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Abstract
Due to the high communication overhead when
training machine learning models in a distributed
environment, modern algorithms invariably rely
on lossy communication compression. However,
when untreated, the errors caused by compression
propagate, and can lead to severely unstable be-
havior, including exponential divergence. Almost
a decade ago, Seide et al. (2014) proposed an
error feedback (EF) mechanism, which we refer
to as EF14, as an immensely effective heuristic
for mitigating this issue. However, despite steady
algorithmic and theoretical advances in the EF
field in the last decade, our understanding is far
from complete. In this work we address one of
the most pressing issues. In particular, in the
canonical nonconvex setting, all known variants
of EF rely on very large batch sizes to converge,
which can be prohibitive in practice. We propose
a surprisingly simple fix which removes this issue
both theoretically, and in practice: the application
of Polyak’s momentum to the latest incarnation
of EF due to Richtárik et al. (2021) known as
EF21. Our algorithm, for which we coin the name
EF21-SGDM, improves the communication and
sample complexities of previous error feedback al-
gorithms under standard smoothness and bounded
variance assumptions, and does not require any
further strong assumptions such as bounded gradi-
ent dissimilarity. Moreover, we propose a double
momentum version of our method that improves
the complexities even further. Our proof seems to
be novel even when compression is removed from
the method, and as such, our proof technique is
of independent interest in the study of nonconvex
stochastic optimization enriched with Polyak’s
momentum.

1. Introduction
Since the practical utility of modern machine learning mod-
els crucially depends on our ability to train them on large
quantities of training data, it is imperative to perform the
training in a distributed storage and compute environment.

In federated learning (FL) (Konečný et al., 2016; Kairouz,
2019), for example, data is naturally stored in a distributed
fashion across a large number of clients (who capture and
own the data in the first place), and the goal is to train a
single machine learning model from the wealth of all this
distributed data, in a private fashion, directly on their de-
vices.

1.1 Formalism. We consider the problem of collab-
orative training of a single model by several clients in a
data-parallel fashion. In particular, we aim to solve the
distributed nonconvex stochastic optimization problem

min
𝑥∈R𝑑

[︃
𝑓(𝑥) :=

1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑥)

]︃
, (1)

𝑓𝑖(𝑥) := E𝜉𝑖∼𝒟𝑖 [𝑓𝑖(𝑥, 𝜉𝑖)] , 𝑖 = 1, . . . , 𝑛,

where 𝑛 is the number of clients, 𝑥 ∈ R𝑑 represents the
parameters of the model we wish to train, and 𝑓𝑖(𝑥) is the
(typically nonconvex) loss of model parameterized by the
vector 𝑥 on the data 𝒟𝑖 owned by client 𝑖. Unlike most
works in federated learning, we do not assume the datasets
to be similar, i.e., we allow the distributions 𝒟1, . . . ,𝒟𝑛 to
be arbitrarily different.

2. Communication Compression, Error
Feedback, and Sample Complexity

Communication compression techniques such as quanti-
zation (Alistarh et al., 2017; Horváth et al., 2019a) and
sparsification (Seide et al., 2014; Beznosikov et al., 2020)
are known to be immensely powerful for reducing the com-
munication footprint of gradient-type1 methods. Arguably
the most studied, versatile and practically useful class of
compression mappings are contractive compressors.
Definition 1 (Contractive compressors). We say that a (pos-
sibly randomized) mapping 𝒞 : R𝑑 → R𝑑 is a contractive
compression operator if there exists a constant 0 < 𝛼 ≤ 1
such that

E
[︀
‖𝒞(𝑥)− 𝑥‖2

]︀
≤ (1− 𝛼) ‖𝑥‖2, ∀𝑥 ∈ R𝑑. (2)

Inequality (2) is satisfied by a vast array of compressors
considered in the literature, including numerous variants of

1For Newton-type methods, see (Islamov et al., 2022) and
references therein.
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sparsification operators (Alistarh et al., 2018; Stich et al.,
2018), quantization operators (Alistarh et al., 2017; Horváth
et al., 2019a), and low-rank approximation (Vogels et al.,
2019; Safaryan et al., 2022) and more (Beznosikov et al.,
2020; Safaryan et al., 2021). The canonical examples are i)
the Top𝐾 sparsifier, which preserves the 𝐾 largest compo-
nents of 𝑥 in magnitude and sets all remaining coordinates
to zero (Stich et al., 2018), and ii) the (scaled) Rand𝐾 sparsi-
fier, which preserves a subset of 𝐾 components of 𝑥 chosen
uniformly at random and sets all remaining coordinates to
zero (Beznosikov et al., 2020). In both cases, (2) is satisfied
with 𝛼 = 𝐾/𝑑.

2.1 Brief history of error-feedback. When greedy
contractive compressors, such as Top𝐾, are used in a direct
way to compress the local gradients in distributed gradient
descent (GD), the resulting method may diverge exponen-
tially, even on strongly convex quadratics (Beznosikov et al.,
2020). Empirically, instability caused by such a naive ap-
plication of greedy compressors was observed much earlier,
and a fix was proposed in the form of the error feedback
(EF) mechanism by Seide et al. (2014), which we hence-
forth call EF14 or EF14-SGD (in the stochastic case).2 To
the best of our knowledge, the best sample complexity of
EF14-SGD for finding a stationary point in the distributed
nonconvex setting is given by Koloskova et al. (2020): after
𝒪(𝐺𝛼−1𝜀−3 + 𝜎2𝑛−1𝜀−4) samples3, EF14-SGD finds a
point 𝑥 such that E[‖∇𝑓(𝑥)‖] ≤ 𝜀, where 𝛼 is the contrac-
tion parameter (see Definition 1). However, such an analysis
has two important deficiencies. First, in the deterministic
case (when exact gradients are computable by each node),
the analysis only gives the suboptimal 𝒪(𝜀−3) iteration
complexity, which is suboptimal compared to vanilla (i.e.,
non-compressed) gradient descent, whose iteration com-
plexity is 𝒪(𝜀−2). Second, their analysis relies heavily on
additional strong assumptions, such as the bounded gradient
(BG) assumption, E[‖∇𝑓𝑖(𝑥, 𝜉𝑖)‖2] ≤ 𝐺2 for all 𝑥 ∈ R𝑑,
𝑖 ∈ [𝑛], 𝜉𝑖 ∼ 𝒟𝑖, or the bounded gradient similarity (BGS)
assumption, 1

𝑛

∑︀𝑛
𝑖=1 ‖∇𝑓𝑖(𝑥) − ∇𝑓(𝑥)‖2 ≤ 𝐺2 for all

𝑥 ∈ R𝑑. Such assumptions are restrictive and sometimes
even unrealistic. In particular, both BG and BGS might
not hold even in the case of convex quadratic functions.4

Moreover, it was recently shown that nonconvex analysis
of stochastic gradient methods using a BG assumption may

2In Appendix A, we provide a more detailed discussion on
theoretical develepments for this method.

3Here 𝜎2 is the bound on the variance of stochastic gradients at
each node, see Assumption 2. When referring the sample complex-
ity we count the number of stochastic gradients used only at one of
the 𝑛 nodes rather than by all nodes in total. This is a meaningful
notion because the computations are done in parallel.

4For example, one can consider 𝑓𝑖(𝑥) = 𝑥⊤𝐴𝑖𝑥 with 𝐴𝑖 ∈
R𝑑×𝑑, for which BG or BGS assumptions hold only in the trivial
cases: matrices 𝐴𝑖 are all zero or all equal to each other (homoge-
neous data regime).

hide an exponential dependence on the smoothness constant
in the complexity (Yang et al., 2023).

In 2021, these issues were partially resolved by Richtárik
et al. (2021), who propose a modification of the EF mech-
anism, which they call EF21. They address both deficien-
cies of the original EF14 method: i) they removed the
BG/BGS assumptions, and improved the iteration complex-
ity to 𝒪(𝜀−2) in the full gradient regime. Subsequently,
the EF21 method was modified in several directions, e.g.,
extended to bidirectional compression, variance reduction
and proximal setup (Fatkhullin et al., 2021), generalized
from contractive to three-point compressors (Richtárik et al.,
2022) and adaptive compressors (Makarenko et al., 2022),
modified from dual (gradient) to primal (model) compres-
sion (Gruntkowska et al., 2022) and from centralized to
decentralized setting (Zhao et al., 2022). For further work,
we refer to (Wang et al., 2022; Dorfman et al., 2023; Islamov
et al., 2022).

2.2 Key issue: error feedback has an unhealthy ap-
petite for samples! Unfortunately, the current theory of
EF21 with stochastic gradients has weak sample complexity
guarantees. In particular, Fatkhullin et al. (2021) extended
the EF21-GD method, which is the basic variant of EF21
using full gradient at the clients, to EF21-SGD, which uses
a “large minibatch” of stochastic gradients instead. They ob-
tained 𝒪( 1

𝛼𝜀2 + 𝜎2

𝛼3𝜀4 ) sample complexity for their method.
Later, Zhao et al. (2022) improved this result slightly5 to
𝒪( 1

𝛼𝜀2 + 𝜎2

𝛼2𝜀4 ), shaving off one 𝛼 in the stochastic term.
However, it is easy to notice several issues in these results,
which generally feature the fundamental challenge of com-
bining biased gradient methods with stochastic gradients.

∙ Mega-batches. These works require all clients to sample
“mega-batches” of stochastic gradients/datapoints in each
iteration, of order 𝒪(𝜀−2), in order to control the variance
coming from stochastic gradients. In Figure 3, we find
that, in fact, a batch-free (i.e., with mini-batch size 𝐵 =
1) version of EF21-SGD diverges even on a very simple
quadratic function. We also observe a similar behavior
when a small batch 𝐵 > 1 is applied. This implies that
there is a fundamental flaw in the EF21-SGD method itself,
rather “just” a problem of the theoretical analysis. While
mega-batch methods are common in optimization literature,
smaller batches are often preferred whenever they “work”.
For example, the time/cost required to obtain such a large
number of samples at each iteration might be unreasonably
large compared to the communication time, which is already
reduced using compression.

∙ Dependence on 𝛼. The total sample complexity results
derived by Fatkhullin et al. (2021); Zhao et al. (2022) suffer

5The result was obtained under a more general setting of de-
centralized optimization over a network.
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from poor dependence on the contraction parameter 𝛼. Typ-
ically, EF methods are used with the Top𝐾 sparsifier, which
only communicates 𝐾 largest entries in magnitude. In this
case, 𝛼 = 𝐾/𝑑, and the stochastic part of sample complexity
scales quadratically with dimension.

∙ No improvement with 𝑛. The stochastic term in the
sample complexity of EF21-SGD does not improve when
increasing the number of nodes. However, the opposite
behavior is typically desired, and is present in several lat-
est non-EF methods based on unbiased compressors, such
as MARINA (Gorbunov et al., 2021) and DASHA (Tyurin
and Richtárik, 2022). We are not aware of any distributed
algorithms utilizing the Top𝐾 compressor achieving lin-
ear speedup in 𝑛 in the stochastic term without relying on
restrictive BG or BGS assumptions.

These observations motivate our work with the following
central questions:

Can we design a batch-free distributed SGD
method utilizing contractive communication com-
pression (such as Top𝐾) without relying on
restrictive BG/BGS assumptions? Is it possi-
ble to improve over the current state-of-the-art
𝒪
(︀
𝛼−1𝜀−2 + 𝜎2𝛼−2𝜀−4

)︀
sample complexity un-

der the standard smoothness and bounded vari-
ance assumptions?

We answer both questions in the affirmative by incorpo-
rating a momentum update into EF21-SGD. We provide a
concise walk through the key theoretical developments in
the analysis of SGDM in stochastic nonconvex optimization
in Appendix A.

2.4 Summary of contributions. Despite the vast
amount of work trying to explain the benefits of momen-
tum, there is no work obtaining any theoretical improvement
over vanilla SGD in the smooth nonconvex setting under the
standard assumptions of smoothness and bounded variance.

∙ First, we establish a negative result for a simpli-
fied/idealized version of EF21-SGD, which shows that this
algorithm does not converge with constant batch-size, and
that a mega-batch of order Ω(𝜎2𝜀−2) is required. This
provides a strong indication that EF21-SGD method is in-
herently sensitive to stochastic gradients, which is also con-
firmed by our numerical simulations.

∙ We propose a simple fix for this problem by incorpo-
rating momentum step into EF21-SGD, which leads to our
one-batch EF21-SGDM algorithm. By leveraging our new
Lyapunov function construction and new analysis, we estab-
lish 𝒪

(︀
𝛼−1𝜀−2 + 𝜎2𝜀−4

)︀
sample complexity in the single

node case.

∙ We extend our algorithm to the distributed setting and

derive an improved sample complexity result compared to
other methods using the Top𝐾 compressor without resort-
ing to the BG/BGS assumptions. In particular, EF21-SGDM
achieves asymptotically optimal 𝒪

(︀
𝜎2𝑛−1𝜀−4

)︀
sample

complexity. Moreover, when EF21-SGDM is applied with
large enough batch size, we prove that it reaches the optimal
communication complexity 𝒪

(︀
𝐾𝛼−1𝜀−2

)︀
; see Tables 1 &

2 for more details.

We defer some additional results including analysis of dou-
ble momentum variant (EF21-SGD2M), variance reduced
variant (EF21-STORM/MVR), absolute compression, and
empirical evaluation to the Appendix.

3. Main Results
Throughout the paper we work under the following standard
assumptions.
Assumption 1 (Smoothness and lower boundedness).
We assume that 𝑓 has 𝐿-Lipschitz gradient, i.e.,
‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ 𝐿 ‖𝑥− 𝑦‖ for all 𝑥, 𝑦 ∈
R𝑑, and each 𝑓𝑖 has 𝐿𝑖-Lipschitz gradient, i.e.,
‖∇𝑓𝑖(𝑥)−∇𝑓𝑖(𝑦)‖ ≤ 𝐿𝑖 ‖𝑥− 𝑦‖ for all 𝑖 ∈ [𝑛], 𝑥, 𝑦 ∈
R𝑑. We denote ̃︀𝐿2 := 1

𝑛

∑︀𝑛
𝑖=1 𝐿

2
𝑖 . Moreover, we assume

that 𝑓 is lower bounded, i.e., 𝑓* := inf𝑥∈R𝑑 𝑓(𝑥) > −∞.
Assumption 2 (Bounded variance (BV)). There exists 𝜎 >

0 such that E
[︁
‖∇𝑓𝑖(𝑥, 𝜉𝑖)−∇𝑓𝑖(𝑥)‖2

]︁
≤ 𝜎2, where 𝜉𝑖 ∼

𝒟𝑖 are i.i.d. random samples for each 𝑖 ∈ [𝑛].

3.1 A deeper dive into the issues EF21 has with
stochastic gradients. As remarked before, the current anal-
ysis of EF21 in the stochastic setting requires each client
to sample a mega-batch in each iteration, and it is not clear
how to avoid this. In Appendix F we further investigate
this phenomenon by demonstrating an example where EF21-
SGD and even its idealized version EF21-SGD-idealized do
not converge.

3.2 Momentum for avoiding mega-batches. Let us
now focus on the single node settingand try to fix the di-
vergence issue shown above. We propose to modify our
“idealized” EF21-SGD-ideal method so that the compressed
difference can be controlled and made arbitrarily small,
which leads us to another (more advanced) conceptual algo-
rithm, EF21-SGDM-ideal: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡,

𝑣𝑡+1 = ∇𝑓(𝑥𝑡+1) + 𝜂(∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)−∇𝑓(𝑥𝑡+1)),

𝑔𝑡+1 = ∇𝑓(𝑥𝑡+1) + 𝒞
(︀
𝑣𝑡+1 −∇𝑓(𝑥𝑡+1)

)︀
.

(3)

In this method, instead of using 𝑣𝑡+1 = ∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)
as in EF21-SGD-ideal, we introduce a correction, which al-
lows to control variance of the difference ∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)−
∇𝑓(𝑥𝑡+1). This allows us to derive the following conver-
gence result. Let 𝛿0 := 𝑓(𝑥0)− 𝑓*.

3
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Table 1 Summary of related works on distributed error compensated SGD methods using a Top𝐾 compressor under Assumptions 1
and 2. The goal is to find an 𝜀-stationary point of a smooth nonconvex function of the form (1), i.e., a point 𝑥 such that E [‖∇𝑓(𝑥)‖] ≤ 𝜀.
"Communication complexity": the total # of communicated bits if the method is applied with sufficiently large batch-size; see Table 2
for batch-size. "Asymptotic sample complexity": the total # of samples required at each node to find an 𝜀-stationary point for batch-size
𝐵 = 1 in the regime 𝜀 → 0. "No extra assumptions": ✔means that no additional assumption is required.

Method Communication complexity Asymptotic
sample complexity Batch-free? No extra assumptions?

EF14-SGD
(Koloskova et al., 2020)

𝐾𝐺
𝛼𝜀3

𝜎2

𝑛𝜀4
✔ ✗ (a)

NEOLITHIC
(Huang et al., 2022)

𝐾
𝛼𝜀2

log
(︀
𝐺
𝜀

)︀
(b) 𝜎2

𝑛𝜀4
✗ ✗ (c)

EF21-SGD
(Fatkhullin et al., 2021)

𝐾
𝛼𝜀2

𝜎2

𝛼3𝜀4
(d) ✗ ✔

BEER
(Zhao et al., 2022)

𝐾
𝛼𝜀2

𝜎2

𝛼2𝜀4
(d) ✗ ✔

EF21-SGDM
Corollary 2

𝐾
𝛼𝜀2

𝜎2

𝑛𝜀4
✔ ✔

(a) Analysis requires a bound of the second moment of the stochastic gradients, i.e., E
[︀
‖∇𝑓𝑖(𝑥, 𝜉𝑖)‖2

]︀
≤ 𝐺2 for all 𝑥 ∈ R𝑑.

(b) This complexity is achieved by using a large mini-batch and communicating ⌈𝐾/𝛼⌉ coordinates per iteration, see Appendix A.
(c) Analysis requires a bounded gradient disimilarity assumption, i.e., 1

𝑛

∑︀𝑛
𝑖=1 ‖∇𝑓𝑖(𝑥) − ∇𝑓(𝑥)‖2 ≤ 𝐺2 for all 𝑥 ∈ R𝑑.

(d) Analysis requires a batch-size at least 𝐵 ≥ 𝜎2

𝛼2𝜀2
for EF21-SGD and 𝐵 ≥ 𝜎2

𝛼𝜀2
for BEER.

Proposition 1. Let Assumptions 1, 2 hold, and let 𝒞 satisfy
Definition 1. Let 𝑔0 = 0 and the step-size in method (9), (3)
be set as 𝛾 ≤ 1/𝐿. Let 𝑥̂𝑇 be sampled uniformly at random
from the iterates of the method. Then for any 𝜂 > 0 after 𝑇
iterations, we have E

[︁⃦⃦
∇𝑓(𝑥̂𝑇 )

⃦⃦2]︁ ≤ 2𝛿0
𝛾𝑇 + 4𝜂2𝜎2.

Notice that if 𝜂 = 1, then algorithm EF21-SGDM-ideal (9),
(3) reduces to EF21-SGD-ideal method (9), (10a), and this
result shows that the lower bound for the batch-size estab-
lished in Theorem 1 is tight, i.e., 𝐵 = Θ(𝜎

2
/𝜀2) is necessary

and sufficient6 for convergence. For 𝜂 < 1, the above the-
orem suggests that using a small enough parameter 𝜂, the
variance term can be completely eliminated. This observa-
tion motivates us to design a practical variant of this method.
Similarly to the design of EF21 mechanism (from EF21-
SGD-ideal), we propose to do this by replacing the exact
gradients ∇𝑓(𝑥𝑡+1) by state vectors 𝑣𝑡 and 𝑔𝑡 as follows:

EF21-SGDM:
𝑣𝑡+1 = 𝑣𝑡 + 𝜂(∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)− 𝑣𝑡),

𝑔𝑡+1 = 𝑔𝑡 + 𝒞
(︀
𝑣𝑡+1 − 𝑔𝑡

)︀
.

(4)

3.3 Distributed stochastic error feedback with mo-
mentum. We formally present a distributed variant of EF21-
SGDM in Algorithm 2 in Appendix H along with its con-
vergence Theorem 4. We summarize the main implications
here.

Recovering previous rates in case of full gradients.
Compared to the iteration complexity 𝒪(𝐿max𝐺

𝛼𝜀3 ) of EF14
(Koloskova et al., 2020), our result, summarized in
Corollary 1. If 𝜎 = 0, then E

[︀⃦⃦
∇𝑓(𝑥̂𝑇 )

⃦⃦]︀
≤ 𝜀 after

𝑇 = 𝒪
(︁ ̃︀𝐿

𝛼𝜀2

)︁
iterations.

6This follows by replacing 𝜎2 in the batch free algorithm by
𝜎2
/𝐵 if the batch-size of size 𝐵 > 1 is used.

is better by an order of magnitude, and does not require
the BG assumption. The result of Corollary 1 is the same
as for EF21 method (Richtárik et al., 2021), and EF21-HB
method (Fatkhullin et al., 2021). Notice, however, that even
in this deterministic setting (𝜎 = 0) EF21-SGDM method is
different from EF21 and EF21-HB: while the original EF21
does not use momentum, EF21-HB method incorporates
momentum on the server side to update 𝑥𝑡, which is different
from our Algorithm 2, where momentum is applied by each
node. This iteration complexity 𝒪

(︀
1

𝛼𝜀2

)︀
is optimal in both

𝛼 and 𝜀. The matching lower bound was recently established
by Huang et al. (2022) for smooth nonconvex optimization
in the class of centralized, zero-respecting algorithms with
contractive compressors.

Comparison to previous work. Our sample complexity in

Corollary 2. E
[︀⃦⃦
∇𝑓(𝑥̂𝑇 )

⃦⃦]︀
≤ 𝜀 after 𝑇 =

𝒪
(︁ ̃︀𝐿

𝛼𝜀2 + 𝐿𝜎2/3

𝛼2/3𝜀8/3
+ 𝐿𝜎

𝛼1/2𝜀3
+ 𝐿𝜎2

𝑛𝜀4

)︁
iterations.

strictly improves over the complexity 𝒪(𝐺𝐿max
𝛼𝜀3 + 𝐿max𝜎

2

𝑛𝜀4 ) of
EF14-SGD by Koloskova et al. (2020), even in case when
𝐺 < +∞. Notice that it always holds that 𝜎 ≤ 𝐺. If we
assume that 𝐺 ≈ 𝜎, our three first terms in the complexity
improve the first term from Koloskova et al. (2020) by the
factor of 𝜀/𝜎, (𝜀𝛼/𝜎)1/3, or 𝛼1/2. Compared to the BEER
algorithm of Zhao et al. (2022), with sample complexity
𝒪(𝐿max

𝛼𝜀 + 𝐿max𝜎
2

𝛼2𝜀4 ), the result of Corollary 2 is strictly better
in terms of 𝛼, 𝑛, and the smoothness constants.7 In addition,
we remove the large batch requirement for convergence
compared to (Fatkhullin et al., 2021; Zhao et al., 2022).
Moreover, notice that Corollary 2 implies that EF21-SGDM
achieves asymptotically optimal sample complexity 𝒪(𝐿𝜎2

𝑛𝜀4 )
in the regime 𝜀 → 0.

7𝐿max := max𝑖∈[𝑛] 𝐿𝑖. Notice that 𝐿 ≤ ̃︀𝐿 ≤ 𝐿max and the
inequalities are strict in heterogeneous setting.
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Table 2 Extended summary of related works on distributed error compensated SGD methods using a Top𝐾 compressor under As-
sumptions 1 and 2. The goal is to find an 𝜀-stationary point of a smooth nonconvex function of the form (1), i.e., a point 𝑥 such that
E [‖∇𝑓(𝑥)‖] ≤ 𝜀. "Comm. compl." reports the total number of communicated bits if the method is applied with batch-size equal to
"Batch-size" at each node. When Top𝐾 compressor is applied, then 𝛼 ≥ 𝐾/𝑑, and the comm. compl. of error compensated methods can
be reduced by a factor of 𝛼𝑑/𝐾. "Batch-size for comm. compl." means the batch-size for achieving the reported "Comm. compl.".
"Asymp. sample compl." reports the asymptotic sample complexity of the algorithm with batch-size 𝐵 = 1 in the regime 𝜀 → 0, i.e.,
the total number of samples required at each node to achieve 𝜀-stationary point. "Batch free" marks with ✔ if the analysis ensures
convergence with batch-size equal to 1. "No extra assump." marks with ✔ if no additional assumption beyond Assumptions 1 and 2 is
required for analysis. We denote 𝐿max := max𝑖∈[𝑛] 𝐿𝑖. Notice that it always holds 𝐿 ≤ ̃︀𝐿 ≤ 𝐿max and these inequalities only become
equalities in the homogeneous case. It could be that 𝛼𝐿/̃︀𝐿 ≪ 1 making the batch-size of EF21-SGDM and EF21-SGD2M much smaller than
those of EF21-SGD and BEER. Symbol ∨ denotes the maximum of two scalars.

Method Comm.
compl.

Batch-size for
comm. compl.

Asymp.
sample
compl.

Batch
free?

No extra
assump.?

EF14-SGD
(Koloskova et al., 2020)

𝐾𝐺𝐿max
𝛼𝜀3

𝛼𝜎2

𝑛𝜀𝐺
(*) 𝐿max𝜎

2

𝑛𝜀4
✔ ✗ (a)

NEOLITHIC
(Huang et al., 2022)

𝐾𝐿max
𝛼𝜀2

log
(︀
𝐺
𝜀

)︀ (b) 𝜎2

𝑛𝜀2
∨ 1

𝛼
log

(︀
𝐺
𝜀

)︀(*) 𝐿max𝜎
2

𝑛𝜀4
✗ ✗ (c)

EF21-SGD
(Fatkhullin et al., 2021)

𝐾 ̃︀𝐿
𝛼𝜀2

𝜎2

𝛼2𝜀2

̃︀𝐿𝜎2

𝛼3𝜀4
(d) ✗ ✔

BEER
(Zhao et al., 2022)

𝐾𝐿max
𝛼𝜀2

𝜎2

𝛼𝜀2
𝐿max𝜎

2

𝛼2𝜀4
(d) ✗ ✔

EF21-SGDM
Corollary 2

𝐾 ̃︀𝐿
𝛼𝜀2

𝛼𝐿̃︀𝐿 𝜎2

𝑛𝜀2
∨ 𝛼𝐿2̃︀𝐿2

𝜎2

𝜀2
𝐿𝜎2

𝑛𝜀4
✔ ✔

EF21-SGD2M
Corollary 3

𝐾 ̃︀𝐿
𝛼𝜀2

𝛼𝐿̃︀𝐿 𝜎2

𝑛𝜀2
∨ 𝛼𝐿3̃︀𝐿3

𝜎2

𝜀2
𝐿𝜎2

𝑛𝜀4
✔ ✔

(a) Analysis requires a bound of the second moment of the stochastic gradients, i.e., E
[︀
‖∇𝑓𝑖(𝑥, 𝜉𝑖)‖2

]︀
≤ 𝐺2 for all 𝑥 ∈ R𝑑.

(b) This complexity is achieved by using a large mini-batch and communicating ⌈𝐾/𝛼⌉ ≈ 𝑑 coordinates per iteration.
(c) Analysis requires a bounded gradient disimilarity assumption, i.e., 1

𝑛

∑︀𝑛
𝑖=1 ‖∇𝑓𝑖(𝑥) − ∇𝑓(𝑥)‖2 ≤ 𝐺2 for all 𝑥 ∈ R𝑑.

(d) Analysis requires a batch-size at least 𝐵 ≥ 𝜎2

𝛼2𝜀2
for EF21-SGD and 𝐵 ≥ 𝜎2

𝛼𝜀2
for BEER.

(*) For a fair comparison, we take the (minimal) batch-size for these methods which guarantees the reported communication complexity.

A. More on Contractive Compressors, Error Feedback and Momentum
Greedy vs uniform. In our work, we specifically focus on the class of contractive compressors satisfying Definition 1,
which contains a greedy Top𝐾 compressor as a special case. Note that Top𝐾 is greedy in that it minimizes the error
‖Top𝐾(𝑥)− 𝑥‖2 subject to the sparsity constraint ‖𝒞(𝑥)‖0 ≤ 𝐾, where ‖𝑢‖0 counts the number of nonzero entries in 𝑢.
In practice, greediness is almost always8 very useful, translating into excellent empirical performance, especially when
compared to the performance of the Rand𝐾 sparsifier. On the other hand, it appears to be very hard to formalize these
practical gains theoretically9. In fact, while greedy compressors such as Top𝐾 outperform their randomized cousins such
as Rand𝐾 in practice, and often by huge margins (Lin et al., 2018), the theoretical picture is exactly reversed, and the
theoretical communication complexity of gradient-type methods based on randomized compressors (Alistarh et al., 2017;
Mishchenko et al., 2019; Horváth et al., 2019b; Li et al., 2020; Gorbunov et al., 2021) is much better than of those based
on greedy compressors (Koloskova et al., 2020; Richtárik et al., 2021; Fatkhullin et al., 2021; Richtárik et al., 2022). The
key reason behind this is the fact that popular randomized compressors such as Rand𝐾 become unbiased mappings after
appropriate scaling (e.g., E[ 𝑑𝐾Rand𝐾(𝑥)] ≡ 𝑥), and that the inherent randomness is typically drawn independently by all
clients. This leads to several key simplifications in the analysis, and consequently, to theoretical gains over methods that
do not compress, and over methods that compress greedily. Further improvements are possible when the randomness is
correlated in an appropriate way (Szlendak et al., 2021).

Due to the superior empirical properties of greedy contractive compressors, and our desire to push this very potent line of
work further, in this paper we work with the general class of compressors satisfying Definition 1, and do not invoke any
additional restrictive assumptions. For example, we do not assume 𝒞 can be made unbiased after scaling.

8Greediness is not useful, for example, when 𝒟𝑖 = 𝒟𝑗 for all 𝑖,𝑗 and when Top𝐾 is applied to the full-batch gradient ∇𝑓𝑖(𝑥) by each
client. However, situations of this type arise rarely in practice.

9No theoretical results of this type exist for 𝑛 > 1 .
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Error Feedback. The first theoretical analysis of EF14 was presented in the works of Stich et al. (2018); Alistarh
et al. (2018) and further revisited in convex case in (Karimireddy et al., 2019; Beznosikov et al., 2020; Gorbunov et al.,
2020; Qian et al., 2020) and analysis was extended to nonconvex setting in (Stich and Karimireddy, 2019). Later, in
nonconvex case, various extensions and combinations of EF14 with other optimization techniques were considered and
analyzed, which include bidirectional compression (Tang et al., 2020), decentralized training (Koloskova et al., 2020; Singh
et al., 2021), server level momentum (Xie et al., 2020), client level momentum (Zheng et al., 2019), combination with
adaptive methods (Li et al., 2022b). To our knowledge, the best sample complexity for finding a stationary point for this
method (including its momentum and adaptive variants) in the distributed nonconvex setting is given by Koloskova et al.
(2020), which is 𝒪( 𝐺

𝛼𝜀3 + 𝜎2

𝑛𝜀4 ). More recently, Huang et al. (2022) propose a modification of EF14 method achieving

𝒪
(︁

1
𝛼𝜀2 log(

𝐺
𝜀 ) +

𝜎2

𝑛𝜀4

)︁
sample complexity by using the BGS assumption. When applied with Top𝐾 compressor, this

method requires to communicate ̃︀𝒪 (𝐾/𝛼) coordinates at every iteration. This makes it impractical since when the effective 𝛼
is unknown and is set to 𝛼 = 𝐾/𝑑, it means that their method communicates all 𝑑 coordinates at every iteration, mimicking
vanilla (S)GD method. Moreover, their algorithm uses an additional subroutine and applies updates with a large batch-size of
samples of order 𝒪( 1

𝛼 log
(︀
𝐺
𝜀

)︀
), making the algorithm less practical and difficult to implement. It is worth to mention, that

error feedback was also analyzed for other classes of compressors such as absolute (see Definition 2) or additive compressors
(i.e., 𝒞(𝑥 + 𝑦) = 𝒞(𝑥) + 𝒞(𝑦) for all 𝑥, 𝑦 ∈ R𝑑) (Tang et al., 2020; Xu and Huang, 2022), which do not include Top𝐾
sparsifier.

Momentum. The classical SGD method with Polyak (i.e., heavy ball) momentum (SGDM) reads:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑣𝑡,

𝑣𝑡+1 = (1− 𝜂)𝑣𝑡 + 𝜂∇𝑓(𝑥𝑡+1, 𝜉𝑡+1), (5)

where 𝛾 > 0 is a learning rate and 𝜂 > 0 is the momentum parameter.

The first convergence analysis of gradient descent with momentum (in deterministic case) was proposed by B.T. Polyak in
his seminal work (Polyak, 1964) studying the benefit of multi-step methods. The proof technique proposed in this work
is based on the analysis of the spectral norm of a certain matrix arising from the dynamics of a multi-step process on a
quadratic function. Unfortunately, such technique is restricted to the case of strongly convex quadratic objective and the
setting of full gradients. Later Zavriev and Kostyuk (1993) prove an asymptotic convergence of this method in nonconvex
deterministic case without specifying the rate of convergence.

To our knowledge, the first non-asymptotic analysis of SGDM in the smooth nonconvex setting is due to Yu et al. (2019).
Their analysis, however, heavily relies on BG assumption. Later, Liu et al. (2020) provide a refined analysis of SGDM,
removing the BG assumption and improving the dependence on the momentum parameter 𝜂. Notice that the analysis of Liu
et al. (2020) and the majority of other works relies on some variant of the following Lyapunov function:

Λ𝑡 := 𝑓(𝑧𝑡)− 𝑓* +

𝑡∑︁
𝜏=0

𝑐𝜏
⃦⃦
𝑥𝑡−𝜏 − 𝑥𝑡−1−𝜏

⃦⃦2
, (6)

where {𝑧𝑡}𝑡≥0 is some auxiliary sequence (often) different from the iterates {𝑥𝑡}𝑡≥0, and {𝑐𝜏}𝜏≥0 is a diminishing non-
negative sequence. This approach is motivated by the dynamical system point of view at Polyak’s heavy ball momentum,
where the two terms in (6) are interpreted as the potential and kinetic energy of the system (Sebbouh et al., 2019). In
contrast, the Lyapunov function used in this work is conceptually different even in the single node (𝑛 = 1), uncompressed
(𝛼 = 1) setting. Later, Defazio (2021) revisit the analysis in (Liu et al., 2020) through the lens of primal averaging and
provide insights on why momentum helps in practice. The momentum is also used for stabilizing adaptive algorithms
such as normalized SGD (Cutkosky and Mehta, 2020). In particular, it was shown that by using momentum, one can
ensure convergence without large batches for normalized SGD (while keeping the same sample complexity as a large batch
normalized SGD). However, their analysis is specific to the normalized method, which allows using the function value as a
Lyapunov function. High probability analysis of momentum methods was investigated in (Cutkosky and Mehta, 2021; Li
and Orabona, 2020).

Recently, several other works attempt to explain the benefit of momentum (Plattner, 2022); some consider structured
nonconvex problems (Wang and Abernethy, 2021), and others focus on generalization (Jelassi and Li, 2022). We would like
to mention that understanding the behavior of SGDM in convex case also remains an active area of research (Ghadimi et al.,
2015; Yang et al., 2016; Sebbouh et al., 2021; Li et al., 2022a; Xiao and Yang, 2022) .
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In the distributed setting, (Yu et al., 2019; Karimireddy et al., 2021) extend the analysis of SGDM under BGS assumption.
Later (Takezawa et al., 2022; Gao et al., 2023) remove this assumption providing a refined analysis based on the techniques
developed in (Liu et al., 2020). However, the algorithms in these works do not apply any bandwidth reduction technique
such as communication compression.

Momentum and communication compression. The most closely related works to ours are (Mishchenko et al., 2019),
(Xie et al., 2020), and (Fatkhullin et al., 2021), which analyze momentum together with communication compression. The
analysis in (Mishchenko et al., 2019; Xie et al., 2020) requires BG/BGS assumption, and does not provide any theoretical
improvement over the variants without momentum. Finally, the analysis of Fatkhullin et al. (2021) is only established
for deterministic case, and it is unclear if its extension to stochastic case can bring any convergence improvement over
EF21-SGD.

12
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B. Variance Reduction Effect of SGDM and Comparison to STORM
Notice that the choice of our Lyapunov function Λ𝑡 (15), which is used in the analysis of EF21-SGDM implies that the
gradient estimators 𝑔𝑡𝑖 and 𝑣𝑡𝑖 improve over the iterations, i.e.,

𝑔𝑡𝑖 → ∇𝑓𝑖(𝑥
𝑡), 𝑣𝑡𝑖 → ∇𝑓𝑖(𝑥

𝑡) for 𝑡 → ∞.

This comes in contrast with the behavior of SGD, for which the gradient estimator 𝑣𝑡𝑖 = ∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖) does not necessarily

tend to zero over iterations. Such effect of asymptotic improvement of the estimation error of the gradient estimator is
reminiscent to the analogous effect known in the literature on variance reduction (VR) methods. In particular, the classical
momentum step 2 of Algorithm 2 may be contrasted with a STORM variance reduced estimator proposed by Cutkosky and
Orabona (2019), which updates the gradient estimator via

𝑤𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖 ) + (1− 𝜂)(𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖 )), 𝑤0
𝑖 = ∇𝑓𝑖(𝑥

0, 𝜉0𝑖 ) (7)

It is known that the class of VR methods (and STORM, in particular) can show faster asymptotic convergence in terms
of 𝑇 (or 𝜀) compared to SGD and SGDM under some additional assumptions. However, we would like to point out the
important differences (and limitations) of (7) compared to the classical Polyak’s momentum used on line 2 of Algorithm 2.
First, the estimator 𝑤𝑡+1

𝑖 is different from the momentum update rule 𝑣𝑡+1
𝑖 in that it is unbiased for any 𝑡 ≥ 0, i.e.,

E
[︀
𝑤𝑡+1

𝑖 −∇𝑓𝑖(𝑥
𝑡+1)

]︀
= 0,10 which greatly facilitates the analysis of this method. Notice that, in particular, in the

deterministic case (𝜎 = 0, 𝛼 = 1), the method with estimator (7) reduces to vanilla gradient descent with 𝑤𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1).
Second, the computation of 𝑤𝑡+1

𝑖 requires access to two stochastic gradients ∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖 ) and ∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖 ) under
the same realization of noise 𝜉𝑡+1

𝑖 at each iteration, and requires the additional storage of control variate 𝑥𝑡. This is a
serious limitation, which can make the method impractical or even not implementable for certain applications such as
federatied RL (Mitra et al., 2023), multi-agent RL (Doan et al., 2019) or operations research problems (Chen et al., 2022).
Third, the analysis of variance reduced methods such as STORM requires an additional assumptions such as individual
smoothness of stochastic functions (or its averaged variants) (Assumption 3), i.e., ‖∇𝑓𝑖(𝑥,𝜉𝑖)−∇𝑓𝑖(𝑦, 𝜉𝑖)‖ ≤ ℓ𝑖 ‖𝑥− 𝑦‖
for all 𝑥,𝑦 ∈ R𝑑, 𝜉𝑖 ∼ 𝒟𝑖, 𝑖 ∈ [𝑛], while our EF21-SGDM only needs smoothness of (deterministic) local functions 𝑓𝑖(𝑥).
While this assumption is satisfied for some loss functions in supervised learning, it can also be very limiting. Even if
Assumption 3 is satisfied, the constant ̃︀ℓ (which always satisfies ̃︀ℓ ≥ ̃︀𝐿) can be much larger than ̃︀𝐿 canceling the speed-up in
terms of 𝑇 (or 𝜀). For completeness, we provide the sample complexity analysis of our error compensated method combined
with estimator (7), which is deferred to Appendix K.

10Notice that E
[︀
𝑤0

𝑖 −∇𝑓𝑖(𝑥
0)
]︀
= 0. Let E

[︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
]︀
= 0 hold, then

E
[︀
𝑤𝑡+1

𝑖 −∇𝑓𝑖(𝑥
𝑡+1)

]︀
= (1− 𝜂)E

[︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖 )
]︀
= 0.
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C. Experiments
We consider a nonconvex logistic regression problem: 𝑓𝑖(𝑥1, . . . , 𝑥𝑐) = − 1

𝑚

∑︀𝑚
𝑗=1 log(exp(𝑎

⊤
𝑖𝑗𝑥𝑦𝑖𝑗

)/
∑︀𝑐

𝑦=1 exp(𝑎
⊤
𝑖𝑗𝑥𝑦))

with a nonconvex regularizer ℎ(𝑥1, . . . , 𝑥𝑐) = 𝜆
∑︀𝑐

𝑦=1

∑︀𝑙
𝑘=1[𝑥𝑦]

2
𝑘/(1 + [𝑥𝑦]

2
𝑘) with 𝜆 = 10−3, where 𝑥1, . . . , 𝑥𝑐 ∈ R𝑙,

[·]𝑘 is an indexing operation of a vector, 𝑐 ≥ 2 is the number of classes, 𝑙 is the number of features, 𝑚 is the size of a
dataset, 𝑎𝑖𝑗 ∈ R𝑙 and 𝑦𝑖𝑗 ∈ {1, . . . , 𝑐} are features and labels. The datasets used are MNIST (with 𝑙 = 784, 𝑚 = 60 000,
𝑐 = 10) and real-sim (with 𝑙 = 20 958, 𝑚 = 72 309, 𝑐 = 2) (LeCun et al., 2010; Chang and Lin, 2011). The dimension
of the problem is 𝑑 = (𝑙 + 1)𝑐, i.e., 𝑑 = 7850 for MNIST and 𝑑 = 41 918 for real-sim. In each experiment, we show
relations between the total number of transmitted coordinates and gradient/function values. The stochastic gradients in
each algorithm are replaced by a mini-batch estimator 1

𝐵

∑︀𝐵
𝑗=1 ∇𝑓𝑖(𝑥, 𝜉𝑖𝑗) with the same 𝐵 ≥ 1 in each plot. Notice

that all methods (except for NEOLITHIC) calculate the same number of samples at each communication round, thus the
dependence on the number of samples used will be qualitatively the same. In all algorithms, the step sizes are fine-tuned
from a set {2𝑘 | 𝑘 ∈ [−20, 20]} and the Top𝐾 compressor is used to compress information from the nodes to the master.
For EF21-SGDM , we fix momentum parameter 𝜂 = 0.1 in all experiments. Prior to that, we tuned 𝜂 ∈ {0.01, 0.1} on the
independent dataset w8a (with 𝑙 = 300, 𝑚 = 49 749, 𝑐 = 2). We omit BEER method from the plots since it showed worse
performance than EF21-SGD in all runs.
4.1 Experiment 1: increasing batch-size. In this experiment, we use MNIST dataset and fix the number of transmitted
coordinates to 𝐾 = 10 (thus 𝛼 ≥ 𝐾/𝑑 ≈ 10−3), and set 𝑛 = 10. Figure 1 shows convergence plots for 𝐵 ∈ {1,32,128}.
EF21-SGDM has fast convergence and shows a significant improvement when increasing batch-size compared to EF14-SGD.
In contrast, EF21-SGD suffers from poor performance for small 𝐵, which confirms our observations in previous sections.
NEOLITHIC has order times slower convergence rate due to the fact that it sends ⌈1/𝛼⌉ compressed vectors in each iteration,
while other methods send only one.
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(c) 𝐵 = 128

Figure 1: Experiment on MNIST dataset with 𝑛 = 10, and Top10 compressor.

4.2 Experiment 2: improving convergence with 𝑛. This experiment uses real-sim dataset, 𝐾 = 100 (thus 𝛼 ≥ 𝐾/𝑑 ≈
2 · 10−3), and with 𝐵 = 128 ≪ 𝑚. We vary the number of nodes within 𝑛 ∈ {1, 10, 100}, see Figure 2. In this case, EF21-
SGDM has much faster convergence compared to other methods for all 𝑛. Moreover, it shows a significant improvement
when 𝑛 increases. In Section D, we consider more experiments with different parameters in this setup and also show that
EF14-SGD converges to solutions of simple quadratic optimization problems several orders of magnitude less accurately
than EF21-SGDM.
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(b) 𝑛 = 10
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(c) 𝑛 = 100

Figure 2: Experiment on real-sim dataset with batch-size 𝐵 = 128, and Top100 compressor.
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(b) No improvement with 𝑛.

Figure 3: Divergence of EF21-SGD on the quadratic function 𝑓(𝑥) = 1
2
‖𝑥‖2, 𝑥 ∈ R2, using the Top1 compressor. See the proof of

Theorem 1 for details on the construction of the noise 𝜉; we use 𝜎 = 1, 𝐵 = 1. The starting point is 𝑥0 = (0,−0.01)⊤. Unlike EF21-SGD,
our method EF21-SGDM does not suffer from divergence and is stable near optimum. Figure 3b shows that when increasing the number of
nodes 𝑛, EF21-SGD applied with 𝐵 = 1 does not improve, and, moreover, diverges from the optimum even faster. All experiments use
constant parameters 𝛾 = 𝜂 = 0.1/

√
𝑇 = 10−3; see Figure 4 for diminishing parameters. Each method is run 10 times and the plot shows

the median performance alongside the 25% and 75% quantiles.

D. Additional Experiments and Details of Experimental Setup
D.1. Divergence of EF21-SGD with constant and time-varying parameters

In Figures 3 and 4, we show that EF21-SGD and EF21-SGD-ideal can diverge (left) with a small constant or time-varying
step-sizes. Moreover, EF21-SGD does not show improvement (right) when increasing the number of nodes 𝑛.

Implementation Details. The experiments were implemented in Python 3.7.9. The distributed environment was emulated
on machines with Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz. In all experiments with MNIST, we split the dataset across
nodes by labels to simulate the heterogeneous setting.

D.2. Extra Plots for Experiments 1 and 2

In Figures 5 and 6, we provide extra experiments for the setup from Section C.

D.3. Experiment 3: Stochastic Quadratic Optimization Problem

We now consider a synthetic 𝜆–strongly convex quadratic function problem 𝑓(𝑥) = 1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑥), where the functions

𝑓𝑖(𝑥) = 1
2𝑥

⊤Q𝑖𝑥 − 𝑥⊤𝑏𝑖 are (not necessarily convex) quadratic functions for all 𝑖 ∈ [𝑛] and 𝑥 ∈ R𝑑. The matrices
Q1, · · · ,Q𝑛, vectors 𝑏1, · · · , 𝑏𝑛, and a starting point 𝑥0 are generated by Algorithm 1 with the number of nodes 𝑛 = 100,
dimension 𝑑 = 1000, regularizer 𝜆 = 0.01, and scale 𝑠 = 1. For all 𝑖 ∈ [𝑛] and 𝑥 ∈ R𝑑, we consider stochastic gradients
∇𝑓𝑖(𝑥, 𝜉) = ∇𝑓𝑖(𝑥) + 𝜉𝑖, where 𝜉𝑖 are i.i.d. samples from 𝒩 (0, 𝜎) with 𝜎 ∈ {0.001, 0.01}. In Figure 7, we present the
comparison of EF21-SGDM and EF14-SGD with three different step sizes. The behavior of methods for other step sizes from
the set {2𝑘 | 𝑘 ∈ [−20, 20]} follows a similar trend. For every step size, we observe that at the beginning, the methods have
almost the same linear rates, but then EF14-SGD gets stuck at high accuracies, while EF21-SGDM continues converging to
the lower accuracies.

A procedure to generate stochastic quadratic optimization problems. In this section, we present an algorithm that
generates quadratic optimization tasks. The formal description is provided in Algorithm 1. The idea is to take a predefined
tridiagonal matrix and add noises to simulate the heterogeneous setting. Algorithm 1 returns matrices Q1, · · · ,Q𝑛, vectors
𝑏1, · · · , 𝑏𝑛, and a starting point 𝑥0 such that the matrix Q = 1

𝑛

∑︀𝑛
𝑖=1 Q𝑖 has the minimum eigenvalue 𝜆min(Q) = 𝜆, where
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(a) Divergence in single node setting, 𝑛 = 1.
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(b) No improvement with 𝑛.

Figure 4: Divergence of EF21-SGD on a quadratic function 1
2 ‖𝑥‖

2 with Top1 compressor. See the proof of Therem 1 for
details on the construction of noise 𝜉, we use 𝜎 = 1, 𝐵 = 1. The starting point for all methods is 𝑥0 = (0,− 0.01)⊤. Unlike
Figure 3, these experiments use time varying step-sizes and momentum parameters 𝛾𝑡 = 𝜂𝑡 =

0.1√
𝑡+1

. Each method is run 10

times and the plot shows the median performance alongside the 25% and 75% quantiles.
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(a) 𝐵 = 1
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(c) 𝐵 = 128

Figure 5: Performance of algorithms on MNIST dataset with 𝑛 = 100, and Top10 compressor.

𝜆 ≥ 0 is a parameter. Next, we define the functions 𝑓𝑖 and stochastic gradients in the following way:

𝑓𝑖(𝑥) :=
1

2
𝑥⊤Q𝑖𝑥− 𝑥⊤𝑏𝑖

and

∇𝑓𝑖(𝑥, 𝜉) := ∇𝑓𝑖(𝑥) + 𝜉𝑖,

for all 𝑥 ∈ R𝑑 and 𝑖 ∈ [𝑛]. The noises 𝜉𝑖 are i.i.d. samples from 𝒩 (0, 𝜎), where 𝜎 is a parameter.
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Figure 6: Performance of algorithms on real-sim dataset with batch-size 𝐵 = 1, and Top100 compressor.
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Figure 7: Stochastic Quadratic Optimization Problem with 𝜎 = 0.001 (left figure) and 𝜎 = 0.01 (right figure)

Algorithm 1 Quadratic Optimization Task Generation Procedure

1: Parameters: number nodes 𝑛, dimension 𝑑, regularizer 𝜆, and scale 𝑠.
2: for 𝑖 = 1, . . . , 𝑛 do
3: Calculate Guassian noises 𝜇𝑠

𝑖 = 1 + 𝑠𝜉𝑠𝑖 and 𝜇𝑏
𝑖 = 𝑠𝜉𝑏𝑖 , i.i.d. 𝜉𝑠𝑖 , 𝜉

𝑏
𝑖 ∼ 𝒩 (0, 1)

4: 𝑏𝑖 =
𝜇𝑠
𝑖

4 (−1 + 𝜇𝑏
𝑖 , 0, · · · , 0) ∈ R𝑑

5: Scale the predefined tridiagonal matrix

Q𝑖 =
𝜇𝑠
𝑖

4

⎛⎜⎜⎜⎜⎝
2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

⎞⎟⎟⎟⎟⎠ ∈ R𝑑×𝑑

6: end for
7: Find the mean of matrices Q = 1

𝑛

∑︀𝑛
𝑖=1 Q𝑖

8: Find the minimum eigenvalue 𝜆min(Q)
9: for 𝑖 = 1, . . . , 𝑛 do

10: Normalize matrix Q𝑖 = Q𝑖 + (𝜆− 𝜆min(Q))I
11: end for
12: Find a starting point 𝑥0 = (

√
𝑑, 0, · · · , 0)

13: Output a new problem: matrices Q1, · · · ,Q𝑛, vectors 𝑏1, · · · , 𝑏𝑛, starting point 𝑥0

E. Descent Lemma
Let us state the following lemma that is used in the analysis of nonconvex optimization methods.

Lemma 1 ((Li et al., 2021)). Let the function 𝑓(·) be 𝐿-smooth and let 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 for some vector 𝑔𝑡 ∈ R𝑑 and a
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step-size 𝛾 > 0. Then we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − (︂ 1

2𝛾
− 𝐿

2

)︂ ⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
. (8)

F. A Deeper Dive into the Issues EF21-SGD has with Stochastic Gradients
In order to understand this phenomenon, we propose to step back and examine an “idealized” version of EF21-SGD, which
we call EF21-SGD-ideal, defined by the update rules (9) + (10a):

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡, 𝑔𝑡 = 1
𝑛

𝑛∑︀
𝑖=1

𝑔𝑡𝑖 , (9)

𝑔𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1) + 𝒞
(︀
∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖 )−∇𝑓𝑖(𝑥

𝑡+1)
)︀
, (10a)

𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝒞

(︀
∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖 )− 𝑔𝑡𝑖

)︀
. (10b)

Compared to EF21-SGD, given by (9) + (10b), we replace the previous state 𝑔𝑡𝑖 by the exact gradient at the current iteration.
Since EF21-SGD heavily relies on the approximation 𝑔𝑡𝑖 ≈ ∇𝑓𝑖(𝑥

𝑡+1), and according to the proof of convergence of
EF21-SGD, such discrepancy tends to zero as 𝑡 → ∞, this change can only improve the method. While we admit this is a
conceptual algorithm only (it does not lead to any communication or sample complexity reduction in practice)11, it serves us
well to illustrate the drawbacks of EF21-SGD. We now establish the following negative result for EF21-SGD-ideal.

Theorem 1. Let 𝐿, 𝜎 > 0, 0 < 𝛾 ≤ 1/𝐿 and 𝑛 = 1. There exists a convex, 𝐿-smooth function 𝑓 : R2 → R, a contractive
compressor 𝒞(·) satisfying Definition 1, and an unbiased stochastic gradient with bounded variance 𝜎2 such that if the method
EF21-SGD-ideal ((9) + (10a)) is run with step-size 𝛾, then for all 𝑇 ≥ 0 and for all 𝑥0 ∈ {(0, 𝑥0

(2))
⊤ ∈ R2 |𝑥0

(2) < 0}, we
have

E
[︁⃦⃦

∇𝑓(𝑥𝑇 )
⃦⃦2]︁ ≥ 1

60 min
{︁
𝜎2,
⃦⃦
∇𝑓(𝑥0)

⃦⃦2}︁
.

Fix 0 < 𝜀 ≤ 𝐿/
√
60 and 𝑥0 = (0,−1)⊤. Additionally assume that 𝑛 ≥ 1 and the variance of unbiased stochastic gradient is

controlled by 𝜎2
/𝐵 for some 𝐵 ≥ 1. If 𝐵 < 𝜎2

60𝜀2 , then we have E
[︀⃦⃦
∇𝑓(𝑥𝑇 )

⃦⃦]︀
> 𝜀 for all 𝑇 ≥ 0.

The above theorem implies that the method (9), (10a), does not converge with small batch-size (e.g., equal to one) for any
fixed step-size choice.12 Moreover, in distributed setting with 𝑛 nodes, a mini-batch of order 𝐵 = Ω

(︀
𝜎2
/𝜀2
)︀

is required
for convergence. Notice that this batch-size is independent of 𝑛, which further implies that a linear speedup in the number
of nodes 𝑛 cannot be achieved for this method. While we only prove these negative results for an "idealized" version of
EF21-SGD rather than for the method itself, in Figures 3a and 4a, we empirically verify that EF21-SGD also suffers from
a similar divergence on the same problem instance provided in the proof of Theorem 1. Additionally, Figures 3b and 4b
illustrate that the situation does not improve for EF21-SGD when increasing 𝑛.

G. EF21-SGDM-ideal (Proof of Theorem 1 and Proposition 1)
We now state a slighly more general result than Theorem 1, which holds for EF21-SGDM-ideal method with any 𝜂 ∈ (0, 1].
The statement of Theorem 1 follows by setting 𝜂 = 1, since in that case EF21-SGDM-ideal coincides with EF21-SGD-ideal
(9), (10a). Recall that EF21-SGDM-ideal (distributed variant) has the following update rule:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡, 𝑔𝑡 =
1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑡𝑖 , (11)

EF21-SGDM-ideal:
𝑣𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1) + 𝜂(∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖 )−∇𝑓𝑖(𝑥
𝑡+1)),

𝑔𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1) + 𝒞
(︀
𝑣𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1)
)︀
.

(12)

11This is because full gradients would need to be computed and communicated for its implementation. Notice also that if 𝜎 = 0, this
method becomes the exact distributed gradient descent.

12In fact, the example can be easily extended to the case of polynomially decaying step-size.
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Theorem 2. Let 𝐿, 𝜎 > 0, 0 < 𝛾 ≤ 1/𝐿, 0 < 𝜂 ≤ 1 and 𝑛 = 1. There exists a convex, 𝐿-smooth function 𝑓(·), a
contractive compressor 𝒞(·) satisfying Definition 1, and an unbiased stochastic gradient with bounded variance 𝜎2 such that
if the method (11), (12) is run with a step-size 𝛾, then for all 𝑇 ≥ 0 and for all 𝑥0 ∈ {(0, 𝑥0

(2))
⊤ ∈ R2 |𝑥0

(2) < 0}, we have

E
[︁⃦⃦

∇𝑓(𝑥𝑇 )
⃦⃦2]︁ ≥ 1

60
min

{︁
𝜂2𝜎2,

⃦⃦
∇𝑓(𝑥0)

⃦⃦2}︁
.

Fix 0 < 𝜀 ≤ 𝐿/
√
60 and 𝑥0 = (0,−1)⊤. Additionally assume that 𝑛 ≥ 1 and the variance of unbiased stochastic gradient

is controlled by 𝜎2
/𝐵 for some 𝐵 ≥ 1. If 𝐵 < 𝜂2𝜎2

60𝜀2 , then we have E
[︀⃦⃦
∇𝑓(𝑥𝑇 )

⃦⃦]︀
> 𝜀 for all 𝑇 ≥ 0.

Proof of Theorem 1. Part I. Consider 𝑓(𝑥) = 𝐿
2 ‖𝑥‖2, 𝑥 ∈ R2. For each iteration 𝑡 ≥ 0, let the random vector 𝜉𝑡+1 be

sampled uniformly at random from the set of vectors:

𝑧1 =

(︂
2
0

)︂√︂
3𝜎2

10
, 𝑧2 =

(︂
0
1

)︂√︂
3𝜎2

10
, 𝑧3 =

(︂
−2
−1

)︂√︂
3𝜎2

10
.

Define the stochastic gradient as ∇𝑓(𝑥𝑡, 𝜉𝑡) := ∇𝑓(𝑥𝑡) + 𝜉𝑡 = 𝐿𝑥𝑡 + 𝜉𝑡. Notice that E [∇𝑓(𝑥𝑡, 𝜉𝑡)] = ∇𝑓(𝑥𝑡), and
E
[︁
‖∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)‖2

]︁
= 𝜎2. The update rule of method (11), (12) with such estimator is

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 = 𝑥𝑡 − 𝐿𝛾𝑥𝑡 − 𝛾𝒞
(︀
𝜂 𝜉𝑡
)︀
,

where we choose 𝒞(·) as a Top1 compressor. Notice that E [𝜉𝑡] = (0, 0)⊤, but

E
[︀
𝒞(𝜉𝑡)

]︀
= 𝜂

√︂
3𝜎2

10
(0, 1/3)⊤ ̸= (0, 0)⊤.

By setting the initial iterate to 𝑥0 = (0, 𝑥0
(2))

⊤ for any 𝑥0
(2) < 0, we can derive

E
[︀
𝑥𝑇
]︀

= (1− 𝐿𝛾)𝑇𝑥0 − 𝜂

√︂
3𝜎2

10

(︂
0
1
3

)︂
𝛾

𝑇−1∑︁
𝑡=0

(1− 𝐿𝛾)𝑡

= (1− 𝐿𝛾)𝑇
(︂

0
𝑥0
(2)

)︂
+

𝜂

𝐿

√︂
𝜎2

30

(︂
0
−1

)︂
(1− (1− 𝐿𝛾)𝑇 ) ̸=

(︂
0
0

)︂
(13)

for any 0 ≤ 𝛾 ≤ 1/𝐿 and any 𝑥0
(2) < 0. The inequality in (13) is because the first vector has strictly negative component 𝑥0

(2),

and the second vector has non-positive second component when 𝛾 > 0 and 𝜎2 > 0. Therefore, since ‖∇𝑓(𝑥)‖2 = ‖𝐿𝑥‖2,
we have

E
[︁⃦⃦

∇𝑓(𝑥𝑇 )
⃦⃦2]︁

= E
[︁⃦⃦

𝐿𝑥𝑇
⃦⃦2]︁

=
⃦⃦
E
[︀
𝐿𝑥𝑇

]︀⃦⃦2
+ E

[︁⃦⃦
𝐿𝑥𝑇 − E

[︀
𝐿𝑥𝑇

]︀⃦⃦2]︁
≥

⃦⃦
E
[︀
𝐿𝑥𝑇

]︀⃦⃦2
(𝑖)
=

(︃
(1− 𝐿𝛾)𝑇

⃦⃦
𝐿𝑥0

⃦⃦
+ 𝜂

√︂
𝜎2

30
(1− (1− 𝐿𝛾)𝑇 )

)︃2

(𝑖𝑖)

≥ (1− 𝐿𝛾)2𝑇
⃦⃦
∇𝑓(𝑥0)

⃦⃦2
+

𝜂2𝜎2

30
(1− (1− 𝐿𝛾)𝑇 )2

≥
⃦⃦
∇𝑓(𝑥0)

⃦⃦2
𝜂2𝜎2

30 ‖∇𝑓(𝑥0)‖2 + 𝜂2𝜎2

for all 𝑇 ≥ 1, where in (𝑖) we used the form of vector E
[︀
𝑥𝑇
]︀

in (13), in (𝑖𝑖) we drop a non-negative cross term, and use
∇𝑓(𝑥0) = 𝐿𝑥0. The last inequality follows by lower bounding a univariate quadratic function with respect to 𝑧 := (1−𝐿𝛾)𝑇
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for 0 ≤ 𝑧 ≤ 1, where optimal choice is 𝑧 = 𝜂2𝜎2/(30
⃦⃦
∇𝑓(𝑥0)

⃦⃦2
+ 𝜂2𝜎2). It is left to note that 𝑥𝑦

𝑥+𝑦 ≥ 1
2 min{𝑥, 𝑦} for

all 𝑥, 𝑦 > 0.

Part II. Fix 𝑛 ≥ 1 and 𝐵 ≥ 1. Let at each node 𝑖 = 1, . . . , 𝑛, the random vectors 𝜉𝑡𝑖 be sampled independently and
uniformly form the set of vectors:

𝑧1 =

(︂
2
0

)︂√︂
3𝜎2

10𝐵
, 𝑧2 =

(︂
0
1

)︂√︂
3𝜎2

10𝐵
, 𝑧3 =

(︂
−2
−1

)︂√︂
3𝜎2

10𝐵
.

Define a random matrix 𝜉𝑡 := (𝜉𝑡1, . . . , 𝜉
𝑡
𝑛)

⊤. Then E
[︁
‖∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)‖2

]︁
= 𝜎2

𝐵 . The update of the method (11),
(12) on the same function instance will take the form

𝑥𝑡+1 = 𝑥𝑡 − 𝛾
1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑡𝑖 = 𝑥𝑡 − 𝐿𝛾𝑥𝑡 − 𝛾
1

𝑛

𝑛∑︁
𝑖=1

𝒞
(︀
𝜂 𝜉𝑡𝑖
)︀
.

Notice that in this case, we still have

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝒞(𝜂 𝜉𝑡𝑖)

]︃
=

1

𝑛

𝑛∑︁
𝑖=1

E
[︀
𝒞(𝜂 𝜉𝑡𝑖)

]︀
= 𝜂

√︂
3𝜎2

10
(0, 1/3)⊤ ̸= (0, 0)⊤,

which is independent (!) of 𝑛. Therefore, by similar derivations, we can conclude that

E
[︁⃦⃦

∇𝑓(𝑥𝑇 )
⃦⃦2]︁ ≥ 1

60
min

{︂
𝜂2𝜎2

𝐵
,
⃦⃦
∇𝑓(𝑥0)

⃦⃦2}︂
> 𝜀2,

where we use that 𝐵 < 𝜂2𝜎2

60𝜀2 , 𝜀 ≤ 𝐿/
√
60, and 𝑥0 = (0,−1)⊤.

Proof of Proposition 1. By smoothness (Assumption 1) of 𝑓(·) it follows from Lemma 1 that for 𝛾 ≤ 1/𝐿 we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
. (14)

Now it remains to control the last term, which is due to the error introduced by a contractive compressor and stochastic
gradients. We have

E
[︁⃦⃦

𝑔𝑡 −∇𝑓(𝑥𝑡)
⃦⃦2]︁ (𝑖)

= E
[︁⃦⃦

𝒞
(︀
𝑣𝑡 −∇𝑓(𝑥𝑡)

)︀⃦⃦2]︁ (𝑖𝑖)
= E

[︁⃦⃦
𝒞
(︀
𝜂
(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)

)︀)︀⃦⃦2]︁
(𝑖𝑖𝑖)

≤ 2E
[︁⃦⃦

𝒞
(︀
𝜂
(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)

)︀)︀
− 𝜂(∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡))

⃦⃦2]︁
+2𝜂2E

[︁⃦⃦
∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)

⃦⃦2]︁
≤ 2(2− 𝛼)𝜂2E

[︁⃦⃦
∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)

⃦⃦2]︁
≤ 4𝜂2𝜎2,

where (𝑖) and (𝑖𝑖) use the update rule (3), (𝑖𝑖𝑖) holds by Young’s inequality, and the last two steps hold by Definition 1 and
Assumption 2.

Subtracting 𝑓* from both sides of (14), taking expectation and defining 𝛿𝑡 := E [𝑓(𝑥𝑡)− 𝑓*], we derive

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

=
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 2𝛿0

𝛾𝑇
+ 4𝜂2𝜎2.
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H. EF21-SGDM (Proof of Theorems 3 and 4)

Algorithm 2 EF21-SGDM (Error Feedback 2021 Enhanced with Polyak Momentum)

1: Input: starting point 𝑥0, step-size 𝛾 > 0, momentum 𝜂 ∈ (0, 1], initial batch size 𝐵init

2: Initialize 𝑣0𝑖 = 𝑔0𝑖 = 1
𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for 𝑖 = 1, . . . , 𝑛; 𝑔0 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

0
𝑖

3: for 𝑡 = 0,1, 2, . . . , 𝑇 − 1 do
4: Master computes 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 and broadcasts 𝑥𝑡+1 to all nodes
5: for all nodes 𝑖 = 1, . . . , 𝑛 in parallel do
6: Compute momentum estimator 𝑣𝑡+1

𝑖 = (1− 𝜂)𝑣𝑡𝑖 + 𝜂∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖 )
7: Compress 𝑐𝑡+1

𝑖 = 𝒞(𝑣𝑡+1
𝑖 − 𝑔𝑡𝑖) and send 𝑐𝑡+1

𝑖 to the master
8: Update local state 𝑔𝑡+1

𝑖 = 𝑔𝑡𝑖 + 𝑐𝑡+1
𝑖

9: end for
10: Master computes 𝑔𝑡+1 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡+1
𝑖 via 𝑔𝑡+1 = 𝑔𝑡 + 1

𝑛

∑︀𝑛
𝑖=1 𝑐

𝑡+1
𝑖

11: end for

Single node setting.
Theorem 3. Let Assumptions 1, 2 hold, and let 𝒞 satisfy Definition 1. Let method (9), (4) be run with 𝑔0 = 𝑣0 = ∇𝑓(𝑥0),
and 𝑥̂𝑇 be sampled uniformly at random from the iterates of the method. Then for all 𝜂 ∈ (0, 1] with 𝛾 ≤ 𝛾0 =

min
{︀

𝛼
20𝐿 ,

𝜂
7𝐿

}︀
, we have E

[︁⃦⃦
∇𝑓(𝑥̂𝑇 )

⃦⃦2]︁ ≤ 𝒪( 𝛿0
𝛾𝑇 + 𝜂𝜎2). The choice 𝜂 = min

{︁
1,
(︀
𝐿𝛿0
𝜎2𝑇

)︀1/2}︁
, 𝛾 = 𝛾0 results in

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 𝒪

(︀
𝐿𝛿0
𝛼𝑇 +

(︀
𝐿𝛿0𝜎

2

𝑇

)︀1/2)︀
.

Compared to Proposition 1, where 𝜂 can be made arbitrarily small, Theorem 3 suggests that there is a trade-off for the choice
of 𝜂 ∈ (0, 1] in algorithm (9), (4). The above theorem implies that in single node setting EF21-SGDM has 𝒪( 𝐿

𝛼𝜀2 + 𝐿𝜎2

𝜀4 )
sample complexity. For 𝛼 = 1, this result matches with the sample complexity of SGD and is known to be unimprovable
under Assumptions 1 and 2 (Arjevani et al., 2019). Moreover, when 𝛼 = 1, our sample complexity matches with previous
analysis of momentum methods in (Liu et al., 2020) and (Defazio, 2021). However, even in this single node (𝑛 = 1),
uncompressed (𝛼 = 1) setting our analysis is different from the previous work, in particular, our choice of momentum
parameter and the Lyapunov function are different, see Appendix A and L. For 𝛼 < 1, the above result matches with
sample complexity of EF14-SGD (single node setting) (Stich and Karimireddy, 2019), which was recently shown to be
optimal (Huang et al., 2022) for biased compressors satisfying Definition 1. However, notice that the extension of Stich and
Karimireddy (2019) method to distributed setting meets additional challenges and it is unclear whether it is possible without
imposing additional BG or BGS assumptions as in (Koloskova et al., 2020). In the following we will demonstrate the benefit
of our EF21-SGDM method by extending it to distributed setting without imposing any additional assumptions.

Distributed setting. Letting 𝛿𝑡 := 𝑓(𝑥𝑡)− 𝑓*, our convergence analysis of this method relies on the monotonicity of the
following Lyapunov function:

Λ𝑡 := 𝛿𝑡 +
𝛾
𝛼𝑛

𝑛∑︀
𝑖=1

‖𝑔𝑡𝑖 − 𝑣𝑡𝑖‖
2
+ 𝛾𝜂

𝛼2𝑛

𝑛∑︀
𝑖=1

‖𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡)‖2 + 𝛾

𝜂

⃦⃦⃦⃦
𝑛∑︀

𝑖=1

(𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡))

⃦⃦⃦⃦2
. (15)

We obtain the following result:
Theorem 4. Let Assumptions 1 and 2 hold. Let 𝑥̂𝑇 be sampled uniformly at random from the 𝑇 iterates of the method. Let
EF21-SGDM (Algorithm 2) be run with a contractive compressor. For all 𝜂 ∈ (0, 1] and 𝐵init ≥ 1, with 𝛾 ≤ min

{︁
𝛼

20̃︀𝐿 , 𝜂
7𝐿

}︁
,

we have

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 𝒪

(︁
Λ0

𝛾𝑇 + 𝜂3𝜎2

𝛼2 + 𝜂2𝜎2

𝛼 + 𝜂𝜎2

𝑛

)︁
, (16)

where Λ0 is given by (15). Choosing the batch size 𝐵init =
⌈︁

𝜎2

𝐿𝛿0

⌉︁
, and stepsize 𝛾 = min

{︁
𝛼

20̃︀𝐿 , 𝜂
7𝐿

}︁
, and momentum

𝜂 = min

{︂
1,
(︁

𝐿𝛿0𝛼
2

𝜎2𝑇

)︁1/4

,
(︀
𝐿𝛿0𝛼
𝜎2𝑇

)︀1/3
,
(︀
𝐿𝛿0𝑛
𝜎2𝑇

)︀1/2
, 𝛼

√
𝐿𝛿0𝐵init
𝜎

}︂
, we get

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 𝒪

(︂ ̃︀𝐿𝛿0
𝛼𝑇 +

(︁
𝐿𝛿0𝜎

2/3

𝛼2/3𝑇

)︁3/4

+
(︁

𝐿𝛿0𝜎√
𝛼𝑇

)︁2/3

+
(︁

𝐿𝛿0𝜎
2

𝑛𝑇

)︁1/2
)︂
.
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Remark 1. In the single node setting (𝑛 = 1), the above result recovers the statement of Theorem 3 (with the same choice of

parameters) since by Young’s inequality
(︁

𝐿𝛿0𝜎
2/3

𝛼2/3𝑇

)︁3/4

≤ 1
2
𝐿𝛿0
𝛼𝑇 + 1

2

(︁
𝐿𝛿0𝜎

2

𝑇

)︁1/2

,
(︁

𝐿𝛿0𝜎√
𝛼𝑇

)︁2/3

≤ 1
3
𝐿𝛿0
𝛼𝑇 + 2

3

(︁
𝐿𝛿0𝜎

2

𝑇

)︁1/2

, and̃︀𝐿 = 𝐿.

The statement of Theorem 3 follows directly from Theorem 4 and Remark 1. Let us prove Theorem 4.

Proof of Theorem 4. In order to control the error between 𝑔𝑡 and ∇𝑓(𝑥𝑡), we decompose it into two terms

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
⃦⃦
𝑔𝑡 − 𝑣𝑡

⃦⃦2
+ 2

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑣𝑡𝑖

⃦⃦2
+ 2

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
,

and develop a recursion for each term above separately.

Part I (a). Controlling the error of momentum estimator for each 𝑣𝑡𝑖 . Recall that by Lemma 2-(23), we have for each
𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑣𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑣𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+
3𝐿2

𝑖

𝜂
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 𝜂2𝜎2. (17)

Averaging inequalities (17) over 𝑖 = 1, . . . ,𝑛 and denoting ̃︀𝑃𝑡 :=
1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑣𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)‖2
]︁
, 𝑅𝑡 := E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡+1

⃦⃦2]︁
we have

̃︀𝑃𝑡+1 ≤ (1− 𝜂) ̃︀𝑃𝑡 +
3̃︀𝐿2

𝜂
𝑅𝑡 + 𝜂2𝜎2.

Summing up the above inequality for 𝑡 = 0, . . . , 𝑇 − 1, we derive

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 ≤
3̃︀𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 𝜂𝜎2 +
1

𝜂𝑇
̃︀𝑃0. (18)

Part I (b). Controlling the error of momentum estimator for 𝑣𝑡 (on average). Similarly by Lemma 2-(24), we have for
any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑣𝑡+1 −∇𝑓(𝑥𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2]︁
+

3𝐿2

𝜂
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+
𝜂2𝜎2

𝑛
,

where 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 is an auxiliary sequence.

Summing up the above inequality for 𝑡 = 0, . . . , 𝑇 − 1, and denoting 𝑃𝑡 := E
[︁
‖𝑣𝑡 −∇𝑓(𝑥𝑡)‖2

]︁
, we derive

1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 ≤
3𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0. (19)

Part II. Controlling the error of contractive compressor and momentum estimator. By Lemma 3 we have for each
𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑣𝑡+1

𝑖

⃦⃦2]︁ ≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑣𝑡𝑖
⃦⃦2]︁

+
4𝜂2

𝛼
E
[︁⃦⃦

𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+
4𝐿2

𝑖 𝜂
2

𝛼
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 𝜂2𝜎2. (20)
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Averaging inequalities (20) over 𝑖 = 1, . . . ,𝑛, denoting ̃︀𝑉𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑔𝑡𝑖 − 𝑣𝑡𝑖‖

2
]︁
, and summing up the resulting

inequality for 𝑡 = 0, . . . , 𝑇 − 1, we obtain

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 ≤ 8𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 +
8̃︀𝐿2𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂2𝜎2

𝛼
+

2

𝛼𝑇
̃︀𝑉0. (21)

Part III. Combining steps I and II with descent lemma. By smoothness (Assumption 1) of 𝑓(·) it follows from Lemma 1
that for any 𝛾 ≤ 1/(2𝐿) we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
(22)

≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+ 𝛾

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑣𝑡𝑖

⃦⃦2
+ 𝛾

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
.

Subtracting 𝑓* from both sides of (22), taking expectation and defining 𝛿𝑡 := E [𝑓(𝑥𝑡)− 𝑓*], we derive

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

=
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤ 2𝛿0
𝛾𝑇

+ 2
1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖)

≤ 2𝛿0
𝛾𝑇

+
16𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 +
4𝜂2𝜎2

𝛼

−
1
2 − 16𝛾2̃︀𝐿2𝜂2

𝛼2

𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖𝑖)

≤ 2𝛿0
𝛾𝑇

+
16𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

2𝜂𝜎2

𝑛
+

4

𝛼𝑇
̃︀𝑉0

−
1
2 − 16𝛾2̃︀𝐿2𝜂2

𝛼2 − 6𝛾2𝐿2

𝜂2 − 48𝛾2̃︀𝐿2

𝛼2

𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2

𝜂𝑇
𝑃0 +

16𝜂

𝛼2𝑇
̃︀𝑃0

(𝑖𝑖𝑖)

≤ 2𝛿0
𝛾𝑇

+
16𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

2𝜂𝜎2

𝑛
−

1
2 − 6𝛾2𝐿2

𝜂2 − 64𝛾2̃︀𝐿2

𝛼2

𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
2

𝜂𝑇
𝑃0 +

16𝜂

𝛼2𝑇
̃︀𝑃0 +

4

𝛼𝑇
̃︀𝑉0

≤ 2𝛿0
𝛾𝑇

+
16𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

2𝜂𝜎2

𝑛
+

2

𝜂𝑇
𝑃0 +

16𝜂

𝛼2𝑇
̃︀𝑃0 +

4

𝛼𝑇
̃︀𝑉0.

where (𝑖) holds due to (21), (𝑖𝑖) utilizes (19), and (𝑖𝑖𝑖) follows by 𝜂 ≤ 1, and the last step holds due to the assumption on
the step-size. We proved (16).

We now find the particular values of parameters. Since 𝑔𝑖 = 𝑣𝑖 for all 𝑖 ∈ [𝑛], we have ̃︀𝑉0 = 0. Using
𝑣0𝑖 = 1

𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for all 𝑖 = 1, . . . , 𝑛, we have

𝑃0 = E
[︁⃦⃦

𝑣0 −∇𝑓(𝑥0)
⃦⃦2]︁ ≤ 𝜎2

𝑛𝐵init
and ̃︀𝑃0 =

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑣0𝑖 −∇𝑓𝑖(𝑥
0)
⃦⃦2]︁ ≤ 𝜎2

𝐵init
.

We can substitute the choice of 𝛾 and obtain

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

= 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+
𝐿𝛿0
𝜂𝑇

+
𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛
+

𝜎2

𝜂𝑛𝐵init𝑇
+

𝜂𝜎2

𝛼2𝐵init𝑇

)︃
.
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Since 𝐵init ≥ 𝜎2

𝐿𝛿0𝑛
, we have

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

= 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+
𝐿𝛿0
𝜂𝑇

+
𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛
+

𝜂𝜎2

𝛼2𝐵init𝑇

)︃
.

Notice that the choice of the momentum parameter such that 𝜂 ≤
(︁

𝐿𝛿0𝛼
2

𝜎2𝑇

)︁1/4

, 𝜂 ≤
(︀
𝐿𝛿0𝛼
𝜎2𝑇

)︀1/3
, 𝜂 ≤

(︀
𝐿𝛿0𝑛
𝜎2𝑇

)︀1/2
and

𝜂 ≤ 𝛼
√
𝐿𝛿0𝐵init
𝜎 ensures that 𝜂3𝜎2

𝛼2 ≤ 𝐿𝛿0
𝜂𝑇 , 𝜂2𝜎2

𝛼 ≤ 𝐿𝛿0
𝜂𝑇 , 𝜂𝜎2

𝑛 ≤ 𝐿𝛿0
𝜂𝑇 , and 𝜂𝜎2

𝛼2𝐵init𝑇
≤ 𝐿𝛿0

𝜂𝑇 . Therefore, we have

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+

(︂
𝐿𝛿0𝜎

2/3

𝛼2/3𝑇

)︂3/4

+

(︂
𝐿𝛿0𝜎√
𝛼𝑇

)︂2/3

+

(︂
𝐿𝛿0𝜎

2

𝑛𝑇

)︂1/2

+
𝜎
√
𝐿𝛿0

𝛼
√
𝐵init𝑇

)︃
.

Using 𝐵init ≥ min
{︁

𝜎2𝐿̃︀𝐿2𝛿0
, 𝜎
𝛼
√
𝐿𝛿0𝑇

, 𝜎2/3

𝛼4/3𝑇 2/3(𝐿𝛿0)1/3
, 𝑛
𝛼2𝑇

}︁
, we obtain

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+

(︂
𝐿𝛿0𝜎

2/3

𝛼2/3𝑇

)︂3/4

+

(︂
𝐿𝛿0𝜎√
𝛼𝑇

)︂2/3

+

(︂
𝐿𝛿0𝜎

2

𝑛𝑇

)︂1/2
)︃
.

It remains to notice that
⌈︁
max

{︁
min

{︁
𝜎2𝐿̃︀𝐿2𝛿0

, 𝜎
𝛼
√
𝐿𝛿0𝑇

, 𝜎2/3

𝛼4/3𝑇 2/3(𝐿𝛿0)1/3
, 𝑛
𝛼2𝑇

}︁
, 𝜎2

𝐿𝛿0𝑛

}︁⌉︁
≤
⌈︁

𝜎2

𝐿𝛿0

⌉︁
.

H.1. Controlling the Error of Momentum Estimator

Lemma 2. Let Assumption 1 be satisfied, and suppose 0 < 𝜂 ≤ 1. For every 𝑖 = 1, . . . , 𝑛, let the sequence {𝑣𝑡𝑖}𝑡≥0 be
updated via

𝑣𝑡𝑖 = 𝑣𝑡−1
𝑖 + 𝜂

(︀
∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1
𝑖

)︀
,

Define the sequence 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 . Then for every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0 it holds

E
[︁⃦⃦

𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+
3𝐿2

𝑖

𝜂
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+ 𝜂2𝜎2, (23)

E
[︁⃦⃦

𝑣𝑡 −∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)

⃦⃦2]︁
+

3𝐿2

𝜂
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+
𝜂2𝜎2

𝑛
. (24)

Proof. By the update rule of 𝑣𝑡𝑖 , we have

E
[︁⃦⃦

𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

= E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡) + 𝜂(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1

𝑖 )
⃦⃦2]︁

= E
[︁
E𝜉𝑡𝑖

[︁⃦⃦
(1− 𝜂)(𝑣𝑡−1

𝑖 −∇𝑓𝑖(𝑥
𝑡)) + 𝜂(∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥
𝑡))
⃦⃦2]︁]︁

= (1− 𝜂)2E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ 𝜂2E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

≤ (1− 𝜂)2
(︁
1 +

𝜂

2

)︁
E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+

(︂
1 +

2

𝜂

)︂
E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡−1)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ 𝜂2𝜎2

≤ (1− 𝜂)E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+
3𝐿2

𝑖

𝜂
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

+ 𝜂2𝜎2,

where the first inequality holds by Young’s inequality, and the last step uses smoothness of 𝑓𝑖(·) (Assumption 1), which
concludes the proof of (23).

For each 𝑡 = 0, . . . , 𝑇 − 1, define a random vector 𝜉𝑡 := (𝜉𝑡1, . . . , 𝜉
𝑡
𝑛) and denote by ∇𝑓(𝑥𝑡, 𝜉𝑡) := 1

𝑛

∑︀𝑛
𝑖=1 ∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖).
Note that the entries of the random vector 𝜉𝑡 are independent and E𝜉𝑡 [∇𝑓(𝑥𝑡, 𝜉𝑡)] = ∇𝑓(𝑥𝑡), then we have

𝑣𝑡 = 𝑣𝑡−1 + 𝜂
(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)− 𝑣𝑡−1

)︀
,
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where 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 is an auxiliary sequence. Therefore, we can similarly derive

E
[︁⃦⃦

𝑣𝑡 −∇𝑓(𝑥𝑡)
⃦⃦2]︁

= E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡) + 𝜂
(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)− 𝑣𝑡−1

)︀⃦⃦2]︁
= E

[︁
E𝜉𝑡

[︁⃦⃦
(1− 𝜂)(𝑣𝑡−1 −∇𝑓(𝑥𝑡)) + 𝜂

(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)

)︀⃦⃦2]︁]︁
= (1− 𝜂)2E

[︁⃦⃦
𝑣𝑡−1 −∇𝑓(𝑥𝑡)

⃦⃦2]︁
+ 𝜂2E

[︁⃦⃦
∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)

⃦⃦2]︁
≤ (1− 𝜂)2

(︁
1 +

𝜂

2

)︁
E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)
⃦⃦2]︁

+

(︂
1 +

2

𝜂

)︂
E
[︁⃦⃦

∇𝑓(𝑥𝑡−1)−∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
𝜂2𝜎2

𝑛

≤ (1− 𝜂)E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)
⃦⃦2]︁

+
3𝐿2

𝜂
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+
𝜂2𝜎2

𝑛
,

where the last step uses smoothness of 𝑓(·) (Assumption 1), which concludes the proof of (24).

H.2. Controlling the Error of Contractive Compression and Momentum Estimator

Lemma 3. Let Assumption 1 be satisfied, and suppose 𝒞 is a contractive compressor with 𝛼 ≤ 1
2 . For every 𝑖 = 1, . . . , 𝑛,

let the sequences {𝑣𝑡𝑖}𝑡≥0 and {𝑔𝑡𝑖}𝑡≥0 be updated via

𝑣𝑡𝑖 = 𝑣𝑡−1
𝑖 + 𝜂

(︀
∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1
𝑖

)︀
,

𝑔𝑡𝑖 = 𝑔𝑡−1
𝑖 + 𝒞

(︀
𝑣𝑡𝑖 − 𝑔𝑡−1

𝑖

)︀
,

Then for every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0 it holds

E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑣𝑡𝑖
⃦⃦2]︁ ≤

(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+

4𝜂2

𝛼
E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+
4𝐿2

𝑖 𝜂
2

𝛼
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+ 𝜂2𝜎2. (25)
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Momentum Provably Improves Error Feedback!

Proof. By the update rules of 𝑔𝑡𝑖 and 𝑣𝑡𝑖 , we derive

E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑣𝑡𝑖
⃦⃦2]︁

= E
[︁⃦⃦

𝑔𝑡−1
𝑖 − 𝑣𝑡𝑖 + 𝒞(𝑣𝑡𝑖 − 𝑔𝑡−1

𝑖 )
⃦⃦2]︁

= E
[︁
E𝒞

[︁⃦⃦
𝒞(𝑣𝑡𝑖 − 𝑔𝑡−1

𝑖 )− (𝑣𝑡𝑖 − 𝑔𝑡−1
𝑖 )

⃦⃦2]︁]︁
(𝑖)

≤ (1− 𝛼)E
[︁⃦⃦

𝑣𝑡𝑖 − 𝑔𝑡−1
𝑖

⃦⃦2]︁
(𝑖𝑖)
= (1− 𝛼)E

[︁⃦⃦
𝑣𝑡−1
𝑖 − 𝑔𝑡−1

𝑖 + 𝜂(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1

𝑖 )
⃦⃦2]︁

= (1− 𝛼)E
[︁
E𝜉𝑡𝑖

[︁⃦⃦
𝑣𝑡−1
𝑖 − 𝑔𝑡−1

𝑖 + 𝜂(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1

𝑖 )
⃦⃦2]︁]︁

= (1− 𝛼)E
[︁⃦⃦

𝑣𝑡−1
𝑖 − 𝑔𝑡−1

𝑖 + 𝜂(∇𝑓𝑖(𝑥
𝑡)− 𝑣𝑡−1

𝑖 )
⃦⃦2]︁

+(1− 𝛼)𝜂2E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

(𝑖𝑖𝑖)

≤ (1− 𝛼) (1 + 𝜌)E
[︁⃦⃦

𝑣𝑡−1
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
+ (1− 𝛼) (1 + 𝜌−1)𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+(1− 𝛼)𝜂2𝜎2

(𝑖𝑣)
= (1− 𝜃)E

[︁⃦⃦
𝑔𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 𝛽𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ (1− 𝛼)𝜂2𝜎2

(𝑣)

≤ (1− 𝜃)E
[︁⃦⃦

𝑔𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 2𝛽𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+2𝛽𝜂2E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡)−∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+ 𝜂2𝜎2

≤ (1− 𝜃)E
[︁⃦⃦

𝑔𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 2𝛽𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+2𝛽𝐿2
𝑖 𝜂

2E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+ 𝜂2𝜎2,

where (𝑖) is due to the definition of a contractive compressor (Definition 1), (𝑖𝑖) follows by the update rule of 𝑣𝑡𝑖 , (𝑖𝑖𝑖)
and (𝑣) hold by Young’s inequality for any 𝜌 > 0. In (𝑖𝑣), we introduced the notation 𝜃 := 1 − (1 − 𝛼)(1 + 𝜌), and
𝛽 := (1− 𝛼)(1 + 𝜌−1). The last step follows by smoothness of 𝑓𝑖(·) (Assumption 1). The proof is complete by the choice
𝜌 = 𝛼/2, which guarantees 1− 𝜃 ≤ 1− 𝛼/2, and 2𝛽 ≤ 4/𝛼 .
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Momentum Provably Improves Error Feedback!

I. Further Improvement Using Double Momentum!
Unfortunately, in the non-asymptotic regime, our sample complexity of EF21-SGDM does not match with the lower bound
in all problem parameters simultanuously due to the middle term 𝐿𝜎2/3

𝛼2/3𝜀8/3
+ 𝐿𝜎

𝛼1/2𝜀3
, which can potentially dominate over

𝐿𝜎2

𝑛𝜀4 term for large enough 𝑛 and 𝜀, and small enough 𝛼 and 𝜎. We propose a double-momentum method, which can further
improve the middle term in the sample complexity of EF21-SGDM. We replace the momentum estimator 𝑣𝑡𝑖 in Algorithm 2
by the following two-step momentum update

EF21-SGD2M: 𝑣𝑡+1
𝑖 = (1− 𝜂)𝑣𝑡𝑖 + 𝜂∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖 ), 𝑢𝑡+1

𝑖 = (1− 𝜂)𝑢𝑡
𝑖 + 𝜂𝑣𝑡+1

𝑖 . (26)

Corollary 3. Let 𝑣𝑡𝑖 in Algorithm 2 be replaced by 𝑢𝑡
𝑖 given by (26) (Algorithm 3 in the Appendix). Then with appropriate

choice of 𝛾 and 𝜂 (given in Theorem 5), we have E
[︀⃦⃦
∇𝑓(𝑥̂𝑇 )

⃦⃦]︀
≤ 𝜀 after 𝑇 = 𝒪

(︁ ̃︀𝐿𝛿0
𝛼𝜀2 + 𝐿𝛿0𝜎

2/3

𝛼2/3𝜀8/3
+ 𝐿𝛿0𝜎

2

𝑛𝜀4

)︁
iterations.

Now we formally introduce the double momentum variant of our method, Algorithm 3, and provide convergence result with
its proof. Compared to EF21-SGDM (Algorithm 2), the only change is that instead of compressing 𝑣𝑡𝑖 − 𝑔𝑡𝑖 , in EF21-SGD2M,
we compress 𝑢𝑡

𝑖 − 𝑔𝑡𝑖 , where 𝑢𝑖 is a two step (double) momentum estimator. The intuition behind this modification is that a
double momentum estimator 𝑢𝑡

𝑖 has richer "memory" (of the past gradients) compared to 𝑣𝑡𝑖 . When interacting with biased
compression operator 𝒞, such effect becomes crucial in improving the sample complexity. Theorem 5 states convergence
guarantees for Algorithm 3. Notice that the key reason for the sample complexity improvement of the double momentum
variant compared to EF21-SGDM is that in (27), one of the terms has better dependence on 𝜂 compared to Theorem 4, i.e.,
𝜂4𝜎2/𝛼 instead of 𝜂2𝜎2/𝛼. As a result, this term is dominated by other terms and vanishes in Corollary 3.

Algorithm 3 EF21-SGD2M

1: Input: 𝑥0, step-size 𝛾 > 0, parameter 𝜂 ∈ (0, 1], initial batch size 𝐵init

2: Initialize 𝑢0
𝑖 = 𝑣0𝑖 = 𝑔0𝑖 = 1

𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for 𝑖 = 1, . . . , 𝑛; 𝑔0 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

0
𝑖

3: for 𝑡 = 0,1, 2, . . . , 𝑇 − 1 do
4: Master computes 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 and broadcasts 𝑥𝑡+1 to all nodes
5: for all nodes 𝑖 = 1, . . . , 𝑛 in parallel do
6: Compute the first momentum estimator 𝑣𝑡+1

𝑖 = (1− 𝜂)𝑣𝑡𝑖 + 𝜂∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖 )
7: Compute the second momentum estimator 𝑢𝑡+1

𝑖 = (1− 𝜂)𝑢𝑡
𝑖 + 𝜂𝑣𝑡+1

𝑖

8: Compress 𝑐𝑡+1
𝑖 = 𝒞(𝑢𝑡+1

𝑖 − 𝑔𝑡𝑖) and send 𝑐𝑡+1
𝑖 to the master

9: Update local state 𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝑐𝑡+1

𝑖

10: end for
11: Master computes 𝑔𝑡+1 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡+1
𝑖 via 𝑔𝑡+1 = 𝑔𝑡 + 1

𝑛

∑︀𝑛
𝑖=1 𝑐

𝑡+1
𝑖

12: end for

Theorem 5. Let Assumptions 1 and 2 hold. Let 𝑥̂𝑇 be sampled uniformly at random from the iterates of the method. Let
Algorithm 3 run with a contractive compressor. For all 𝜂 ∈ (0, 1] and 𝐵init ≥ 1, with 𝛾 ≤ min

{︁
𝛼

60̃︀𝐿 , 𝜂
16𝐿

}︁
, we have

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 𝒪

(︂
Ψ0

𝛾𝑇
+

𝜂3𝜎2

𝛼2
+

𝜂4𝜎2

𝛼
+

𝜂𝜎2

𝑛

)︂
, (27)

where Ψ0 := 𝛿0 +
𝛾
𝜂E
[︁⃦⃦

𝑣0 −∇𝑓(𝑥0)
⃦⃦2]︁

+ 𝛾𝜂4

𝛼2
1
𝑛

∑︀𝑛
𝑖=1 E

[︁⃦⃦
𝑣0𝑖 −∇𝑓𝑖(𝑥

0)
⃦⃦2]︁

. Setting initial batch size 𝐵init =
⌈︁

𝜎2

𝐿𝛿0

⌉︁
,

step-size and momentum parameters

𝛾 = min

{︂
𝛼

60̃︀𝐿,
𝜂

16𝐿

}︂
, 𝜂 = min

{︃
1,

(︂
𝐿𝛿0𝛼

2

𝜎2𝑇

)︂1/4

,

(︂
𝐿𝛿0𝑛

𝜎2𝑇

)︂1/2

,
𝛼
√
𝐿𝛿0𝐵init

𝜎

}︃
, (28)

we get

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+

(︂
𝐿𝛿0𝜎

2/3

𝛼2/3𝑇

)︂3/4

+

(︂
𝐿𝛿0𝜎

2

𝑛𝑇

)︂1/2
)︃
.
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Proof. In order to control the error between 𝑔𝑡 and ∇𝑓(𝑥𝑡), we decompose it into three terms⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 3
⃦⃦
𝑔𝑡 − 𝑢𝑡

⃦⃦2
+ 3

⃦⃦
𝑢𝑡 − 𝑣𝑡

⃦⃦2
+ 3

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
≤ 3

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑢𝑡

𝑖

⃦⃦2
+ 3

⃦⃦
𝑢𝑡 − 𝑣𝑡

⃦⃦2
+ 3

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
,

where we define the sequences 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 and 𝑢𝑡 := 1

𝑛

∑︀𝑛
𝑖=1 𝑢

𝑡
𝑖. In the following, we develop a recursion for each

term above separately.

Part I. Controlling the error of momentum estimator for each 𝑣𝑡𝑖 and on average for 𝑣𝑡. Denote 𝑃𝑡 :=

E
[︁
‖𝑣𝑡 −∇𝑓(𝑥𝑡)‖2

]︁
, ̃︀𝑃𝑡 := 1

𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑣𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)‖2
]︁
, 𝑅𝑡 := E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡+1

⃦⃦2]︁
. Similarly to Part I of the proof

of Theorem 4, we have

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 ≤
3̃︀𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 𝜂𝜎2 +
1

𝜂𝑇
̃︀𝑃0, (29)

1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 ≤
3𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0. (30)

Part II (a). Controlling the error of the second momentum estimator for each 𝑢𝑡
𝑖. Recall that by Lemma 4-(37), we

have for each 𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑢𝑡+1
𝑖 − 𝑣𝑡+1

𝑖

⃦⃦2]︁ ≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡
𝑖 − 𝑣𝑡𝑖

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+6𝐿2
𝑖 𝜂E

[︁⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2]︁
+ 𝜂2𝜎2, (31)

Averaging inequalities (31) over 𝑖 = 1, . . . ,𝑛 and denoting ̃︀𝑄𝑡 :=
1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑢𝑡

𝑖 − 𝑣𝑡𝑖‖
2
]︁
, we have

̃︀𝑄𝑡+1 ≤ (1− 𝜂) ̃︀𝑄𝑡 + 6𝜂 ̃︀𝑃𝑡 + 6̃︀𝐿2𝜂𝑅𝑡 + 𝜂2𝜎2.

Summing up the above inequalities for 𝑡 = 0, . . . , 𝑇 − 1, we derive

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑄𝑡 ≤ 6

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 + 6̃︀𝐿2 1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 𝜂𝜎2 +
1

𝜂𝑇
̃︀𝑄0

≤

(︃
6 · 3̃︀𝐿2

𝜂2
+ 6̃︀𝐿2

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 7𝜂𝜎2 +
1

𝜂𝑇
̃︀𝑄0 +

6

𝜂𝑇
̃︀𝑃0

≤ 19̃︀𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 7𝜂𝜎2 +
6

𝜂𝑇
̃︀𝑃0, (32)

where we used (29), the bound 𝜂 ≤ 1, and 𝑢0
𝑖 = 𝑣0𝑖 for 𝑖 = 1, . . . , 𝑛.

Part II (b). Controlling the error of the second momentum estimator 𝑢𝑡 (on average). Similarly by Lemma 4-(38), we
have for any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑢𝑡+1 − 𝑣𝑡+1
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑢𝑡 − 𝑣𝑡

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2]︁
+6𝐿2𝜂E

[︁⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2]︁
+

𝜂2𝜎2

𝑛
,

28



1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Momentum Provably Improves Error Feedback!

Summing up the above inequalities for 𝑡 = 0, . . . , 𝑇 − 1, and denoting 𝑄𝑡 := E
[︁
‖𝑢𝑡 − 𝑣𝑡‖2

]︁
, we derive

1

𝑇

𝑇−1∑︁
𝑡=0

𝑄𝑡 ≤ 6

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 + 6𝐿2 1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 𝜂𝜎2 +
1

𝜂𝑇
𝑄0

≤
(︂
6 · 3𝐿2

𝜂2
+ 6𝐿2

)︂
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
7𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑄0 +

6

𝜂𝑇
𝑃0

≤ 19𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
7𝜂𝜎2

𝑛
+

6

𝜂𝑇
𝑃0, (33)

where we used (30), the bound 𝜂 ≤ 1, and 𝑢0 = 𝑣0.

Part III. Controlling the error of contractive compressor and the double momentum estimator. By Lemma 5 we have
for each 𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑢𝑡+1

𝑖

⃦⃦2]︁ ≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑢𝑡
𝑖

⃦⃦2]︁
+

6𝜂2

𝛼
E
[︁⃦⃦

𝑢𝑡
𝑖 − 𝑣𝑡𝑖

⃦⃦2]︁
(34)

+
6𝜂4

𝛼
E
[︁⃦⃦

𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)

⃦⃦2]︁
+

6𝐿2
𝑖 𝜂

4

𝛼
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

+ 𝜂4𝜎2.

Averaging inequalities (34) over 𝑖 = 1, . . . ,𝑛, denoting ̃︀𝑉𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑔𝑡𝑖 − 𝑢𝑡

𝑖‖
2
]︁
, and summing up the resulting

inequality for 𝑡 = 0, . . . , 𝑇 − 1, we obtain

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 ≤ 12𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑄𝑡 +
12𝜂4

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 +
12̃︀𝐿2𝜂4

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂4𝜎2

𝛼

≤ 12𝜂2

𝛼2

(︃
19̃︀𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 7𝜂𝜎2

)︃
+

12𝜂4

𝛼2

(︃
3̃︀𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 𝜂𝜎2

)︃

+
12̃︀𝐿2𝜂4

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂4𝜎2

𝛼
+

12𝜂4

𝛼2𝑇
̃︀𝑃0

≤ 12 · 19̃︀𝐿2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
12 · 7𝜂3𝜎2

𝛼2
+

12 · 3̃︀𝐿2𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
12𝜂5𝜎2

𝛼2

+
12̃︀𝐿2𝜂4

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂4𝜎2

𝛼
+

12𝜂4

𝛼2𝑇
̃︀𝑃0

≤ 276̃︀𝐿2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
84𝜂3𝜎2

𝛼2
+

12𝜂5𝜎2

𝛼2
+

2𝜂4𝜎2

𝛼
+

12𝜂4

𝛼2𝑇
̃︀𝑃0

(35)

Part IV. Combining steps I, II and III with descent lemma. By smoothness (Assumption 1) of 𝑓(·) it follows from
Lemma 1 that for any 𝛾 ≤ 1/(2𝐿) we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
(36)

≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+
3𝛾

2

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑢𝑡

𝑖

⃦⃦2
+

3𝛾

2

⃦⃦
𝑢𝑡 − 𝑣𝑡

⃦⃦2
+

3𝛾

2

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
.
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Subtracting 𝑓* from both sides of (36), taking expectation and defining 𝛿𝑡 := E [𝑓(𝑥𝑡)− 𝑓*], we derive

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

=
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤ 2𝛿0
𝛾𝑇

+ 3
1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 + 3
1

𝑇

𝑇−1∑︁
𝑡=0

𝑄𝑡 + 3
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖)

≤ 2𝛿0
𝛾𝑇

+
3 · 276̃︀𝐿2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
3 · 84𝜂3𝜎2

𝛼2
+

3 · 12𝜂5𝜎2

𝛼2
+

3 · 2𝜂4𝜎2

𝛼

+
3 · 19𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
3 · 7𝜂𝜎2

𝑛

+
3𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
𝜂𝜎2

𝑛
− 1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
36𝜂4

𝛼2𝑇
̃︀𝑃0 +

18

𝜂𝑇
𝑃0 +

3

𝜂𝑇
𝑃0

=
2𝛿0
𝛾𝑇

+
3 · 84𝜂3𝜎2

𝛼2
+

3 · 12𝜂5𝜎2

𝛼2
+

3 · 2𝜂4𝜎2

𝛼
+

22𝜂𝜎2

𝑛

+

(︃
60𝐿2

𝜂2
+

3 · 276̃︀𝐿2

𝛼2
− 1

2𝛾2

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
36𝜂4

𝛼2𝑇
̃︀𝑃0 +

21

𝜂𝑇
𝑃0

=
2𝛿0
𝛾𝑇

+
288𝜂3𝜎2

𝛼2
+

6𝜂4𝜎2

𝛼
+

22𝜂𝜎2

𝑛
+

36𝜂4

𝛼2𝑇
̃︀𝑃0 +

21

𝜂𝑇
𝑃0.

where (𝑖) holds due to (30), (35) and (33), the last two steps hold because of the assumption on the step-size, and 𝜂 ≤ 1,
which completes the proof of the first part of Theorem.

Notice that it suffices to take the same initial batch-size as in the proof of the Theorem 4 in order to "remove" ̃︀𝑃0 and 𝑃0

terms, since the power of 𝜂 in front of ̃︀𝑃0 is larger here compared to the proof of Theorem 4. The choice of the momentum

parameter such that 𝜂 ≤
(︁

𝐿𝛿0𝛼
2

𝜎2𝑇

)︁1/4

, 𝜂 ≤
(︀
𝐿𝛿0𝑛
𝜎2𝑇

)︀1/2
ensures that 𝜂3𝜎2

𝛼2 ≤ 𝐿𝛿0
𝜂𝑇 , and 𝜂𝜎2

𝑛 ≤ 𝐿𝛿0
𝜂𝑇 . Therefore, we can guarantee

that the choice 𝜂 = min

{︂
𝛼
√
𝐿𝛿0𝐵init
𝜎 ,

(︁
𝐿𝛿0𝛼

2

𝜎2𝑇

)︁1/4

,
(︀
𝐿𝛿0𝑛
𝜎2𝑇

)︀1/2}︂
ensures that

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+

(︂
𝐿𝛿0𝜎

2/3

𝛼2/3𝑇

)︂3/4

+

(︂
𝐿𝛿0𝜎

2

𝑛𝑇

)︂1/2
)︃
.

I.1. Controlling the Error of Second Momentum Estimator

Lemma 4. Let Assumption 1 be satisfied, and suppose 0 < 𝜂 ≤ 1. For every 𝑖 = 1, . . . , 𝑛, let the sequences {𝑣𝑡𝑖}𝑡≥0 and
{𝑢𝑡

𝑖}𝑡≥0 be updated via
𝑣𝑡𝑖 = 𝑣𝑡−1

𝑖 + 𝜂
(︀
∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1
𝑖

)︀
,

𝑢𝑡
𝑖 = 𝑢𝑡−1

𝑖 + 𝜂
(︀
𝑣𝑡𝑖 − 𝑢𝑡−1

𝑖

)︀
.

Define the sequences 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 and 𝑢𝑡 := 1

𝑛

∑︀𝑛
𝑖=1 𝑢

𝑡
𝑖. Then for every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0 it holds

E
[︁⃦⃦

𝑢𝑡
𝑖 − 𝑣𝑡𝑖

⃦⃦2]︁ ≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+6𝐿2
𝑖 𝜂E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦2]︁
+ 𝜂2𝜎2, (37)
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E
[︁⃦⃦

𝑢𝑡 − 𝑣𝑡
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑢𝑡−1 − 𝑣𝑡−1

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)

⃦⃦2]︁
+6𝐿2𝜂E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦2]︁
+

𝜂2𝜎2

𝑛
. (38)

Proof. By the update rule of 𝑣𝑡𝑖 , we have

E
[︁⃦⃦

𝑢𝑡
𝑖 − 𝑣𝑡𝑖

⃦⃦2]︁
= E

[︁⃦⃦
𝑢𝑡−1
𝑖 − 𝑣𝑡𝑖 + 𝜂(𝑣𝑡𝑖 − 𝑢𝑡−1

𝑖 )
⃦⃦2]︁

= (1− 𝜂)2E
[︁⃦⃦

𝑣𝑡𝑖 − 𝑢𝑡−1
𝑖

⃦⃦2]︁
= (1− 𝜂)2E

[︁⃦⃦
(1− 𝜂)𝑣𝑡−1

𝑖 + 𝜂∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)− 𝑢𝑡−1

𝑖

⃦⃦2]︁
= (1− 𝜂)2E

[︁⃦⃦
(𝑢𝑡−1

𝑖 − 𝑣𝑡−1
𝑖 ) + 𝜂(𝑣𝑡−1

𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖))

⃦⃦2]︁
= (1− 𝜂)2E

[︁⃦⃦
(𝑢𝑡−1

𝑖 − 𝑣𝑡−1
𝑖 ) + 𝜂(𝑣𝑡−1

𝑖 −∇𝑓𝑖(𝑥
𝑡)) + 𝜂(∇𝑓𝑖(𝑥

𝑡)−∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖))

⃦⃦2]︁
= (1− 𝜂)2E

[︁
E𝜉𝑡𝑖

[︁⃦⃦
(𝑢𝑡−1

𝑖 − 𝑣𝑡−1
𝑖 ) + 𝜂(𝑣𝑡−1

𝑖 −∇𝑓𝑖(𝑥
𝑡)) + 𝜂(∇𝑓𝑖(𝑥

𝑡)−∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖))

⃦⃦2]︁]︁
= (1− 𝜂)2

(︁
E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖 + 𝜂(𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡))
⃦⃦2]︁

+ 𝜂2E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁)︁

≤ (1− 𝜂)2E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖 + 𝜂(𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡))
⃦⃦2]︁

+ 𝜂2𝜎2

≤ (1− 𝜂)2
(︁
1 +

𝜂

2

)︁
E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+

(︂
1 +

2

𝜂

)︂
𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ 𝜂2𝜎2

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 3𝜂E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ 𝜂2𝜎2

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+6𝜂E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡)−∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+ 𝜂2𝜎2

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+6𝐿2
𝑖 𝜂E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦2]︁
+ 𝜂2𝜎2,

where the first inequality holds Assumption 2, the second inequality holds by Young’s inequality, and the last step uses
smoothness of 𝑓𝑖(·) (Assumption 1), which concludes the proof of (37).

For each 𝑡 = 0, . . . , 𝑇 − 1, define a random vector 𝜉𝑡 := (𝜉𝑡1, . . . , 𝜉
𝑡
𝑛) and denote by ∇𝑓(𝑥𝑡, 𝜉𝑡+1) := 1

𝑛

∑︀𝑛
𝑖=1 ∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖).
Note that the entries of the random vector 𝜉𝑡 are independent and E𝜉𝑡 [∇𝑓(𝑥𝑡, 𝜉𝑡)] = ∇𝑓(𝑥𝑡), then we have

𝑣𝑡 = 𝑣𝑡−1 + 𝜂
(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)− 𝑣𝑡−1

)︀
,

𝑢𝑡
𝑖 = 𝑢𝑡−1

𝑖 + 𝜂
(︀
𝑣𝑡𝑖 − 𝑢𝑡−1

𝑖

)︀
,

where 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 , 𝑢

𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑢

𝑡
𝑖 are auxiliary sequences. Therefore, we can similarly derive
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E
[︁⃦⃦

𝑢𝑡 − 𝑣𝑡
⃦⃦2]︁

= E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡 + 𝜂(𝑣𝑡 − 𝑢𝑡−1)
⃦⃦2]︁

= (1− 𝜂)2E
[︁⃦⃦

𝑣𝑡 − 𝑢𝑡−1
⃦⃦2]︁

= (1− 𝜂)2E
[︁⃦⃦

(1− 𝜂)𝑣𝑡−1 + 𝜂∇𝑓(𝑥𝑡, 𝜉𝑡)− 𝑢𝑡−1
⃦⃦2]︁

= (1− 𝜂)2E
[︁⃦⃦

(𝑢𝑡−1 − 𝑣𝑡−1) + 𝜂(𝑣𝑡−1 −∇𝑓(𝑥𝑡, 𝜉𝑡))
⃦⃦2]︁

= (1− 𝜂)2E
[︁⃦⃦

(𝑢𝑡−1 − 𝑣𝑡−1) + 𝜂(𝑣𝑡−1 −∇𝑓(𝑥𝑡)) + 𝜂(∇𝑓(𝑥𝑡)−∇𝑓(𝑥𝑡, 𝜉𝑡))
⃦⃦2]︁

= (1− 𝜂)2E
[︁
E𝜉𝑡

[︁⃦⃦
(𝑢𝑡−1 − 𝑣𝑡−1) + 𝜂(𝑣𝑡−1 −∇𝑓(𝑥𝑡)) + 𝜂(∇𝑓(𝑥𝑡)−∇𝑓(𝑥𝑡, 𝜉𝑡))

⃦⃦2]︁]︁
= (1− 𝜂)2

(︁
E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1 + 𝜂(𝑣𝑡−1 −∇𝑓(𝑥𝑡))
⃦⃦2]︁

+ 𝜂2E
[︁⃦⃦

∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)
⃦⃦2]︁)︁

≤ (1− 𝜂)2E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1 + 𝜂(𝑣𝑡−1 −∇𝑓(𝑥𝑡))
⃦⃦2]︁

+
𝜂2𝜎2

𝑛

≤ (1− 𝜂)2
(︁
1 +

𝜂

2

)︁
E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1
⃦⃦2]︁

+

(︂
1 +

2

𝜂

)︂
𝜂2E

[︁⃦⃦
𝑣𝑡−1 −∇𝑓(𝑥𝑡)

⃦⃦2]︁
+

𝜂2𝜎2

𝑛

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1
⃦⃦2]︁

+ 3𝜂E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
𝜂2𝜎2

𝑛

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1
⃦⃦2]︁

+ 6𝜂E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)
⃦⃦2]︁

+6𝜂E
[︁⃦⃦

∇𝑓(𝑥𝑡)−∇𝑓(𝑥𝑡−1)
⃦⃦2]︁

+
𝜂2𝜎2

𝑛

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1
⃦⃦2]︁

+ 6𝜂E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)
⃦⃦2]︁

+6𝐿2𝜂E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+
𝜂2𝜎2

𝑛
,

where the first inequality holds Assumption 2, the second inequality holds by Young’s inequality, and the last step uses
smoothness of 𝑓(·) (Assumption 1), which concludes the proof of (38).

I.2. Controlling the Error of Contractive Compression and Double Momentum Estimator

Lemma 5. Let Assumption 1 be satisfied, and suppose 𝒞 is a contractive compressor. For every 𝑖 = 1, . . . , 𝑛, let the
sequences {𝑣𝑡𝑖}𝑡≥0, {𝑢𝑡

𝑖}𝑡≥0, and {𝑔𝑡𝑖}𝑡≥0 be updated via

𝑣𝑡𝑖 = 𝑣𝑡−1
𝑖 + 𝜂

(︀
∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1
𝑖

)︀
,

𝑢𝑡
𝑖 = 𝑢𝑡−1

𝑖 + 𝜂
(︀
𝑣𝑡𝑖 − 𝑢𝑡−1

𝑖

)︀
,

𝑔𝑡𝑖 = 𝑔𝑡−1
𝑖 + 𝒞

(︀
𝑢𝑡
𝑖 − 𝑔𝑡−1

𝑖

)︀
.

Then for every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0 it holds

E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑢𝑡
𝑖

⃦⃦2]︁ ≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡−1
𝑖 − 𝑢𝑡−1

𝑖

⃦⃦2]︁
+

6𝜂2

𝛼
E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
(39)

+
6𝜂4

𝛼
E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1, 𝜉𝑡−1
𝑖 )

⃦⃦2]︁
+

6𝐿2
𝑖 𝜂

4

𝛼
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+ 𝜂4𝜎2.
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Proof. By the update rules of 𝑔𝑡𝑖 , 𝑢
𝑡
𝑖 and 𝑣𝑡𝑖 , we derive

E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑢𝑡
𝑖

⃦⃦2]︁
= E

[︁⃦⃦
𝑔𝑡−1
𝑖 − 𝑢𝑡

𝑖 + 𝒞(𝑢𝑡
𝑖 − 𝑔𝑡−1

𝑖 )
⃦⃦2]︁

(𝑖)

≤ (1− 𝛼)E
[︁⃦⃦

𝑢𝑡
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
(𝑖𝑖)
= (1− 𝛼)E

[︁⃦⃦
𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖 + 𝜂(𝑣𝑡−1
𝑖 − 𝑢𝑡−1

𝑖 ) + 𝜂2(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1

𝑖 )
⃦⃦2]︁

= (1− 𝛼)E
[︀
‖𝑢𝑡−1

𝑖 − 𝑔𝑡−1
𝑖 + 𝜂(𝑣𝑡−1

𝑖 − 𝑢𝑡−1
𝑖 ) + 𝜂2(∇𝑓𝑖(𝑥

𝑡)− 𝑣𝑡−1
𝑖 )

+𝜂2(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡))‖2
]︀

= (1− 𝛼)E
[︀
‖E𝜉𝑡𝑖

[︀
‖𝑢𝑡−1

𝑖 − 𝑔𝑡−1
𝑖 + 𝜂(𝑣𝑡−1

𝑖 − 𝑢𝑡−1
𝑖 ) + 𝜂2(∇𝑓𝑖(𝑥

𝑡)− 𝑣𝑡−1
𝑖 )

+𝜂2(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡))‖2
]︀]︀

= (1− 𝛼)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖 + 𝜂(𝑣𝑡−1
𝑖 − 𝑢𝑡−1

𝑖 ) + 𝜂2(∇𝑓𝑖(𝑥
𝑡)− 𝑣𝑡−1

𝑖 )
⃦⃦2]︁

+(1− 𝛼)𝜂4E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

(𝑖𝑖𝑖)

≤ (1− 𝛼)(1 + 𝜌)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
+(1− 𝛼)(1 + 𝜌−1)E

[︁⃦⃦
𝜂(𝑣𝑡−1

𝑖 − 𝑢𝑡−1
𝑖 ) + 𝜂2(∇𝑓𝑖(𝑥

𝑡)− 𝑣𝑡−1
𝑖 )

⃦⃦2]︁
+𝜂4𝜎2

(𝑖𝑣)
= (1− 𝜃)E

[︁⃦⃦
𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
+ 𝜂4𝜎2

+𝛽E
[︁⃦⃦

𝜂(𝑣𝑡−1
𝑖 − 𝑢𝑡−1

𝑖 ) + 𝜂2(∇𝑓𝑖(𝑥
𝑡−1)− 𝑣𝑡−1

𝑖 ) + 𝜂2(∇𝑓𝑖(𝑥
𝑡)−∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

(𝑣)

≤ (1− 𝜃)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
+ 3𝛽𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 − 𝑢𝑡−1

𝑖

⃦⃦2]︁
+3𝛽𝜂4E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+3𝛽𝜂4E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡)−∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+ 𝜂4𝜎2

≤ (1− 𝜃)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
+ 3𝛽𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 − 𝑢𝑡−1

𝑖

⃦⃦2]︁
+3𝛽𝜂4E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+3𝛽𝐿2
𝑖 𝜂

4E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+ 𝜂4𝜎2

where (𝑖) is due to definition of a contractive compressor (Definition 1), (𝑖𝑖) follows by the update rule of 𝑣𝑡𝑖 and 𝑢𝑡
𝑖, (𝑖𝑖𝑖)

and (𝑣) hold by Young’s inequality for any 𝜌 > 0. In (𝑖𝑣), we introduced the notation 𝜃 := 1 − (1 − 𝛼)(1 + 𝜌), and
𝛽 := (1− 𝛼)(1 + 𝜌−1). The last step follows by smoothness of 𝑓𝑖(·) (Assumption 1). The proof is complete by the choice
𝜌 = 𝛼/2, which guarantees 1− 𝜃 ≤ 1− 𝛼/2, and 3𝛽 ≤ 6/𝛼 .
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J. EF21-SGDM with Absolute Compressor
In this section, we complement our theory by analyzing EF21-SGDM under a different class of widely used biased
compressors, namely, absolute compressors, which are defined as follows.

Definition 2 (Absolute compressors). We say that a (possibly randomized) map 𝒞 : R𝑑 → R𝑑 is an absolute compression
operator if there exists a constant ∆ > 0 such that

E
[︀
‖𝒞(𝑥)− 𝑥‖2

]︀
≤ ∆2, ∀𝑥 ∈ R𝑑. (40)

This class includes important examples of compressors such as hard-threshold sparsifier (Sahu et al., 2021), (stochatsic)
rounding schemes with bounded error (Gupta et al., 2015) and scaled integer rounding (Sapio et al., 2021).

Algorithm 4 EF21-SGDM (abs)

Input: starting point 𝑥0, step-size 𝛾 > 0, momentum 𝜂 ∈ (0, 1], initial batch size 𝐵init

Initialize 𝑣0𝑖 = 𝑔0𝑖 = 1
𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for 𝑖 = 1, . . . , 𝑛; 𝑔0 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

0
𝑖

for 𝑡 = 0,1, 2, . . . , 𝑇 − 1 do
Master computes 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 and broadcasts 𝑥𝑡+1 to all nodes
for all nodes 𝑖 = 1, . . . , 𝑛 in parallel do

Compute momentum estimator 𝑣𝑡+1
𝑖 = (1− 𝜂)𝑣𝑡𝑖 + 𝜂∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖 )

Compress 𝑐𝑡+1
𝑖 = 𝒞

(︁
𝑣𝑡+1
𝑖 −𝑔𝑡

𝑖

𝛾

)︁
and send 𝑐𝑡+1

𝑖 to the master

Update local state 𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝛾𝑐𝑡+1

𝑖

end for
Master computes 𝑔𝑡+1 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡+1
𝑖 via 𝑔𝑡+1 = 𝑔𝑡 + 1

𝑛

∑︀𝑛
𝑖=1 𝛾𝑐

𝑡+1
𝑖

end for

To accomodate absolute compressors into our EF21-SGDM method, we need to make a slight modification to our algorithm,
see Algorithm 4. At each iteration, before compressing the difference 𝑣𝑡+1

𝑖 − 𝑔𝑡𝑖 , we divide it by the step-size 𝛾. Later, we
multiply the compressed vector 𝑐𝑡+1

𝑖 by 𝛾, i.e., have

𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝛾 𝒞

(︂
𝑣𝑡+1
𝑖 − 𝑔𝑡𝑖

𝛾

)︂
.

Such modification is necessary for absolute compressors because by Definition 2 the compression error is not proportional
to ‖𝑥‖2, but merely an absolute constant ∆2. In fact, Algorithm 4 is somewhat more universal in the sense that it can be also
applied for contractive compressors.13 We derive the following result for EF21-SGDM (abs).

Theorem 6. Let Assumptions 1 and 2 hold. Let 𝑥̂𝑇 be sampled uniformly at random from the iterates of the method. Let
Algorithm 4 run with an absolute compressor (Definition 2). For all 𝜂 ∈ (0, 1] and 𝐵init ≥ 1, with 𝛾 ≤ 𝜂

4𝐿 , we have

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 𝒪

(︂
Ψ0

𝛾𝑇
+ 𝛾2∆2 +

𝜂𝜎2

𝑛

)︂
, (41)

where Ψ0 := 𝛿0 +
𝛾
𝜂E
[︁⃦⃦

𝑣0 −∇𝑓(𝑥0)
⃦⃦2]︁

is a Lyapunov function. With the following step-size, momentum parameter, and
initial batch size

𝛾 =
𝜂

4𝐿
, 𝜂 = min

{︃
1,

(︂
𝐿3𝛿0
∆2𝑇

)︂1/3

,

(︂
𝐿𝛿0𝑛

𝜎2𝑇

)︂1/2
}︃
, 𝐵𝑖𝑛𝑖𝑡 =

𝜎2

𝐿𝛿0𝑛
(42)

we have

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 𝒪

(︃
𝐿𝛿0
𝑇

+

(︂
𝛿0∆

𝑇

)︂2/3

+

(︂
𝐿𝛿0𝜎

2

𝑛𝑇

)︂1/2
)︃
.

13It is straightforward to modify the proof of our Theorem 4 for the case when Algorithm 4 is applied with a contractive compressor.
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Corollary 4. Under the setting of Theorem 6, we have E
[︀⃦⃦
∇𝑓(𝑥̂𝑇 )

⃦⃦]︀
≤ 𝜀 after 𝑇 = 𝒪

(︁
𝐿𝛿0
𝜀2 + Δ𝛿0

𝜀3 + 𝜎2𝐿𝛿0
𝑛𝜀4

)︁
iterations.

Remark 2. The sample complexity result in Corollary 4 matches the one derived for DoubleSqueeze algorithm (Tang et al.,
2020), which is different from Algorithm 4.

Proof. Similarly to the proof of Theorem 4, we control the error between 𝑔𝑡 and ∇𝑓(𝑥𝑡) by decomposing it into two terms

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
⃦⃦
𝑔𝑡 − 𝑣𝑡

⃦⃦2
+ 2

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑣𝑡𝑖

⃦⃦2
+ 2

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
.

Again, for the second term above we can use the recursion developed for momentum estimator Lemma 2. However, since
we use a different compressor here, we need to bound ‖𝑔𝑡𝑖 − 𝑣𝑡𝑖‖

2 term differently, thus we invoke Lemma 6 for absolute
compressor.

Part I. Controlling the error of momentum estimator on average for 𝑣𝑡. Denote 𝑃𝑡 := E
[︁
‖𝑣𝑡 −∇𝑓(𝑥𝑡)‖2

]︁
, 𝑅𝑡 :=

E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

. Similarly to Part I of the proof of Theorem 4, we have by Lemma 2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 ≤
3𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0. (43)

Part II. Controlling the error of absolute compressor and momentum estimator. By Lemma 6 we have for any
0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

̃︀𝑉𝑡 :=
1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑣𝑡𝑖
⃦⃦2]︁ ≤ 𝛾2∆2. (44)

Part III. Combining steps I and II with descent lemma. By smoothness (Assumption 1) of 𝑓(·) it follows from Lemma 1
that for any 𝛾 ≤ 1/(2𝐿) we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
(45)

≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+ 𝛾 ̃︀𝑉𝑡 + 𝛾𝑃𝑡.

Subtracting 𝑓* from both sides of (45), taking expectation and defining 𝛿𝑡 := E [𝑓(𝑥𝑡)− 𝑓*], we derive

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

=
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤ 2𝛿0
𝛾𝑇

+ 2
1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖)

≤ 2𝛿0
𝛾𝑇

+ 2𝛾2∆2 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖𝑖)

≤ 2𝛿0
𝛾𝑇

+ 2𝛾2∆2 +

(︂
6𝐿2

𝜂2
− 1

2𝛾2

)︂
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0

≤ 2𝛿0
𝛾𝑇

+ 2𝛾2∆2 +
2𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0

(46)

where in (𝑖) and (𝑖𝑖) we apply (43), (44), and in the last step we use the assumption on the step-size 𝛾 ≤ 𝜂/(4𝐿).
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Setting 𝛾 = 𝜂
4𝐿 , and taking 𝜂 ≤

(︁
𝐿3𝛿0
Δ2𝑇

)︁1/3

we can ensure that 𝜂2Δ2

𝐿2 ≤ 𝐿𝛿0
𝜂𝑇 , since 𝜂 ≤

(︀
𝐿𝛿0𝑛
𝜎2𝑇

)︀1/2
we have 𝜂𝜎2

𝑛 ≤ 𝐿𝛿0
𝜂𝑇 .

Finally, by setting the initial batch-size to 𝐵𝑖𝑛𝑖𝑡 =
𝜎2

𝐿𝛿0𝑛
, we have 1

𝜂𝑇 𝑃0 = 𝜎2

𝜂𝑇𝑛𝐵𝑖𝑛𝑖𝑡
≤ 𝐿𝛿0

𝜂𝑇 . Therefore, we derive

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 2𝛿0

𝛾𝑇
+ 2𝛾2∆2 +

2𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0

=
8𝐿𝛿0
𝜂𝑇

+
𝜂2∆2

8𝐿2
+

2𝜂𝜎2

𝑛
+

𝜎2

𝜂𝑇𝐵𝑖𝑛𝑖𝑡

= 𝒪

(︃
𝐿𝛿0
𝑇

+
𝛿
2/3
0 ∆2/3

𝑇 2/3
+

𝜎(𝐿𝛿0)
1/2

(𝑛𝑇 )1/2

)︃
.

(47)

J.1. Controlling the Error of Absolute Compression

Lemma 6. Let 𝒞 be an absolute compressor and 𝑔𝑡+1
𝑖 be updated according to Algorithm 4, then for 𝑡 ≥ 0, we have

1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑔𝑡𝑖 − 𝑣𝑡𝑖‖

2
]︁
≤ 𝛾2∆2.

Proof. By the update rule for 𝑔𝑡+1
𝑖 in Algorithm 4 and Definition 2, we can bound

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑣𝑡+1

𝑖

⃦⃦2]︁
= E

[︃⃦⃦⃦⃦
𝛾𝒞
(︂
𝑣𝑡+1
𝑖 − 𝑔𝑡𝑖

𝛾

)︂
− (𝑣𝑡+1

𝑖 − 𝑔𝑡𝑖)

⃦⃦⃦⃦2]︃

= 𝛾2E

[︃⃦⃦⃦⃦
𝒞
(︂
𝑣𝑡+1
𝑖 − 𝑔𝑡𝑖

𝛾

)︂
− 𝑣𝑡+1

𝑖 − 𝑔𝑡𝑖
𝛾

⃦⃦⃦⃦2]︃
≤ 𝛾2∆2.
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K. EF21-STORM/MVR

Algorithm 5 EF21-STORM/MVR

1: Input: 𝑥0, step-size 𝛾 > 0, parameter 𝜂 ∈ (0, 1], 𝐵init ≥ 1

2: Initialize 𝑤0
𝑖 = 𝑔0𝑖 = 1

𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for 𝑖 = 1, . . . , 𝑛; 𝑔0 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

0
𝑖

3: for 𝑡 = 0,1, 2, . . . , 𝑇 − 1 do
4: Master computes 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 and broadcasts 𝑥𝑡+1 to all nodes
5: for all nodes 𝑖 = 1, . . . , 𝑛 in parallel do
6: Draw 𝜉𝑡+1

𝑖 and compute two (stochastic) gradients ∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖 ) and ∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖 )
7: Compute variance reduced STORM/MVR estimator
8: 𝑤𝑡+1

𝑖 = ∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖 ) + (1− 𝜂)(𝑤𝑡
𝑖 −∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡+1
𝑖 ))

9: Compress 𝑐𝑡+1
𝑖 = 𝒞(𝑤𝑡+1

𝑖 − 𝑔𝑡𝑖) and send 𝑐𝑡+1
𝑖 to the master

10: Update local state 𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝑐𝑡+1

𝑖

11: end for
12: Master computes 𝑔𝑡+1 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡+1
𝑖 via 𝑔𝑡+1 = 𝑔𝑡 + 1

𝑛

∑︀𝑛
𝑖=1 𝑐

𝑡+1
𝑖

13: end for

Assumption 3 (Individual smoothness). For each 𝑖 = 1, . . . , 𝑛, every realization of 𝜉𝑖 ∼ 𝒟𝑖, the stochastic gradient
∇𝑓𝑖(𝑥,𝜉𝑖) is ℓ𝑖-Lipschitz, i.e., for all 𝑥, 𝑦 ∈ R𝑑

‖∇𝑓𝑖(𝑥,𝜉𝑖)−∇𝑓𝑖(𝑦, 𝜉𝑖)‖ ≤ ℓ𝑖 ‖𝑥− 𝑦‖ .

We denote ̃︀ℓ2 := 1
𝑛

∑︀𝑛
𝑖=1 ℓ

2
𝑖

Theorem 7. Let Assumptions 1, 2 and 3 hold. Let 𝑥̂𝑇 be sampled uniformly at random from the iterates of the method. Let
Algorithm 5 run with a contractive compressor. For all 𝜂 ∈ (0, 1] and 𝐵init ≥ 1, with 𝛾 ≤ min

{︁
𝛼

8̃︀𝐿 ,
√
𝛼

6̃︀ℓ ,
√
𝑛𝜂

8̃︀ℓ
}︁
, we have

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 𝒪

(︂
Ψ0

𝛾𝑇
+

𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛

)︂
, (48)

where Ψ0 := 𝛿0 +
𝛾
𝜂E
[︁⃦⃦

𝑣0 −∇𝑓(𝑥0)
⃦⃦2]︁

+ 𝛾𝜂
𝛼2

1
𝑛

∑︀𝑛
𝑖=1 E

[︁⃦⃦
𝑣0𝑖 −∇𝑓𝑖(𝑥

0)
⃦⃦2]︁

. With the following step-size, momentum
parameter, and initial batch size

𝛾 = min

{︂
𝛼

8̃︀𝐿,

√
𝛼

6̃︀ℓ ,

√
𝑛𝜂

8̃︀ℓ
}︂
, 𝜂 = min

⎧⎨⎩𝛼,

(︃ ̃︀ℓ𝛿0𝛼2

𝜎2
√
𝑛𝑇

)︃2/7

,

(︃ ̃︀ℓ𝛿0𝛼
𝜎2

√
𝑛𝑇

)︃2/5

,

(︃̃︀ℓ𝛿0√𝑛

𝜎2𝑇

)︃2/3
⎫⎬⎭ ,

and 𝐵init = max
{︁

𝜎2

𝐿𝛿0𝑛
, 𝛼𝑛

𝑇

}︁
, we have

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 𝒪

⎛⎝̃︀𝐿𝛿0
𝛼𝑇

+
̃︀ℓ𝛿0√
𝛼𝑇

+

(︃ ̃︀ℓ𝛿0𝜎1/3

𝛼1/3
√
𝑛𝑇

)︃6/7

+

(︃ ̃︀ℓ𝛿0𝜎1/2

𝛼1/4
√
𝑛𝑇

)︃4/5

+

(︃̃︀ℓ𝛿0𝜎
𝑛𝑇

)︃2/3
⎞⎠ .

Corollary 5. Under the setting of Theorem 7. we have E
[︀⃦⃦
∇𝑓(𝑥̂𝑇 )

⃦⃦]︀
≤ 𝜀 after 𝑇 =

𝒪
(︁ ̃︀ℓ𝛿0

𝛼𝜀2 +
̃︀ℓ𝛿0𝜎1/3

𝛼1/3
√
𝑛𝜀7/3

+
̃︀ℓ𝛿0𝜎1/2

𝛼1/4
√
𝑛𝜀5/2

+
̃︀ℓ𝛿0𝜎
𝑛𝜀3

)︁
iterations.

Recently, Yau and Wai (2022) propose and analyze a DoCoM-SGT algorithm for decentralized optimization with contractive
compressor under the above Assumption 3. When their method is specialized to centralized setting (with mixing constant
𝜌 = 1), their total sample complexity becomes 𝒪

(︁ ̃︀ℓ
𝛼𝜀2 + 𝑛4/5𝜎3/2

𝛼9/4𝜀3/2
+ 𝜎3

𝑛𝜀3

)︁
(see Table 1 or Theorem 4.1 in (Yau and Wai,

2022)). In contrast, the sample complexity given in our Corollary 5 improves the dependence on 𝜎 in the last term and,
moreover, achieves the linear speedup in terms of 𝑛 for all stochastic terms in the sample complexity.
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Proof. Similarly to the proof of Theorem 4, we control the error between 𝑔𝑡 and ∇𝑓(𝑥𝑡) by decomposing it into two terms

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
⃦⃦
𝑔𝑡 − 𝑤𝑡

⃦⃦2
+ 2

⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑤𝑡

𝑖

⃦⃦2
+ 2

⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
.

In the following, we develop a recursive bound for each term above separately.

Part I. Controlling the variance of STORM/MVR estimator for each 𝑤𝑡
𝑖 and on average 𝑤𝑡. Recall that by Lemma 7-

(55), we have for each 𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑤𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+ 2ℓ2𝑖E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

+ 2𝜂2𝜎2. (49)

Averaging inequalities (49) over 𝑖 = 1, . . . ,𝑛 and denoting ̃︀𝑃𝑡 :=
1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)‖2

]︁
, 𝑅𝑡 := E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡+1

⃦⃦2]︁
we have ̃︀𝑃𝑡+1 ≤ (1− 𝜂) ̃︀𝑃𝑡 + 2̃︀ℓ2𝑅𝑡 + 2𝜂2𝜎2.

Summing up the above inequality for 𝑡 = 0, . . . , 𝑇 − 1, we derive

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 ≤
2̃︀ℓ2
𝜂

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 2𝜂𝜎2 +
1

𝜂𝑇
̃︀𝑃0. (50)

Similarly by Lemma 7-(56) denoting 𝑃𝑡 := E
[︁
‖𝑤𝑡 −∇𝑓(𝑥𝑡)‖2

]︁
, we have

1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 ≤
2̃︀ℓ2
𝜂𝑛

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0. (51)

Part II. Controlling the variance of contractive compressor and STORM/MVR estimator. By Lemma 8 we have for
each 𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑤𝑡+1

𝑖

⃦⃦2]︁ ≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑤𝑡
𝑖

⃦⃦2]︁
+

4𝜂2

𝛼
E
[︁⃦⃦

𝑤𝑡
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+

(︂
4𝐿2

𝑖

𝛼
+ ℓ2𝑖

)︂
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 2𝜂2𝜎2. (52)

Averaging inequalities (52) over 𝑖 = 1, . . . ,𝑛, denoting ̃︀𝑉𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑔𝑡𝑖 − 𝑤𝑡

𝑖‖
2
]︁
, and summing up the resulting

inequality for 𝑡 = 0, . . . , 𝑇 − 1, we obtain

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 ≤ 8𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 +

(︃
8̃︀𝐿2

𝛼2
+

2̃︀ℓ2
𝛼

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂2𝜎2

𝛼

≤

(︃
8̃︀𝐿2

𝛼2
+

2̃︀ℓ2
𝛼

+
16𝜂̃︀ℓ2
𝛼2

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
16𝜂3𝜎2

𝛼2
+

2𝜂2𝜎2

𝛼
+

8𝜂

𝛼2𝑇
̃︀𝑃0. (53)

Part III. Combining steps I and II with descent lemma. By smoothness (Assumption 1) of 𝑓(·) it follows from Lemma 1
that for any 𝛾 ≤ 1/(2𝐿) we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
(54)

≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+ 𝛾

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑤𝑡

𝑖

⃦⃦2
+ 𝛾

⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
.
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Subtracting 𝑓* from both sides of (54), taking expectation and defining 𝛿𝑡 := E [𝑓(𝑥𝑡)− 𝑓*], we derive

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

=
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤ 2𝛿0
𝛾𝑇

+ 2
1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖)

≤ 2𝛿0
𝛾𝑇

+

(︃
16̃︀𝐿2

𝛼2
+

4̃︀ℓ2
𝛼

+
32𝜂̃︀ℓ2
𝛼2

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
32𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

16𝜂

𝛼2𝑇
̃︀𝑃0

(𝑖𝑖)

≤ 2𝛿0
𝛾𝑇

+

(︃
16̃︀𝐿2

𝛼2
+

4̃︀ℓ2
𝛼

+
32𝜂̃︀ℓ2
𝛼2

+
4̃︀ℓ2
𝜂𝑛

− 1

2𝛾2

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
32𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

4𝜂𝜎2

𝑛
+

16𝜂

𝛼2𝑇
̃︀𝑃0 +

2

𝜂𝑇
𝑃0

≤ 2𝛿0
𝛾𝑇

+
32𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

4𝜂𝜎2

𝑛
+

16𝜂

𝛼2𝑇
̃︀𝑃0 +

2

𝜂𝑇
𝑃0,

where in (𝑖) we apply (53), in (𝑖𝑖) we use (51), and the last step follows by assumption on the step-size, which proves (48).

We now find the particular values of parameters. Using 𝑤0
𝑖 = 1

𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for all 𝑖 = 1, . . . , 𝑛, we have

𝑃0 = E
[︁⃦⃦

𝑤0 −∇𝑓(𝑥0)
⃦⃦2]︁ ≤ 𝜎2

𝑛𝐵init
and ̃︀𝑃0 =

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑤0
𝑖 −∇𝑓𝑖(𝑥

0)
⃦⃦2]︁ ≤ 𝜎2

𝐵init
.

We can substitute the choice of 𝛾 and obtain

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

= 𝒪
(︂

𝛿0
𝛾𝑇

+
𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛
+

𝜎2

𝜂𝑛𝐵init𝑇
+

𝜂𝜎2

𝛼2𝐵init𝑇

)︂
= 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+
̃︀ℓ𝛿0√
𝛼𝑇

+
̃︀ℓ𝛿0√
𝑛𝜂𝑇

+
𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛
+

𝜎2

𝜂𝑛𝐵init𝑇
+

𝜂𝜎2

𝛼2𝐵init𝑇

)︃
.

Since 𝐵init ≥ 𝜎2

𝐿𝛿0𝑛
, we have

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

= 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+
̃︀ℓ𝛿0√
𝛼𝑇

+
̃︀ℓ𝛿0√
𝑛𝜂𝑇

+
𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛
+

𝜂𝜎2

𝛼2𝐵init𝑇

)︃
.

Notice that the choice of the momentum parameter such that 𝜂 ≤
(︁ ̃︀ℓ𝛿0𝛼2

𝜎2
√
𝑛𝑇

)︁2/7

, 𝜂 ≤
(︁ ̃︀ℓ𝛿0𝛼

𝜎2
√
𝑛𝑇

)︁2/5

, 𝜂 ≤
(︁ ̃︀ℓ𝛿0√𝑛

𝜎2𝑇

)︁2/3

, and

𝜂 ≤
(︁ ̃︀ℓ𝛿0𝛼2𝐵init

𝜎2
√
𝑛

)︁2/3

ensures that 𝜂3𝜎2

𝛼2 ≤ ̃︀ℓ𝛿0√
𝑛𝜂𝑇 , 𝜂2𝜎2

𝛼 ≤ ̃︀ℓ𝛿0√
𝑛𝜂𝑇 , 𝜂𝜎2

𝑛 ≤ ̃︀ℓ𝛿0√
𝑛𝜂𝑇 , and 𝜂𝜎2

𝛼2𝐵init𝑇
≤ ̃︀ℓ𝛿0√

𝑛𝜂𝑇 . Therefore, we have

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

= 𝒪

⎛⎝̃︀𝐿𝛿0
𝛼𝑇

+
̃︀ℓ𝛿0√
𝛼𝑇

+

(︃ ̃︀ℓ𝛿0𝜎1/3

𝛼1/3
√
𝑛𝑇

)︃6/7

+

(︃ ̃︀ℓ𝛿0𝜎1/2

𝛼1/4
√
𝑛𝑇

)︃4/5

+

(︃̃︀ℓ𝛿0𝜎
𝑛𝑇

)︃2/3

+

(︃̃︀ℓ𝛿0𝜎√
𝑛

)︃2/3
𝛼1/3

𝐵
1/3
init 𝑇

⎞⎠ .

Using 𝐵init ≥ 𝛼𝑛
𝑇 , we obtain

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

= 𝒪

⎛⎝̃︀𝐿𝛿0
𝛼𝑇

+
̃︀ℓ𝛿0√
𝛼𝑇

+

(︃ ̃︀ℓ𝛿0𝜎1/3

𝛼1/3
√
𝑛𝑇

)︃6/7

+

(︃ ̃︀ℓ𝛿0𝜎1/2

𝛼1/4
√
𝑛𝑇

)︃4/5

+

(︃̃︀ℓ𝛿0𝜎
𝑛𝑇

)︃2/3
⎞⎠ .
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Controlling the variance of STORM/MVR estimator.

Lemma 7. Let Assumptions 2 and 3 be satisfied, and suppose 0 < 𝜂 ≤ 1. For every 𝑖 = 1, . . . , 𝑛, let the sequence {𝑤𝑡
𝑖}𝑡≥0

be updated via 𝑤𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖 ) + (1− 𝜂)(𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖 )) Define the sequence 𝑤𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑤

𝑡
𝑖 . Then for

every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0 it holds

E
[︁⃦⃦

𝑤𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+ 2ℓ2𝑖E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

+ 2𝜂2𝜎2, (55)

E
[︁⃦⃦

𝑤𝑡+1 −∇𝑓(𝑥𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2]︁
+

2̃︀ℓ2
𝑛

E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

+
2𝜂2𝜎2

𝑛
. (56)

Proof. For each 𝑡 = 0, . . . , 𝑇 − 1, define a random vector 𝜉𝑡 := (𝜉𝑡1, . . . , 𝜉
𝑡
𝑛) and denote by ∇𝑓(𝑥𝑡, 𝜉𝑡) :=

1
𝑛

∑︀𝑛
𝑖=1 ∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖). Note that the entries of the random vector 𝜉𝑡 are independent and E𝜉𝑡 [∇𝑓(𝑥𝑡, 𝜉𝑡)] = ∇𝑓(𝑥𝑡),
then we have

𝑤𝑡+1 = ∇𝑓(𝑥𝑡+1, 𝜉𝑡+1) + (1− 𝜂)
(︀
𝑤𝑡 −∇𝑓(𝑥𝑡, 𝜉𝑡+1)

)︀
,

where 𝑤𝑡 = 1
𝑛

∑︀𝑛
𝑖=1 𝑤

𝑡
𝑖 is an auxiliary sequence.

We define

𝒱𝑡
𝑖 := ∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥
𝑡), 𝒱𝑡 :=

1

𝑛

𝑛∑︁
𝑖=1

𝒱𝑡
𝑖 ,

𝒲𝑡
𝑖 := ∇𝑓𝑖(𝑥

𝑡)−∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖 ) +∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖 )−∇𝑓𝑖(𝑥
𝑡+1), 𝒲𝑡 :=

1

𝑛

𝑛∑︁
𝑖=1

𝒲𝑡
𝑖 .

Then by Assumptions 2, we have
E
[︀
𝒱𝑡
𝑖

]︀
= E

[︀
𝒲𝑡

𝑖

]︀
= E

[︀
𝒱𝑡
]︀
= E

[︀
𝒲𝑡
]︀
= 0, (57)

E
[︁⃦⃦

𝒱𝑡
𝑖

⃦⃦2]︁ ≤ 𝜎2, E
[︁⃦⃦

𝒱𝑡
⃦⃦2]︁ ≤ 𝜎2

𝑛
. (58)

Furthermore, we can derive

E
[︁⃦⃦

𝒲𝑡
⃦⃦2]︁

= E

⎡⎣⃦⃦⃦⃦⃦ 1𝑛
𝑛∑︁

𝑖=1

𝒲𝑡
𝑖

⃦⃦⃦⃦
⃦
2
⎤⎦

=
1

𝑛2
E

⎡⎣⃦⃦⃦⃦⃦
𝑛∑︁

𝑖=1

𝒲𝑡
𝑖

⃦⃦⃦⃦
⃦
2
⎤⎦

=
1

𝑛2

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝒲𝑡
𝑖

⃦⃦2]︁
+

1

𝑛2

∑︁
𝑖 ̸=𝑗

E
[︀
⟨𝒲𝑡

𝑖 ,𝒲𝑡
𝑗⟩
]︀

(𝑖)
=

1

𝑛2

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝒲𝑡
𝑖

⃦⃦2]︁
+

1

𝑛2

∑︁
𝑖 ̸=𝑗

⟨E
[︀
𝒲𝑡

𝑖

]︀
,E
[︀
𝒲𝑡

𝑗

]︀
⟩

=
1

𝑛2

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝒲𝑡
𝑖

⃦⃦2]︁
≤ 1

𝑛2

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖 )−∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖 )
⃦⃦2]︁

≤ 1

𝑛2

𝑛∑︁
𝑖=1

ℓ2𝑖E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

=
̃︀ℓ2
𝑛
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

,
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where (𝑖) holds by the conditional independence of 𝒲𝑡
𝑖 and 𝒲𝑡

𝑗 , and the last inequality follows by the individual smoothness
of stochastic functions (Assumption 3). Therefore, we have

E
[︁⃦⃦

𝒲𝑡
𝑖

⃦⃦2]︁ ≤ ℓ2𝑖E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

, E
[︁⃦⃦

𝒲𝑡
⃦⃦2]︁ ≤ ̃︀ℓ2

𝑛
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

, (59)

where the first inequality is obtained by using a similar derivation.

By the update rule for 𝑤𝑡, we can also derive

𝑤𝑡+1 −∇𝑓(𝑥𝑡+1) = (1− 𝜂)
(︀
𝑤𝑡 −∇𝑓(𝑥𝑡, 𝜉𝑡+1)

)︀
+
(︀
∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)−∇𝑓(𝑥𝑡+1)

)︀
= (1− 𝜂)

(︀
𝑤𝑡 −∇𝑓(𝑥𝑡)

)︀
+ 𝜂

(︀
∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)−∇𝑓(𝑥𝑡+1)

)︀
+(1− 𝜂)

(︀(︀
∇𝑓(𝑥𝑡)−∇𝑓(𝑥𝑡, 𝜉𝑡+1) +∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)−∇𝑓(𝑥𝑡+1)

)︀)︀
= (1− 𝜂)

(︀
𝑤𝑡 −∇𝑓(𝑥𝑡)

)︀
+ 𝜂𝒱𝑡+1 + (1− 𝜂)𝒲𝑡.

Therefore, we have

E
[︁⃦⃦

𝑤𝑡+1 −∇𝑓(𝑥𝑡+1)
⃦⃦2]︁ ≤ E

[︁
E𝜉𝑡+1

[︁⃦⃦
(1− 𝜂)

(︀
𝑤𝑡 −∇𝑓(𝑥𝑡)

)︀
+ 𝜂𝒱𝑡+1 + (1− 𝜂)𝒲𝑡

⃦⃦2]︁]︁
= (1− 𝜂)2E

[︁⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2]︁
+ E

[︁⃦⃦
𝜂𝒱𝑡+1 + (1− 𝜂)𝒲𝑡

⃦⃦2]︁
≤ (1− 𝜂)

⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
+ 2𝜂2E

[︁⃦⃦
𝒱𝑡+1

⃦⃦2]︁
+ 2E

[︁⃦⃦
𝒲𝑡
⃦⃦2]︁

≤ (1− 𝜂)E
[︁⃦⃦

𝑤𝑡 −∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
2𝜎2𝜂2

𝑛
+

2̃︀ℓ2
𝑛

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

,

where the last inequality holds by (58) and (59). Similarly for each 𝑖 = 1, . . . , 𝑛, we have

𝑤𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1) = (1− 𝜂)
(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀
+ 𝜂𝒱𝑡+1

𝑖 + (1− 𝜂)𝒲𝑡
𝑖 . (60)

Thus,

E
[︁⃦⃦

𝑤𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+ 2𝜎2𝜂2 + 2ℓ2𝑖𝑅𝑡.

Controlling the variance of contractive compression and STORM/MVR estimator.

Lemma 8. Let Assumptions 1, 2 and 3 be satisfied, and suppose 0 < 𝜂 ≤ 1. For every 𝑖 = 1, . . . , 𝑛, let the sequences
{𝑤𝑡

𝑖}𝑡≥0 and {𝑔𝑡𝑖}𝑡≥0 be updated via

𝑤𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖 ) + (1− 𝜂)(𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖 )),

𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝒞

(︀
𝑤𝑡+1

𝑖 − 𝑔𝑡𝑖
)︀
.

Then for every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0 it holds

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑤𝑡+1

𝑖

⃦⃦2]︁ ≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑤𝑡
𝑖

⃦⃦2]︁
+

4𝜂2

𝛼
E
[︁⃦⃦

𝑤𝑡
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+

(︂
4𝐿2

𝑖

𝛼
+ ℓ2𝑖

)︂
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 2𝜂2𝜎2. (61)
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Proof. By the update rule of 𝑤𝑡
𝑖 , 𝑔

𝑡
𝑖 , and definition of 𝒱𝑡

𝑖 , 𝒲𝑡
𝑖 given in the proof of Lemma 7, we can derive

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑤𝑡+1

𝑖

⃦⃦2]︁
= E

[︁⃦⃦
𝒞(𝑤𝑡+1

𝑖 − 𝑔𝑡𝑖)− (𝑤𝑡+1
𝑖 − 𝑔𝑡𝑖)

⃦⃦2]︁
(𝑖)

≤ (1− 𝛼)E
[︁⃦⃦

𝑤𝑡+1
𝑖 − 𝑔𝑡𝑖

⃦⃦2]︁
(𝑖𝑖)
= (1− 𝛼)E

[︁⃦⃦
(1− 𝜂)

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀
+ 𝜂𝒱𝑡+1

𝑖 + (1− 𝜂)𝒲𝑡
𝑖 +∇𝑓𝑖(𝑥

𝑡+1)− 𝑔𝑡𝑖
⃦⃦2]︁

= (1− 𝛼)E
[︁
E𝜉𝑡+1

𝑖

[︁⃦⃦
(1− 𝜂)

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀
+ 𝜂𝒱𝑡+1

𝑖 + (1− 𝜂)𝒲𝑡
𝑖 +∇𝑓𝑖(𝑥

𝑡+1)− 𝑔𝑡𝑖
⃦⃦2]︁]︁

(𝑖𝑖𝑖)
= (1− 𝛼)E

[︁⃦⃦
(1− 𝜂)

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀
+∇𝑓𝑖(𝑥

𝑡+1)− 𝑔𝑡𝑖
⃦⃦2]︁

+(1− 𝛼)E
[︁⃦⃦

𝜂𝒱𝑡+1
𝑖 + (1− 𝜂)𝒲𝑡

𝑖

⃦⃦2]︁
= (1− 𝛼)E

[︁⃦⃦(︀
𝑤𝑡

𝑖 − 𝑔𝑡𝑖
)︀
+
(︀
∇𝑓𝑖(𝑥

𝑡+1)−∇𝑓𝑖(𝑥
𝑡)
)︀
− 𝜂

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀⃦⃦2]︁

+(1− 𝛼)E
[︁⃦⃦

𝜂𝒱𝑡+1
𝑖 + (1− 𝜂)𝒲𝑡

𝑖

⃦⃦2]︁
(𝑖𝑣)

≤ (1− 𝛼) (1 + 𝜌)E
[︁⃦⃦

𝑤𝑡
𝑖 − 𝑔𝑡𝑖

⃦⃦2]︁
+(1− 𝛼)

(︀
1 + 𝜌−1

)︀
E
[︁⃦⃦(︀

∇𝑓𝑖(𝑥
𝑡+1)−∇𝑓𝑖(𝑥

𝑡)
)︀
− 𝜂

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀⃦⃦2]︁

+2(1− 𝛼)𝜂2E
[︁⃦⃦

𝒱𝑡+1
𝑖

⃦⃦2]︁
+ 2(1− 𝛼)(1− 𝜂)2E

[︁⃦⃦
𝒲𝑡

𝑖

⃦⃦2]︁
(𝑣)
= (1− 𝜃)E

[︁⃦⃦
𝑤𝑡

𝑖 − 𝑔𝑡𝑖
⃦⃦2]︁

+𝛽E
[︁⃦⃦(︀

∇𝑓𝑖(𝑥
𝑡+1)−∇𝑓𝑖(𝑥

𝑡)
)︀
− 𝜂

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀⃦⃦2]︁

+2(1− 𝛼)𝜂2E
[︁⃦⃦

𝒱𝑡+1
𝑖

⃦⃦2]︁
+ 2(1− 𝛼)(1− 𝜂)2E

[︁⃦⃦
𝒲𝑡

𝑖

⃦⃦2]︁
(𝑣𝑖)

≤ (1− 𝜃)E
[︁⃦⃦

𝑤𝑡
𝑖 − 𝑔𝑡𝑖

⃦⃦2]︁
+ 2𝛽𝜂2E

[︁⃦⃦
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+2𝛽E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡+1)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ 2ℓ2𝑖E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 2𝜂2𝜎2

≤ (1− 𝜃)E
[︁⃦⃦

𝑤𝑡
𝑖 − 𝑔𝑡𝑖

⃦⃦2]︁
+ 2𝛽𝜂2E

[︁⃦⃦
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+
(︀
2𝛽𝐿2

𝑖 + ℓ2𝑖
)︀
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 2𝜂2𝜎2,

where (𝑖) holds by Definition 1, (𝑖𝑖) follows from (60), (𝑖𝑖𝑖) holds by unbiasedness of 𝒱𝑡+1
𝑖 and 𝒲𝑡

𝑖 (57). In (𝑖𝑣) we use
Young’s inequality twice, in (𝑣) we introduce the notation 𝜃 := 1− (1− 𝛼)(1 + 𝜌) and 𝛽 := (1− 𝛼)(1 + 𝜌−1), in (𝑣𝑖) we
again use Young’s inequality and the bound (58) and (59). The last step holds by smoothness of 𝑓𝑖(·) (Assumption 1). The
proof is complete by the choice 𝜌 = 𝛼/2, which guarantees 1− 𝜃 ≤ 1− 𝛼/2, and 2𝛽 ≤ 4/𝛼 .
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Momentum Provably Improves Error Feedback!

L. Simplified Proof of SGDM: Time Varying Parameters and No Tuning for Momentum
Sequence

In this section, we give a simplified proof of SGDM in the single node setting (𝑛 = 1) without compression (𝛼 = 1). The
following theorem shows that the momentum parameter can be chosen in a parameter agnostic14 way as 𝜂𝑡 = 1/

√
𝑡+ 1 (or

𝜂𝑡 = 1/
√
𝑇 + 1), instead of being a constant depending on problem parameters as it is suggested in our main Theorem 4. In

other words, using SGDM with time varying momentum does not introduce any additional tuning of hyper-parameters.

Theorem 8. Let Assumptions 1, 2 hold. Let 𝑛 = 1 and Algorithm 2 run with identity compressor 𝒞, i.e., 𝛼 = 1, and
(possibly) time varying momentum 𝜂𝑡 ∈ (0, 1] and step-size paramters 𝛾𝑡 = 𝛾𝜂𝑡 with 𝛾 ∈ (0, 1/(3𝐿)]. Let 𝑥̂𝑇 be sampled
from the iterates of the algorithm with probabilities 𝑝𝑡 = 𝜂𝑡/(

∑︀𝑇−1
𝑡=0 𝜂𝑡), then

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤

2Λ0𝛾
−1 + 2𝜎2

∑︀𝑇−1
𝑡=0 𝜂2𝑡∑︀𝑇−1

𝑡=0 𝜂𝑡
,

where Λ0 := 𝑓(𝑥0)− 𝑓* + 𝛾E
[︁⃦⃦

𝑣0 −∇𝑓(𝑥0)
⃦⃦2]︁

is the Lyapunov function.

Proof. By Lemma 2 denoting 𝑃𝑡 := E
[︁
‖𝑣𝑡 −∇𝑓(𝑥𝑡)‖2

]︁
, 𝑅𝑡 := E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡+1

⃦⃦2]︁
, we have

𝑃𝑡+1 ≤ 𝑃𝑡 − 𝜂𝑡𝑃𝑡 +
3𝐿2

𝜂𝑡
𝑅𝑡 + 𝜂2𝑡 𝜎

2. (62)

By descent Lemma 1, we have for any 𝛾𝑡 > 0

𝛿𝑡+1 ≤ 𝛿𝑡 −
𝛾𝑡
2
E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁− 1

2𝛾𝑡
(1− 𝛾𝑡𝐿)𝑅𝑡 +

𝛾𝑡
2
𝑃𝑡, (63)

where 𝛿0 := E [𝑓(𝑥𝑡)− 𝑓*]. Define the Lyapunov function as Λ𝑡 = 𝛿0 + 𝛾𝑃𝑡. Then summing up (63) with a 𝛾 multiple of
(62) and noticing that 𝛾𝑡 ≤ 𝛾, we get

Λ𝑡+1 ≤ Λ𝑡 −
𝛾𝑡
2
E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁− 1

2𝛾𝑡

(︀
1− 𝛾𝐿− 6𝛾2𝐿2

)︀
𝑅𝑡 + 𝛾𝜂2𝑡 𝜎

2.

Since 𝛾 ≤ 1/(3𝐿), we have 1− 𝛾𝐿− 6𝛾2𝐿2 ≤ 0, and, therefore, by telescoping we can derive

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

=

(︃
𝑇−1∑︁
𝑡=0

𝜂𝑡

)︃−1 𝑇−1∑︁
𝑡=0

𝜂𝑡E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤
2Λ0𝛾

−1 + 2𝜎2
∑︀𝑇−1

𝑡=0 𝜂2𝑡∑︀𝑇−1
𝑡=0 𝜂𝑡

.

The above theorem suggests that to ensure convergence, we can select any momentum sequence such that 𝜎2
∑︀∞

𝑡=0 𝜂
2
𝑡 < ∞,

and
∑︀∞

𝑡=0 𝜂
2
𝑡 → ∞ for 𝑡 → ∞. The parameter 𝛾, which determines the step-size 𝛾𝑡 = 𝛾𝜂𝑡, should be set to 𝛾 = 1/(3𝐿)

(to minimize the upper bound). Let us now consider some special cases.

Deterministic case. If 𝜎 = 0, we can set it to be any constant 𝜂𝑡 = 𝜂 ∈ (0, 1] and derive

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁ ≤ 2𝛿0

𝛾𝜂𝑇
= 𝒪

(︂
𝐿𝛿0
𝜂𝑇

)︂
.

14That is, independently of the problem specific parameters
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Stochastic case. For 𝜎2 > 0, we can select time-varying 𝜂𝑡 =
1√
𝑡+1

or constant 𝜂𝑡 = 1√
𝑇+1

, which gives
∑︀𝑇−1

𝑡=0 𝜂2𝑡 =

𝒪 (log(𝑇 )), and
∑︀𝑇−1

𝑡=0 𝜂𝑡 = Ω
(︁√

𝑇
)︁

. Thus

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

= ̃︀𝒪(︂𝐿Λ0 + 𝜎2

√
𝑇

)︂
.

Notice that if we set 𝜂𝑡 as above, we do not need any tuning of momentum parameter. Only tuning of paramter 𝛾 is required
to ensure convergence with optimal dependence on 𝑇 , as in SGD without momentum. Of course, this rate is not yet optimal
in other parameters, e.g., 𝜎2 and 𝐿. To make it optimal in all problem parameters, we can set 𝜂 = max

{︁
1,
(︀
𝐿Λ0

𝜎2𝑇

)︀1/2}︁
similarly to the statement of Theorem 3.

M. Revisiting EF14-SGD Analysis under BG and BGS Assumptions
In this section, we revisit the analysis of the original variant of error feedback (EF14-SGD) to showcase the difficulty in
avoiding BG/BGS assumptions commonly used in the nonconvex analysis of this variant. In summary, the key reason for
BG/BGS assumption is to bound the second term in (67) or (68).

Recall that EF14-SGD has the update rule (Stich et al., 2018)

𝑥𝑡+1 = 𝑥𝑡 − 𝑔𝑡, 𝑔𝑡 =
1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑡𝑖 , (64)

EF14-SGD:
𝑒𝑡+1
𝑖 = 𝑒𝑡𝑖 + 𝛾∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)− 𝑔𝑡𝑖 ,

𝑔𝑡+1
𝑖 = 𝒞

(︀
𝑒𝑡+1
𝑖 + 𝛾∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖 )

)︀
,

(65)

where {𝑒𝑡𝑖}𝑡≥0 are error/memory sequences with 𝑒0𝑖 = 0 for each 𝑖 = 1, . . . , 𝑛. Let 𝑒𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑒

𝑡
𝑖. The proof of this

method relies on so called perturbed iterate analysis, for which one defines a "virtual sequence": 𝑥̃𝑡 := 𝑥𝑡 − 𝑒𝑡. Then it is
verified by direct substitution that for any 𝑡 ≥ 0

𝑥̃𝑡+1 = 𝑥̃𝑡 − 𝛾
1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖).

If follows from Lemma 9 in (Stich and Karimireddy, 2021) that for any 𝛾 ≤ 1/2𝐿 and 𝑡 ≥ 0

E
[︀
𝑓(𝑥̃𝑡+1)

]︀
≤ E

[︀
𝑓(𝑥̃𝑡)

]︀
− 𝛾

4
E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
𝛾𝐿𝜎2

2𝑛
+

𝐿2

2
E
[︁⃦⃦

𝑒𝑡
⃦⃦2]︁

.

Telescoping the recursion above and setting 𝛿0 := 𝑓(𝑥0)− 𝑓*, we have

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 4𝛿0

𝛾𝑇
+

2𝛾𝐿𝜎2

𝑛
+ 2𝐿2 1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

𝑒𝑡
⃦⃦2]︁

. (66)

Now it remains to bound efficiently the average error term E
[︁
‖𝑒𝑡‖2

]︁
= E

[︁⃦⃦
1
𝑛

∑︀𝑛
𝑖=1 𝑒

𝑡
𝑖

⃦⃦2]︁
. By Jensen’s inequality, we

have

E

⎡⎣⃦⃦⃦⃦⃦ 1𝑛
𝑛∑︁

𝑖=1

𝑒𝑡𝑖

⃦⃦⃦⃦
⃦
2
⎤⎦ ≤ 1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑒𝑡𝑖
⃦⃦2]︁

,
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and develop a bound for each E
[︁
‖𝑒𝑡𝑖‖

2
]︁

individually. Denote by 𝑧 := 𝑒𝑡𝑖 + 𝛾∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖), then

E
[︁⃦⃦

𝑒𝑡+1
𝑖

⃦⃦2]︁ ≤ E
[︁
‖𝒞(𝑧)− 𝑧‖2

]︁
≤ (1− 𝛼)E

[︁⃦⃦
𝑒𝑡𝑖 + 𝛾∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)
⃦⃦2]︁

≤ (1− 𝛼)
(︁
1 +

𝛼

2

)︁
E
[︁⃦⃦

𝑒𝑡𝑖
⃦⃦2]︁

+

(︂
1 +

2

𝛼

)︂
E
[︁⃦⃦

𝛾∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)

⃦⃦2]︁
≤

(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑒𝑡𝑖
⃦⃦2]︁

+
3𝛾2

𝛼
E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)

⃦⃦2]︁
, (67)

where we used Definition 1 and Young’s inequality.

BG asssumption. If we assume bounded (stochastic) gradients (BG), i.e., E
[︁
‖∇𝑓𝑖(𝑥, 𝜉𝑖)‖2

]︁
≤ 𝐺2 for all 𝑖 = 1, . . . , 𝑛,

then using (67) we can derive
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

𝑒𝑡
⃦⃦2]︁ ≤ 6𝛾2𝐺2

𝛼2
.

Combining this bound with (66), we have

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 4𝛿0

𝛾𝑇
+

2𝛾𝐿𝜎2

𝑛
+

12𝐿2𝛾2𝐺2

𝛼2
.

The step-size choice 𝛾 = min

{︂
1
𝐿 ,
(︁

𝛿0𝛼
2

𝑇𝐿2𝜎2

)︁1/3

,
(︀

𝑛𝛿0
𝑇𝐿𝜎2

)︀1/2}︂
, allows us to bound the RHS by 12𝛿0

𝛾𝑇 , and guarantees

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

= 𝒪

(︃
𝐿𝛿0
𝑇

+

(︂
𝐿𝛿0𝐺

𝛼𝑇

)︂2/3

+

(︂
𝐿𝛿0
𝑛𝑇

)︂1/2
)︃
,

or, equivalently, 𝑇 = 𝒪
(︀
𝐿𝛿0
𝜀2 + 𝐿𝛿0𝐺

𝛼𝜀3 + 𝐿𝛿0
𝑛𝜀4

)︀
sample complexity to find a stationary point. This analysis using BG

assumption and derived sample complexity is essentially a simplified version of the one by Koloskova et al. (2020).15

BGS asssumption. If we assume bounded gradient similarity (BGS), i.e., 1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖∇𝑓𝑖(𝑥)−∇𝑓(𝑥)‖2

]︁
≤ 𝐺2, we

can slightly modify the derivation in (67) as follows

E
[︁⃦⃦

𝑒𝑡+1
𝑖

⃦⃦2]︁ ≤ (1− 𝛼)E
[︁⃦⃦

𝑒𝑡𝑖 + 𝛾∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)

⃦⃦2]︁
= (1− 𝛼)E

[︁⃦⃦
𝑒𝑡𝑖 + 𝛾∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ (1− 𝛼)𝛾2E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

≤ (1− 𝛼)
(︁
1 +

𝛼

2

)︁
E
[︁⃦⃦

𝑒𝑡𝑖
⃦⃦2]︁

+

(︂
1 +

2

𝛼

)︂
E
[︁⃦⃦

𝛾∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+ 𝛾2𝜎2

≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑒𝑡𝑖
⃦⃦2]︁

+
3𝛾2

𝛼
E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+ 𝛾2𝜎2. (68)

Averaging the above inequalities over 𝑖 = 1, . . . , 𝑛 and using BGS assumption, i.e., 1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖∇𝑓𝑖(𝑥)‖2

]︁
≤ ‖∇𝑓(𝑥)‖2+

𝐺2 , we can derive via averaging over 𝑡 = 0, . . . , 𝑇 − 1

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

𝑒𝑡
⃦⃦2]︁ ≤ 6𝛾2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
6𝛾2𝐺2

𝛼2
+

2𝛾2𝜎2

𝛼
,

Combining the above inequality with (66), we have(︂
1− 12𝐿2𝛾2

𝛼2

)︂
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 4𝛿0

𝛾𝑇
+

2𝛾𝐿𝜎2

𝑛
+

12𝛾2𝐿2𝐺2

𝛼2
+

4𝛾2𝐿2𝜎2

𝛼
.

15Up to a smoothness constant and the fact that Koloskova et al. (2020) works in a more general decentralized setting.
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By setting 𝛾 = min

{︂
𝛼
4𝐿 ,
(︀

𝑛𝛿0
𝐿𝜎2𝑇

)︀1/2
,
(︁

𝛼2𝛿0
𝐿2𝐺2𝑇

)︁1/3

,
(︀

𝛼𝛿0
𝐿2𝜎2𝑇

)︀1/3}︂
, we have

(︁
1− 12𝐿2𝛾2

𝛼2

)︁
≥ 1

4 , and the RHS is at most

16𝛿0
𝛾𝑇 . Therefore,

E
[︁⃦⃦

∇𝑓(𝑥̂𝑇 )
⃦⃦2]︁

= 𝒪

(︃
𝐿𝛿0
𝛼𝑇

+

(︂
𝐿𝛿0𝐺

𝛼𝑇

)︂2/3

+

(︂
𝐿𝛿0𝜎√
𝛼𝑇

)︂2/3

+

(︂
𝐿𝛿0
𝑛𝑇

)︂1/2
)︃
,

or, equivalently, 𝑇 = 𝒪
(︁

𝐿𝛿0
𝛼𝜀2 + 𝐿𝛿0𝐺

𝛼𝜀3 + 𝐿𝛿0𝜎√
𝛼𝜀3

+ 𝐿𝛿0
𝑛𝜀4

)︁
sample complexity. Notice that in the single node case (𝑛 = 1), we

have 𝐺 = 0, and by Young’s inequality
(︁

𝐿𝛿0𝜎√
𝛼𝑇

)︁2/3

≤ 1
3
𝐿𝛿0
𝛼𝑇 + 2

3

(︁
𝐿𝛿0𝜎

2

𝑇

)︁1/2

. Therefore, the above rate recovers the one by
Stich and Karimireddy (2021) in the single node setting.
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