for efficient robust conformal prediction in classification
and regression settings.

Finally, it would be interesting to investigate whether our
approach generalizes to higher values of ϵ as, e.g., in the
works of Gendler et al. (2022); Zargarbashi et al. (2024),
while retaining our guarantees and computational efficiency.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Method Certifiable Fast cal. Fast test ℓ1, ℓ∞ Poisoning Nb hyperparams

aPRCP (Ghosh et al., 2023) ✗ ✗ ✓ ✗ ✗ 2
RSCP (Gendler et al., 2022) ✗ ✗ ✗ ✓ ✗ 3

RSCP+ (PTT/RCT) (Yan et al., 2024) ✓ ✗ ✗ ✓ ✗ 4(6)
CAS (Zargarbashi et al., 2024) ✓ ✗ ✗ ✓ ✓ 2

VRCP-I (Jeary et al., 2024) ✓ ✓ ✗ ✓ ✗ 2
VRCP-C (Jeary et al., 2024) ✓ ✗ ✓ ✓ ✗ 2

lip-rcp ✓ ✓ ✓ ✗ ✓ 2

Table 3: Comparison of certified robustness methods. Note that aPRCP is not certifiable without assumptions on the adversarial distribution.
See Section F.2 for details on hyperparameter counts.

A. On the Lower Bound of Gendler et al. (2022, Theorem 2)
Unfortunately, it seems that a subtle mathematical mistake was left aside in Theorem 2 by Gendler et al. (2022). It can be
seen in the statement and in the proof.

In the statement, the deterministic quantity P
[
Yn+1 ∈ C(X̃n+1)

]
is bounded from below by the random quantity τ (note

that τ depends on the calibration data); this lower bound can thus fail in general.6

In the proof, which appears in Gendler et al. (2022, Appendix S1, Proof of theorem 2), the authors use Lemma 2 by Romano
et al. (2019) which only holds for deterministic values of τ (or α, following the notation in Romano et al. 2019). Since τ is
random, their lemma can unfortunately not be used here.

B. Proof of Theorem 3.3
Let X ⊂ Rd (Borel subset) and ∥·∥ a norm on Rd. Let also Y = {1, · · · ,K} and s : X × Y → R be a measurable function
(non-conformity score).

For any x ∈ X and ϵ ≥ 0, we set Bϵ(x) := {x̃ ∈ X : ∥x̃− x∥ ≤ ϵ}.

There are some minor measurability subtleties in the paper and the following proof, which are overlooked here for readability,
but discussed in Section C.

B.1. On the continuity of γ and γ
In this section and the next We assume that Dcal is fixed, so that s(·, ·) and qα are deterministic. All probabilities or
expectations below are taken w.r.t. the random draws of Deval and/or (Xtest, Ytest). 7 Furthermore, since in our paper
(Dcal) is independent from (Deval, (Xtest, Ytest)), all inequalities below translate into inequalities that are valid for a.e.
Dcal, provided that P(·) and E [· · · ] are replaced with P(· · · |Dcal) and E [· · · |Dcal].

We now study γ and γ. For ϵ ≥ 0, recall that

γ(ϵ) = P (sϵ(Xtest, Ytest) ≤ qα) and γ(ϵ) = P (s̄ϵ(Xtest, Ytest) ≤ qα) ,

where, in order to emphasize the dependency in ϵ, we wrote

sϵ(x, y) = inf
x̃∈Bϵ(x)

s(x̃, y) and s̄ϵ(x, y) = sup
x̃∈Bϵ(x)

s(x̃, y) .

Proposition B.1. Assume that A1 and A2 from 3.2 hold true. Then, γ is right-continuous on [0,+∞) and γ is left-continuous
on (0,+∞).

Proof. We start with γ. Let ϵ ≥ 0 and η > 0. We show that there exists δ > 0 s.t. γ(ϵ + δ) ≤ γ(ϵ) + η, which will (by
monotonicity of γ) imply that |γ(ϵ′)− γ(ϵ)| ≤ η for all ϵ′ ∈ [ϵ, ϵ+ δ].

6This could make sense if the probability P
[
Yn+1 ∈ C(X̃n+1)

]
were conditional on the calibration data, but it is not the case in the

proof: the probability is with respect to the joint distribution of (Xi, Yi)1≤i≤n+1.
7In fact, we also work conditionally to the training set, which is treated as deterministic in all the paper.
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Figure 5: Illustration of the proof of (22). On the ball Bϵ+δ(x), the score x 7→ s(x, y) is minimized at some x̃. On the smaller ball Bϵ(x),
the minimum can only be larger, but not larger than s(x′′, y) which is close to s(x̃, y) by continuity of s(·, y).

Let K ⊂ X be any compact set such that P(Xtest ∈ K) ≥ 1− η
2 .

By right-continuity of the cdf t 7→ Fϵ(t) := P (sϵ(Xtest, Ytest) ≤ t|Xtest ∈ K), there exists ρ > 0 s.t. Fϵ(qα + ρ) ≤
Fϵ(qα) +

η
2 .

We now use the fact that, for each y ∈ Y (with Y finite), the function s(·, y) is continuous and thus uniformly continuous on
the compact set Kϵ+1 :=

{
x+ u : x ∈ K,u ∈ Rd, ∥u∥ ≤ ϵ+ 1

}
. Therefore, there exists δ ∈ (0, 1) s.t.,

∀y ∈ Y,∀x, x′ ∈ Kϵ+1, ∥x− x′∥ ≤ δ =⇒ |s(x, y)− s(x′, y)| ≤ ρ. (21)

Note that, for any y ∈ Y and x ∈ K, by (21) above,

sϵ(x, y) = inf
x̃∈Bϵ(x)

s(x̃, y) ≤ inf
x̃∈Bϵ+δ(x)

s(x̃, y) + ρ = sϵ+δ(x, y) + ρ. (22)

This follows from Figure 5. More formally, let x̃ ∈ Bϵ+δ(x) be such that s(x̃, y) = sϵ+δ(x, y). Inequality (22) is immediate
if ∥x̃ − x∥ ≤ ϵ. We thus assume without loss of generality that ∥x̃ − x∥ > ϵ. Then, let x′′ ∈ [x, x̃] ⊂ X be such that
∥x′′ − x∥ = ϵ (recall that X is convex). In this case ∥x̃− x′′∥ ≤ δ and thus (by (21)) s(x′′, y) ≤ s(x̃, y) + ρ which implies
sϵ(x, y) ≤ s(x′′, y) ≤ sϵ+δ(x, y) + ρ. This concludes the proof of (22).

We are ready to conclude:

γ(ϵ+ δ) = P
(
sϵ+δ (Xtest, Ytest) ≤ qα

)
≤ P (Xtest ∈ K) · P

(
sϵ+δ (Xtest, Ytest) ≤ qα | Xtest ∈ K

)
+ P (Xtest /∈ K)

by (22)
≤ P (Xtest ∈ K) · P (sϵ (Xtest, Ytest) ≤ qα + ρ | Xtest ∈ K)︸ ︷︷ ︸

=Fϵ(qα+ρ)≤Fϵ(qα)+ η
2

+
η

2

≤ P (Xtest ∈ K) ·
[
P (sϵ (Xtest, Ytest) ≤ qα| Xtest ∈ K) +

η

2

]
+
η

2
≤ P (sϵ (Xtest, Ytest) ≤ qα) + η

= γ(ϵ) + η

This entails |γ(ϵ′)− γ(ϵ)| ≤ η for all ϵ′ ∈ [ϵ, ϵ+ δ], and proves that γ is right-continuous.

The proof that γ is left-continuous follows from similar arguments. Put briefly: for all ϵ > 0 and η > 0, there exist a

2



Efficient Robust Conformal Prediction via Lipschitz-Bounded Networks

compact subset K ⊂ X and two real numbers ρ > 0 and δ ∈ (0, ϵ) such that

γ(ϵ− δ) = P (s̄ϵ−δ (Xtest, Ytest) ≤ qα)

≤ P (Xtest ∈ K) · P (s̄ϵ−δ (Xtest, Ytest) ≤ qα | Xtest ∈ K) + P (Xtest /∈ K)

s(·,y) u.c. on K

≤ P (Xtest ∈ K) · P (s̄ϵ (Xtest, Ytest) ≤ qα + ρ | Xtest ∈ K) +
η

2

≤ P (Xtest ∈ K) ·
[
P ( s̄ϵ (Xtest, Ytest) ≤ qα| Xtest ∈ K) +

η

2

]
+
η

2
≤ P (s̄ϵ (Xtest, Ytest) ≤ qα) + η

= γ(ϵ) + η

N.B. The proof is a little easier if s(·, y) is uniformly continuous on X (e.g. if X is compact or s(·, y) is Lipschitz). In that
case, there is no need to work conditionally on {Xtest ∈ K}.

B.2. Concentration of γm around γ
Let Deval = (Xi, Yi)1≤i≤m be m ≥ 2 independent copies of (Xtest, Ytest).

For ϵ > 0, let

γm(ϵ) :=
1

n

m∑
i=1

1sϵ(Xi,Yi)≤qα .

Let δ ∈ (0, 1). Since mγm(ϵ) ∼ Binomial(m, γ(ϵ)), the estimator

γ+m(ϵ, δ) := max {p ∈ [0, 1] : Binm,p(mγm(ϵ)) ≥ δ} ,

where Binm,p is the c.d.f. of Binomial(m, p). This estimator satisfies (e.g., Theorem 3.3 by Langford & Schapire 2005),
for all ϵ ≥ 0 and δ ∈ (0, 1),

P
(
γ(ϵ) ≤ γ+m(ϵ, δ)

)
≥ 1− δ (23)

Applying (23) m− 1 times with properly chosen values of ϵ (of a quantile flavor), and using the fact that both γ and γ+m(·, δ)
are a.s. right-continuous and non-decreasing, we obtain the following “uniform” concentration inequality.

Theorem B.2. Assume that A1 and A2 from 3.2 hold true. Let (Xi, Yi)1≤i≤m bem ≥ 2 independent copies of (Xtest, Ytest).
Then:

P
(
∀ϵ ≥ 0, γ(ϵ) ≤ γ+m(ϵ,

δ

m− 1
) +

1

m

)
≥ 1− δ.

As seen in the proof below, γ and γ+m(·, δ) are right-continuous a.s., so that the above probability is well defined (the ∀ϵ can
be replaced with a countable ∀ϵk).

Proof. We proceed in three steps.

Step 1: right-continuity of γ and γ+m(·, δ)

• the fact that γ is right-continuous follows from Subsection B.1.

• likewise, using this result with the empirical distribution 1
m

∑m
i=1 δ(Xi,Yi), we can see that the random function

ϵ 7→ γm(ϵ) is right-continuous, and thus locally constant to the right of any ϵ ≥ 0. This implies that ϵ 7→ γ+m(ϵ, δ) is
also right-continuous on [0,+∞).

3
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Step 2: pointwise concentration and union bound For every k ∈ {1, · · · ,m−1}, we set ϵk := inf
{
ϵ ≥ 0 : γ(ϵ) ≥ k

m

}
,

with the convention that inf ∅ = +∞. Let also ϵm := +∞. Note that 0 ≤ ϵ1 ≤ ϵ2 ≤ · · · ≤ ϵm ≤ +∞ and that γ(ϵk) ≥ k
m

whenever ϵk <∞ (by right-continuity of γ on [0,+∞)).

First note that, if ϵ1 = +∞, then γ(ϵ) < 1
m for all ϵ ≥ 0 by def of ϵ1). In this case, the conclusion of Theorem B.2 would

hold trivially.

We can thus assume without loss of generality that ϵ1 < +∞, and set

K := max {k ∈ {1, · · · ,m− 1} : ϵk < +∞} .

Note that 0 ≤ ϵ1 ≤ · · · ≤ ϵK < ϵK+1 = · · · = ϵm = +∞.

Combining (23) with a union bound, and using K ≤ m− 1, we get:

P
(
∀k ∈ {1, · · · ,K}, γ(ϵk) ≤ γ+m(ϵk,

δ

m− 1
)

)
≥ 1− Kδ

m− 1
≥ 1− δ. (24)

Step 3: bridging the gaps Let Ωδ :=
{
∀k ∈ {1, · · · ,K}, γ(ϵk) ≤ γ+m(ϵk,

δ
m−1

}
be the event appearing in (24). We

now work on the event Ωδ .

Let ϵ ≥ ϵ1. Note that ϵ belongs to one of the following K disjoint (possibly empty) intervals:

Ik = [ϵk, ϵk+1), k ∈ {1, · · · ,K} (by convention, Ik = ∅ if ϵk = ϵk+1).

We let k ∈ {1, · · · ,K} be such that ϵ ∈ Ik, i.e., ϵk ≤ ϵ < ϵk+1.

Recall that γ(ϵk) ≥ k
m , and note that γ(ϵ) ≤ k+1

m .

Therefore,

γ(ϵ) ≤ k + 1

m

≤ γ(ϵk) +
1

m

≤ γ+m(ϵk,
δ

m− 1
) +

1

m
(we work on Ωδ)

≤ γ+m(ϵ,
δ

m− 1
) +

1

m
(by ϵk ≤ ϵ and monotonicity of γ+m(·, δ

m− 1
))

Since we also have γ(ϵ) ≤ 1
m if ϵ1 > 0 and ϵ ∈ [0, ϵ1) (by definition of ϵ1), we just proved that, on the event Ωδ ,

∀ϵ ≥ 0, γ(ϵ) ≤ γ+m(ϵ,
δ

m− 1
) +

1

m
.

Recalling that P(Ωδ) ≥ 1− δ concludes the proof.

We can control γ = P(s̄ϵ(Xtest, Ytest) ≤ qα) similarly (up to a coin flip), using

γ
m

:=
1

m

m∑
i=1

1s̄ϵ(Xi,Yi)≤qα

and
γ−
m
(ϵ, δ) := 1−max

{
p ∈ [0, 1] : Binm,p(m(1− γ

m
(ϵ))) ≥ δ

}
.

We have the following lower bound.

Theorem B.3. Assume that A1 and A2 from 3.2 hold true. Let (Xi, Yi)1≤i≤m bem ≥ 2 independent copies of (Xtest, Ytest).
Then:

P
(
∀ϵ > 0, γ(ϵ) ≥ γ−

m

(
ϵ,

δ

m− 1

)
− 1

m

)
≥ 1− δ. (25)
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First, note that our high probability lower bound on γ(ϵ) is similar to our high probability upper bound on γ(ϵ), by a simple
coin flip. Indeed, note that:

1− γ(ϵ) = P (s̄ϵ(Xtest, Ytest) > qα) .

1− γ
m
(ϵ) : =

1

m

m∑
i=1

1s̄ϵ(Xi,Yi)>qα

1− γ−
m
(ϵ, δ) : = max{p ∈ [0, 1] : Binm,p

(
m · (1− γ(ϵ))

)
≥ δ}

(26)

Issue Though these functions are non-decreasing in ϵ, they are left-continuous. This calls for additional technicalities, as
seen in the proof below.

Proof. We also proceed with three steps: many arguments are identical, but not all.

Step 1: left continuity of γ and γ−
m
(·, δ) on (0,+∞) This follows from similar arguments as in the proof of Theorem B.2.

Step 2: Pointwise concentration and union bound For every k ∈ {1, · · · ,m− 1}, we set ϵk := inf{ϵ ≥ 0 : 1− γ(ϵ) ≥
k
m}, with the convention that inf ∅ = +∞. Let also ϵm := +∞.

Note that 0 ≤ ϵ1 ≤ ϵ2 ≤ · · · ≤ ϵm ≤ +∞ and that 1 − γ(ϵk) ≤ k
m whenever 0 < ϵk ≤ +∞ (by left continuity of γ on

(0,+∞)).

First note that, if ϵ1 = +∞, then γ(ϵ) > 1− 1
m for all ϵ ≥ 0 (by def of ϵ1). In this case, the conclusion of Theorem B.3

would hold trivially.

We can thus assume without loss of generality that ϵ1 < +∞, and set

K := max {k ∈ {1, · · · ,m− 1} : ϵk < +∞} .

Note that 0 ≤ ϵ1 ≤ · · · ≤ ϵK ≤ ϵK+1 = · · · = ϵm = +∞.

We now need additional technicalities.

For any q ∈ N∗ = {1, 2, · · · } and k ∈ {1, · · · ,K}, we set

ϵqk =

{(
1− 1

q

)
ϵk + 1

q ϵk+1 if k ≤ K − 1

ϵk + 1
q if k = K

Note that {
ϵk < ϵqk < ϵk+1 if ϵk < ϵk+1.

ϵk = ϵqk = ϵk+1 if ϵk = ϵk+1.

and that ϵq+1
k ≤ ϵqk.

By Langford (2005, Theorem 3.3), we have similarly to (23),

∀ϵ ≥ 0,∀δ ∈ (0, 1),P
(
γ(ϵ) ≥ γ−

m
(ϵ, δ)

)
≥ 1− δ. (27)

Let δ ∈ (0, 1). Combining (27) with a union bound, we get, for any q ≥ 1,

P
(
∀k ∈ {1, · · · ,K}, γ(ϵqk) ≥ γ−

m
(ϵqk,

δ

m− 1
)

)
≥ 1− δ. (28)

We now work on the event

Ωq
δ :=

{
∀k ∈ {1, · · · ,K}, γ(ϵqk) ≥ γ−

m
(ϵqk,

δ

m− 1
)

}
.

We set Eq :=
(⋃K−1

k=1 (ϵkq , ϵk+1]
)
∪ (ϵqK ,+∞), where (ϵqk, ϵk+1] = ∅ if ϵk = ϵk+1. Note that Eq ⊆ Eq+1 ⊆ (ϵ1,+∞) and

∪q≥1Eq = (ϵ1,+∞)
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Now, let ϵ ∈ Eq. There exists k ∈ {1, · · · ,K} such that k ≤ K − 1 and ϵ ∈ (ϵqk, ϵk+1], or k = K and ϵ ∈ (ϵqK ,+∞). In
particular, ϵk < ϵqk whatever the value of k.

Note that, if k ≤ K − 1, we have 0 < ϵk+1 < +∞ and therefore 1− γ(ϵk+1) ≤ k+1
m . This entails (using ϵ ≤ ϵk+1 and the

fact that 1− γ is non-decreasing)

1− γ(ϵ) ≤ k + 1

m
,

which is also true k = K (by def of ϵK+1 if K + 1 ≤ m− 1, or trivial if K = m = 1). Therefore, whatever the value of k
above,

1− γ(ϵ) ≤ k + 1

m

≤ 1− γ(ϵqk) +
1

m
(since 1− γ(ϵqk) ≥

k

m
, by def of ϵk and ϵqk > ϵk)

≤ 1− γ−
m
(ϵqk,

δ

m− 1
) +

1

m
(we work on Ωq

δ)

≤ 1− γ−
m
(ϵ,

δ

m− 1
) +

1

m
(by ϵqk ≤ ϵ and monotonicity of γ−

m
(·, δ

m− 1
))

(29)

Rearranging terms, we proved that, on the event Ωq
δ ,

∀ϵ ∈ Eq, γ(ϵ) ≥ γ−
m
(ϵ,

δ

m− 1
)− 1

m
. (30)

We now let q → +∞. More precisely, recalling that (ϵ1,+∞) = ∪q≥1Eq ,

P
(
∀ϵ ∈ (ϵ1,+∞), γ(ϵ) ≥ γ−

m
(ϵ,

δ

m− 1
)− 1

m

)
= P

(
∩q≥1{∀ϵ ∈ Eq, γ(ϵ) ≥ γ−

m
(ϵ,

δ

m− 1
)− 1

m
}
)

= lim
q→+∞

P
(
∀ϵ ∈ Eq, γ(ϵ) ≥ γ−

m
(ϵ,

δ

m− 1
)− 1

m

)
(since Eq ⊆ Eq+1)

≥ 1− δ. (since P(Ωq
δ) ≥ 1− δ)

Nothing that, if ϵ1 > 0, then 1− γ(ϵ) ≤ 1
m for all ϵ ∈ [0, ϵ1], concludes the proof.

C. On Measurability Details
In this short section, we discuss minor mathematical details that are yet important to ensure that all probabilities under
study are well defined. In short, probabilities should be studied for sets that are measurable, which can fail in general when
manipulating, e.g., continuously-infinite suprema or infima of measurable functions.

We start by describing two measurability issues in items 1 and 2 below. We then explain that, if the assumptions of
the paper hold true, then we work with continuous and thus measurable functions, so that these issues do not arise (see
Proposition C.1).

1. The modified scores s̄ϵ(x, y) := sup
x̃∈Bϵ(x)

s(x̃, y) and sϵ(x, y) := inf
x̃∈Bϵ(x)

s(x̃, y) might not be measurable functions

of (x, y). This condition is required so that the sets
{
Y ∈ C̄α,ϵ(X)

}
= {sϵ(X,Y ) ≤ qα} and

{
Y ∈ Cα,ϵ(X)

}
=

{s̄ϵ(X,Y ) ≤ qα} are measurable (i.e., well defined events).

2. Even so, the function (x, y) 7→ sup
x̃∈Bϵ(x)

sϵ(x̃, y) might not be measurable, which is required for the quantity

P
(
∀x̃ ∈ Bϵ(X), Y ∈ C̄α,ϵ(x̃)

)
to be well defined.
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Recalling Assumptions 3.2

A1 X is a convex and closed subset of Rd

A2 s(·, y) is continuous for all y ∈ Y

Proposition C.1. Let ϵ ≥ 0 and assume that A1 and A2 from Assumption 3.2 hold true. Then the functions sϵ(·, y), s̄ϵ(·, y),
and x 7→ sup

x̃∈Bϵ(x)

sϵ(x̃, y) are continuous for all y ∈ Y .

The proof follows from uniform continuity arguments that are very similar to those used in the proof of Proposition B.1, and
is thus omitted.

D. Extending VRCP
In this section, we explictly develop extensions of formal verification methods for robust conformal prediction. First, we
recall the following robustness regimes:

• Robust conformal prediction set Here, we return a conformal prediction set that verifies user-specified conformal
coverage under adversarial perturbations. However, this certificate can yield overly conservative results on clean data
resulting in increased conformal prediction set sizes.

• Certifiably robust vanilla conformal prediction Through estimations of the conservative and restrictive prediction
sets on an extra set of holdout data Deval, our theoretical results ensure that for a given adversarial attack budget, our
conformal coverage on adversarially perturbed data will remain within a range of [γ−

m
, γ+m] with high probability.

In VRCP (Jeary et al., 2024), the authors develop a method allowing the computation of supersets of the conservative
prediction set around a point x leveraging formal verification methods. To this end, they prove that the conservative prediction
set verifies robust coverage bounds under adversarial attacks. In order to extend verification methods to the computation of
the restrictive prediction set (necessary for the coverage bounds on vanilla CP under attack) and the computation of a lower
bound for the robustness radius of a vanilla prediction set, we give the following insights.

Restrictive prediction set Given that formal verification methods often return the upper and lower bounds of every logit
of the output layer. This facilitates the computation of a subset of the restrictive prediction set with formal verification
methods.

E. About Score Functions: Sigmoid vs Softmax
E.1. Vanilla CP Setting
We recall the following score definitions:

sLAC Softmax(x, y) = 1− softmax
(
f(x)

T

)
y

sLAC Sigmoid(x, y) = 1− sigmoid
(
f(x)y − b

T

) (31)

To evaluate the impact of using our LAC Sigmoid score as compared to a classic LAC Softmax score function, we provide
the following empirical results for vanilla CP on the CIFAR-10 dataset with a ResNet50 model with α = 0.1:

Method Coverage (%) Set size

LAC Softmax 90.04 1.088
LAC Sigmoid 90.28 1.144

Table 4: Comparison of conformal score performance LAC Softmax vs LAC Sigmoid.

This ablation study results in marginally bigger vanilla CP set sizes for LAC Sigmoid scores compared to softmax ones with
scaled temperature.
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E.2. Robust CP Setting
Using the 1-Lipschitz nature of our models, we can also use exact worst-case LAC Sigmoid and Softmax score computations
under adversarial logit perturbations. Instead of relying on Eq. 19, we can leverage the monotonicity of the sigmoid function
to compute tighter bounds, e.g:

1− sigmoid
(
f(x̃)y + Ln × ϵ− b

T

)
≤ min

x∈Bϵ(x̃)
sLAC Sigmoid(x, y) (32)

where T and b are the temperature and the bias of the score. This inequality yields tighter bounds than those based solely on
global Lipschitz constants, with no extra cost.

Similarly, given that the softmax function exhibits monotonicity in each of its parameters (ceteris paribus), its maximum and
minimum values within a hyper-rectangular region are attained at the corners of that region, i.e.,

1− softmax


(f(x̃)0 − Ln × ϵ)/T

...
(f(x̃)y + Ln × ϵ)/T

...
(f(x̃)c−1 − Ln × ϵ)/T


y

≤ min
x∈Bϵ(x̃)

sLAC Softmax(x, y) (33)

where T is the temperature scaling factor of the softmax.

As shown below, for a 1-Lipschitz VGG with 25M parameters on CIFAR-10 with ϵ = 0.03 and α = 0.1, LAC Sigmoid
demonstrates considerably smaller robust prediction sets.

Method Coverage (%) Set size

LAC Softmax 95.6 2.38
LAC Sigmoid 94.9 1.72

Table 5: Robust CP performance for different conformal scores on CIFAR-10. Under the same conditions as Fig 3.

Although the LAC Sigmoid score is marginally worse in vanilla CP conditions, the superior performances obtained in
Table 5 motivates its use in the paper.

F. Model Implementation
F.1. Training Time Overhead
In this section we describe the computational overhead of our implementation on a CIFAR-10 shaped set of random data. In
our experimental setup, we use a standard neural network with two convolutional layers followed by max pooling operations
and a linear layer. We study how a drop-in replacement of the vanilla PyTorch layers by our chosen Lipschitz constrained
layers affects the overall training time of our network. Importantly, our implementation is batch-size independent since it
only relies on the values of the weights. Therefore the overall cost of training Lipschitz constrained networks is mitigated
when using large batch sizes.

Batch size Train time (%)

1024 20.31
2048 10.26

Table 6: Training time on random data of shape (32, 32, 3) when dropping in the Lipschitz-constrained layers. For reference, our ResNeXt
model of Figure 3 introduces a 9.6% runtime overhead on TinyImageNet compared to an identical unconstrained model.

For more information regarding the computational overhead of Lipschitz constrained architectures w.r.t standard uncon-
strained architectures, we refer the reader to the comprehensive benchmark of (Boissin et al., 2025).
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Improvements In our paper we use a relatively standard implementation of Lipschitz parametrized networks with
an orthogonality constraint. Many recent works have focused on providing efficient and expressive Lipschitz network
implementations (Araujo et al., 2023; Leino et al., 2021; Meunier et al., 2022) that could be applied in the context of our
study.

F.2. Placement of Method
Overall placement of method See Table 3 for an overall comparison of certifiably robust methods for conformal
prediction.

Hyperparameters of all methods We find that other methods have the following hyperparameters :

Method Hyperparameters

RSCP Smoothing strength σ, Monte Carlo samplings nmc.
RSCP+ Smoothing strength σ, Monte Carlo samplings nmc, confidence of smoothing β.
+ PTT Temperature T , bias b, number of holdout points nholdout.
+ RCT Temperature τ soft, regularization factors λ and κ.
aPRCP Conservativeness hyperparameter s.
CAS Smoothing strength σ, Monte Carlo samplings nmc.
VRCP Choice of formal verification method (counts as one hyperparameter) plus any score specific parameters.
lip-rcp Score temperature T and bias b.

Table 7: Hyperparameters for each certified-robustness method

G. Experimental Settings
Robust CP methods are heavily dependent on the quality and compatibility of the underlying model. Therefore, we use
separate neural networks to ensure a fair evaluation of robust CP methods. In the following sections, we define the models
we used for benchmarking both robust CP and worst-case vanilla CP coverage bounds.

G.1. System Requirements
All experiments were conducted on a system equipped with two NVIDIA GeForce RTX 4090 GPUs, each providing 24 GB
of GDDR6X memory.

G.2. VRCP Models
Given that formal verification methods have an inherent trade-off between computational overhead and tightness of their
estimations, we use specifically tailored models from Appendix B of Jeary et al. (2024). We then compare these models to
Lipschitz by design models in the experiments of § 5.1 and § 5.2.

Importantly, using larger and deeper models with verification methods is not only computationally punitive, it also usually
tends to worsen the obtained bounds as they become looser and looser.

G.3. Smoothing Models
We use a ResNet50 architecture in the experiments we run using CAS as it offers a good baseline for robust CP results as
done in (Zargarbashi et al., 2024). Given the already costly nature of smoothing methods at inference, we follow a standard
scheme at training time to avoid additional computational burden. An exception stands for the CIFAR-10 dataset: models
trained with Gaussian noise as per the procedure of Salman et al. (2019) still fail in low MC iteration settings. Indeed, we test
a ResNet110 model trained with noise augmentation from the aforementioned procedure: yet it still exhibits uninformative
set sizes of 10 for nmc = 64 on every point of the test set. Moreover, we use the recommended σ value of σ = 2 · ϵ for
every smoothing experiment conducted.

G.4. Lipschitz Models
The architecture we use for our experiments on CIFAR-10, CIFAR-100 and TinyImageNet datasets follows a ResNeXt-like
design, with an initial convolutional stem followed by four stages of increasing feature channels (64 → 128 → 256 → 512).
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Each stage comprises grouped-convolution residual blocks, with downsampling applied between stages to reduce spatial
dimensions. The network then employs global average pooling, a fully connected bottleneck, and a classification layer.

Regarding our experiments on the ImageNet dataset, we leverage a more efficient implementation of Lipschitz parametrized
networks, as described in (Boissin et al., 2025). This implementation can be found in the orthogonium library.

Regarding our ImageNet model we use the following architecture. Starting with two strided convolutions (7×7 → 3×3
kernels) that reduce spatial resolution while expanding channels to 256. Four subsequent processing stages progressively
double channel dimensions (256 → 512 → 1024 → 2048), each containing three residual blocks with depthwise 5×5
convolutions. Blocks employ channel expansion/contraction (2 × width), GroupSort2 activations, and learned residual
mixing that respects 1-Lipschitz constraints. Then, the spatial features are condensed via global average pooling (7×7
window) before final classification by a linear layer that enforces the 1-Lipschitz condition on each output.

Training objectives Our neural networks are trained with Optimal Transport inspired objectives such as the Hinge
Kantorovich-Rubinstein loss function introduced in (Serrurier et al., 2021). These loss functions are particularly effective to
enforce model robustness.

G.5. Training Hyperparameters
We train our Lipschitz neural networks with the AdamW optimizer with a learning rate 1e-3. Also, we use the
SoftHKRMulticlassLoss from the deel-torchlip library with the following standard values:

Dataset Margin Temperature Epochs Alpha

CIFAR-10 0.6 5.0 130 0.975
CIFAR-100 0.6 5.0 220 0.975
TinyImageNet 0.3 5.0 80 0.975

Table 8: Standard training hyperparameter values for the loss function on the different datasets.

H. Calibration Poisoning Results
Calibration time label flipping attacks Most conformal score functions are often not Lipschitz continuous with respect
to y ∈ Y . Therefore we devise no straightforward certificate for label flipping attacks. However, the defense to label flipping
attacks defined in (Zargarbashi et al., 2024) that leverages the computation of a maximum quantile shift when scores are
permuted is valid for our networks too.

Calibration time feature poisoning attacks In the context of calibration-time feature poisoning however the Lipschitz
condition of our score with respect to x ∈ X becomes greatly advantageous. Indeed, the problem of computing the maximum
quantile shift becomes simplified in the sense that every score verifies a Ls Lipschitz condition and is interdependent from
the scores of other calibration samples for the true class. We devise a simple Linear Programming script described in
Figure 6 to handle the computation of the maximum and minimum quantile shift under attack of budget (k, ϵ). We verify
our Linear Programming solution empirically on the CIFAR-10 dataset (see Table 9).

NB Importantly, our algorithm assumes that the quantile computation done during the calibration step returns qα =
−→
R ⌈(n+1)(1−α)⌉.

ϵ k Metric Mean Std Dev

0 – Val. accuracy 0.7260 –
Set size 2.0690 0.0387

0.25 6 Robust CP γ 0.8982 0.0085
Robust CP set size 2.0699 0.0467

0.25 50 Robust CP γ 0.9090 0.0068
Robust CP set size 2.1872 0.0466

Table 9: Summary of empirical coverage and prediction set sizes across different attack budgets (k, ϵ) for feature poisoning on the
calibration set (ncal = 4750). Each experiment was repeated 10 times with a randomly selected calibration subset.
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Figure 6: Our function for computing the maximum quantile shift and therefore certifying the robustness of prediction sets under
calibration time feature poisoning attacks.

I. About the Tightness of Score Bounds
To estimate how tight our score estimations are we evaluate all our methods on the same model. We train a VGG-like
1-LipNet with 10.7M parameters from Boissin et al. (2025) on CIFAR-10. Then, we evaluate robust CP methods (average
across 10 runs).

Method Coverage (%) Set size Runtime (s)

CAS nmc = 1024 94.60 2.302 2615
lip-rcp 92.83 1.889 10
VRCP-I/C (CROWN) OOM OOM N/A

Table 10: Average robust CP coverage, set size, and runtime (per run) with ϵ = 0.03 across 10 runs.

CROWN does not scale to such a deep network due to its inner complexity. Additionally, given the cost of the CAS method,
we did not tune the σ smoothing hyperparameter set it to σ = 2.ϵ as recommended in previous works (Yan et al., 2024).
Optimizing this hyperparameter could lead to better results as obtained in (Zargarbashi & Bojchevski, 2025).
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