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Abstract

With the rapid adoption of LLM-based chat-001
bots, there is a pressing need to evaluate what002
humans and LLMs can achieve together. How-003
ever, standard benchmarks, such as MMLU,004
measure LLM capabilities in isolation (i.e., “AI-005
alone”). Here, we design and conduct a user006
study to convert MMLU questions into user-007
AI conversations, by seeding the user with the008
question and having them carry out a conver-009
sation with the LLM to answer their question.010
We release ChatBench, a new dataset with AI-011
alone, user-alone, and user-AI data for 396012
questions and two LLMs, including 144,031013
answers and 7,337 user-AI conversations. We014
find that AI-alone accuracy fails to predict user-015
AI accuracy, with significant differences across016
multiple subjects (math, physics, and moral017
reasoning), and we analyze the user-AI conver-018
sations to provide insight into how they diverge019
from AI-alone benchmarks. Finally, we show020
that fine-tuning a user simulator on a subset of021
ChatBench improves its ability to estimate user-022
AI accuracies, increasing correlation on held-023
out questions by more than 20 points, creating024
possibilities for scaling interactive evaluation.025

1 Introduction026

In 2024, nearly 40% of US adults reported using027

generative AI in their everyday lives, an unprece-028

dented rate of adoption for a new technology (Bick029

et al., 2024). As these models, particularly large030

language models (LLMs), become more integrated031

into our lives, it becomes increasingly important032

to evaluate them based on not only their capabil-033

ities in isolation, but also their interactions with034

humans. However, there is a large gap between035

human interactions and how standard benchmarks,036

such as Massive Multitask Language Understand-037

ing (MMLU), evaluate models (Hendrycks et al.,038

2021). These benchmarks test models on a fixed039

set of questions, and for each question, they prompt040

the model with the entire question text and often041

constrain it to respond with a single multiple choice 042

option as its answer. In contrast, interactions with 043

human users are far more variable, open-ended, 044

and subject to ambiguity. Even conditioned on 045

the same underlying intent, users may phrase their 046

prompts differently, leave out information in their 047

early prompts, or rely on context in later prompts. 048

Robust AI models need to understand how to work 049

with users in these contexts to provide accurate 050

information and complement human expertise. 051

Recently, there have been efforts to evaluate 052

LLMs in terms of their interactions, such as evalu- 053

ating real-world interactions using a strong LLM 054

as a judge (Lin et al., 2024; Li et al., 2024c). How- 055

ever, these new evaluations have been largely dis- 056

connected from standard benchmarks, which are 057

widely used; for example, every LLM released by 058

OpenAI, Google, and Meta, inter alia, has reported 059

its performance on MMLU (OpenAI, 2023; Gem- 060

ini Team Google, 2023; Llama Team, AI@Meta, 061

2024). This disconnect is due to a large distribution 062

shift between benchmark questions and questions 063

asked by real-world users, missing the user’s true 064

intent, and missing ground-truth labels to judge the 065

interaction, necessitating techniques like LLM-as- 066

judge. As a result, it is difficult to directly compare 067

results from standard benchmarks to real-world 068

interactions or to understand how incorporating 069

interactions changes evaluation insights. 070

Here, we seek to bring these lines of research 071

closer together by directly converting benchmarks 072

into user-AI conversations. We focus on MMLU, 073

as one of the most widely used benchmarks, and 074

design a user study where we seed users with an 075

MMLU question and have them carry out a conver- 076

sation with an LLM with the intent of answering 077

that question. For each question, we test the LLM 078

in isolation (i.e., “AI-alone”) and evaluate the ac- 079

curacy of a user interacting with the LLM (i.e., 080

“user-AI”); furthermore, we also gather “user-alone” 081

data per question to understand how much users 082
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improve with the LLM. This parallel data has two083

advantages: first, we can now conduct an apples-084

to-apples comparison of AI-alone performance, as085

reported in most papers, vs. user-AI performance086

on the same questions, so that we can isolate the087

effects of incorporating interaction into evaluation.088

Second, recent works have explored the possibility089

of simulating the user in user-AI conversations (Li090

et al., 2024a) but lack sufficient data for training091

and testing. Our approach of “seeding” users with092

a question corresponds naturally to a new way to093

initialize user simulators, and the large-scale data094

we collect enables fine-tuning and validating a user095

simulator on this task, improving the trustworthi-096

ness of simulations for AI evaluation.097

Our resulting dataset ChatBench, which we re-098

lease publicly, consists of AI-alone, user-alone,099

and user-AI data for 396 questions and two LLMs100

(GPT-4o and Llama-3.1-8b), with 144,031 answers101

and 7,337 user-AI conversations. Our study de-102

sign also includes two user-AI conditions—where103

the user attempts the question first on their own104

vs. uses AI directly—to explore nuances in user105

behavior. Our study reveals that AI-alone accuracy106

fails to predict user-AI accuracy, with significant107

differences across multiple subjects (math, physics,108

and moral reasoning). We also analyze the user-AI109

conversations to understand where user-AI inter-110

actions are diverging from AI-alone benchmarks.111

Our contributions are summarized as follows:112

• We design and conduct a user study to convert113

MMLU questions into user-AI conversations114

and release a large-scale dataset ChatBench.115

• We show that AI-alone accuracy fails to pre-116

dict user-AI accuracy, across subjects, mod-117

els, AI-alone methods, and user-AI conditions,118

and we analyze user-AI conversations to un-119

derstand where AI-alone and user-AI diverge.120

• We develop a new user simulator that mimics121

our user study task and show that fine-tuning122

our simulator on ChatBench improves its cor-123

relation with real user-AI accuracies by 21-27124

points and outperforms baselines.125

All together, our work helps to reconcile two vital126

lines of research in AI evaluation, revealing how127

interactions change evaluation insights and paving128

the way towards scalable interactive evaluation.1129

1Our code is available at https://anonymous.4open.
science/r/interactive-eval-4813. Our dataset Chat-
Bench will be made available upon publication.

2 Related Work 130

Benchmarks. In this work, we focus on MMLU 131

as one of the most commonly used LLM bench- 132

marks (Hendrycks et al., 2021). MMLU is a 133

question-answering (QA) dataset, consisting of 134

multiple choice questions across 57 subjects (which 135

we discuss in detail in Section 3.2). We also draw 136

on the efforts of MMLU-Redux (Gema et al., 2024), 137

where authors noted some quality concerns in the 138

original MMLU, so they sampled a large number 139

of MMLU questions and manually annotated them 140

for errors. While we conduct our user study on 141

MMLU, our approach of converting QA bench- 142

marks to a user-AI conversation is general, and 143

could be applied to other QA benchmarks, such as 144

HotPotQA (Yang et al., 2018) or GSM8K (Cobbe 145

et al., 2021), as well as adapted to non-QA tasks. 146

Evaluating human-AI interactions. Recently, 147

there have been growing efforts to evaluate AI mod- 148

els based on their interactions with humans. For ex- 149

ample, some works gather real-world interactions 150

(e.g., WildChat (Zhao et al., 2024), ChatbotArena 151

(Chiang et al., 2024)) and evaluate the interactions 152

(e.g., WildBench (Lin et al., 2024), ArenaHard (Li 153

et al., 2024c), MT-Bench (Zheng et al., 2023)), typ- 154

ically using a strong LLM as a judge. However, as 155

discussed before, it is difficult to directly compare 156

these evaluation results to standard benchmarks, 157

due to the distribution shift in questions and change 158

in evaluation metric. Other works have evaluated 159

human-AI interactions in diverse contexts, such as 160

theorem proving (Collins et al., 2024), co-writing 161

with AI (Shen and Wu, 2023), and education (Ju- 162

renka et al., 2024), and sought to understand where 163

human-AI combinations outperform either alone 164

(Bansal et al., 2021; Vaccaro et al., 2024). 165

Our work builds on Lee et al. (2023), who make 166

a strong argument for the need to evaluate human- 167

LM interactions, covering five types of tasks in- 168

cluding QA. Their work includes an exploratory 169

user study where they have users interactively an- 170

swer MMLU questions; however, they only test 30 171

questions and do not explore simulation. Our study 172

greatly builds on theirs by testing 396 questions, at 173

a large enough scale to estimate significant effects 174

and fine-tune a user simulator, and introduces an 175

AI-alone method that is a far more realistic proxy 176

of a user’s experience. Furthermore, our study tests 177

more sophisticated LLMs, complex reasoning sub- 178

jects, and user-AI effects across levels of question 179

difficulty and different user-AI conditions. Our 180
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work is also similar in spirit (although different in181

domain) to Li et al. (2024b), who convert medical182

benchmarks into simulated interactions between a183

patient and an expert.184

Simulation with LLMs. LLMs have shown185

promising capabilities to realistically simulate hu-186

man behaviors, such as responses to surveys and so-187

cial science experiments (Argyle et al., 2023; Hor-188

ton, 2023; Hwang et al., 2023; Hewitt et al., 2024)189

or interactions between humans (Park et al., 2023;190

Chang et al., 2024). There is also much interest191

in developing LLM-based user simulators to scale192

AI evaluation and training (Dubois et al., 2023;193

Ren et al., 2024; Kong et al., 2024; Li et al., 2024a).194

However, LLMs can sometimes produce unrealistic195

simulations of humans, with risks of stereotyping,196

bias, or uniformity (Cheng et al., 2023a,b; Bisbee197

et al., 2024; Wang et al., 2024). Thus, there is a198

need to rigorously test whether LLM simulators199

produce realistic outputs and match insights that200

we would learn from real humans. Here, we ex-201

amine a setting with well-defined simulator goals202

(i.e., does the simulator match user behavior and203

accuracy in real user-AI conversations) and release204

a large-scale dataset that enables training and vali-205

dation of simulators in this setting.206

3 User Study Design207

In this section, we discuss our user study design,208

including the task flow and interface, how we se-209

lected questions, and data collection. We provide210

additional details in Appendix A.211

3.1 Task Flow and Interface212

Figure 1 shows the flow of our user study. In Phase213

1, users are asked to answer each question to the214

best of their ability on their own. In Phase 2, users215

are asked to chat with an unnamed “AI Chatbot”216

to help them answer their question. We test two217

LLMs, contrasting GPT-4o as a strong model and218

Llama-3.1-8b as a relatively weaker model. We re-219

quire interaction in Phase 2—the user cannot move220

onto the next question without sending a message221

and we say that low-effort conversations, e.g., only222

“hi”, will be flagged—but otherwise, we do not223

specify at all how the user should interact with the224

AI Chatbot. In both phases, users are asked to first225

report how confident they are about approaching226

the problem, before attempting to answer it. This227

additional question-level variable allows us to ana-228

lyze how AI assistance helps users across varying229

User-AI 
answer

Report 
confidence

User-alone 
answer

Report 
confidence

User-alone 
answer

User-AI 
answer

Feedback

Phase 1

Phase 2

direct-to-AI answer-first

per question

per question

Figure 1: Flow of our user study.

Figure 2: Screenshot from Phase 2 where the user inter-
acts with an AI Chatbot to answer the question.

levels of confidence. After Phase 2, all users pro- 230

vide feedback on the task, with free-text responses 231

including whether they found the AI Chatbot help- 232

ful and if they saw it make any mistakes. In Figure 233

2, we show a screenshot of what users see in Phase 234

2; in the Appendix, we provide screenshots of all 235

other pages in our task (Figures A2-A9). 236

Conditions. We explore two user-AI conditions: 237

answer-first and direct-to-AI. In the answer-first 238

condition, the user attempts to answer each Phase 239

2 question on their own first before answering with 240

AI, but in the direct-to-AI condition, they have im- 241

mediate access to AI for the Phase 2 questions (in 242

both conditions, Phase 1 is all user-alone). The 243

advantage of answer-first is that, for the same ques- 244

tion, we can record a user’s answer on their own 245

vs. with AI, allowing us to estimate the marginal 246

impact of AI more precisely (i.e., within-subjects), 247

while for direct-to-AI, the set of user-alone answers 248

and user-AI answers for a given question come 249
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A number is rounded to the nearest hundred. The result is 
500. Which number could not be the number before it 
was rounded to the nearest hundred?
A. 458 B. 463 C. 547 D. 559

Elementary Mathematics

To say that a rose petal is red is to say that it
A. absorbs red B. reflects red
C. emits red D. transmits red

Conceptual Physics

For which of these two scenarios does the main 
character do something clearly morally wrong? 
Scenario  1 | I embraced my sister's newly widowed husband to 
show him sympathy. 
Scenario  2 | I came home late one night to find that I had lost 
my house keys, so I had to break into my neighbor's house.
A. Wrong, Wrong B. Wrong, Not Wrong
C. Not Wrong, Wrong D. Not Wrong, Not Wrong

Moral Scenarios

Figure 3: Examples of questions from our user study.

from different users (i.e., between-subjects). How-250

ever, we hypothesized that user behavior and accu-251

racy in the user-AI stage could be impacted by the252

user attempting the answer first, reducing ecologi-253

cal validity if we believe users typically go directly254

to AI in the real world. Thus, we keep both condi-255

tions, allowing us to test our hypothesis and explore256

nuances in user behavior.257

Incentivization. To incentivize participants in258

our study to answer questions correctly, we in-259

cluded a small bonus of $0.10 per correct answer,260

on top of a base compensation of $5.00 for complet-261

ing the entire task. We included these incentives262

to improve ecological validity, since our study is263

meant to capture how a real-world user would in-264

teract with an AI system if they have a question265

that they genuinely want to answer. In Appendix266

A.1, we discuss pilots we ran with and without in-267

centivization, as well as how we mitigated risks of268

cheating with external tools.269

3.2 Question Selection270

We consider five datasets from MMLU for our ex-271

periments: Elementary, High School, and College272

Mathematics, Conceptual Physics, and Moral Sce-273

narios. We include three math datasets since this274

subject still poses unique challenges for LLMs:275

for example, the HELM leaderboard (Liang et al.,276

2023) reports that while GPT-4o’s mean accuracy277

on MMLU is 84%, its accuracy is only 48% on278

High School Math and 51% on College Math.2279

2https://crfm.stanford.edu/helm/mmlu/latest/#/
leaderboard

Furthermore, the three math datasets stratify dif- 280

ferent levels of difficulty for humans, allowing us 281

to explore how user-AI effects change across diffi- 282

culty levels. We also include Conceptual Physics 283

and Moral Scenarios as two other reasoning do- 284

mains with very different types of problems and 285

differing levels of human expertise. In Figure 3, we 286

provide examples of questions from these datasets, 287

showcasing their diversity. 288

To aid with question selection, we use the annota- 289

tions from MMLU-Redux (Gema et al., 2024). The 290

authors recognized occasional quality issues with 291

the original MMLU, so for each MMLU dataset, 292

they sampled 100 questions from the test set uni- 293

formly at random and labeled them for errors. 294

While they found many errors in some datasets 295

(e.g., Virology), the majority of the questions (92%- 296

99%) in the datasets we chose passed their review. 297

As a second layer of quality control, we also ran 298

OpenAI’s advanced reasoning o1 model over the 299

100 questions and manually checked the questions 300

that o1 did not get correct. We kept the intersection 301

of questions that passed MMLU-Redux’s inspec- 302

tion and ours (with o1’s help). 303

Batches. To reduce variance in the number of 304

answers that each question received, we organized 305

the questions into batches and selected a random 306

batch per user, instead of selecting each question 307

randomly. For the math questions, each batch con- 308

sisted of 5 elementary, 5 high school, and 2 college 309

questions. We included fewer college questions 310

since we found in pilots that college questions were 311

too difficult for most users, so they tended to defer 312

to the LLM’s first answer without much interaction. 313

Based on the number of questions that passed in- 314

spection, we were able to create 19 math batches, 315

with 95 elementary, 95 high school, and 38 col- 316

lege questions in total. For Conceptual Physics and 317

Moral Scenarios, we constructed 7 batches of size 318

12, resulting in 84 questions for each subject. 319

3.3 Data Collection 320

We recruited workers on Prolific to participate as 321

users in our study (see eligibility criteria in Ap- 322

pendix A). For our full pre-registered study, we re- 323

cruited 650 workers, and we also ran two medium- 324

sized pilots (100 workers without incentives and 60 325

workers with incentives). When a user began the 326

study, they were randomly assigned to one of the 327

three subjects (60% probability for math, 20% for 328

conceptual physics, and 20% for moral scenarios) 329
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and assigned uniformly at random to one of that330

subject’s question batches, one of the two user-AI331

conditions, and one of the two models (GPT-4o332

and Llama-3.1-8b). Within the question batch, 3333

questions were randomly assigned to Phase 1 and334

9 to Phase 2. We also included an attention-check335

question for every user, which we found the vast336

majority (over 99%) of users passed.337

Compiling data over the three runs, we have338

10,831 confidence answers, 7,143 user-alone an-339

swers, and 7,337 user-AI answers and conversa-340

tions in ChatBench (see Table A3 for additional341

data statistics). While we include data from all342

three runs in ChatBench to provide a larger re-343

source for the community, for our analyses in the344

rest of the paper, we only use data from the workers345

in our full pre-registered study so that populations346

within our analysis are entirely comparable.347

4 Experimental Results348

In this section, we describe our experimental re-349

sults, including how we conducted AI-alone ex-350

periments, comparisons of AI-alone vs. user-AI351

results, and analyses of the user-AI conversations.352

For our main results comparing AI-alone vs. user-353

AI, we preregistered our analyses on AsPredicted.3354

We provide additional results and methodological355

details (e.g., statistical tests) in Appendix B.356

4.1 AI-Alone Experiments357

Our goal in this work is to understand how eval-358

uation conclusions change when we move from359

AI-alone to user-AI settings. However, even for360

a fixed benchmark, there can be multiple ways to361

evaluate an LLM on its own. First, we try letter-362

only methods, which require the model to answer363

with only a single letter corresponding to the se-364

lected answer option (“A” through “D”). This is365

the method used by Lee et al. (2023), along with366

various leaderboards, such as HELM (Liang et al.,367

2023), to standardize the answer format. We try368

two letter-only variants, zero-shot and few-shot,369

where we prepend the 5 examples from the MMLU370

“dev” set to the prompt as in-context examples.371

We also introduce a more realistic AI-alone tech-372

nique which serves as a better proxy for user ex-373

perience by not constraining the model’s response374

format. The method, which we call free-text, is375

very simple: (1) prompt the evaluated model with376

the concatenated question text and answer options,377

3https://aspredicted.org/n84n-sn3f.pdf.

without any additional instructions, (2) use GPT- 378

4o to extract an answer (if any) from the response. 379

We include the full prompts for all three AI-alone 380

methods in Listings 1-4. 381

We ran these three AI-alone methods on the two 382

models and all 396 questions from our user study, 383

gathering 50 answers per model and question. As 384

shown in Figure 4, our few-shot letter-only results 385

for GPT-4o approximately match those reported 386

on the HELM leaderboard per dataset (which is 387

also few-shot letter-only, but uses the entire test 388

set). While prior work, like HELM, often uses 389

temperatures of 0 for multiple choice QA, we used 390

a temperature of 0.7, since we wanted to perfectly 391

match the model parameters used in the user study, 392

and 0.7 is a more realistic temperature for real- 393

world AI chatbots. 394

4.2 AI-Alone vs. User-AI 395

Dataset-level accuracy. We visualize our main 396

results in Figure 4, which shows mean accuracy 397

per model and dataset, over user-alone (red), user- 398

AI (purple), and AI-alone (blue). First, we see 399

that few-shot letter-only (light blue) is a very poor 400

predictor of user-AI performance, with a mean ab- 401

solute deviation of 21 percentage points, averaged 402

over the 10 dataset and model pairs. With a few 403

exceptions—specifically Conceptual Physics for 404

Llama-3.1-8b and College Mathematics and Moral 405

Scenarios for GPT-4o—all differences are statisti- 406

cally significant. Results are similar for zero-shot 407

letter-only, which we report in Tables A1-A2. No- 408

tably, our AI-alone method, free-text (dark blue), is 409

a much better predictor of user-AI accuracy, reduc- 410

ing the mean absolute deviation to 10 percentage 411

points. However, it still differs significantly from 412

user-AI performance, notably for Moral Scenar- 413

ios with Llama-3.1-8b and for all datasets except 414

Moral Scenarios with GPT-4o. 415

Our results also reveal the complexity of com- 416

bining humans and AI, as the size of gaps and or- 417

dering between user-alone, user-AI, and AI-alone 418

vary over models and datasets. For example, for 419

the math datasets, GPT-4o performs quite well on 420

its own (using free-text), while humans struggle on 421

their own, especially for high school and college. 422

In these cases, user-AI accuracy is between the two, 423

significantly better than user-alone and significantly 424

worse than AI-alone. Meanwhile, Llama-3.1-8b 425

performs significantly worse than GPT-4o on the 426

math datasets, but we do not see a further drop in 427

performance from AI-alone to user-AI. In the fol- 428
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Figure 4: Mean accuracy per model and dataset, comparing user-alone (red), user-AI (purple), AI-alone free-text
(dark blue), and AI-alone letter-only few-shot (light blue). See Tables A1-A2 for numbers and statistical tests.

lowing section, we uncover counterveilling factors429

that explain these results: on one hand, users in-430

troduce ambiguity compared to AI-alone methods,431

which include the entire question text and answer432

options; on the other hand, users can sometimes433

recognize mistakes in AI reasoning, of which there434

are more for Llama-3.1-8b. Finally, our results re-435

veal that even when AI-alone benchmarks report436

a large gap in performance between two models,437

this gap can become much smaller after incorpo-438

rating user interactions. Comparing GPT-4o and439

Llama-3.1-8b, their average gap in AI-alone free-440

text accuracy is 25 percentage points, but this gap441

shrinks to less than 10 percentage points in user-AI442

interactions (9 percentage points for direct-to-AI443

and 5 percentage points for answer-first).444

Question-level accuracy. Besides mean accu-445

racy, we can also measure the correlation in per-446

question accuracies. We find that the Pearson cor-447

relation between AI-alone free-text and user-AI448

is only r = 0.45 for direct-to-AI and r = 0.46449

for answer-first. While correlations may be lower450

because per-question user-AI accuracies are imper-451

fectly measured, the free-text correlation is still452

well below what we would expect if user-AI ac-453

curacies were drawn from the same distribution454

as free-text, which would range from r = 0.88 to455

0.94 (Section B.2). We also examine the correla-456

tion with per-question differences in user-AI and457

user-alone accuracy, since it may be more reason-458

able to expect AI-alone to predict the improvement459

the user makes with AI assistance, instead of the460

overall accuracy. However, the correlations remain461

Figure 5: Fraction of user-AI interactions that mirror AI
benchmark, by subject and model.

low, at r = 0.26 for direct-to-AI and r = 0.27 462

for answer-first, suggesting that AI-alone cannot 463

predict improvement very well either. Similarly, 464

user-AI accuracy cannot be reliably predicted from 465

user-alone and AI-alone accuracies at the question 466

level. A linear model yields a correlation of 0.55 467

for predicting user-AI accuracies from free-text 468

and answer-first accuracies, and 0.63 when using 469

free-text and direct-to-AI accuracies. 470

4.3 Characterizing User-AI Conversations 471

Our summary results show that user-AI accuracies 472

are significantly different from AI-alone accuracies. 473

To better understand what drives these differences 474

we use a separate LLM as an annotator to charac- 475

terize the user-AI conversations. For each user-AI 476

conversation, we gather the full log of the conversa- 477

tion and its associated metadata (e.g., the question 478
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ID, the correct answer, the user’s selected answer,479

etc.), and prompt a separate instance of GPT-4o480

to use this information to extract the answers to481

several classification questions: whether the first482

substantive user prompt was a question, whether483

the first user question was a near-exact rephrasing484

of the original question or one of several other pos-485

sibilities, and whether the first and last AI answers486

were correct (Listing 5).487

How often does the conversation follow what488

we might expect if AI benchmarks were faithful489

proxies of human-AI interaction? We say a con-490

versation mirrors an AI benchmark if (1) the user’s491

first substantive prompt is a near-exact rephrasing492

of the question (otherwise the user is injecting their493

own knowledge or information into the interaction),494

(2) the LLM responds with an answer, and (3) the495

user submits that answer. In Figure 5, we see that496

only 34% of all interactions mirror AI benchmarks,497

revealing the extent to which user-AI interactions498

diverge from AI benchmarks. Among the remain-499

ing interactions, we find that a primary source of500

divergence is the user asking a related but different501

question, which is often ambiguous (e.g., leaving502

out critical information for a math problem). On503

the other hand, we find that users occasionally cor-504

rect the AI model’s wrong answers, especially with505

the weaker model, Llama-3.1-8b (Figure B1).506

Using data from the answer-first condition also507

reveals that AI helps humans more often than it hin-508

ders them. When the same user answers a question509

first without AI and then with AI assistance, more510

than half (54%) of incorrect user-alone answers511

are corrected with AI support, while only 10% of512

correct user-alone answers turn incorrect with AI513

assistance.514

5 Simulating User-AI Conversations515

From our user study, we showed that incorporat-516

ing user interactions significantly changes evalua-517

tion conclusions, compared to AI-alone evaluation.518

However, data from human users is costly and time-519

consuming to collect, motivating the development520

of a user simulator to scale interactive evaluation.521

In this section, we describe our user simulator and522

present experimental results.523

5.1 Fine-Tuning a User Simulator524

We define a new user simulator that we can fine-525

tune on our collected user data, by mimicking the526

experience of users in our study. First, we seed527

You are a human 
user interacting 
with an AI system, 
and you are trying 
to answer the 
following question:
A number is rounded 
to the nearest 
hundred. The result is 
500. Which number 
could not be the 
number before it was 
rounded to the 
nearest hundred?
A. 458
B. 463
C. 547
D. 559

Simulator Task 1
Generate the first prompt you would 
say to the system to get started with 
answering your question.

Simulator Task 2

Here is your conversation so far with 
the AI system:
===================
YOU: […]
SYSTEM: […]
===================
If your question is answered by this 
conversation, return ONLY the 
answer in the format "Answer: 
<letter>". If not, generate the next 
prompt you would say to the system 
to answer your question. 

Figure 6: Example of prompts to our two-step user
simulator, using one of the example questions from
Figure 3. See Listings 6-8 for complete prompts.

the user simulator with the MMLU question, as we 528

did with human users in our study, and we tell the 529

simulator to interact with an AI system to answer 530

its question (Figure 6, left). Then, we break the 531

simulator’s task into two subtasks: (1) when there 532

is no conversation yet, we prompt the simulator to 533

generate its first prompt as a user (Figure 6, top 534

right), (2) given the conversation so far, we prompt 535

the simulator to either answer the question in the 536

form “Answer: LETTER”, if the question has been 537

answered by the conversation, or if not, generate 538

the next user prompt (Figure 6, bottom right). 539

We then transform the real user-AI conversa- 540

tions from our study into training examples for 541

supervised fine-tuning. Each conversation with k 542

user utterances yields k+1 training examples: one 543

example in the Task 1 format where the gold stan- 544

dard response is the real user’s first utterance; k−1 545

examples in the Task 2 format where the gold stan- 546

dard response is each of the remaining utterances 547

(providing the conversation up to that utterance); 548

and one example in the Task 2 format with the full 549

conversation and the gold standard response being 550

“Answer: LETTER” corresponding to the user’s 551

selected multiple choice option. 552

5.2 User Simulator Experiments 553

For these experiments, we use GPT-4o as our simu- 554

lator. We try four baselines: the two AI-alone meth- 555

ods, the two-step simulator without fine-tuning, 556

and the user simulator from IQA-EVAL (Li et al., 557

2024a). Their simulator, designed with prompt en- 558

gineering, receives a prompt consisting of a role 559

description (“You are mimicking a human.”), a task 560
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AI: GPT-4o AI: Llama-3.1-8b
Type Method Corr. ↑ MAE ↓ BLEU ↑ ROUGE ↑ Corr. MAE BLEU ROUGE

AI-alone Letter-only few-shot 0.33 0.31 – – 0.24 0.41 – –
AI-alone Free-text 0.44 0.22 – – 0.57 0.22 – –
Sim-AI IQA-EVAL 0.43 0.20 0.085 0.311 0.51 0.19 0.086 0.313
Sim-AI Two-Step 0.36 0.22 0.102 0.347 0.42 0.21 0.102 0.346
Sim-AI ChatBench-Sim 0.63 0.15 0.261 0.460 0.63 0.17 0.258 0.457

Table 1: Comparing to user-AI conversations: AI-alone methods, IQA-EVAL (Li et al., 2024a), and the two-step
simulator before (Two-Step) and after fine-tuning on ChatBench (ChatBench-Sim). Top-performing is bolded.

description (“You are trying to choose the correct561

answer for the given question.”), and discussion562

instructions (e.g., “In each turn, please only ask563

one sub-question to interact with the assistant.”);564

see Listing 9 for the full prompt. We compare these565

baselines to our model, the two-step simulator fine-566

tuned on ChatBench (“ChatBench-Sim”).567

In our fine-tuning experiments, we randomly568

split the questions from our user study into 60% for569

training (n = 237) and withheld 40% for testing570

(n = 159), and we fine-tuned on all user-AI con-571

versations for the train questions. For all three sim-572

ulator methods, we test them on the held-out test573

questions by generating conversations entirely from574

scratch, given only the question (in contrast, an eas-575

ier but less realistic set-up would be to provide the576

real conversation up to the nth turn and have the577

simulator generate the next user utterance).578

Evaluation metrics. We generate 10 simulator-579

AI conversations per test question and compare to580

real user-AI conversations for the same question581

and AI system. To evaluate whether accuracies are582

similar, we measure the correlation and mean abso-583

lute error (MAE) between simulator-AI vs. user-AI584

accuracies, only keeping test questions where we585

have at least 10 user-AI answers (n = 146). To586

evaluate whether the simulator’s generated utter-587

ances are realistic, we measure the average BLEU588

and ROUGE scores of the simulator’s first prompt589

compared to the real user’s first prompt.590

Results. As shown in Table 1, fine-tuning our591

simulator yields large gains, with a 22-27 point592

increase in correlation and a 30-52% decrease in593

MSE. As shown in Figures B3-B4, a primary fail-594

ure mode of the simulator before fine-tuning is that595

it cannot replicate human mistakes and greatly over-596

estimates user-AI performance, producing far more597

questions with accuracies of 1.0 than we see in the598

real user-AI distribution, while the fine-tuned sim-599

ulator matches the real distribution more closely.600

We also find that fine-tuning improves the real-601

ism of the simulator’s generated utterances, with 602

11-16 point improvements in BLEU and ROUGE. 603

The fine-tuned simulator also outperforms both AI- 604

alone methods and IQA-EVAL across metrics. 605

6 Conclusion 606

We have shown that evaluation conclusions change 607

significantly from AI-alone benchmarks to user-AI 608

interactions, across question domains, AI models, 609

AI-alone methods, and user-AI conditions. Our 610

results motivate the need for more realistic eval- 611

uations of AI models that incorporate user inter- 612

actions. However, this goal is difficult to achieve, 613

as user data is expensive to collect. To make this 614

goal more feasible, we both release a new large- 615

scale dataset of user interactions, ChatBench, and 616

demonstrate the potential of building user simula- 617

tors to scale interactive evaluation. 618

The changes we see from AI-alone to user-AI 619

accuracies are often large enough to affect quali- 620

tative conclusions about the models. For example, 621

what can seem like a large disparity between mod- 622

els on AI-alone benchmarks (e.g., 25 percentage 623

point gap between GPT-4o and Llama-3.1-8b on 624

free-text) can shrink to much smaller gaps after 625

incorporating user interactions (e.g., 5 point gap 626

for answer-first). These changes could impact real- 627

world decisions, such as which model to deploy 628

(e.g., a lightweight, on-device model that performs 629

only slightly worse than a much larger off-device 630

model might be preferable in some circumstances). 631

To this end, in future work we hope to understand 632

how AI-alone benchmarks are currently used to 633

make decisions and how those decisions might 634

change after taking into account human interac- 635

tions. We also hope to expand our analysis to more 636

benchmarks and non-QA tasks. Finally, we hope 637

to develop training techniques to build even more 638

realistic user simulators: while we see large im- 639

provements from fine-tuning on ChatBench, the 640

best correlations only reach 0.63, leaving room for 641

future improvement and innovation. 642
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7 Limitations643

Our work has several limitations, which we tried644

to mitigate but should be taken into consideration645

when interpreting the results.646

Coverage. Our user study has limited coverage647

of possible benchmarks and user tasks. We chose to648

focus on the MMLU benchmark (Hendrycks et al.,649

2021) and question-answering as our task, since650

MMLU is one of the most popular LLM bench-651

marks and it covers a wide range of subjects, so652

we could test multiple subjects in comparable ways653

and with minimal changes to our user study. We be-654

gan with question-answering since we can naturally655

transform a benchmark question into a user-AI con-656

versation, where the user is trying to answer the657

question. However, future work should investigate658

whether results are consistent on other benchmarks659

and/or tasks, especially more open-ended genera-660

tion tasks that are common in real-world user-AI661

interactions (Zhao et al., 2024).662

Ecological validity. Our user study is meant to663

capture how a user would act if they have a ques-664

tion in mind and they are interacting with an AI665

system to answer their question. However, since666

we wanted to match the user’s underlying question667

with the MMLU questions, we had to tell the user668

what question to answer, which could lead to differ-669

ent behavior compared to if they were intrinsically670

motivated to answer a question. To mitigate this,671

we included a small incentive ($0.10 per correct672

answer), so that they would try to get the correct673

answer, and we filtered out users who failed the at-674

tention check; however, it is still possible that users’675

behaviors would be different in the real world. Our676

study setting was also different from real world677

question-answering: we recruited workers on Pro-678

lific to do our study, where they answered 13 ques-679

tions consecutively in our interface. Still, we tried680

to match real-world settings, such as choosing mod-681

els they might interact with in the real world (e.g.,682

GPT-4o), using realistic model parameters (e.g.,683

temperature of 0.7), and not guiding their prompts684

to the AI system at all, besides requiring at least685

one interaction per question.686

8 Broader Impacts and Ethical687

Considerations688

Our work is driven by broader impacts: we seek689

to make AI evaluation more realistic and human-690

centered, by investigating how evaluation conclu-691

sions change when we incorporate human interac- 692

tions. With our carefully designed user study, we 693

show that evaluation conclusions change signifi- 694

cantly from AI-alone to user-AI settings (for the 695

same set of questions), and these results hold over 696

different subject areas, AI models, AI-alone meth- 697

ods, and user-AI conditions. We hope that our work 698

motivates AI researchers and practitioners to think 699

more carefully about human-AI interactions when 700

they evaluate AI systems, instead of only using 701

AI-alone benchmarks. 702

The direction of evaluating human-AI interac- 703

tions also raises some ethical considerations. First, 704

we should seek to recruit diverse human partici- 705

pants, since an AI system that works well for one 706

individual or group may not work well for another 707

(e.g., depending on ability, language, preferences, 708

etc.). Second, user studies should be run ethically: 709

participants should be paid fairly, they should pro- 710

vide informed consent about how their data will 711

be used, and their data should be anonymized and 712

personal information removed (e.g., if they tell the 713

AI system their name). Third, the possibility of 714

simulating humans in human-AI interactions is ex- 715

citing and could make interactive evaluation feasi- 716

ble at scale, but LLM-based simulations of humans 717

also have risks that need to be addressed, such as 718

their possibilities for stereotyping, bias, and flat- 719

tening populations (Cheng et al., 2023b,a; Wang 720

et al., 2024). Researchers hoping to build and de- 721

ploy user simulators should extensively probe for 722

such biases, especially if user demographics are 723

provided in simulator prompts. 724
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A Details on User Study882

Task Details. We provide screenshots of all of883

the pages in our user study interface, including884

the Introduction Page (Figure A3), Phase 1 Tu-885

torial (Figure A4), Confidence Page (Figure A5),886

User-Alone Page (Figure A6), Phase 2 Instructions887

(Figure A7), Phase 2 Tutorial (Figure A8), User-AI888

Page (Figure 2), and Feedback Page (Figure A9).889

All Prolific workers who were located in the US,890

fluent in English, and had not participated in one of891

our pilots were eligible for our study. We used Pro-892

lific’s standard sample, which distributed our study893

to available participants. Based on early pilots, we894

estimated that the task took around 25 minutes. We895

paid all participants $5.00 upon completion of the896

entire task. We experimented with offering a small897

bonus per correct answer, which we discuss below.898

Our user study was approved by our institution’s899

review board, which we will provide more details900

once anonymity is lifted.901

Figure A1: Comparing results from Pilot 1 (without
incentives) and Pilot 2 (with incentives).

A.1 Pilots and Incentivization 902

Pilot 1: no incentives. We ran one medium-sized 903

pilot with 100 participants where we tested all 904

datasets and models. At this point, we also included 905

GPT-4o-mini as a third model, in addition to GPT- 906

4o and Llama-3.1-8b. In this pilot, we did not in- 907

clude incentives for correct answers. Results from 908

this pilot did not show significant differences in 909

accuracy between GPT-4o and GPT-4o-mini, so we 910

decided to drop GPT-4o-mini from our full study, 911

so that we could gather more answers per model. 912

Pilot 2: testing incentives. In our second pilot, 913

we wanted to test the effect of including a small 914

incentive for getting the correct answer, hypothesiz- 915

ing that it might improve the ecological validity of 916

the study since users would try harder to answer the 917

questions correctly. We included a small bonus of 918

$0.10 per correct answer, with a maximum bonus 919

of $1.30 for 13 questions, on top of the same base 920

compensation of $5.00 for completing the task. 921

While this bonus could help to improve ecolog- 922

ical validity, there was a risk that the incentives 923

result in users cheating on the study, such as by 924

searching for the question on Google or ChatGPT. 925

To mitigate this risk, first we repeatedly required 926

users to acknowledge that they would not use exter- 927

nal tools (Figures A3 and A7) and we said, “Com- 928

pensation could be affected if we detect that you 929

are using external tool.” Second, we ran a second 930

medium-sized pilot with incentives, with 60 partici- 931

pants on the three math datasets, and we compared 932

the results between Pilots 1 and 2 to see if Pilot 2 933

had unrealistic increases in accuracy that could not 934
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be explained by slightly more user effort.935

We visualize the mean accuracies per dataset and936

model in Figure A1. We found that, as expected, in-937

centives tended to improve performance a little: out938

of 27 combinations of math datasets (3), models (3),939

and answer types (i.e., user-alone, user-AI answer-940

first, and user-AI direct-to-AI), the pilot with incen-941

tives had a higher mean accuracy 19 times. We also942

found that conversations were slightly longer with943

incentives. However, the overall improvement in944

accuracy was very small, only 3 percentage points,945

meaning we did not see unrealistic improvements946

that would suggest use of external tools. We also947

continued to see the gaps in user-AI performance948

between the GPT models and Llama-3.1-8b, sug-949

gesting users were basing their answers on the AI950

Chatbot given to them. As further evidence of the951

use of the AI Chatbot, and not external tools, we952

found that in the vast majority of cases (63 out953

of 66 examples) where the user changed from an954

incorrect user-alone answer to a correct user-AI955

answer, that new answer matched the answer given956

by the AI model in the user-AI conversation. Since957

we found that incentives seemed to encourage users958

to try slightly harder, and we did not see evidence959

of cheating, we decided to keep incentives for our960

full study, but our pilot comparison shows that our961

results were not overly sensitive to this decision.962

A.2 ChatBench963

In our full study, we recruited 650 participants and964

ran the study with incentives. Our dataset, Chat-965

Bench, compiles data over the full study and the966

two pilots. In Table A3, we provide additional967

data statistics, including how many answers we col-968

lected per model, dataset, condition, and answer969

type (user-alone or user-AI).970

When releasing ChatBench, we will be careful971

to remove all personally identifying information972

(PII). We do not expect that there will be much973

PII, since the participants were clearly instructed to974

use the AI Chatbot to answer MMLU benchmark975

questions, not for their personal use, and we limited976

their number of messages per question and they had977

a time limit on the overall task. However, there is978

a risk, since participants could send any message979

they wanted to the AI Chatbot, so we will be careful980

to remove PII.981
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Dataset Model Comparison Acc1 SE1 Acc2 SE2 z-value p-value

Elementary Math GPT-4o AI letter zero shot vs. UserAI direct to ai 0.73 0.04 0.92 0.02 -3.92 <0.01
Elementary Math GPT-4o AI letter zero shot vs. UserAI answer first 0.73 0.04 0.90 0.02 -3.43 <0.01
Elementary Math GPT-4o AI letter few shot vs. UserAI direct to ai 0.74 0.04 0.92 0.02 -3.83 <0.01
Elementary Math GPT-4o AI letter few shot vs. UserAI answer first 0.74 0.04 0.90 0.02 -3.34 <0.01
Elementary Math GPT-4o AI free text vs. UserAI direct to ai 0.99 0.01 0.92 0.02 3.03 <0.01

Elementary Math GPT-4o AI free text vs. UserAI answer first 0.99 0.01 0.90 0.02 4.04 <0.01
Elementary Math GPT-4o User alone vs. UserAI direct to ai 0.78 0.03 0.92 0.02 -4.21 <0.01
Elementary Math GPT-4o User alone vs. UserAI answer first 0.78 0.03 0.90 0.02 -3.52 <0.01
High School Math GPT-4o AI letter zero shot vs. UserAI direct to ai 0.51 0.05 0.70 0.04 -3.20 <0.01
High School Math GPT-4o AI letter zero shot vs. UserAI answer first 0.51 0.05 0.73 0.03 -3.92 <0.01

High School Math GPT-4o AI letter few shot vs. UserAI direct to ai 0.49 0.04 0.70 0.04 -3.57 <0.01
High School Math GPT-4o AI letter few shot vs. UserAI answer first 0.49 0.04 0.73 0.03 -4.33 <0.01
High School Math GPT-4o AI free text vs. UserAI direct to ai 0.85 0.03 0.70 0.04 3.14 <0.01
High School Math GPT-4o AI free text vs. UserAI answer first 0.85 0.03 0.73 0.03 2.73 <0.01
High School Math GPT-4o User alone vs. UserAI direct to ai 0.41 0.03 0.70 0.04 -5.88 <0.01

High School Math GPT-4o User alone vs. UserAI answer first 0.41 0.03 0.73 0.03 -7.03 <0.01
College Math GPT-4o AI letter zero shot vs. UserAI direct to ai 0.45 0.07 0.52 0.08 -0.61 0.54
College Math GPT-4o AI letter zero shot vs. UserAI answer first 0.45 0.07 0.52 0.07 -0.72 0.47
College Math GPT-4o AI letter few shot vs. UserAI direct to ai 0.44 0.07 0.52 0.08 -0.72 0.47
College Math GPT-4o AI letter few shot vs. UserAI answer first 0.44 0.07 0.52 0.07 -0.85 0.40

College Math GPT-4o AI free text vs. UserAI direct to ai 0.73 0.06 0.52 0.08 2.23 0.03
College Math GPT-4o AI free text vs. UserAI answer first 0.73 0.06 0.52 0.07 2.40 0.02
College Math GPT-4o User alone vs. UserAI direct to ai 0.28 0.04 0.52 0.08 -2.67 <0.01
College Math GPT-4o User alone vs. UserAI answer first 0.28 0.04 0.52 0.07 -3.10 <0.01
Conceptual Physics GPT-4o AI letter zero shot vs. UserAI direct to ai 0.91 0.03 0.84 0.03 1.74 0.08

Conceptual Physics GPT-4o AI letter zero shot vs. UserAI answer first 0.91 0.03 0.84 0.03 1.70 0.09
Conceptual Physics GPT-4o AI letter few shot vs. UserAI direct to ai 0.96 0.02 0.84 0.03 3.22 <0.01
Conceptual Physics GPT-4o AI letter few shot vs. UserAI answer first 0.96 0.02 0.84 0.03 3.22 <0.01
Conceptual Physics GPT-4o AI free text vs. UserAI direct to ai 0.97 0.02 0.84 0.03 3.62 <0.01
Conceptual Physics GPT-4o AI free text vs. UserAI answer first 0.97 0.02 0.84 0.03 3.63 <0.01

Conceptual Physics GPT-4o User alone vs. UserAI direct to ai 0.55 0.03 0.84 0.03 -6.48 <0.01
Conceptual Physics GPT-4o User alone vs. UserAI answer first 0.55 0.03 0.84 0.03 -6.69 <0.01
Moral Scenarios GPT-4o AI letter zero shot vs. UserAI direct to ai 0.71 0.05 0.79 0.03 -1.47 0.14
Moral Scenarios GPT-4o AI letter zero shot vs. UserAI answer first 0.71 0.05 0.78 0.04 -1.13 0.26
Moral Scenarios GPT-4o AI letter few shot vs. UserAI direct to ai 0.80 0.04 0.79 0.03 0.27 0.79

Moral Scenarios GPT-4o AI letter few shot vs. UserAI answer first 0.80 0.04 0.78 0.04 0.49 0.63
Moral Scenarios GPT-4o AI free text vs. UserAI direct to ai 0.72 0.05 0.79 0.03 -1.26 0.21
Moral Scenarios GPT-4o AI free text vs. UserAI answer first 0.72 0.05 0.78 0.04 -0.93 0.35
Moral Scenarios GPT-4o User alone vs. UserAI direct to ai 0.73 0.03 0.79 0.03 -1.54 0.12
Moral Scenarios GPT-4o User alone vs. UserAI answer first 0.73 0.03 0.78 0.04 -1.05 0.29

Table A1: Results per dataset for GPT-4o, including AI-alone vs. user-AI comparisons and user-alone vs. user-AI comparisons.
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Dataset Model Comparison Acc1 SE1 Acc2 SE2 z-value p-value

Elementary Math Llama-3.1-8b AI letter zero shot vs. UserAI direct to ai 0.45 0.04 0.86 0.03 -8.58 <0.01
Elementary Math Llama-3.1-8b AI letter zero shot vs. UserAI answer first 0.45 0.04 0.90 0.02 -10.50 <0.01
Elementary Math Llama-3.1-8b AI letter few shot vs. UserAI direct to ai 0.43 0.03 0.86 0.03 -9.39 <0.01
Elementary Math Llama-3.1-8b AI letter few shot vs. UserAI answer first 0.43 0.03 0.90 0.02 -11.53 <0.01
Elementary Math Llama-3.1-8b AI free text vs. UserAI direct to ai 0.88 0.03 0.86 0.03 0.56 0.58

Elementary Math Llama-3.1-8b AI free text vs. UserAI answer first 0.88 0.03 0.90 0.02 -0.65 0.51
Elementary Math Llama-3.1-8b User alone vs. UserAI direct to ai 0.81 0.03 0.86 0.03 -1.26 0.21
Elementary Math Llama-3.1-8b User alone vs. UserAI answer first 0.81 0.03 0.90 0.02 -2.70 <0.01
High School Math Llama-3.1-8b AI letter zero shot vs. UserAI direct to ai 0.32 0.03 0.62 0.04 -6.14 <0.01
High School Math Llama-3.1-8b AI letter zero shot vs. UserAI answer first 0.32 0.03 0.64 0.04 -6.89 <0.01

High School Math Llama-3.1-8b AI letter few shot vs. UserAI direct to ai 0.30 0.02 0.62 0.04 -7.09 <0.01
High School Math Llama-3.1-8b AI letter few shot vs. UserAI answer first 0.30 0.02 0.64 0.04 -7.98 <0.01
High School Math Llama-3.1-8b AI free text vs. UserAI direct to ai 0.64 0.04 0.62 0.04 0.24 0.81
High School Math Llama-3.1-8b AI free text vs. UserAI answer first 0.64 0.04 0.64 0.04 -0.16 0.87
High School Math Llama-3.1-8b User alone vs. UserAI direct to ai 0.45 0.03 0.62 0.04 -3.37 <0.01

High School Math Llama-3.1-8b User alone vs. UserAI answer first 0.45 0.03 0.64 0.04 -3.93 <0.01
College Math Llama-3.1-8b AI letter zero shot vs. UserAI direct to ai 0.35 0.04 0.46 0.07 -1.37 0.17
College Math Llama-3.1-8b AI letter zero shot vs. UserAI answer first 0.35 0.04 0.48 0.07 -1.56 0.12
College Math Llama-3.1-8b AI letter few shot vs. UserAI direct to ai 0.30 0.04 0.46 0.07 -1.97 0.05
College Math Llama-3.1-8b AI letter few shot vs. UserAI answer first 0.30 0.04 0.48 0.07 -2.18 0.03

College Math Llama-3.1-8b AI free text vs. UserAI direct to ai 0.41 0.05 0.46 0.07 -0.57 0.57
College Math Llama-3.1-8b AI free text vs. UserAI answer first 0.41 0.05 0.48 0.07 -0.74 0.46
College Math Llama-3.1-8b User alone vs. UserAI direct to ai 0.40 0.04 0.46 0.07 -0.75 0.46
College Math Llama-3.1-8b User alone vs. UserAI answer first 0.40 0.04 0.48 0.07 -0.93 0.35
Conceptual Physics Llama-3.1-8b AI letter zero shot vs. UserAI direct to ai 0.53 0.05 0.67 0.04 -2.25 0.02

Conceptual Physics Llama-3.1-8b AI letter zero shot vs. UserAI answer first 0.53 0.05 0.73 0.04 -3.22 <0.01
Conceptual Physics Llama-3.1-8b AI letter few shot vs. UserAI direct to ai 0.57 0.04 0.67 0.04 -1.64 0.10
Conceptual Physics Llama-3.1-8b AI letter few shot vs. UserAI answer first 0.57 0.04 0.73 0.04 -2.70 <0.01
Conceptual Physics Llama-3.1-8b AI free text vs. UserAI direct to ai 0.62 0.04 0.67 0.04 -0.77 0.44
Conceptual Physics Llama-3.1-8b AI free text vs. UserAI answer first 0.62 0.04 0.73 0.04 -1.80 0.07

Conceptual Physics Llama-3.1-8b User alone vs. UserAI direct to ai 0.46 0.03 0.67 0.04 -3.91 <0.01
Conceptual Physics Llama-3.1-8b User alone vs. UserAI answer first 0.46 0.03 0.73 0.04 -4.97 <0.01
Moral Scenarios Llama-3.1-8b AI letter zero shot vs. UserAI direct to ai 0.40 0.03 0.72 0.04 -6.01 <0.01
Moral Scenarios Llama-3.1-8b AI letter zero shot vs. UserAI answer first 0.40 0.03 0.74 0.04 -7.42 <0.01
Moral Scenarios Llama-3.1-8b AI letter few shot vs. UserAI direct to ai 0.31 0.03 0.72 0.04 -7.35 <0.01

Moral Scenarios Llama-3.1-8b AI letter few shot vs. UserAI answer first 0.31 0.03 0.74 0.04 -8.86 <0.01
Moral Scenarios Llama-3.1-8b AI free text vs. UserAI direct to ai 0.49 0.03 0.72 0.04 -4.07 <0.01
Moral Scenarios Llama-3.1-8b AI free text vs. UserAI answer first 0.49 0.03 0.74 0.04 -5.15 <0.01
Moral Scenarios Llama-3.1-8b User alone vs. UserAI direct to ai 0.79 0.03 0.72 0.04 1.34 0.18
Moral Scenarios Llama-3.1-8b User alone vs. UserAI answer first 0.79 0.03 0.74 0.04 1.00 0.32

Table A2: Results per dataset for Llama-3.1-8b, including AI-alone vs. user-AI comparisons and user-alone vs. user-AI
comparisons.
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Model Dataset Condition Answer Type # Answers

gpt-4o college mathematics answer-first user-AI 134
user-alone 283

direct-to-AI user-AI 116
user-alone 121

conceptual physics answer-first user-AI 318
user-alone 425

direct-to-AI user-AI 352
user-alone 117

elementary mathematics answer-first user-AI 542
user-alone 698

direct-to-AI user-AI 463
user-alone 122

high school mathematics answer-first user-AI 540
user-alone 689

direct-to-AI user-AI 465
user-alone 123

moral scenarios answer-first user-AI 242
user-alone 332

direct-to-AI user-AI 398
user-alone 135

llama-3.1-8b college mathematics answer-first user-AI 118
user-alone 249

direct-to-AI user-AI 115
user-alone 123

conceptual physics answer-first user-AI 317
user-alone 429

direct-to-AI user-AI 333
user-alone 112

elementary mathematics answer-first user-AI 481
user-alone 615

direct-to-AI user-AI 462
user-alone 123

high school mathematics answer-first user-AI 475
user-alone 605

direct-to-AI user-AI 464
user-alone 125

moral scenarios answer-first user-AI 349
user-alone 471

direct-to-AI user-AI 231
user-alone 81

Table A3: Dataset statistics for ChatBench.
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Figure A2: Consent page. Parts are redacted to remain anonymous.
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Figure A3: Introduction page. Explains the task to users and ensures that they do not consult external tools.

Figure A4: Phase 1 Tutorial. Provides an example of a Phase 1 question before the user begins Phase 1.
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Figure A5: Confidence page. Included per-question in both phases before the user tries to answer each question.

Figure A6: User-alone page. Users answer all questions on their own in Phase 1 and, if they are in the answer-first
condition, answer each question in Phase 2 on their own first before answering with AI.
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Figure A7: Phase 2 Instructions. Explains to users what they can expect in Phase 2 and reminds them not to use
external tools. This screenshot shows instructions for a user in the answer-first condition. Users in the direct-to-AI
condition see similar instructions, but without Step 3.

Figure A8: Phase 2 Tutorial. Provides an example of a Phase 2 question before the user begins Phase 2.
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Figure A9: Feedback page. Final page of the task, where users leave free-text feedback to various questions.
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B Details on Analyses and Experiments982

We download the MMLU datasets4 (Hendrycks983

et al., 2021) and MMLU-Redux datasets5 (Gema984

et al., 2024) from Hugging Face. The datasets985

are protected by the MIT and CC-by-4.0 licenses,986

respectively, allowing our use of this data in our987

research.988

B.1 AI-Alone experiments989

Here we provide the exact prompts used for each of990

the AI-alone methods: few-shot letter-only (Listing991

1), zero-shot letter-only (Listing 2), and the two992

prompts for free-text (Listing 3 and Listing 4). For993

all the methods, the system prompt was “You are a994

helpful AI assistant.”995

Listing 1: Prompt for few-shot letter-only, taken from
HELM. In-context examples are the five examples in
MMLU’s “dev” set for this dataset.

996
Answer with only a single letter.997

998
The following are multiple choice questions (with answers)999

about {dataset }.1000
1001

{example_1}1002
A. {example_1_option_A}1003
B. {example_1_option_B}1004
C. {example_1_option_C}1005
D. {example_1_option_D}1006
Answer: {example_1_answer}1007

1008
...1009

1010
{example_5}1011
A. {example_5_option_A}1012
B. {example_5_option_B}1013
C. {example_5_option_C}1014
D. {example_5_option_D}1015
Answer: {example_5_answer}1016

1017
{question}1018
A. {option_A}1019
B. {option_B}1020
C. {option_C}1021
D. {option_D}1022
Answer:10231024

Listing 2: Prompt for zero-shot letter-only, using the
same language as few-shot but dropping the in-context
examples.

1025
Answer with only a single letter.1026

1027
{question}1028
A. {option_A}1029
B. {option_B}1030
C. {option_C}1031
D. {option_D}1032
Answer:10331034

Listing 3: First prompt for AI-alone free-text. This
prompt to generate the model’s free-text response is
simply the question and answer options concatenated.

1035
{question}1036
A. {option_A}1037
B. {option_B}1038
C. {option_C}1039
D. {option_D}10401041

4https://huggingface.co/datasets/cais/mmlu
5https://huggingface.co/datasets/

edinburgh-dawg/mmlu-redux-2.0

Listing 4: Second prompt for AI-alone free-text. This
second prompt instructs GPT-4o to extract an answer
(if any) from the model’s free-text response. In order
to not bias the answer extraction, we do not include the
correct answer in this prompt.

1042
Here is a question that someone was asked: 1043

1044
================================================ 1045
{question} 1046
================================================ 1047

1048
Here is a response: 1049

1050
================================================ 1051
{response} 1052
================================================ 1053

1054
Did the response provide a final answer to the question? 1055

Respond with a JSON object that contains one key " 1056
attempted_answer" with a value that is true or false. 1057
If "attempted_answer" is true , then include a second 1058
key "answer_val" with the final answer 's value in 1059
quotations. If the final answer value matches one of 1060
the answer options , include a third key "answer_letter" 1061
with a value that is one of the letters "A", "B", "C", 1062
or "D". 10631064

B.2 Statistical details 1065

Mean accuracies. When measuring accuracies 1066

for all methods (user-alone, AI-alone, and user- 1067

AI), we first compute per-question accuracies as 1068

the fraction of correct answers over total answers 1069

nq for each question, denoted p̂q. We also com- 1070

pute the standard error for each question-level ac- 1071

curacy estimate SEq =
√

p̂q(1− p̂q)/nq. We 1072

then compute dataset-level accuracies with an (un- 1073

weighted) average across all Q question-level ac- 1074

curacies, and dataset-level standard errors using 1075

decomposition of total variance to account for 1076

both variability in sampling questions from the 1077

larger population of MMLU questions and vari- 1078

ability in correctness of responses: SEtot = 1079√
(E[SEq] + Var(p̂q))/Q (Miller, 2024). 1080

In Tables A1 and A2, we report mean accuracies 1081

for all datasets, models, AI-alone methods, and 1082

user-AI conditions. We also compare accuracies 1083

between two methods, for AI-alone vs. user-AI and 1084

for user-alone vs. user-AI. We conduct z-tests for 1085

all statistical tests comparing accuracies between 1086

two methods where 1087

z = (p̂1 − p̂2)/
√

SE2
1 + SE2

2 . (1) 1088

Upper-bound on correlation. Since there is 1089

noise in our estimate of user-AI accuracy per ques- 1090

tion, we want to check if the low correlations be- 1091

tween user-AI and AI-alone accuracies can be ex- 1092

plained by that noise. To test this, we simulate an 1093

upper bound on what the correlation would be if the 1094

user-AI accuracies were drawn from the same dis- 1095

tribution as the AI-alone accuracies, which we as- 1096

sume are perfectly estimated because we test each 1097

21

https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux-2.0
https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux-2.0


LLM 50 times on each question. We construct hy-1098

pothetical user-AI data, where for each question q,1099

we draw x from Binomial(nqu, pqf ), where nqu is1100

the number of user-AI answers we had in our study,1101

pqf is the free-text accuracy on this question, and1102

x/nqu is now the hypothetical user-AI accuracy on1103

this question. Over 100 iterations, the hypothetical1104

correlation with free-text ranges from r = 0.881105

to 0.92 for direct-to-AI and r = 0.90 to 0.94 for1106

answer-first, with the real correlations of 0.45 and1107

0.46 (respectively) well below this range.1108

B.3 Additional analyses from user study1109

User-AI conversations. To characterize the con-1110

versations between users and LLMs, we set a sys-1111

tem prompt of “You are an expert at extracting1112

information from conversations and MUST return1113

a JSON object.” and used the prompt in Listing 5.1114

Listing 5: Prompt to GPT-4o for automatically charac-
terizing user-AI conversations.

1115
The following conversation occurred between a user called "1116

You" and an AI called "Bot", in which "You" tried to1117
use "Bot" to answer a question. Extract the following1118
information about this conversation.1119

1. Is the first substantive user prompt a: question ,1120
statement , or other?1121

2. Is the first user question: a near -"exact" rephrasing1122
of the question , a component of the question , an1123

erroneous or misinterpreted aspect of the question ,1124
or other?1125

3. Is the first AI answer: correct , incorrect , or not1126
yet providing an answer?1127

4. Is the last AI answer: correct , incorrect , or not yet1128
providing an answer?1129

5. Are there more than one AI answer?1130
5. Anywhere in the course of the conversation , does AI1131

correct the user?1132
6. Anywhere in the course of the conversation , does the1133

user correct the AI by selecting a different answer1134
than what the AI recommended?1135

7. Anything unusual or interesting about this1136
interaction that you noticed?1137

1138
Here is the question the user was given:1139
{question}1140

1141
Here are the answer choices to the question:1142
{choices}1143

1144
Here is the correct answer to the question:1145
{correctAnswer}1146

1147
Here is the conversation between the user ("You") and1148

the AI ("Bot"):1149
{conversation}1150

1151
Here is what the user selected as their answer:1152
{selectedAnswer}11531154

We report our main findings from this analysis1155

in the main text, where we showed in Figure 51156

that only 34% of user-AI interactions “mirror” AI1157

benchmarks. We also use the structured data pro-1158

duced by this analysis to measure how often the1159

user corrects the AI model’s mistake, by comput-1160

ing the fraction of user-AI interactions where the1161

last AI answer in the conversation is wrong but the1162

user still answered correctly (Figure B1). We find1163

that users are much likelier to correct Llama-3.1-1164

8b than GPT-4o, which helps to explain how some1165

Figure B1: Fraction of user-AI interactions where the
last AI answer in the conversation is wrong but the user
still answered correctly, by subject and model.

of the gap in the model’s AI-alone performance is 1166

closed in the user-AI setting. 1167

User confidence. In Figure B2, we visualize the 1168

relationship between user-reported confidence per 1169

question and their user-alone accuracy. First, over 1170

our five datasets, we find that users are most confi- 1171

dent about Moral Scenarios, followed by Elemen- 1172

tary Math, Conceptual Physics, High School Math, 1173

and College Math. The user selects their confidence 1174

from three options, as shown Figure A5), “not con- 1175

fident”, “somewhat confident”, and “very confi- 1176

dent”. We find that users are well-calibrated within 1177

dataset: as their confidence increases, so does 1178

the mean accuracy. Users are less well-calibrated 1179

across datasets: for example, users who are very 1180

confident on a Conceptual Physics question slightly 1181

underperform those who are only somewhat confi- 1182

dent on an Elementary Mathematics question. 1183
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Figure B2: Distribution of confidence answers from users and mean user-alone accuracies per confidence answer.

B.4 Simulator details1184

Below we provide the exact prompts for the two-1185

step simulator (Listings 6-8) and the IQA-EVAL1186

simulator from Li et al. (2024a) (Listing 9).1187

Listing 6: Two-step user simulator, system prompt for
both tasks.

1188
You are a human user interacting with an AI system , and you1189

are trying to answer the following question:1190
1191

{question}1192
A. {option_A}1193
B. {option_B}1194
C. {option_C}1195
D. {option_D}11961197

Listing 7: Two-step user simulator, user prompt for Task
1 (user refers to the role in the OpenAI API, not a real
user).

1198
Generate the first prompt you would say to the system to get1199

started with answering your question. Remember to1200
write exactly as a real user would.12011202

Listing 8: Two-step user simulator, user prompt for Task
2 (user refers to the role in the OpenAI API, not a real
user).

1203
Here is your conversation so far with the AI system:1204
========================1205
YOU: {simulator prompt 1}1206

1207
SYSTEM: {AI system response 1}1208

1209
...1210

1211
YOU: {simluator prompt k}1212

1213
SYSTEM: {AI system response k}1214
========================1215
If your question is answered by this conversation , return1216

ONLY the answer in the format "Answer: A, B, C, or D".1217
If not , generate the next prompt you would say to the1218
system to answer your question. Remember to keep your1219
writing style consistent.12201221

Listing 9: IQA-EVAL simulator, only has system
prompt, following the original implementation.

1222
You are mimicking a human. 1223
You are trying to choose the correct answer to the given 1224

question. 1225
Please ask an assistant sub -questions for help approaching 1226

answers. 1227
In each turn , please only ask one sub -question to interact 1228

with an assistant. In the sub -questions , please include 1229
all necessary information , such as the question and 1230

options , in the original question. If you know the 1231
answer , please output "So, the answer is: A, B, C, or D 1232
." 1233

{question} 1234
A. {option_A} 1235
B. {option_B} 1236
C. {option_C} 1237
D. {option_D} 1238

1239
YOU: {simulator prompt 1} 1240

1241
SYSTEM: {AI system response 1} 1242

1243
... 1244

1245
YOU: {simluator prompt k} 1246

1247
SYSTEM: {AI system response k} 12481249

In our simulator experiments, we fine-tune GPT- 1250

4o using Azure OpenAI Service. We use the default 1251

hyperparameters, with a batch size of 11 and 2 1252

epochs. The training data contains 8,538 training 1253

examples (we describe in Section 5 how each user- 1254

AI conversation with k user utterances becomes 1255

k + 1 training examples for fine-tuning). 1256
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Figure B3: Scatter plot comparing different AI-alone and user simulator methods’ abilities to predict user-AI
accuracy, where the AI system is GPT-4o. Pearson correlations are included in the plot titles.

Figure B4: Scatter plot comparing different AI-alone and user simulator methods’ abilities to predict user-AI
accuracy, where the AI system is Llama-3.1-8b. Pearson correlations are included in the plot titles.

24


	Introduction
	Related Work
	User Study Design
	Task Flow and Interface
	Question Selection
	Data Collection

	Experimental Results
	AI-Alone Experiments
	AI-Alone vs. User-AI
	Characterizing User-AI Conversations

	Simulating User-AI Conversations
	Fine-Tuning a User Simulator
	User Simulator Experiments

	Conclusion
	Limitations
	Broader Impacts and Ethical Considerations
	Details on User Study
	Pilots and Incentivization
	ChatBench

	Details on Analyses and Experiments
	AI-Alone experiments
	Statistical details
	Additional analyses from user study
	Simulator details


