
Under review as submission to TMLR

FrugalGPT: How to Use Large Language Models While
Reducing Cost and Improving Performance

Anonymous authors

Paper under double-blind review

Abstract

The rapid adoption of large language models (LLMs) has led to a growing number of com-
panies o�ering generative LLMs as callable services at varying costs. We find that popular
generative LLM APIs, such as GPT-4, ChatGPT, and J1-Jumbo, exhibit heterogeneous
pricing structures, with fees that can di�er by two orders of magnitude and heterogeneous
performance across tasks and input queries. This makes it challenging for users to decide
which generative LLM APIs to utilize for their applications and budget. Motivated by these
findings, we propose FrugalGPT, an algorithmic framework that adaptively selects which
generative LLMs to use for di�erent queries to reduce cost and improve accuracy. Our
experiments demonstrate that, for a range of natural language tasks including news classi-
fication, reading comprehension, and scientific question answering, FrugalGPT can match
the performance of the best individual generative LLM (e.g., GPT-4) with up to a 98%
cost reduction or improve the accuracy over GPT-4 by 4% at the same cost. The ideas and
findings presented in this paper lay a foundation for using LLMs sustainably and e�ciently.

1 Introduction

We are currently witnessing a surge in the adoption of generative large language models (LLMs). The
enticing potential of generative LLMs has led to a growing number of companies (such as OpenAI, AI21,
CoHere, etc.) o�ering LLMs as callable services. Consequently, ML practitioners now frequently build
applications by invoking these foundation models. For example, Tweet sentiment analysis is an o�cial use
case of ChatGPT OpenAI (2024a), Strabag uses Microsoft services to predict construction site risks Microsoft
(2024), and Stripe uses GPT-4 to detect fraudulent behavior OpenAI (2024b).

However, practitioners often face challenges in deciding which generative LLM services to utilize for their
applications and optimizing their budgets. The cost of generative LLM services can vary by up to two orders
of magnitude: for instance, the prompt cost for 10M tokens is $30 for OpenAI’s GPT-4 but only $0.2 for
GPT-J hosted by Textsyth (as shown in Table 1). Smaller LLMs are generally more a�ordable, but their
performance is comparatively limited (as depicted in Figure 1(d)). Larger LLMs like GPT-4 o�er better
performance but at the risk of escalating costs. In addition to their financial burden, employing larger LLMs
incurs significant environmental and energy impacts Bender et al. (2021); Wu et al. (2022); Schwartz et al.
(2020).

In this paper, we empirically demonstrate that for many of the tasks that generative LLMs are used for, it is
possible to evaluate a result’s quality using an inexpensive model. For example, we found that DistillBERT
can accurately predict the answer quality of many LLMs including GPT-4 and GPT-J on common natural
language tasks like classification and question answering. Furthermore, we find that no generative LLM is
“universally" superior to others. Take the task of classifying price sentiments from news headlines as an
example Sinha & Khandait (2021). There are 6% of queries where GPT-J is entirely accurate while GPT-4
makes errors, and 80% of queries where both models provide identical responses (as illustrated in Figure
1(c)). Directing 86% of queries to GPT-J and the remaining 14% to GPT-4 is considerably more cost-e�ective
and performant than relying solely on GPT-4. These discoveries suggest the possibility of routing queries
adaptively to di�erent LLMs to both lower the cost and enhance the performance of LLM applications.

1

Under review as submission to TMLR

Query Answer

(a) Existing LLM Usage

(d) Performance and cost tradeoffs

GPT-Neo

FSQ

GPT-J

 J1

J1-G

J1-L

 CoHere
CoHere-M

FQ

GPT-3

ChatGPT

 GPT-C

GPT-4

Dolly

0 10 20 30 40

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88 FrugalGPT

Cost ($)

A
cc

ur
ac

y

Query

Budget

Answer

(b) Proposed FrugalGPT

ChatGPTGPT-J

accept

accept

score>0.9

accept

score>0.8

$2 $20 $300
GPT-4

(c) LLM pairwise comparison

GPT-J
Better

GPT-4
BetterTie

6% 80% 14%

GPT-Neo

FSQ

GPT-J

 J1

J1-G

J1-L

 Cohere
Cohere-M

FQ

GPT-3

ChatGPT

 GPT-C

GPT-4

Dolly

0 10 20 30 40

0.7
0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

FrugalGPT

Cost ($)
A

cc
ur

ac
y

Figure 1: Comparisons of di�erent approaches to using LLM services. (a) The standard usage sends queries
to a single LLM (e.g., GPT-4), which can be expensive. (b) FrugalGPT, adaptively decides which LLMs
to trigger for di�erent user queries to reduce the inference cost. By optimizing the selection of di�erent
LLM APIs (e.g., GPT-J, ChatGPT, and GPT-4), we can achieve substantial e�ciency gains. (c) LLM
performance breakdown on HEADLINES (a financial news dataset). GPT-J outperforms GPT-4 on 6% of
queries and produces identical generations on 80% of queries. (d) FrugalGPT can reduce the inference cost
by 98% while exceeding the performance of the best individual LLM (GPT-4) on HEADLINES. This is
because FrugalGPT successfully learns data subsets on which inexpensive LLMs like GPT-J are as good as
or better than GPT-4, and directs these data to the corresponding low-cost LLMs only.

Inspired by these findings, we propose FrugalGPT, an algorithmic framework that adaptively determines
which LLMs to use given a user’s budget. FrugalGPT first learns a generation judger that assigns a score
to indicate the quality of di�erent LLMs’ generations for any given query. It then invokes a list of LLMs
sequentially until the judger’s score for an answer surpasses a threshold. For example, FrugalGPT may
initially call GPT-J to obtain an answer. If the judger’s score for this answer is lower than a threshold of 0.9,
ChatGPT is subsequently invoked to generate a new response. The judger’s score for ChatGPT’s answer
exceeds a threshold of 0.8, so no further LLMs are needed, and ChatGPT’s answer is returned to the user.
We developed an e�cient optimization technique to determine the optimal order of LLMs to call and the
stopping threshold for each LLM as the core of FrugalGPT.

To demonstrate the potential of FrugalGPT, we implement and evaluate it on various tasks, such as news
classification, reading comprehension, and scientific question answering, using real-world LLMs, including
ChatGPT OpenAI (2023), GPT-3 Brown et al. (2020), GPT-4 OpenAI (2023), and J1 Lieber et al. (2021).
Our experiments show that FrugalGPT can save up to 98% of the inference cost of the best individual LLM
API while matching its performance on the downstream task. On the other hand, FrugalGPT can improve
performance by up to 4% at the same cost. This is because FrugalGPT accurately identifies queries on which
some inexpensive LLMs are correct but the most powerful LLM (e.g., GPT-4) is incorrect, and directs these
queries exclusively to the low-cost LLMs. We will also release the code and datasets used in our experiments.
We hope FrugalGPT paves the way for enhancing LLMs’ inference cost and performance.

2

Under review as submission to TMLR

2 Related Works

Model Ensembles. Model ensembles Dong et al. (2020); Ganaie et al. (2022), which involve combining
multiple ML models for prediction, have gained popularity in supervised learning García-Pedrajas (2009);
Friedman (2002), unsupervised learning Yang et al. (2014), semi-supervised learning Gupta et al. (2022),
and weakly supervised learning Diba et al. (2017). Recent work Arora et al. (2022) shows that fusing
multiple generations from GPT-J Wang & Komatsuzaki (2021) can compete with GPT-3’s performance, and
synthesizing multiple open-source LLMs’ generations leads to better performance than individual LLMs Jiang
et al. (2023). Model ensembles typically require white-box access to multiple models for training, but LLM
APIs are often black-box. Moreover, model ensembles necessitate querying all models for any single query,
thereby increasing costs.

ML-as-a-Service and Cascades. Generative LLM APIs constitute a crucial component of the rapidly
expanding machine-learning-as-a-service (MLaaS) industry. Recent studies have demonstrated the diversity
of di�erent ML APIs’ predictions Buolamwini & Gebru (2018); Koenecke et al. (2020); Chen et al. (2021;
2022a). The concept of using multiple services for speed is known as model cascade Viola & Jones (2004),
which has been applied in predictive ML domains such as pedestrian detection Cai et al. (2015), analytic
systems Kang et al. (2017) and facial recognition Li et al. (2015); Sun et al. (2013). Recent work Chen
et al. (2020; 2022b) builds a customized cascade for cost reduction, with a focus on classification ML APIs.
However, their approach needs to estimate the performance of an ML API without querying it, based on
simple signals such as labels from a proxy model. Such pre-query estimation is challenging for generative LLM
APIs, whose outputs encompass a much larger space. FrugalGPT overcomes this by creating a post-query
quality estimator. Furthermore, for a given query, previous work invokes at most two APIs, while FrugalGPT
allows invoking three or more given the vast number of LLM APIs. This renders it computationally more
challenging to find the best calling strategies, and thus we also develop novel techniques to identify the
optimal strategies e�ciently (Section 4).

Speculative Decoding. Speculative decoding has recently emerged for LLM inference acceleration without
retraining or model architecture modification Leviathan et al. (2023); Chen et al. (2023); Sun et al. (2023);
Spector & Re (2023); Liu et al. (2023). Its goal is to provide the same output as a large LLM at lower
latency. It relies on inexpensive LLMs for most generations and switches to costly LLMs when necessary.
However, it requires access to the decoding module, which is not available for proprietary LLMs like GPT-4,
and because it aims to give the same answer as the large LLM, it misses the opportunity to provide a better
answer in cases where the small LLM is more accurate.

The remainder of the paper is organized as follows. We start by o�ering more context and the problem
statement in Section 3. We present how FrugalGPT works in Section 4. Section 5 shows the empirical
benefits of FrugalGPT using real-world LLM APIs (including GPT-3, ChatGPT, and GPT-4). We discuss
future prospects in Section 6.

3 Scope and Problem Statement

Natural language query answering. In this paper, we concentrate on the standard natural language
query answering task, where the objective is to answer a query q sampled from a natural language query
distribution Q. Various real-world natural language tasks, such as news classification and commonsense
reasoning, can be formulated as query-answering problems.

LLM marketplace. We consider answering queries via the LLM market, which comprises K di�erent
LLM APIs, denoted by {fi(·)}K

i=1. Each fi(·) : P ‘æ A is a function that, given a prompt p from the prompt
space P, generates an answer from the answer distribution A. Note that to use LLM APIs, one has to convert
each query q to some corresponding prompt first. LLM APIs are associated with their own cost, typically
consisting of three components: a portion proportional to the length of the prompt, a portion proportional
to the length of the generated answer, and (sometimes) a fixed cost per query. Formally, given a prompt p,
the cost of using the ith LLM API is denoted by ci(p) , c̃i,2Îfi(p)Î + c̃i,1ÎpÎ + c̃i,0, where c̃i,j , j = 0, 1, 2 are
constants.

3

Under review as submission to TMLR

An illustrative example. Adapting the case study provided by Kaiser & Slowik (2023), assume a small
business operates a customer service using GPT-4. The company caters to 15,000 customers each month,
with each customer asking three questions twice a week, totaling 360,000 queries per month. Suppose for
each question, its prompt averages 1800 tokens and the answer is around 80 tokens (as estimated by Kaiser
& Slowik (2023)). Considering that the input and response costs of GPT-4 are $0.03 and $0.06 per thousand
tokens, the total monthly cost amounts to 360 ◊ ($0.03 ◊ 1800 + $0.06 ◊ 80) ¥ $21.2K. Such a high cost is
prohibitive for many small businesses.

Problem statement: budget-aware LLM API usage. Our primary goal in this paper is leveraging
LLM APIs within a budget constraint. Formally, this can be formulated as maximizing the overall task
performance E(q,a)œQ◊A[r(q, â(s, q))], while ensuring the average cost is bounded by a user-defined value
b, i.e., E(q,a)œQ◊A[c(s, q)] Æ b. Here, a denotes the correct answer to the query q, â(s, q) is the generated
answer by some strategy s for query q, and c(s, q) is the associated cost for processing query q using strategy
s. The reward function r(·, ·) measures how closely the generated answer aligns with the user query.

4 FrugalGPT: A Cost-aware Paradigm to Leverage LLMs

In this section, we present FrugalGPT, a cost-aware approach designed to harness the power of multiple LLM
services. We begin by outlining the FrugalGPT pipeline and explaining the functionality of each component.
Subsequently, we delve into the construction of the FrugalGPT pipeline for a given application and user
budget.

FrugalGPT Pipeline. FrugalGPT comprises three main components: an LLM router, an answer scorer,
and a stop judger. Given a user query q, the LLM router is first invoked to select an LLM to obtain its
response to the query. Next, the generation scorer takes the query, the answer, and the selected LLM as
input and generates a quality measurement as output. Based on the quality measurement and the invoked
LLM service, the stop judger determines whether (i) to stop and return the answer, or (ii) to repeat the
process of invoking the LLM router and generation scorer.

The LLM router consists of two parts. First, given the previously invoked LLM service k
Õ, it selects the next

LLM service to use, denoted by k , ‡(kÕ), where ‡ : {?, 1, 2, · · · , K} ‘æ {?, 1, 2, · · · , K} is a permutation
of all LLM services (with ? representing no invocation). Second, it sends the query q to the kth service
and obtains the generation fk(q) as output. Although the service permutation could depend on the input
query in principle, our instantiation adopts a query-agnostic permutation ‡(·) for simplicity. As an example,
consider the case of three models: GPT-4, GPT-Neo, and GPT-J. In this case K = 3. The LLM router may
return GPT-J’s generation for the first time it is invoked. For the second and third time, it gives output
by GPT-Neo and by GPT-4, respectively. For the fourth time and beyond, it simply returns empty. This
corresponds to the permutation ‡(GPT-J) = GPT-Neo, ‡(GPT-Neo) = GPT-4, ‡(GPT-4) = ?. Another
instance is that the LLM router first invokes GPT-Neo, then GPT-J, and finally GPT-4. In this case, the
permutation becomes ‡(GPT-Neo) = GPT-J, ‡(GPT-J) = GPT-4, ‡(GPT-4) = ?.

The generation scorer, denoted by gi(·, ·) : Q ◊ A ‘æ [0, 1], generates a quality measurement given a query
and an answer produced by the ith LLM API. Generally, the generation scorer can be any function such
that its higher values strongly correlate with the input generation’s quality. In our instantiation, we adopt a
DistilBERT Sanh et al. (2019) model tailored for regression as the generation scorer, as it is smaller, cheaper,
and faster than LLM services while still providing a reliable quality measurement. Specifically, we have added
a linear layer on top of the original DistilBERT that takes the last representation layer (768-dimensional)
as input and produces a 2-dimensional output to encode the answer correctness. The maximum value of
the last layer, normalized by softmax, is returned as the final score. We utilize the same embedding as
DistilBERT, ensuring compatibility and seamless integration. For each LLM service, we have trained the
model weights with (i) the query appended by the service’s response as input features, and (ii) whether the
response is correct as labels. We will present an ablation study on the generation scorer in Section 5.

The stop judger is responsible for deciding when to stop and return the answer to the user. As higher quality
measurements indicate better generation quality, we use a threshold-based stop judger: return answer a if

4

Under review as submission to TMLR

the quality measurement gi(q, a) is higher than a threshold ··· i and go back to the router otherwise. The
threshold vector ··· controls the trade-o�s between performance and cost: larger values often lead to better
performance, while smaller values favor lower cost.

Joint optimization of the FrugalGPT Pipeline. Configuring the LLM router and stop judger appro-
priately is crucial to FrugalGPT. Technically, we need to configure (i) the LLM router’s service permutation
function ‡(·) and (ii) the stop judger’s threshold vector ··· . Our goal is to maximize the expected reward
on the query distribution while satisfying the user budget. This problem can be formally modeled as the
following optimization problem:

max
‡(·),···

E [r(q, fz(q))]

s.t. E

S

U
ÿ

zÕ:zÕ=‡(tÕ)(?),tÕÆt

czÕ(q)

T

V Æ b,

t œ [L], z = ‡
(t)(?), gz(q, fz(q)) > ···z,

’t
Õ
< t, z

Õ = ‡
(tÕ)(?), gzÕ(q, fzÕ(q)) Æ ···zÕ

(1)

Here, the objective is the expected performance (reward), the first constraint ensures the average cost is
bounded by the budget, the second constraint indicates that the stop judge returns the answer at the t-th
iteration, and the last constraint indicates that the LLM router and the generation scorer are called repeatedly
for previous iterations. L is a hyperparameter that controls the maximum number of LLM services to call for
a query. Solving this problem is inherently challenging because the optimization space is vastly large. ‡(·)
is a permutation function over all possible LLM services, and exhaustive search takes O(KL) computations.
Moreover, even if ‡(·) is fixed, the problem is non-convex with respect to the threshold vector ··· . In fact,
we can show that even if the scorers are of high quality, the optimization problem is still NP-hard, formally
stated as follows. We leave the proof in the appendix due to space constraints. Suppose the scorers are
perfect, i.e., gi(q, a) > gi(q, a

Õ) … r(q, a) > r(q, a
Õ) Then Problem (1) is an NP-hard problem.

To overcome this computational obstacle, we design a specialized optimizer for this problem. It (i) prunes
the search space of ‡‡‡(·) by ignoring any consecutive selection of LLMs with small answer disagreement, and
(ii) approximates the objective by interpolating it within a few samples.

Search space pruning removes candidate permutation functions with relatively small maximum performance
improvement, or MPI. Here, MPI is a function of two LLMs, k1, k2, that measures at most how many
mistakes k2 incurs can be fixed by k1. Formally, MPI(k1, k2) , Pr[r(q, fk1(q)) > r(q, fk2(q))]. Suppose k is
called from the last iteration in the cascade. Then in the next iteration, calling any LLMs with small MPI
would not yield significant performance gains and thus could be avoided. Inspired by this, we introduce the
following pruning condition

‡(k) œ {k
Õ œ K | MPI(kÕÕ

, k) Ø MPI(kÕ
, k),

for at most m ≠ 1 other values of k
ÕÕ œ K}

(2)

That is to say, given the previously invoked LLM k, the next LLM to call must hold the top-m value of MPI
with respect to k. This reduces the search complexity from O(KL) to O(mL). In practice, we found that
m = 3 often su�ces to identify a high-quality cascade.

Now suppose the function ‡(·) is fixed. The remaining step is to find the optimal threshold vector ··· . This
can be resolved via a two-stage approximation. First, we divide the search space [0, 1]L into a few equal-size
grids. Next, within each grid, we approximate the objective by a quadratic function of the threshold vector,
whose parameters are determined by the grid bound values. Then within each grid, we can leverage a QP
solver to find the optimal solution. The final solution is the best among all grids. The combination of the
above two techniques provides an e�cient implementation with satisfactory performance, as demonstrated
later in Figure 3.

5

Under review as submission to TMLR

Table 1: Summary of commercial LLM APIs. We use 14 LLM APIs from 6 providers. The cost was retrieved
in March 2023. The cost can have three additive components: input (proportional to the number of input
tokens), output (proportional to the number of generated tokens) and a fixed cost per request. The LLMs’s
costs can di�er by up to 2 orders of magnitudes. For example, to process 1M input tokens, GPT-J from
Textsynth costs only $0.2, but OpenAI’s GPT-4 needs $30.

Provider API Size/B

Cost (USD)

1M input tok. 1M output tok. request

OpenAI

GPT-Curie 6.7 2 2 0
ChatGPT NA 2 2 0

GPT-3 175 20 20 0
GPT-4 NA 30 60 0

AI21

J1-Large 7.5 0 30 0.0003
J1-Grande 17 0 80 0.0008
J1-Jumbo 178 0 250 0.005

Cohere

Xlarge 52 10 10 0
Medium 6.1 10 10 0

Textsynth

GPT-J 6 0.2 5 0
FAIRSEQ 13 0.6 15 0
GPT-Neox 20 1.4 35 0

Databricks Model Serving Dolly 7 0.27 0.27 0

ForeFrontAI QA 16 5.8 5.8 0

5 Experiments

In this section, we present an empirical study on FrugalGPT. Our goals are four-fold: (i) understand when
and why FrugalGPT lowers the cost, (ii) quantify the cost savings attained by FrugalGPT while matching the
best individual LLM API’s performance, (iii) measure the trade-o�s between performance and cost enabled
by FrugalGPT, and (iv) explore how di�erent factors including data distribution shifts and scorer’s quality
a�ect FrugalGPT.

Setup: LLM APIs, Tasks, Datasets, and FrugalGPT instances. We have selected 14 LLM APIs
from 6 mainstream providers, namely, OpenAI OpenAI (2023), AI21 AI21 (2023), Cohere Cohere (2023),
Textsynth Textsynth (2023), Databricks Databricks (2023), and ForeFrontAI Forefront AI (2023). The de-
tails are summarized in Table 1. FrugalGPT has been developed on top of these APIs and evaluated on
a range of datasets belonging to di�erent tasks, including HEADLINES Sinha & Khandait (2021), OVER-
RULING Zheng et al. (2021), COQA Reddy et al. (2019), AGNEWS Zhang et al. (2015) and SCIQ Welbl
et al. (2017). More details of the datasets and tasks can be found in the Appendix. We focus on FrugalGPT
with the hyperparameter L = 3, as this simplifies the optimization space and shows exciting results. Each
dataset is randomly split into a training set (50%) to learn FrugalGPT and a test set for evaluation (50%).

A Case Study. We begin with a case study on the HEADLINES dataset. We set the budget to be $6.5,
which is one-fifth of GPT-4’s cost. As depicted in Figure 2 (a), the learned FrugalGPT sequentially calls
GPT-J, J1-L, and GPT-4. For any given query, it first extracts an answer from GPT-J. If the score of this
answer is greater than 0.96, the answer is accepted as the final response. Otherwise, J1-L is queried. J1-L’s
answer is accepted as the final response if its score is greater than 0.37; otherwise, GPT-4 is invoked to
obtain the final answer. Interestingly, this approach outperforms GPT-4 for numerous queries. For instance,
given a headline "Gold prices trade near 3-month high as Fed begins meeting" from NASDAQ, FrugalGPT

6

Under review as submission to TMLR

GPT-J GPT-4J1-Lscore<0.04? score<0.63?

No
No

Yes Yes
Financial News

(a) Learned FrugalGPT strategy

GPT-4

FrugalGPT price down

neural

(b) A query and response example (c) Overall performance and cost

(d) Each LLM pair's MPI

100%

33.7%
16.6%

GPT-J J1 GPT-40

20

40

60

80

100

LLM APIs

Q
ue

ry
 P

er
ce

nt
ag

e

(e) FrugalGPT's Query Percentage

 h
h

h
h

Figure 2: A case study of FrugalGPT on the HEADLINES dataset. (a) The learned FrugalGPT on this
dataset with an overall budget of $6.5, one-fifth of GPT-4’s cost. FrugalGPT avoids querying GPT-4 as long
as GPT-J and J1-L produce high-quality answers. (b) Sometimes GPT-4 makes a mistake, but FrugalGPT
learns to use the correct answers by J-1 and GPT-J. (c) Overall, FrugalGPT reduces the cost by 80%, while
improving the accuracy by 1.5% compared to GPT-4. (d) The maximum possible improvement (MPI) for
each LLM pair, measuring how often one LLM (each row) makes a mistake while another (each column) is
correct. Even for the best individual LLM, GPT-4, cheap LLMs (e.g., GPT-J) can be better on 6% of the
data. (e) FrugalGPT sends only 16.6% queries to GPT-4 and thus saves cost.

accurately predicts that the price is going down, while GPT-4 provides an incorrect answer (as shown in
Figure 2(b)). Overall, FrugalGPT results in both accuracy gains and cost reduction, as illustrated in Figure
2(c). This is partially because FrugalGPT only sends 16.6% queries to GPT-4 (see Figure 2(e)).

LLM diversity. Why can multiple LLM APIs potentially produce better performance than the best
individual LLM? Similar to how ensemble methods can improve accuracy on many tasks, this is often due
to generation diversity: even an inexpensive LLM can sometimes correctly answer queries on which a more
expensive LLM fails. Recall that we introduce maximum performance improvement (MPI) in Section 4 as
an pruning metric. It also measures the generation diversity well: larger value of MPI indicates that one
generative LLM give more responses di�erent from another one. As shown in Figure 2 (d), MPI is indeed
large for many pairs of generative LLMs. For instance, there are 6% queries where GPT-4 is incorrect but
GPT-J (and GPT-C, J1-L, or Dolly) can give desired answers. This indicates the potential of combining
multiple generative LLMs, and verifies why FrugalGPT o�ers cost reduction without performance drops.

Cost Savings. Subsequently, we examine if FrugalGPT can reduce costs while maintaining accuracy and,
if so, by how much. Table 2 displays the overall cost savings of FrugalGPT, which range from 50% to 98%.

7

Under review as submission to TMLR

Table 2: Cost (USD) savings by FrugalGPT to match the best individual LLM’s performance.

Dataset Type Best single LLM
Cost to reach the same accuracy

Cost SavingsBest single LLM FrugalGPT

HEADLINES 4-way classification GPT-4 33.1 0.6 98.3%
OVERRULING 2-way classification GPT-4 9.7 2.6 73.3%

COQA Free-form QA GPT-3 72.5 29.6 59.2%
AGNEWS 4-way classification GPT-4 64.6 15.9 75.4%

SCIQ Free-form QA GPT-3 132.4 63.1 52.3%

Kinross Gold
upgraded to

outperformer from
neutral at CIBC

0.17 < 0.96
GPT-J GPT-4J1-L

Up Up None
0.13 < 0.37

None

GPT-4 None

0.16 < 0.96GPT-J J1-L
Up Down

neutral

Down

0.99 > 0.96GPT-J
Down Down

GPT-4 Up

0.44 > 0.37

GPT-4

[...] denying an
available and

accommodation. Q:
Is it overruling?

0.2 < 0.9GPT-J GPT-3ChatGPT
Yes No No0.8 < 0.9 No

GPT-4 No

The court [...] was
expressly overruled
by this court in lima.
Q: Is it overruling?

0.6 < 0.9GPT-J J1-L
Yes Yes

No

Yes

0.91 > 0.9GPT-J
Yes Yes

GPT-4 No

1.0 > 0.9

GPT-4

When I [...] a little
black-walnut shelf

[...] Q: What was the
shelf made of?

GPT-3 GPT-4J1

GPT-4

[...] told every
Tuesday for their

story time. [...]. Q:
when did they have

time free?

0.1 < 0.2
GPT-3 J1

[..] Cap Winters [...]
added a thousand
grey hairs to his

head [...] Q: Did he
have red hair?

0.8 > 0.2
GPT-3

GPT-4

0.6 > 0.3

GPT-4

The text
does not

mention this.

No

Tuesday

their day off
from school

black-walnut

black-walnut
black-walnut black walnut black-walnut

their day off
from school Tuesday

No

0.1 < 0.2 0.2 < 0.3

(a) HEADLINES

(b) OVERRULING

(c) COQA

Gold holds ground
at 1-month low on

hawkish Fed
comments

GPT-Neo

FSQ

GPT-J

 J1

J1-G

J1-L

 CoHere
 CoHere-M

FQ

GPT-3
ChatGPT

 GPT-C

GPT-4

Dolly
0 10 20 30 40

0.7
0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88 FrugalGPT

Cost ($)

A
cc

ur
ac

y

FSQ

GPT-J

J1

J1-G

 CoHere

CoHere-M

 FQ

GPT-3
ChatGPT

GPT-C

GPT-4

Dolly

0 2 4 6 8 10 12
0.5

0.6

0.7

0.8

0.9

1 FrugalGPT

Cost ($)

A
cc

ur
ac

y

GPT-NeoGPT-J

J1
J1-G

J1-L CoHere

CoHere-M

FQ

GPT-3

 ChatGPT

GPT-4

Dolly
0 50 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5 FrugalGPT

Cost ($)

A
cc

ur
ac

y

Gold holds gains in
Asia on risk-on

sentiment over U.S.
politics

The time has come
to reconcile and

regularize our cases
in this field. Q: Is it

overruling?

GPT-Neo
GPT-F

GPT-J

J1
J1-G

Cohere

Cohere-M

FQ

GPT-3

CHATGPT

GPT-4

Dolly

0 20 40 60 80 100 120 140
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cost ($)

A
cc

ur
ac

y

GPT-Neo

GPT-F

GPT-J

J1

J1-G

Cohere

Cohere-M

FQ

GPT-3
CHATGPT

GPT-4

Dolly

0 2 4 6 8 10 12
0.5

0.6

0.7

0.8

0.9

1

Cost ($)

A
cc

ur
ac

y

GPT-Neo

FSQ

GPT-J

 J1

J1-G

J1-L

 Cohere
Cohere-M

FQ

GPT-3
ChatGPT

 GPT-C

GPT-4

Dolly

0 10 20 30 40

0.7
0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88 FrugalGPT

Cost ($)

A
cc

ur
ac

y

Figure 3: Accuracy and cost tradeo�s achieved by FrugalGPT. Overall, FrugalGPT often achieves the same
performance of the best individual LLM API (e.g., GPT-4) with orders of magnitudes smaller cost. When
incurring the same cost, FrugalGPT can improve the accuracy by up to 5%. Examples of FrugalGPT for each
dataset are shown on the right. We show similar performance-cost tradeo� improvements for FrugalGPT for
AGNEWS and SCIQ in the Appendix.

This is feasible because FrugalGPT identifies the queries that can be accurately answered by smaller LLMs
and, as a result, only invokes those cost-e�ective LLMs. Powerful but expensive LLMs, such as GPT-4, are
utilized only for challenging queries detected by FrugalGPT.

8

Under review as submission to TMLR

Performance and Cost Trade-o�s. Now, we investigate the trade-o�s between performance and cost
achieved by FrugalGPT, as illustrated in Figure 3. Here we focus on three datasets due to space limitations;
more results on other datasets can be found in the Appendix.

Several interesting observations can be made. First, the cost ranking of di�erent LLM APIs is not fixed.
For instance, J1 is the second most expensive LLM on the HEADLINES dataset, while GPT-3 holds that
position on the OVERRULING and COQA datasets. This is primarily due to the heterogeneous pricing
mechanism: J1 incurs a high cost for each generated token but charges nothing for input tokens, whereas
GPT-3 charges for both input and output tokens. Moreover, more expensive LLM APIs sometimes result in
worse performance than their cheaper counterparts. For example, J1 is costlier than GPT-3 on HEADLINES,
but its performance is inferior. These observations underscore the importance of aptly selecting LLM APIs,
even in the absence of budget constraints. Next, we note that FrugalGPT enables smooth performance-cost
trade-o�s across all evaluated datasets. This o�ers flexible choices to LLM users and potentially helps LLM
API providers save energy and reduce carbon emissions. In fact, FrugalGPT can simultaneously reduce costs
and improve accuracy. For example, on the OVERRULING dataset, FrugalGPT achieves a 1% accuracy
gain while reducing costs by 73% compared to the best LLM API, GPT-4. This is likely because FrugalGPT
integrates knowledge from multiple LLMs.

The example queries shown in Figure 3 further aid in understanding why FrugalGPT can simultaneously
improve performance and reduce costs. GPT-4 makes mistakes on some queries (e.g., the first example in
part (a)), but some low-cost APIs provide correct predictions. FrugalGPT accurately identifies those queries
and relies solely on the inexpensive APIs. For example, GPT-4 incorrectly infers no overruling from the legal
statement "The time has come to reconcile and regularize our cases in this field," as shown in Figure 3(b).
However, FrugalGPT accepts GPT-J’s correct answer, avoiding the use of expensive LLMs and improving
overall performance. Naturally, a single LLM API is not always correct; FrugalGPT overcomes this by
employing a chain of LLM APIs. For example, in the second example shown in Figure 3(a), FrugalGPT
identifies that GPT-J’s generation may not be reliable and turns to the second LLM in the chain, J1-L, to
find the correct answer. Again, GPT-4 provides the wrong answer. FrugalGPT is not perfect, and there
remains ample room for cost reduction. For example, in the third example in Figure 3(c), all LLM APIs in
the chain give the same answer. However, FrugalGPT is unsure if the first LLMs are correct, resulting in
the need to query all LLMs in the chain. How to avoid such cases is an interesting direction of future work.

Performance Resilience to Data Distribution Shifts. A common challenge when deploying ML sys-
tems in practice is data distribution shifts, i.e., the queries encountered during deployment di�er from those
in development. To understand the robustness of FrugalGPT against data distribution shifts, we trained Fru-
galGPT on the original HEADLINES training data and evaluated its performance on four testing datasets
with di�erent distributions. Specifically, we created these testing datasets by altering the distribution of
labels. For instance, in Variant 1, the label distribution is 33% (up), 17% (down), 17% (none), and 33%
(neutral). Conversely, the original dataset’s label distribution is balanced (25% for each label). Details can
be found in Table 4 in the Appendix. As depicted in Figure 5(a) in the appendix, the performance of both
FrugalGPT and GPT-4 remains relatively consistent across di�erent data distributions. Interestingly, while
using only 10% of GPT-4’s cost, FrugalGPT often delivers similar or superior performance compared to
GPT-4 under several testing data distributions.

E�ects of Scorer Functions. The scorer plays a crucial role in FrugalGPT. Therefore, it is essential
to study how the scorer’s quality impacts FrugalGPT’s performance. In this regard, we focused on three
backbones for the scorer with varying numbers of parameters: ALBERT (11M), DistilBERT (67M), and
BERT (110M). We trained the scorer on the HEADLINES dataset using di�erent backbone models and
compared the performance of the resulting FrugalGPT, with a budget of 10% of GPT-4. As illustrated
in Figure 5(b), a low-quality scorer (such as ALBERT) indeed leads to limited performance, as expected.
Conversely, larger scorers with better quality, such as DistilBERT and BERT, o�er higher performance.

9

Under review as submission to TMLR

6 Discussions and Future Prospects

The substantial cost of employing LLMs in real-world scenarios presents a considerable barrier to their
widespread usage. In this paper, we discovered that for many tasks on which LLMs are commonly used
today, (i) small models can predict the quality of LLMs accurately, and (ii) no LLM is universally better
than others. Based on these findings, we introduce FrugalGPT, our approach to resolving the cost challenge.
Our empirical findings show that FrugalGPT can reduce costs by up to 98% while preserving the performance
of cutting-edge LLMs.

There are many interesting directions for future exploration. For example, while FrugalGPT concentrates
on balancing performance and cost, real-world applications call for the evaluation of other critical fac-
tors, including latency, fairness, and environmental impact. Incorporating these elements into optimization
methodologies while maintaining performance and cost-e�ectiveness is an important avenue for future re-
search. Furthermore, utilizing LLMs in risk-critical applications necessitates the careful quantification of
uncertainty in LLM-generated outputs.

References
AI21. AI21 LLM API. https://www.ai21.com/, 2023. Accessed: 2023-03-31.

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel J Orr, Neel Guha, Kush Bhatia, Ines Chami, Frederic
Sala, and Christopher Ré. Ask me anything: A simple strategy for prompting language models. arXiv
preprint arXiv:2210.02441, 2022.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers
of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM conference on
fairness, accountability, and transparency, pp. 610–623, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial gender
classification. In Conference on fairness, accountability and transparency, pp. 77–91. PMLR, 2018.

Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. Learning complexity-aware cascades for deep
pedestrian detection. In Proceedings of the IEEE international conference on computer vision, pp. 3361–
3369, 2015.

Charlie Chen, Sebastian Borgeaud, Geo�rey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper.
Accelerating large language model decoding with speculative sampling. arXiv preprint arXiv:2302.01318,
2023.

Lingjiao Chen, Matei Zaharia, and James Y Zou. Frugalml: How to use ml prediction apis more accurately
and cheaply. Advances in neural information processing systems, 33:10685–10696, 2020.

Lingjiao Chen, Tracy Cai, Matei Zaharia, and James Zou. Did the model change? e�ciently assessing
machine learning api shifts. arXiv preprint arXiv:2107.14203, 2021.

Lingjiao Chen, Zhihua Jin, Evan Sabri Eyuboglu, Christopher Ré, Matei Zaharia, and James Y Zou. Hapi:
A large-scale longitudinal dataset of commercial ml api predictions. Advances in Neural Information
Processing Systems, 35:24571–24585, 2022a.

Lingjiao Chen, Matei Zaharia, and James Zou. E�cient online ml api selection for multi-label classification
tasks. In International Conference on Machine Learning, pp. 3716–3746. PMLR, 2022b.

Cohere. Cohere LLM API. https://cohere.com/, 2023. Accessed: 2023-03-31.

10

https://www.ai21.com/
https://cohere.com/

Under review as submission to TMLR

Databricks. Dolly deployed on Databricks Model Serving. https://www.databricks.com/blog/2023/04/
12/dolly-first-open-commercially-viable\protect\penalty\z@-instruction-tuned-llm, 2023.
Accessed: 2023-03-31.

Ali Diba, Vivek Sharma, Ali Pazandeh, Hamed Pirsiavash, and Luc Van Gool. Weakly supervised cascaded
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 914–922, 2017.

Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A survey on ensemble learning. Frontiers
of Computer Science, 14:241–258, 2020.

Forefront AI. Forefront AI LLM API. https://beta.forefront.ai/, 2023. Accessed: 2023-03-31.

Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38(4):367–378,
2002.

Mudasir A Ganaie, Minghui Hu, AK Malik, M Tanveer, and PN Suganthan. Ensemble deep learning: A
review. Engineering Applications of Artificial Intelligence, 115:105151, 2022.

Nicolás García-Pedrajas. Constructing ensembles of classifiers by means of weighted instance selection. IEEE
Transactions on Neural Networks, 20(2):258–277, 2009.

Ashit Gupta, Anirudh Deodhar, Tathagata Mukherjee, and Venkataramana Runkana. Semi-supervised
cascaded clustering for classification of noisy label data. arXiv preprint arXiv:2205.02209, 2022.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models with
pairwise comparison and generative fusion. In Proceedings of the 61th Annual Meeting of the Association
for Computational Linguistics (ACL 2023), 2023.

Filip Kaiser and Claudia Slowik. Cost estimation of using GPT-3 for real applications.
https://neoteric.eu/blog/how-much-does-it-cost-to-use-gpt\protect\penalty\z@
-models-gpt-3-pricing-explained, 2023. Accessed: 2023-03-31.

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. Noscope: optimizing neural
network queries over video at scale. arXiv preprint arXiv:1703.02529, 2017.

Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha, Connor Toups,
John R Rickford, Dan Jurafsky, and Sharad Goel. Racial disparities in automated speech recognition.
Proceedings of the National Academy of Sciences, 117(14):7684–7689, 2020.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decod-
ing. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. A convolutional neural network cas-
cade for face detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 5325–5334, 2015.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. Jurassic-1: Technical details and evaluation. White
Paper. AI21 Labs, 1:9, 2021.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Stoica, Zhijie Deng, Alvin Cheung, and Hao Zhang. Online
speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

Microsoft. Strabag uses OpenAI service to predict risks. https://customers.
microsoft.com/en-us/story/1596825960615628483-strabag-discrete\protect\penalty\z@
-manufacturing-azure-en-austria, 2024. Accessed: 2024-01-01.

OpenAI. ChatGPT Announcement. https://openai.com/blog/chatgpt, 2023. Accessed: 2023-03-31.

OpenAI. Gpt-4 technical report. arXiv preprint https://arxiv.org/abs/2303.08774, 2023.

11

https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable%5Cprotect%2520%5Cpenalty%2520%5Cz@%2520-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable%5Cprotect%2520%5Cpenalty%2520%5Cz@%2520-instruction-tuned-llm
https://beta.forefront.ai/
https://neoteric.eu/blog/how-much-does-it-cost-to-use-gpt%5Cprotect%2520%5Cpenalty%2520%5Cz@%2520-models-gpt-3-pricing-explained
https://neoteric.eu/blog/how-much-does-it-cost-to-use-gpt%5Cprotect%2520%5Cpenalty%2520%5Cz@%2520-models-gpt-3-pricing-explained
https://customers.microsoft.com/en-us/story/1596825960615628483-strabag-discrete%5Cprotect%2520%5Cpenalty%2520%5Cz@%2520-manufacturing-azure-en-austria
https://customers.microsoft.com/en-us/story/1596825960615628483-strabag-discrete%5Cprotect%2520%5Cpenalty%2520%5Cz@%2520-manufacturing-azure-en-austria
https://customers.microsoft.com/en-us/story/1596825960615628483-strabag-discrete%5Cprotect%2520%5Cpenalty%2520%5Cz@%2520-manufacturing-azure-en-austria
https://openai.com/blog/chatgpt

Under review as submission to TMLR

OpenAI. OpenAI LLM API. https://platform.openai.com/, 2023. Accessed: 2023-03-31.

OpenAI. https://platform.openai.com/examples/default-tweet-classifier, 2024a. Accessed: 2024-
01-01.

OpenAI. Stripe uses OpenAI service to detect fraud. https://openai.com/customer-stories/stripe,
2024b. Accessed: 2024-01-01.

Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering challenge.
Transactions of the Association for Computational Linguistics, 7:249–266, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of the ACM, 63
(12):54–63, 2020.

Ankur Sinha and Tanmay Khandait. Impact of news on the commodity market: Dataset and results.
In Advances in Information and Communication: Proceedings of the 2021 Future of Information and
Communication Conference (FICC), Volume 2, pp. 589–601. Springer, 2021.

Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. arXiv preprint
arXiv:2308.04623, 2023.

Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional network cascade for facial point detection.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3476–3483, 2013.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, Felix Yu, Michael Riley,
and Sanjiv Kumar. Spectr: Fast speculative decoding via optimal transport. In Workshop on E�cient
Systems for Foundation Models@ ICML2023, 2023.

Textsynth. Textsynth LLM API. https://textsynth.com/, 2023. Accessed: 2023-03-31.

Paul Viola and Michael J Jones. Robust real-time face detection. International journal of computer vision,
57:137–154, 2004.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language model, 2021.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions. arXiv
preprint arXiv:1707.06209, 2017.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria
Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental implications, challenges
and opportunities. Proceedings of Machine Learning and Systems, 2022.

Fan Yang, Xuan Li, Qianmu Li, and Tao Li. Exploring the diversity in cluster ensemble generation: Random
sampling and random projection. Expert Systems with Applications, 2014.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text classifi-
cation. In NIPS, 2015.

Lucia Zheng, Neel Guha, Brandon R Anderson, Peter Henderson, and Daniel E Ho. When does pretraining
help? assessing self-supervised learning for law and the casehold dataset of 53,000+ legal holdings. In
Proceedings of the eighteenth international conference on artificial intelligence and law, pp. 159–168, 2021.

12

https://platform.openai.com/
https://platform.openai.com/examples/default-tweet-classifier
https://openai.com/customer-stories/stripe
https://textsynth.com/

	Introduction
	Related Works
	Scope and Problem Statement
	FrugalGPT: A Cost-aware Paradigm to Leverage LLMs
	Experiments
	Discussions and Future Prospects
	Discussions on Other Strategies
	Missing Proofs
	Experiment Setups and Extra Results
	Tasks and Datasets
	Additional Evaluations
	Data Shift Synthesis
	Comparisons with output ensemble
	Effects of training dataset size
	Comparison with a threshold baseline
	Evaluation using more recent models

	Prompt Details
	Prompt for HEADLINES
	Prompt for OVERRULING
	Prompt for COQA
	Prompt for AGNEWS
	Prompt for SCIQ

	Additional Discussions

