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Abstract

Due to the high communication overhead when
training machine learning models in a distributed
environment, modern algorithms invariably rely
on lossy communication compression. However,
when untreated, the errors caused by compression
propagate, and can lead to severely unstable be-
havior, including exponential divergence. Almost
a decade ago, Seide et al. (2014) proposed an
error feedback (EF) mechanism, which we refer
to as EF14, as an immensely effective heuristic
for mitigating this issue. However, despite steady
algorithmic and theoretical advances in the EF
field in the last decade, our understanding is far
from complete. In this work we address one of
the most pressing issues. In particular, in the
canonical nonconvex setting, all known variants
of EF rely on very large batch sizes to converge,
which can be prohibitive in practice. We propose
a surprisingly simple fix which removes this issue
both theoretically, and in practice: the application
of Polyak’s momentum to the latest incarnation
of EF due to Richtarik et al. (2021) known as
EF21. Our algorithm, for which we coin the name
EF21-SGDM, improves the communication and
sample complexities of previous error feedback al-
gorithms under standard smoothness and bounded
variance assumptions, and does not require any
further strong assumptions such as bounded gradi-
ent dissimilarity. Moreover, we propose a double
momentum version of our method that improves
the complexities even further. Our proof seems to
be novel even when compression is removed from
the method, and as such, our proof technique is
of independent interest in the study of nonconvex
stochastic optimization enriched with Polyak’s
momentum.

1. Introduction

Since the practical utility of modern machine learning mod-
els crucially depends on our ability to train them on large
quantities of training data, it is imperative to perform the
training in a distributed storage and compute environment.

In federated learning (FL) (Konec¢ny et al., 2016; Kairouz,
2019), for example, data is naturally stored in a distributed
fashion across a large number of clients (who capture and
own the data in the first place), and the goal is to train a
single machine learning model from the wealth of all this
distributed data, in a private fashion, directly on their de-
vices.

1.1 Formalism. We consider the problem of collab-
orative training of a single model by several clients in a
data-parallel fashion. In particular, we aim to solve the
distributed nonconvex stochastic optimization problem

zeRd

fl(x) = ]EEiNDz‘ [fl(a%gl)} )

where n is the number of clients, z € R? represents the
parameters of the model we wish to train, and f;(x) is the
(typically nonconvex) loss of model parameterized by the
vector = on the data D; owned by client 7. Unlike most
works in federated learning, we do not assume the datasets
to be similar, i.e., we allow the distributions Dy, ..., D, to
be arbitrarily different.

min [f(m) = :szl(x)] , )

1=1,...,n,

2. Communication Compression, Error
Feedback, and Sample Complexity

Communication compression techniques such as guanti-
zation (Alistarh et al., 2017; Horvath et al., 2019a) and
sparsification (Seide et al., 2014; Beznosikov et al., 2020)
are known to be immensely powerful for reducing the com-
munication footprint of gradient-type' methods. Arguably
the most studied, versatile and practically useful class of
compression mappings are contractive COmpressors.

Definition 1 (Contractive compressors). We say that a (pos-
sibly randomized) mapping C : R — R is a contractive
compression operator if there exists a constant 0 < aw <1
such that

Eflc(x) —?] < (1 - ) [lz?, vzeR. (@
Inequality (2) is satisfied by a vast array of compressors

considered in the literature, including numerous variants of

"For Newton-type methods, see (Islamov et al., 2022) and
references therein.
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sparsification operators (Alistarh et al., 2018; Stich et al.,
2018), quantization operators (Alistarh et al., 2017; Horvath
et al., 2019a), and low-rank approximation (Vogels et al.,
2019; Safaryan et al., 2022) and more (Beznosikov et al.,
2020; Safaryan et al., 2021). The canonical examples are i)
the TopK sparsifier, which preserves the K largest compo-
nents of x in magnitude and sets all remaining coordinates
to zero (Stich et al., 2018), and ii) the (scaled) Rand K sparsi-
fier, which preserves a subset of K components of x chosen
uniformly at random and sets all remaining coordinates to
zero (Beznosikov et al., 2020). In both cases, (2) is satisfied
with a = K/a.

2.1 Brief history of error-feedback. When greedy
contractive compressors, such as Top K, are used in a direct
way to compress the local gradients in distributed gradient
descent (GD), the resulting method may diverge exponen-
tially, even on strongly convex quadratics (Beznosikov et al.,
2020). Empirically, instability caused by such a naive ap-
plication of greedy compressors was observed much earlier,
and a fix was proposed in the form of the error feedback
(EF) mechanism by Seide et al. (2014), which we hence-
forth call EF14 or EF14-SGD (in the stochastic case).> To
the best of our knowledge, the best sample complexity of
EF14-SGD for finding a stationary point in the distributed
nonconvex setting is given by Koloskova et al. (2020): after
O(Ga=te™3 + 02n~1e™*) samples’, EF14-SGD finds a
point z such that E[||V f(z)]|]] < €, where « is the contrac-
tion parameter (see Definition 1). However, such an analysis
has two important deficiencies. First, in the deterministic
case (when exact gradients are computable by each node),
the analysis only gives the suboptimal O(c~3) iteration
complexity, which is suboptimal compared to vanilla (i.e.,
non-compressed) gradient descent, whose iteration com-
plexity is O(¢~2). Second, their analysis relies heavily on
additional strong assumptions, such as the bounded gradient
(BG) assumption, E[|V fi(x,&;)||?] < G? for all z € RY,
i € [n], & ~ D;, or the bounded gradient similarity (BGS)
assumption, =37 |V fi(z) — Vf(z)|? < G? for all
x € R?. Such assumptions are restrictive and sometimes
even unrealistic. In particular, both BG and BGS might
not hold even in the case of convex quadratic functions.*
Moreover, it was recently shown that nonconvex analysis
of stochastic gradient methods using a BG assumption may

’In Appendix A, we provide a more detailed discussion on
theoretical develepments for this method.

3Here o is the bound on the variance of stochastic gradients at
each node, see Assumption 2. When referring the sample complex-
ity we count the number of stochastic gradients used only at one of
the n nodes rather than by all nodes in total. This is a meaningful
notion because the computations are done in parallel.

*For example, one can consider fi(z) = z " A;x with A; €
R*?, for which BG or BGS assumptions hold only in the trivial
cases: matrices A; are all zero or all equal to each other (homoge-
neous data regime).

hide an exponential dependence on the smoothness constant
in the complexity (Yang et al., 2023).

In 2021, these issues were partially resolved by Richtarik
et al. (2021), who propose a modification of the EF mech-
anism, which they call EF21. They address both deficien-
cies of the original EF14 method: i) they removed the
BG/BGS assumptions, and improved the iteration complex-
ity to O(¢72) in the full gradient regime. Subsequently,
the EF21 method was modified in several directions, e.g.,
extended to bidirectional compression, variance reduction
and proximal setup (Fatkhullin et al., 2021), generalized
from contractive to three-point compressors (Richtarik et al.,
2022) and adaptive compressors (Makarenko et al., 2022),
modified from dual (gradient) to primal (model) compres-
sion (Gruntkowska et al., 2022) and from centralized to
decentralized setting (Zhao et al., 2022). For further work,
we refer to (Wang et al., 2022; Dorfman et al., 2023; Islamov
et al., 2022).

2.2 Key issue: error feedback has an unhealthy ap-
petite for samples! Unfortunately, the current theory of
EF21 with stochastic gradients has weak sample complexity
guarantees. In particular, Fatkhullin et al. (2021) extended
the EF21-GD method, which is the basic variant of EF21
using full gradient at the clients, to EF21-SGD, which uses
a “large minibatch” of stochastic gradients instead. They ob-
tained O(-L; + og; ) sample complexity for their method.
Later, Zhao et al. (2022) improved this result slightly’ to
oL + ag—;) shaving off one « in the stochastic term.
However, it is easy to notice several issues in these results,
which generally feature the fundamental challenge of com-
bining biased gradient methods with stochastic gradients.

o Mega-batches. These works require all clients to sample
“mega-batches” of stochastic gradients/datapoints in each
iteration, of order O(¢~2), in order to control the variance
coming from stochastic gradients. In Figure 3, we find
that, in fact, a batch-free (i.e., with mini-batch size B =
1) version of EF21-SGD diverges even on a very simple
quadratic function. We also observe a similar behavior
when a small batch B > 1 is applied. This implies that
there is a fundamental flaw in the EF21-SGD method itself,
rather “just” a problem of the theoretical analysis. While
mega-batch methods are common in optimization literature,
smaller batches are often preferred whenever they “work”.
For example, the time/cost required to obtain such a large
number of samples at each iteration might be unreasonably
large compared to the communication time, which is already
reduced using compression.

e Dependence on a. The total sample complexity results
derived by Fatkhullin et al. (2021); Zhao et al. (2022) suffer

5The result was obtained under a more general setting of de-
centralized optimization over a network.
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from poor dependence on the contraction parameter a. Typ-
ically, EF methods are used with the Top K sparsifier, which
only communicates K largest entries in magnitude. In this
case, « = K/4, and the stochastic part of sample complexity
scales quadratically with dimension.

e No improvement with n. The stochastic term in the
sample complexity of EF21-SGD does not improve when
increasing the number of nodes. However, the opposite
behavior is typically desired, and is present in several lat-
est non-EF methods based on unbiased compressors, such
as MARINA (Gorbunov et al., 2021) and DASHA (Tyurin
and Richtarik, 2022). We are not aware of any distributed
algorithms utilizing the Top/ compressor achieving lin-
ear speedup in n in the stochastic term without relying on
restrictive BG or BGS assumptions.

These observations motivate our work with the following
central questions:

Can we design a batch-free distributed SGD
method utilizing contractive communication com-
pression (such as TopK) without relying on
restrictive BG/BGS assumptions? Is it possi-
ble to improve over the current state-of-the-art
@) (a*15*2 + J2a’25’4) sample complexity un-
der the standard smoothness and bounded vari-
ance assumptions?

We answer both questions in the affirmative by incorpo-
rating a momentum update into EF21-SGD. We provide a
concise walk through the key theoretical developments in
the analysis of SGDM in stochastic nonconvex optimization
in Appendix A.

2.4 Summary of contributions. Despite the vast
amount of work trying to explain the benefits of momen-
tum, there is no work obtaining any theoretical improvement
over vanilla SGD in the smooth nonconvex setting under the
standard assumptions of smoothness and bounded variance.

e First, we establish a negative result for a simpli-
fied/idealized version of EF21-SGD, which shows that this
algorithm does not converge with constant batch-size, and
that a mega-batch of order Q(0?c~2) is required. This
provides a strong indication that EF21-SGD method is in-
herently sensitive to stochastic gradients, which is also con-
firmed by our numerical simulations.

e We propose a simple fix for this problem by incorpo-
rating momentum step into EF21-SGD, which leads to our
one-batch EF21-SGDM algorithm. By leveraging our new
Lyapunov function construction and new analysis, we estab-
lish O (ofla’Q + 025*4) sample complexity in the single
node case.

e We extend our algorithm to the distributed setting and

derive an improved sample complexity result compared to
other methods using the Top X' compressor without resort-
ing to the BG/BGS assumptions. In particular, EF21-SGDM
achieves asymptotically optimal O (02n_1€_4) sample
complexity. Moreover, when EF21-SGDM is applied with
large enough batch size, we prove that it reaches the optimal
communication complexity O (K 04*15*2); see Tables 1 &
2 for more details.

We defer some additional results including analysis of dou-
ble momentum variant (EF21-SGD2M), variance reduced
variant (EF21-STORM/MVR), absolute compression, and
empirical evaluation to the Appendix.

3. Main Results

Throughout the paper we work under the following standard
assumptions.

Assumption 1 (Smoothness and lower boundedness).
We assume that f has L-Lipschitz gradient, Ii.e.,
Vi) =Vl < Llz—yl for all z,y €
R and each fi has L;-Lipschitz gradient, i.e.,
IVfi(z) = Vi@l < Lil|lx =yl forall i € [n], z,y €

Re. We denote L? := % Z?zl L?. Moreover, we assume
that f is lower bounded, i.e., {* := inf cpa f(z) > —o0.

Assumption 2 (Bounded variance (BV)). There exists o >
0 such that E [HVfi(x,&) - Vfi(x)nﬂ < 02, where £ ~

D; are i.i.d. random samples for each i € [n).

3.1 A deeper dive into the issues EF21 has with
stochastic gradients. As remarked before, the current anal-
ysis of EF21 in the stochastic setting requires each client
to sample a mega-batch in each iteration, and it is not clear
how to avoid this. In Appendix F we further investigate
this phenomenon by demonstrating an example where EF21-
SGD and even its idealized version EF21-SGD-idealized do
not converge.

3.2 Momentum for avoiding mega-batches. Let us
now focus on the single node settingand try to fix the di-
vergence issue shown above. We propose to modify our
“idealized” EF21-SGD-ideal method so that the compressed
difference can be controlled and made arbitrarily small,
which leads us to another (more advanced) conceptual algo-
rithm, EF21-SGDM-ideal: z!t! = 2t — v4?,

V= V(@) # (V) = V),
gt =Vt +C (o = V().
3
In this method, instead of using v**t! = V f(xt+!, ¢i+1)
as in EF21-SGD-ideal, we introduce a correction, which al-
lows to control variance of the difference V f (21, ¢+1) —

V f(x'*1). This allows us to derive the following conver-
gence result. Let dp := f(20) — f*.
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Table 1 Summary of related works on distributed error compensated SGD methods using a TopK compressor under Assumptions 1
and 2. The goal is to find an e-stationary point of a smooth nonconvex function of the form (1), i.e., a point z such that E [||V f(z)]|] < e.
"Communication complexity": the total # of communicated bits if the method is applied with sufficiently large batch-size; see Table 2
for batch-size. "Asymptotic sample complexity": the total # of samples required at each node to find an e-stationary point for batch-size
B = 1in the regime € — 0. "No extra assumptions": ¢'means that no additional assumption is required.

Method Communication complexity Asymptotic . Batch-free? | No extra assumptions?
sample complexity
EF14-SGD KG 2 v X @
(Koloskova et al., 2020) ae3 ned
NEOLITHIC K 1. (C ) 52 ©
(Huang ct al., 2022) zezloe (2) s X X
EF21-SGD K 2 @ X v
(Fatkhullin et al., 2021) as? a3ed
BEER I 2 @
(Zhao et al., 2022) ac? o7 X v
EF21-SGDM K -2
Corollary 2 ae? nek v v

@ Analysis requires a bound of the second moment of the stochastic gradients, i.e., E IV fi(z, €I 2] < G?forall z € RY,

® This complexity is achieved by using a large mini-batch and commumcatmg [K/a] coordinates per iteration, see Appendix A.
(© Analysis requires a bounded gradient dlSlmllarlty assumption, i.e., = 37 | HVfl (z) — Vf(@)||*> < G?forall z € R%,

@ Analysis requires a batch-size at least B 2 - for EF21

-SGD andB > -2 for BEER.

Proposition 1. Let Assumptions 1, 2 hold, and let C satisfy
Definition 1. Let ¢° = 0 and the step-size in method (9), (3)
be set as v < /L. Let 2 be sampled uniformly at random
from the iterates of the method. Then for any nn > 0 after T

iterations, we have E [HVf(gET) HQ} < 250 + 4n20

Notice that if = 1, then algorithm EF21-SGDM-ideal (9),
(3) reduces to EF21-SGD-ideal method (9), (10a), and this
result shows that the lower bound for the batch-size estab-
lished in Theorem 1 is tight, i.e., B = ©(c”/=2) is necessary
and sufficient® for convergence. For 1 < 1, the above the-
orem suggests that using a small enough parameter 7, the
variance term can be completely eliminated. This observa-
tion motivates us to design a practical variant of this method.
Similarly to the design of EF21 mechanism (from EF21-
SGD-ideal), we propose to do this by replacing the exact
gradients V f (z'1) by state vectors v’ and g* as follows:

oL = o (V) =),

EF21-SGDM:
gt =gt +C (,Ut—H _ gt) _

“

3.3 Distributed stochastic error feedback with mo-
mentum. We formally present a distributed variant of EF21-
SGDM in Algorithm 2 in Appendix H along with its con-
vergence Theorem 4. We summarize the main implications
here.

Recovering previous rates in case of full gradients.
Compared to the iteration complexity O(=z2g” Lm‘“ ) of EF14
(Koloskova et al., 2020), our result, summanzed in

Corollary 1. If o = 0, then E [||[Vf(27)||]] < € after
T=0 (Q%Q) iterations.

%This follows by replacing o2 in the batch free algorithm by
o2/ if the batch-size of size B > 1 is used.

is better by an order of magnitude, and does not require
the BG assumption. The result of Corollary 1 is the same
as for EF21 method (Richtarik et al., 2021), and EF21-HB
method (Fatkhullin et al., 2021). Notice, however, that even
in this deterministic setting (o = 0) EF21-SGDM method is
different from EF21 and EF21-HB: while the original EF21
does not use momentum, EF21-HB method incorporates
momentum on the server side to update x*, which is different
from our Algorithm 2, where momentum is applied by each
node. This iteration complexity O ( ) is optimal in both
o and . The matching lower bound was recently established
by Huang et al. (2022) for smooth nonconvex optimization
in the class of centralized, zero-respecting algorithms with
contractive compressors.

Comparison to previous work. Our sample complexity in
Corollary 2. E [HVf Nl < e after T =

O ( =+ WL/J + m + ﬁ—‘j) iterations.

strictly improves over the complexity O( Lo "‘“‘7 ) of
EF14-SGD by Koloskova et al. (2020), even in case when
G < +o0. Notice that it always holds that ¢ < G. If we
assume that G ~ o, our three first terms in the complexity
improve the first term from Koloskova et al. (2020) by the
factor of ¢/, (¢¢/5)/3, or a'/2. Compared to the BEER
algorithm of Zhao et al. (2022), with sample complexity
O Fmax L"“‘X + L"‘“""z ), the result of Corollary 2 is strlctly better
in terms of a n and the smoothness constants.” In addition,
we remove the large batch requirement for convergence
compared to (Fatkhullin et al., 2021; Zhao et al., 2022).
Moreover, notice that Corollary 2 implies that EF21 SGDM
achieves asymptotically optimal sample complexity (’)( prpee )
in the regime € — 0.

7 Linax := maxX;e[n L Notice that L < I < Lmax and the
inequalities are strict 1n heterogeneous setting.
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Table 2 Extended summary of related works on distributed error compensated SGD methods using a TopK compressor under As-
sumptions 1 and 2. The goal is to find an e-stationary point of a smooth nonconvex function of the form (1), i.e., a point z such that
E[IVf(z)|] < e. "Comm. compl." reports the total number of communicated bits if the method is applied with batch-size equal to
"Batch-size" at each node. When TopK compressor is applied, then o > K /d, and the comm. compl. of error compensated methods can
be reduced by a factor of ad/ K. "Batch-size for comm. compl." means the batch-size for achieving the reported "Comm. compl.".
"Asymp. sample compl." reports the asymptotic sample complexity of the algorithm with batch-size B = 1 in the regime ¢ — 0, i.e.,
the total number of samples required at each node to achieve e-stationary point. "Batch free" marks with ¢ if the analysis ensures
convergence with batch-size equal to 1. "No extra assump." marks with ¢ if no additional assumption beyond Assumptions 1 and 2 is
required for analysis. We denote Lpmax 1= maX;¢[n L;. Notice that it always holds L < L < L, and these inequalities only become

equalities in the homogeneous case. It could be that «L/ L<1 making the batch-size of EF21-SGDM and EF21-SGD2M much smaller than
those of EF21-SGD and BEER. Symbol V denotes the maximum of two scalars.

Comm. Batch-size for Asymp. Batch | No extra
Method sample 5 o
compl. comm. compl. compl free? | assump.?
EF14-SGD KGLyy ac? () Ly v X @
(Koloskova et al., 2020) aed neG@ ned
NEOLITHIC K Lo GY® | o2 1 G\ Lowo? ©
(Huang et al., 2022) adtlog (9) | 25 v Llog (9) s X X
EE21—SGD KL o2 Lo2 @ X v
(Fatkhullin et al., 2021) ae? aZe? aded
BEER 2 2
KLanx Kol Lméxxi (d) X 4
(Zhao et al., 2022) ae ae aZe
EF21-SGDM KL alL o2 aL? o2 Lo? v v
Corollary 2 ae? T ne? V2 2 ned
EF21-SGD2M K oL o2 < L3 o2 P v v
Corollary 3 ae? T neZ Y I3 €2 net

@ Analysis requires a bound of the second moment of the stochastic gradients, i.c., E [IIV fi (=, &) HQ] < GZforall x € R?,
® This complexity is achieved by using a large mini-batch and communicating [ X/« & d coordinates per iteration.
) Analysis requires a bounded gradient disimilarity assumption, i.e., 2 S°7 | ||V f;(z) — V f(z) I? < G? forallz € R%.

@ Analysis requires a batch-size at least B > % for EF21-SGD and B > ;’—:2 for BEER.

) For a fair comparison, we take the (minimal) batch-size for these methods which guarantees the reported communication complexity.

A. More on Contractive Compressors, Error Feedback and Momentum

Greedy vs uniform. In our work, we specifically focus on the class of contractive compressors satisfying Definition 1,
which contains a greedy TopK compressor as a special case. Note that TopK is greedy in that it minimizes the error
| TopK (x) — z||? subject to the sparsity constraint ||C(z)||o < K, where |u||o counts the number of nonzero entries in .
In practice, greediness is almost always® very useful, translating into excellent empirical performance, especially when
compared to the performance of the RandK sparsifier. On the other hand, it appears to be very hard to formalize these
practical gains theoretically’. In fact, while greedy compressors such as TopK outperform their randomized cousins such
as RandK in practice, and often by huge margins (Lin et al., 2018), the theoretical picture is exactly reversed, and the
theoretical communication complexity of gradient-type methods based on randomized compressors (Alistarh et al., 2017;
Mishchenko et al., 2019; Horvath et al., 2019b; Li et al., 2020; Gorbunov et al., 2021) is much better than of those based
on greedy compressors (Koloskova et al., 2020; Richtarik et al., 2021; Fatkhullin et al., 2021; Richtérik et al., 2022). The
key reason behind this is the fact that popular randomized compressors such as Rand K become unbiased mappings after
appropriate scaling (e.g., E[%RandK ()] = z), and that the inherent randomness is typically drawn independently by all
clients. This leads to several key simplifications in the analysis, and consequently, to theoretical gains over methods that
do not compress, and over methods that compress greedily. Further improvements are possible when the randomness is
correlated in an appropriate way (Szlendak et al., 2021).

Due to the superior empirical properties of greedy contractive compressors, and our desire to push this very potent line of
work further, in this paper we work with the general class of compressors satisfying Definition 1, and do not invoke any
additional restrictive assumptions. For example, we do not assume C can be made unbiased after scaling.

8Greediness is not useful, for example, when D; = D, for all 4,5 and when TopK is applied to the full-batch gradient V f;(z) by each
client. However, situations of this type arise rarely in practice.
No theoretical results of this type exist for n > 1 .

10
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Error Feedback. The first theoretical analysis of EF14 was presented in the works of Stich et al. (2018); Alistarh
et al. (2018) and further revisited in convex case in (Karimireddy et al., 2019; Beznosikov et al., 2020; Gorbunov et al.,
2020; Qian et al., 2020) and analysis was extended to nonconvex setting in (Stich and Karimireddy, 2019). Later, in
nonconvex case, various extensions and combinations of EF14 with other optimization techniques were considered and
analyzed, which include bidirectional compression (Tang et al., 2020), decentralized training (Koloskova et al., 2020; Singh
et al., 2021), server level momentum (Xie et al., 2020), client level momentum (Zheng et al., 2019), combination with
adaptive methods (Li et al., 2022b). To our knowledge, the best sample complexity for finding a stationary point for this
method (including its momentum and adaptive variants) in the distributed nonconvex setting is given by Koloskova et al.
(2020), which is (’)(% + 5724) More recently, Huang et al. (2022) propose a modification of EF14 method achieving
O (é log( %) + T‘L’—;) sample complexity by using the BGS assumption. When applied with Top/K compressor, this
method requires to communicate 9] (K/a) coordinates at every iteration. This makes it impractical since when the effective o
is unknown and is set to & = K/d, it means that their method communicates all d coordinates at every iteration, mimicking
vanilla (S)GD method. Moreover, their algorithm uses an additional subroutine and applies updates with a large batch-size of
samples of order (’)(i log (%) ), making the algorithm less practical and difficult to implement. It is worth to mention, that
error feedback was also analyzed for other classes of compressors such as absolute (see Definition 2) or additive compressors
(.e., C(z +y) = C(x) + C(y) for all x,y € RY) (Tang et al., 2020; Xu and Huang, 2022), which do not include TopK
sparsifier.

Momentum. The classical SGD method with Polyak (i.e., heavy ball) momentum (SGDM) reads:

R at — o,

V= (Lot VT, 5)
where v > 0 is a learning rate and 7 > 0 is the momentum parameter.

The first convergence analysis of gradient descent with momentum (in deterministic case) was proposed by B.T. Polyak in
his seminal work (Polyak, 1964) studying the benefit of multi-step methods. The proof technique proposed in this work
is based on the analysis of the spectral norm of a certain matrix arising from the dynamics of a multi-step process on a
quadratic function. Unfortunately, such technique is restricted to the case of strongly convex quadratic objective and the
setting of full gradients. Later Zavriev and Kostyuk (1993) prove an asymptotic convergence of this method in nonconvex
deterministic case without specifying the rate of convergence.

To our knowledge, the first non-asymptotic analysis of SGDM in the smooth nonconvex setting is due to Yu et al. (2019).
Their analysis, however, heavily relies on BG assumption. Later, Liu et al. (2020) provide a refined analysis of SGDM,
removing the BG assumption and improving the dependence on the momentum parameter 7. Notice that the analysis of Liu
et al. (2020) and the majority of other works relies on some variant of the following Lyapunov function:

t
B L I A N S e e ©6)
7=0

where {z'},- , is some auxiliary sequence (often) different from the iterates {z'},-, and {c;} -, is a diminishing non-
negative sequence. This approach is motivated by the dynamical system point of view at Polyak’s heavy ball momentum,
where the two terms in (6) are interpreted as the potential and kinetic energy of the system (Sebbouh et al., 2019). In
contrast, the Lyapunov function used in this work is conceptually different even in the single node (n = 1), uncompressed
(o = 1) setting. Later, Defazio (2021) revisit the analysis in (Liu et al., 2020) through the lens of primal averaging and
provide insights on why momentum helps in practice. The momentum is also used for stabilizing adaptive algorithms
such as normalized SGD (Cutkosky and Mehta, 2020). In particular, it was shown that by using momentum, one can
ensure convergence without large batches for normalized SGD (while keeping the same sample complexity as a large batch
normalized SGD). However, their analysis is specific to the normalized method, which allows using the function value as a
Lyapunov function. High probability analysis of momentum methods was investigated in (Cutkosky and Mehta, 2021; Li
and Orabona, 2020).

Recently, several other works attempt to explain the benefit of momentum (Plattner, 2022); some consider structured
nonconvex problems (Wang and Abernethy, 2021), and others focus on generalization (Jelassi and Li, 2022). We would like
to mention that understanding the behavior of SGDM in convex case also remains an active area of research (Ghadimi et al.,
2015; Yang et al., 2016; Sebbouh et al., 2021; Li et al., 2022a; Xiao and Yang, 2022) .

11
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In the distributed setting, (Yu et al., 2019; Karimireddy et al., 2021) extend the analysis of SGDM under BGS assumption.
Later (Takezawa et al., 2022; Gao et al., 2023) remove this assumption providing a refined analysis based on the techniques
developed in (Liu et al., 2020). However, the algorithms in these works do not apply any bandwidth reduction technique
such as communication compression.

Momentum and communication compression. The most closely related works to ours are (Mishchenko et al., 2019),
(Xie et al., 2020), and (Fatkhullin et al., 2021), which analyze momentum together with communication compression. The
analysis in (Mishchenko et al., 2019; Xie et al., 2020) requires BG/BGS assumption, and does not provide any theoretical
improvement over the variants without momentum. Finally, the analysis of Fatkhullin et al. (2021) is only established
for deterministic case, and it is unclear if its extension to stochastic case can bring any convergence improvement over
EF21-SGD.

12
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B. Variance Reduction Effect of SGDM and Comparison to STORM

Notice that the choice of our Lyapunov function A; (15), which is used in the analysis of EF21-SGDM implies that the
gradient estimators gf and vf improve over the iterations, i.e.,

gt — Vfi(zh), vl — Vfi(xh) for t — oo.

This comes in contrast with the behavior of SGD, for which the gradient estimator v} = V f; (2%, £!) does not necessarily
tend to zero over iterations. Such effect of asymptotic improvement of the estimation error of the gradient estimator is
reminiscent to the analogous effect known in the literature on variance reduction (VR) methods. In particular, the classical
momentum step 2 of Algorithm 2 may be contrasted with a STORM variance reduced estimator proposed by Cutkosky and
Orabona (2019), which updates the gradient estimator via

wit = VT ET) + (1= n)(wi — V(e &), w) =Vfi(2°, &) @)

It is known that the class of VR methods (and STORM, in particular) can show faster asymptotic convergence in terms
of T' (or €) compared to SGD and SGDM under some additional assumptions. However, we would like to point out the
important differences (and limitations) of (7) compared to the classical Polyak’s momentum used on line 2 of Algorithm 2.
First, the estimator w! ™! is different from the momentum update rule v/** in that it is unbiased for any ¢t > 0, i.e.,
E [with — Vf;(z!1)] = 0,'° which greatly facilitates the analysis of this method. Notice that, in particular, in the
deterministic case (¢ = 0, @ = 1), the method with estimator (7) reduces to vanilla gradient descent with wf“ =V (xt“).
Second, the computation of w** requires access to two stochastic gradients V f; (2!, &/1) and V f;(2?, £71) under
the same realization of noise §f+1 at each iteration, and requires the additional storage of control variate z¢. This is a
serious limitation, which can make the method impractical or even not implementable for certain applications such as
federatied RL (Mitra et al., 2023), multi-agent RL (Doan et al., 2019) or operations research problems (Chen et al., 2022).
Third, the analysis of variance reduced methods such as STORM requires an additional assumptions such as individual
smoothness of stochastic functions (or its averaged variants) (Assumption 3), i.e., |V fi(2,&) — Vfi(y, &)l < 4 ||z — ||
for all z,y € RY, & ~ D;, i € [n], while our EF21-SGDM only needs smoothness of (deterministic) local functions f; ().
While this assumption is satisfied for some loss functions in supervised learning, it can also be very limiting. Even if
Assumption 3 is satisfied, the constant 0 (which always satisfies ‘ > E) can be much larger than L canceling the speed-up in
terms of 7" (or ). For completeness, we provide the sample complexity analysis of our error compensated method combined
with estimator (7), which is deferred to Appendix K.

"Notice that E [wf — V fi(2°)] = 0. Let E [w} — V fi(z")] = 0 hold, then

E[wi™ = Vfi@@™)] = 1 - n)E [w] — Vfi(', )] =0.

13
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C. Experiments

We consider a nonconvex logistic regression problem: f;(z1,...,2,) = -1 2211 log(exp(a;rjxyij )/ 22:1 exp(a;rjxy))
with a nonconvex regularizer h(z1,...,2.) = A3, 22:1[%]2/(1 + [x,]2) with A = 1073, where 21, ...,z. € R,

[‘]x is an indexing operation of a vector, ¢ > 2 is the number of classes, [ is the number of features, m is the size of a
dataset, a;; € R! and Yij € {1,...,c} are features and labels. The datasets used are MNIST (with [ = 784, m = 60000,
¢ = 10) and real-sim (with | = 20958, m = 72309, ¢ = 2) (LeCun et al., 2010; Chang and Lin, 2011). The dimension
of the problem is d = (I + 1)¢, i.e., d = 7850 for MNIST and d = 41918 for real-sim. In each experiment, we show
relations between the total number of transmitted coordinates and gradient/function values. The stochastic gradients in
each algorithm are replaced by a mini-batch estimator % Zle V fi(x,&;) with the same B > 1 in each plot. Notice
that all methods (except for NEOLITHIC) calculate the same number of samples at each communication round, thus the
dependence on the number of samples used will be qualitatively the same. In all algorithms, the step sizes are fine-tuned
from a set {2* | k € [—20,20]} and the TopK compressor is used to compress information from the nodes to the master.
For EF21-SGDM , we fix momentum parameter = 0.1 in all experiments. Prior to that, we tuned € {0.01,0.1} on the
independent dataset w8a (with [ = 300, m = 49 749, ¢ = 2). We omit BEER method from the plots since it showed worse
performance than EF21-SGD in all runs.

4.1 Experiment 1: increasing batch-size. In this experiment, we use MNIST dataset and fix the number of transmitted
coordinates to K = 10 (thus o > K/a ~ 10~3), and set n = 10. Figure 1 shows convergence plots for B € {1,32,128}.
EF21-SGDM has fast convergence and shows a significant improvement when increasing batch-size compared to EF14-SGD.
In contrast, EF21-SGD suffers from poor performance for small B, which confirms our observations in previous sections.
NEOLITHIC has order times slower convergence rate due to the fact that it sends [1/a] compressed vectors in each iteration,
while other methods send only one.
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Figure 1: Experiment on MNIST dataset with n = 10, and Top10 compressor.

4.2 Experiment 2: improving convergence with n. This experiment uses real-sim dataset, K = 100 (thus o > K/a =
2-107?), and with B = 128 < m. We vary the number of nodes within n € {1, 10,100}, see Figure 2. In this case, EF21-
SGDM has much faster convergence compared to other methods for all n. Moreover, it shows a significant improvement
when n increases. In Section D, we consider more experiments with different parameters in this setup and also show that
EF14-SGD converges to solutions of simple quadratic optimization problems several orders of magnitude less accurately
than EF21-SGDM.

—%— EF14-SGD: Step size: 128.0
A~ EF21-SGD: Step size: 128.0

—¥— EF14-SGD: Step size: 64.0 An —%— EF14-SGD: Step size: 128.0
WA —< EF21-SGDM: Step size: 512.0

A~ EF21-SGD: Step size: 8.0 4 A~ EF21-SGD: Step size: 64.0
—<— EF21-SGDM: Step size: 64.0 —<— EF21-SGDM: Step size: 512.0
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Figure 2: Experiment on real-sim dataset with batch-size B = 128, and Top100 compressor.
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(a) Divergence for n = 1. (b) No improvement with n.
Figure 3: Divergence of EF21-SGD on the quadratic function f(z) = % |||, 2 € R, using the Top1 compressor. See the proof of

Theorem 1 for details on the construction of the noise £; we use ¢ = 1, B = 1. The starting point is o (0, — 0.01)T. Unlike EF21-SGD,
our method EF21-SGDM does not suffer from divergence and is stable near optimum. Figure 3b shows that when increasing the number of
nodes n, EF21-SGD applied with B = 1 does not improve, and, moreover, diverges from the optimum even faster. All experiments use
constant parameters v = 1 = 0-1/y/7 = 10~>; see Figure 4 for diminishing parameters. Each method is run 10 times and the plot shows
the median performance alongside the 25% and 75% quantiles.

D. Additional Experiments and Details of Experimental Setup
D.1. Divergence of EF21-SGD with constant and time-varying parameters
In Figures 3 and 4, we show that EF21-SGD and EF21-SGD-ideal can diverge (left) with a small constant or time-varying

step-sizes. Moreover, EF21-SGD does not show improvement (right) when increasing the number of nodes n.

Implementation Details. The experiments were implemented in Python 3.7.9. The distributed environment was emulated
on machines with Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz. In all experiments with MNIST, we split the dataset across
nodes by labels to simulate the heterogeneous setting.

D.2. Extra Plots for Experiments 1 and 2

In Figures 5 and 6, we provide extra experiments for the setup from Section C.

D.3. Experiment 3: Stochastic Quadratic Optimization Problem

We now consider a synthetic A-strongly convex quadratic function problem f(z) = £ 3" | f;(x), where the functions
filx) = %JJTQil‘ — x"b; are (not necessarily convex) quadratic functions for all i € [n] and x € R?. The matrices
Q1, - ,Q,, vectors by, - - - , by, and a starting point z° are generated by Algorithm 1 with the number of nodes n = 100,

dimension d = 1000, regularizer A = 0.01, and scale s = 1. For all i € [n] and x € R?, we consider stochastic gradients
Vifi(z,&) = Vfi(z) + &, where & are i.i.d. samples from N (0, 0) with o € {0.001,0.01}. In Figure 7, we present the
comparison of EF21-SGDM and EF14-SGD with three different step sizes. The behavior of methods for other step sizes from
the set {2% | k € [-20,20]} follows a similar trend. For every step size, we observe that at the beginning, the methods have
almost the same linear rates, but then EF14-SGD gets stuck at high accuracies, while EF21-SGDM continues converging to
the lower accuracies.

A procedure to generate stochastic quadratic optimization problems. In this section, we present an algorithm that
generates quadratic optimization tasks. The formal description is provided in Algorithm 1. The idea is to take a predefined
tridiagonal matrix and add noises to simulate the heterogeneous setting. Algorithm 1 returns matrices Qq, - - - , Q,,, vectors
bi,--- by, and a starting point 2° such that the matrix Q = % >, Q; has the minimum eigenvalue A\,in (Q) = A, where
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(a) Divergence in single node setting, n = 1. (b) No improvement with n.

Figure 4: Divergence of EF21-SGD on a quadratic function % ||a:||2 with Topl compressor. See the proof of Therem 1 for
details on the construction of noise &, we use o = 1, B = 1. The starting point for all methods is z° = (0, —0.01) ". Unlike
Figure 3, these experiments use time varying step-sizes and momentum parameters vy; = 7, = \/%. Each method is run 10
times and the plot shows the median performance alongside the 25% and 75% quantiles.
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Figure 5: Performance of algorithms on MNIST dataset with n = 100, and Top10 compressor.

A > 0 is a parameter. Next, we define the functions f; and stochastic gradients in the following way:

filz) == §xTQix —a'h;

and

for all z € R? and i € [n]. The noises &; are i.i.d. samples from N (0, o), where o is a parameter.
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Figure 6: Performance of algorithms on real-sim dataset with batch-size B = 1, and Top100 compressor.
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Figure 7: Stochastic Quadratic Optimization Problem with o = 0.001 (left figure) and o = 0.01 (right figure)

Algorithm 1 Quadratic Optimization Task Generation Procedure

1: Parameters: number nodes n, dimension d, regularizer A, and scale s.

2: fori=1,....,ndo

3:  Calculate Guassian noises pf = 1 + s£5 and p? = €2, iid. 5,62 ~ N(0,1)
4 by="Lr(-144b0,---,0) eRY

5 Scale the predefined tridiagonal matrix

2 -1 0
Q Wl -1 dxd
i = — e R
o

0 1 2
6: end for
7: Find the mean of matrices Q = = > | Q;
8: Find the minimum eigenvalue A\y,i, (Q)
9: fori=1,...,ndo
10:  Normalize matrix Q; = Q; + (A — Anin(Q))I
11: end for
12: Find a starting point 2° = (v/d, 0, ,0)
13: Output a new problem: matrices Q1, - - - , Q,,, vectors by, - - - , b, starting point z°

E. Descent Lemma
Let us state the following lemma that is used in the analysis of nonconvex optimization methods.

Lemma 1 ((Li et al., 2021)). Let the function f(-) be L-smooth and let t**! = x* — ~vg* for some vector gt € R% and a
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step-size v > 0. Then we have

f(xt'H) < f(xt) . % va<xt)H2 _ (217 _ s) Hwt+1 . xtH2 n % Hgt . Vf(xt)HQ- (8)

F. A Deeper Dive into the Issues EF21-SGD has with Stochastic Gradients

In order to understand this phenomenon, we propose to step back and examine an “idealized” version of EF21-SGD, which
we call EF21-SGD-ideal, defined by the update rules (9) + (10a):

et =l g, g =4 jZlgf, )
t+1 vf ( t+1) (Vf ( t+1 §t+1) _ Vfi($t+1)) ; (103)
ngrl th (Vf ( t+1 §t+1) _ glt) ) (lOb)

Compared to EF21-SGD, given by (9) + (10b), we replace the previous state g¢ by the exact gradient at the current iteration.
Since EF21-SGD heavily relies on the approximation g! ~ Vf;(x!™!), and according to the proof of convergence of
EF21-SGD, such discrepancy tends to zero as ¢ — oo, this change can only improve the method. While we admit this is a
conceptual algorithm only (it does not lead to any communication or sample complexity reduction in practice)!!, it serves us
well to illustrate the drawbacks of EF21-SGD. We now establish the following negative result for EF21-SGD-ideal.

Theorem 1. Let L, 0 > 0, 0 < v < /L and n = 1. There exists a convex, L-smooth function f : R2 — R, a contractive
compressor C(-) satisfying Definition 1, and an unbiased stochastic gradient with bounded variance o such that if the method
EF21-SGD-ideal ((9) + (10a)) is run with step-size v, then for all T > 0 and for all z° € {(0, x?Q))T € R?| x?z) < 0}, we

have
B [[[95)]7] 2 & min {0, [0}

Fix 0 < e < L/v60 and 2° = (0, —1) . Additionally assume that n > 1 and the variance of unbiased stochastic gradient is
controlled by o°/B for some B > 1. If B < #\;, then we have E H|Vf(xT)|H >eforallT > 0.

The above theorem implies that the method (9), (10a), does not converge with small batch-size (e.g., equal to one) for any
fixed step-size choice.!”> Moreover, in distributed setting with n nodes, a mini-batch of order B = Q (02/ 52) is required
for convergence. Notice that this batch-size is independent of n, which further implies that a linear speedup in the number
of nodes n cannot be achieved for this method. While we only prove these negative results for an "idealized" version of
EF21-SGD rather than for the method itself, in Figures 3a and 4a, we empirically verify that EF21-SGD also suffers from
a similar divergence on the same problem instance provided in the proof of Theorem 1. Additionally, Figures 3b and 4b
illustrate that the situation does not improve for EF21-SGD when increasing n.

G. EF21-SGDM-ideal (Proof of Theorem 1 and Proposition 1)

We now state a slighly more general result than Theorem 1, which holds for EF21-SGDM-ideal method with any 7 € (0, 1].
The statement of Theorem 1 follows by setting = 1, since in that case EF21-SGDM-ideal coincides with EF21-SGD-ideal
(9), (10a). Recall that EF21-SGDM-ideal (distributed variant) has the following update rule:

1 n
A D Y (1)

. v =V i™) +n(V e g7 = Vi),
EF21-SGDM-ideal: m i - 1 (12)
=Vfia"™ ) +C (v = V(@)
"This is because full gradients would need to be computed and communicated for its implementation. Notice also that if o = 0, this
method becomes the exact distributed gradient descent.
"’In fact, the example can be easily extended to the case of polynomially decaying step-size.
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Theorem 2. Let Lo > 0,0 < v < 1/L, 0 < n < 1 and n = 1. There exists a convex, L-smooth function f(-), a
contractive compressor C(-) satisfying Definition 1, and an unbiased stochastic gradient with bounded variance o* such that
if the method (11), (12) is run with a step-size vy, then for all T > 0 and for all z° € {(0, x?Q))T € R?| x?Q) < 0}, we have

E {HVf(a:T)Hﬂ > %min{anQ, HVf(xO)H2}.

Fix 0 < ¢ < L//60 and 2° = (0, —1)". Additionally assume that n > 1 and the variance of unbiased stochastic gradient
2 2
is controlled by o*/B for some B > 1. If B < %5, then we have E [||V f(2T)||] > ¢ for all T > 0.

Proof of Theorem 1. Part L. Consider f(z) = L ||z||>, z € R2. For each iteration ¢ > 0, let the random vector £'+1 be

2
sampled uniformly at random from the set of vectors:

W W

270V 27\ Vo 27 \-1) Vo
Define the stochastic gradient as V f(zf,&") := Vf(a!) + ¢ = La' + ¢'. Notice that E [V f(2!,£")] = Vf(z'), and
E|[V/(",¢) - Vf @)

] = 02. The update rule of method (11), (12) with such estimator is

t+1

e =at — gt =at — Lyat —AC (n¢€),

where we choose C(-) as a Topl compressor. Notice that E [¢] = (0,0) T, but

Efe(e)] =y 270,179 # 0,0)".

By setting the initial iterate to 2° = (0, x(()Q))T for any zf,) < 0, we can derive

E[z"] = (1-LyT" -9 % (g) ’yjz_:_ol(l — L)
= (-Ly" (3;?2)) +7 % <_01> (1= =Ln)") # (8) (13)

forany 0 < v < 1/L and any a:?z) < 0. The inequality in (13) is because the first vector has strictly negative component x?2),

and the second vector has non-positive second component when v > 0 and 2 > 0. Therefore, since |V f(z)|* = || Lz||*,
we have

E[lvse] = E[lL]
= B B [ - B 2]

2
> |[E[L]]

9 ((1 — Ly)" || L2 +”\/§(1 —{- LM)

2 (1 L V) (- (1 1?2
95 o202

30|V f(20)[|” + 1202

for all T' > 1, where in (i) we used the form of vector E [:JcT} in (13), in (4¢) we drop a non-negative cross term, and use
V f(2°) = La®. The last inequality follows by lower bounding a univariate quadratic function with respect to z := (1—L~v)T
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for 0 < z < 1, where optimal choice is z = n%02/(30 ||Vf(xo)H2 +7°0%). Itis left to note that 7% > 5 min{z, y} for
allz,y > 0.

Part II. Fix n > 1 and B > 1. Let at each node ¢ = 1,...,n, the random vectors {f be sampled independently and
uniformly form the set of vectors:

. 2 302 o 0 302 . -2 302
Y \o) Vi 7 \1) Vi 7 \-1) Vi0B
Define a random matrix ¢ := (¢4,...,&5)T. Then E {HVf(xt, & — Vf(xt)Hﬂ = %5. The update of the method (11),
(12) on the same function instance will take the form

1 @ Ly
+1 :xt_Vﬁng =zt — Lyat —vﬁzc(ﬁﬁ)
i=1 =1

Notice that in this case, we still have

iZC(nf?)} = %ZE [Cne&D] =ny %(0, 1/3)7 #(0,0)7,

i=1

which is independent (!) of n. Therefore, by similar derivations, we can conclude that

B[] > gomin{ T [vs6) | > 2

where we use that B < 6052 e < L/\/@, and 2° = (0, —1)T.

Proof of Proposition 1. By smoothness (Assumption 1) of f(-) it follows from Lemma 1 that for v < 1/L we have

F@h) < @) = 3 [V + 2 9" = V)] (14)

Now it remains to control the last term, which is due to the error introduced by a contractive compressor and stochastic
gradients. We have

Ells - v’ ] 2 Eflc (=) CE [l ((Viate) - vra))|]

[l (n (Vi) - Vi) - (VG € - Vfw))ﬂ

+27°E [HVf(xasf) - Vf(xt)!ﬂ

IN

22— )R [||V S (a', ()]
< 4170

where (i) and (i¢) use the update rule (3), (¢i¢) holds by Young’s inequality, and the last two steps hold by Definition 1 and
Assumption 2.

Subtracting f* from both sides of (14), taking expectation and defining &; := E [f(z') — f*], we derive

e [[v6T)7] = ZE[HW ] < 22 + a0,
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H. EF21-SGDM (Proof of Theorems 3 and 4)

Algorithm 2 EF21-SGDM (Error Feedback 2021 Enhanced with Polyak Momentum)

1: Input: starting point x step size v > 0, momentum 7 € (0, 1], initial batch size Biy
2: Initialize v = g = 5 Z MV fi(a0, &) ) fori=1,...,n; g% = 23 g?

3: fort=0,1,2,..., T — 1do

4:  Master computes ‘! = x* — ~g* and broadcasts z**! to all nodes

5. for allnodesi = 1,...,n in parallel do

6: Compute momentum estimator v! ™! = (1 — n)v! +nV fi(x!+1 )
7: Compress ci ™! = C(v!T! — 4 ) and send i to the master

8: Update local state g'”rl =gttt

9:  end for

10:  Master computes g't1 = 2 51 | gfF ! via gt = gt + LS7T | oI
11: end for

Single node setting.

Theorem 3. Let Assumptions 1, 2 hold, and let C satisfy Definition 1. Let method (9), (4) be run with g° = v = V f(2V),
and T be sampled uniformly at random from the iterates of the method. Then for all n € (0,1] with v < vy =

min {537, 7+ } , we have E [HVf(iT)HQ} < (9( 0. 4 no?). The choice n = min{l, ((525%)1/2}, v = 7o results in
B [I95G0I] < o + (44)").

Compared to Proposition 1, where 1 can be made arbitrarily small, Theorem 3 suggests that there is a trade-off for the choice
of n € (0, 1] in algorithm (9), (4). The above theorem implies that in single node setting EF21-SGDM has (’)(# + LEU;)
sample complexity. For o = 1, this result matches with the sample complexity of SGD and is known to be unimprovable
under Assumptions 1 and 2 (Arjevani et al., 2019). Moreover, when o = 1, our sample complexity matches with previous
analysis of momentum methods in (Liu et al., 2020) and (Defazio, 2021). However, even in this single node (n = 1),
uncompressed (o = 1) setting our analysis is different from the previous work, in particular, our choice of momentum
parameter and the Lyapunov function are different, see Appendix A and L. For o < 1, the above result matches with
sample complexity of EF14-SGD (single node setting) (Stich and Karimireddy, 2019), which was recently shown to be
optimal (Huang et al., 2022) for biased compressors satisfying Definition 1. However, notice that the extension of Stich and
Karimireddy (2019) method to distributed setting meets additional challenges and it is unclear whether it is possible without
imposing additional BG or BGS assumptions as in (Koloskova et al., 2020). In the following we will demonstrate the benefit
of our EF21-SGDM method by extending it to distributed setting without imposing any additional assumptions.

Distributed setting. Letting &; := f(2') — f*, our convergence analysis of this method relies on the monotonicity of the
following Lyapunov function:
2

Ap =0+ 5p Z lgt — vt |* + 22 Z lof = Vfi(a)* + 2 (15)

Zl(v - Vfi(z'))

1=

We obtain the following result:
Theorem 4. Let Assumptions 1 and 2 hold. Let 27 be sampled uniformly at random from the T iterates of the method. Let
EF21-SGDM (Algorithm 2) be run with a contractive compressor. For alln € (0, 1] and By > 1, withy < min { L }

20L’ 7L
we have

E[|vs@n)|"] <0 (L + %
where Ay is given by (15). Choosing the batch size By = [Lé —‘ and stepsize ¥ = min { 20T 7L} and momentum

/4 1 1
mi Léga® Loga\ /3 [ Lsgn\Y? a/L3Bm
n= ID{L( 0‘8% ) ’(0207?) ’(0207?) ) a'o ‘ , we get

livrenl] < o5+ (mr)" + ()" (5)")

21

e?  no? ) (16)
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Remark 1. In the single node setting (n = 1), the above result recovers the statement of Theorem 3 (with the same choice of

o - - L3go?3\ < 1L L60o®\? (Lsws )7 < 1Ls | 2 (Léyo® /2
parameters) since by Young's inequality | =375+ <35t Jr R N\ ot <3P+ (=) sand
L=1L

The statement of Theorem 3 follows directly from Theorem 4 and Remark 1. Let us prove Theorem 4.

Proof of Theorem 4. In order to control the error between g* and V f(x!), we decompose it into two terms
t INIE t t]|2 t INIE RS t ]2 t INIE
o' =V < 2l o+ 2ot~ VA <22 3 ok ot P+ 2 ot~ Vs,
i=1

and develop a recursion for each term above separately.

Part I (a). Controlling the error of momentum estimator for each v!. Recall that by Lemma 2-(23), we have for each
i=1,...,n,andany0 <np < landt >0

B [Ib+ = VA < 1=k It - VAGOIT] + 22 [l - o))+ a7

Averaging inequalities (17) over i = 1,...,n and denoting P, := 1 57" | E [va - Vfi(xt)Hﬂ, Ry :=FE {Hmt — gttt HQ}
we have

~ ~ 312 9 9
Pt+1§(1—77)Pt+7Rt+7l o

Summing up the above inequality for ¢t = 0,...,7T — 1, we derive
T-1 To . T—
1 3L2 1 ~
— <>~ > R P+ —P. 18
Tt:O o Tz::o t+ng+nT0 o

Part I (b). Controlling the error of momentum estimator for v (on average). Similarly by Lemma 2-(24), we have for
any0<n<landt >0

2
E [Hvtﬂ _ Vf(xt'H)HQ} <(1- [Hv —Vf(x H ] [th-i-l _ xtHQ] L e
where v? ;= 1 ZZ 1 v is an auxiliary sequence.

Summing up the above inequality for¢ = 0,...,7 — 1, and denoting P, := E [Hvt - Vf(:rt)HZ} , we derive

T

|
—

T—

3L? 1
S—— +—+—Po (19)
n? TX::O nT

L
T -

gM

Part II. Controlling the error of contractive compressor and momentum estimator. By Lemma 3 we have for each
1=1,...,n,andany0 <np <landt >0

B[l ot 7] < (1= 3) B [lot - o] + LB bt - )]
A g [l — o] 4 20, 0)
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Averaging inequalities (20) over i = 1,...,n, denoting V; := Iyt E [|| gl — vf||2}, and summing up the resulting
inequality fort = 0,...,7 — 1, we obtain

T—

M
S

‘1~ 8L2 21

a?

82
< L
t=0 @ t

2~
ol

INg
<

2

S| =

1
T

i
<

Part III. Combining steps I and II with descent lemma. By smoothness (Assumption 1) of f(-) it follows from Lemma 1
that for any v < 1/(2L) we have

'y 2 ]. 2 ,Y 2
S < 1@ =G IO = 5 e =t 5 o = v (22
1 RS
< 6 =G IVAE = 5t a3 ok = oty o = V)
i=1

Subtracting f* from both sides of (22), taking expectation and defining 6; := E [f(x?) — f*], we derive

T-1
~ 2 1 2
BV = X E(IvsE)]
2%, 1 1
< Tt ZVf+2T;Pf ngZRt
() 25 161] 1 1 2= An?
< P +2 P,
= vt e TZtJr T;H_
1 167 L2 2 T-1
2 o R,
T
(i) 250  16n302  4n?0?  2no? 4 ~
< = — Ve
- AT Tt Tt
1 164%L%p%  69°L% 48y L2 T-1 167]
2 a2 n2 2
N 72 T ZRt+ TPO
272 272
(iii) 2dp n 16n302 L 4n?o? L 2no? % - % - 76412L %R
— ’YT a2 o n ’)/2 T s t
16
T Po + —”Po + —Vo
26 16 4n? 2no? 16
< 2o Mowot , dn'e” 2o +—Po+ ”Po+—vo
~T «a «o

where () holds due to (21), (4¢) utilizes (19), and (#i7) follows by 1 < 1, and the last step holds due to the assumption on
the step-size. We proved (16).

We now find the particular values of parameters. Since g; = wv; for all ¢ € [n], we have 170 = 0. Using
ZB‘"" Vfi(x?,&) ;) foralli =1,...,n, we have

Binit

Py =E [[[o* - Vi@)|] < -5 and By = ZE[Hv—Vﬂ W) < 3

1n1t

We can substitute the choice of v and obtain

L 3.2 2, 2 )
E{va(jT)H?} = (’)<L60+L60+770+’7 A S )

ol 0T a? n BT  &? BT
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we have

E[[viEn|] = o(m+”0+"302+”2 M )

Since Bipi; > M po

ol nT o2 « n o2 BT

. . 2\ /4 1/: 1
Notice that the choice of the momentum parameter such that n < (L‘Sg;& ) ,n < (iﬂ%") / ‘< (%) /2 and

/Lo Bt nio? Lsy 1302 Lsy no? Léo Lbo
n < ==t ensures that 7 < T < T m < T an nd 2B i < T Therefore, we have

LS Léyo2/3 s Lo\ 7 Légo?\ " oV Lo
E T2 < Log 0 0 0 YV =9 .
livsani] < o2+ (2220) "+ (227)"+ (B22) "+

. . o2/3
Using Bipit > mln{ o’L z

L2650’ av/LéoT’ a4/3T2/3(L50)1/37 a2T

o %Jr Ly0®/? 3/4+ Léopo 2/3+ Léyo? >
aoT a?/3T VaT nT '

. . . o2L o2/3 o2 o2
It remains to notice that [max {mm{L25 '3 L(SOT, 04/3T2/3(L50)1/3, T sTeon (| S | T |-

} , We obtain

E (v

IN

H.1. Controlling the Error of Momentum Estimator

Lemma 2. Let Assumption 1 be satisfied, and suppose 0 < n < 1. Foreveryi = 1,...,n, let the sequence {vﬁ}po be
updated via B

vi = (Vi &) — v,
Define the sequence vt := + El L VL. Then for everyi =1,...,nandt > 0 it holds

B [Jot - VAGOI] < (- 0k [l - ¢ “M Ml - e, e
E [l - V)] < ( Dh“lfoWFJM]AkyLE[H a1+ 4)

Proof. By the update rule of v}, we have

E ol - Vhi)]"] = Eﬂwrl—Vﬁuw+MVﬂuﬂg>—ﬁ*ﬂﬂ
= E[Eg [[[(1-m@i™ = Vi) +n(V ' &) = Vi)
— (1-n)2E [H” S acal } +n°E [HVfi( — Vfi(z)]] }

< (=2 (14 ) E o7 = VA7)
+<1+727>E{’|Vfi(xt B - Vfi(z H } +2o?

IN

(= ot = ] + 2R ot - 2t 4,

where the first inequality holds by Young’s inequality, and the last step uses smoothness of f;(-) (Assumption 1), which
concludes the proof of (23).

Foreacht =0,...,T — 1, define a random vector &' := (¢1,..., &) and denote by V f(z',£") := L 3" | V fi(at,&l).
Note that the entries of the random vector &' are independent and E¢: [V f (2, £")] = V f(z ) then we have

ot = (V€1 = oY)
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where v! := 1 >, v is an auxiliary sequence. Therefore, we can similarly derive
n 1= [

Eflof - V)] = B[ = ViEh) +n0 (Ve — oY)
= E[Be [0 - m0 = V@) +0 (V16 ) - Vi)
= (=% [l = V@] + %R [V £t € - V)]
< =02 (14 3)E (ot - Vs

2 2
+ <1 + 5) E[|vs@) - viE)|’] + L
t— — 3L? . i 252
< (1-nE {Hv ' Vi 1)”2} + TE {Hx —x 1||2} + UT,

where the last step uses smoothness of f(-) (Assumption 1), which concludes the proof of (24).

H.2. Controlling the Error of Contractive Compression and Momentum Estimator

Lemma 3. Let Assumption 1 be satisfied, and suppose C is a contractive compressor with o < % Foreveryi=1,...

let the sequences {v!},-, and {g!},~, be updated via

vi = v+ (Vi €) o7,

Then for everyi =1,...,nandt > 0 it holds

Bl —otlf] < (1= %) [l - o] + 2k gt - VA
e

25
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Proof. By the update rules of g} and v}, we derive

el —etl’] = =fls -t +cet - g )]

= B[Ee[llewt ) - 0t g IF]]

< a-wE[-g ]

DB [t - g VAt €) —o)]

= (1= a)E [Eg [[Joi™ = g7t + (T filat,€)) vl

= B[ g n(WZ-(xt) — ot Y)*]
+1 - B [[ Vit €) - Vi)

D 1w B[l g lil} (=) (4™ o = st
+(1 = a)p’o?

(iv) (1—9)E:||g§‘1—vf_1!|2:+5772E[va1 Vfi(x H (1 - a)n’c?

(v)

< (1-0F [t = v 7] + 280%E [0t - Vil
+267°E ||V fi(a") = V'] +no?
(L= 0)E [||gt~" = of~|*] +2807E [ o1 - V2" )|]

+2BL20°E {th - xt71||2} +n?a?,

IN

where (4) is due to the definition of a contractive compressor (Definition 1), (i) follows by the update rule of v!, (iii)
and (v) hold by Young’s inequality for any p > 0. In (iv), we introduced the notation  := 1 — (1 — a)(1 + p), and
B:=(1—a)(1+ p~1). The last step follows by smoothness of f;(-) (Assumption 1). The proof is complete by the choice
p = a/2, which guarantees 1 — 6 <1 — «/2,and 26 < 4/« . O
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I. Further Improvement Using Double Momentum!

Unfortunately, in the non-asymptotic regime, our sample complexity of EF21 SGDM does not match with the lower bound

Lo2/3

in all problem parameters simultanuously due to the middle term 27—z + which can potentially dominate over

1/2 3

n64 term for large enough n and ¢, and small enough o and 0. We propose a double-momentum method, which can further
improve the middle term in the sample complexity of EF21-SGDM. We replace the momentum estimator v} in Algorithm 2
by the following two-step momentum update

EF21-SGD2M: ot = (1 — )l + nV fi(= ), Wit = (1 — p)ul + polth. (26)

Corollary 3. Let v! in Algorithm 2 be replaced by u! given by (26) (Algorithm 3 in the Appendix). Then with appropriate
choice of v and 1 (given in Theorem 5), we have E [HVf(;iT) |H <edgfterT =0 (L—&’ 4+ Léoo® 4 L600'2) iterations.

aeg? «2/328/3 net

Now we formally introduce the double momentum variant of our method, Algorithm 3, and provide convergence result with
its proof. Compared to EF21-SGDM (Algorithm 2), the only change is that instead of compressing v{ — g¢, in EF21-SGD2M,
we compress u! — g!, where u; is a two step (double) momentum estimator. The intuition behind this modification is that a
double momentum estimator u! has richer "memory" (of the past gradients) compared to v!. When interacting with biased
compression operator C, such effect becomes crucial in improving the sample complexity. Theorem 5 states convergence
guarantees for Algorithm 3. Notice that the key reason for the sample complexity improvement of the double momentum
variant compared to EF21-SGDM is that in (27), one of the terms has better dependence on 1 compared to Theorem 4, i.e.,
102 /o instead of n?0? /o As a result, this term is dominated by other terms and vanishes in Corollary 3.

Algorithm 3 EF21-SGD2M

1: Input: z°, step-size v > 0, parameter n € (0, 1], initial batch size Bipi
2: Initialize u? = v) = g9 = Z— - Z "V fi(a®,€0;) fori=1,...,n;¢° = S 370, g)

3: fort=0,1,2,...,T — 1d0
4:  Master computes 't = 2t — ~¢* and broadcasts z**! to all nodes

5. forallnodesi = 1,...,n in parallel do

6: Compute the first momentum estimator Q:f“ = (1 nvt +nV f; (2t )
7 Compute the second momentum estimator u/ ™ = (1 — r;)u + ottt

8 Compress ci ™! = C(ul™" — gt) and send ctH to the master

9: Update local state gttt =gt + it

10:  end for

11:  Master computes g't1 = 2 31" | giF via gttl = gt + LS°0  oIFT

12: end for

Theorem 5. Let Assumptions I and 2 hold. Let " be sampled uniformly at random from the iterates of the method. Let

Algorithm 3 run with a contractive compressor. For alln € (0, 1] and By > 1, with v < min { 0L’ 16 Tor } , we have

N E 7]3()’2 ,’74 E
B[|v | < O(w I 1), @
where W := 6o + 1E [Hvo — 2%)|| } 7—% [Hv — V[ } Setting initial batch size Bin = [f—éﬂ

step-size and momentum parameters

o a 7 . Léga? Y4 Léon /2 v/ Lo Binit
Y=min{ —, —— ¢, n=min« 1, , ) ) (28)

60L 16L o?T o?T o

we get

1T71 (12 Z(SO L(500'2/3 ¥ L(S()O'Q /2
Py sl < ofZee (B0) 4 (22)7),
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Proof. In order to control the error between g* and V f(z'), we decompose it into three terms

Bllg" = |* 8 flut — o |* 43 [lo! — Vs

IN

lg" = V(")

IN

35 3l — )+ 3 — o+ 3ot - v
=1

t._ 15t t._ 1yt i ;
where we define the sequences v* := ~ > " v} and v’ := = > """, uf. In the following, we develop a recursion for each

term above separately.
Part I. Controlling the error of momentum estimator for each v! and on average for v’. Denote P, :=
E||Jv* — Vf(:vt)HQ], Po= 1" E [||vf — Vfi(xt)HQ] , Ry = E {th - x”l‘ﬂ. Similarly to Part I of the proof

of Theorem 4, we have

T-1 T T-1

1 ~ 3L%1 1 ~
TZPtSTT Rt+n02+n7po, (29)
t=0 t=0

T-1 T-1

1 3L2 1 no? 1
— <= - R +—"—+—P,. 30
T t_QTZt+n+nTo (30)

Part II (a). Controlling the error of the second momentum estimator for each u!. Recall that by Lemma 4-(37), we
have foreachi =1,...,n,andany0 <np < landt >0

E ([t o] < (= mE [Juf = ol]|*] + 6 [Jof = Vsi(a)]’]

7

+6Lfr]E [thH — xt‘ﬂ +n%o?, 3D
Averaging inequalities (31) over i = 1,...,n and denoting Q; := 1 " | E {Huﬁ - vﬂ|2] , we have

Qis1 < (1=n)Q:+6nP, + 6L*nR, + n’c>.

Summing up the above inequalities for t = 0,...,7 — 1, we derive
= 6 T=1 = 1
~ ~ =y ) ~
fZQt < TZPtJrGL TZRtJrUU Jrn*TQO
t=0 t=0 t=0
T—1
6-3L 1 ~
< 6L% | = Y Ry+Tno’+ — —P,
_<772+ );t+UU+TQ0+To
1902 1 6 ~
— Y R+ o+ —P 32
nQT; e+ et + o5, (32)
where we used (29), the bound n < 1, and u? = o) fori =1,...,n.

Part II (b). Controlling the error of the second momentum estimator u’ (on average). Similarly by Lemma 4-(38), we
have forany 0 <np < landt >0

E {Hu“’l - vt+1H2] < (1-nE [Hut - vt’ﬂ + 6nE Mvt - Vf(xt)HZ}
+6L2E [th+1 _ xtHQ] n @7
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Summing up the above inequalities for ¢ = 0,...,T — 1, and denoting Q; := E [||ut - vt||2} , we derive

= 6 T2 = I
— < =) P +6L*= 2+ —
T;Qt < T; y + 6 T;Rt‘HW +7ITQ0

6-3L2 1= mo? 1 6
< L?) = —P,
- ( O )T_ Tt
1912 1 = 7770 6
< 2P 3
< Z R, + + 5P (33)

where we used (30), the bound < 1, and u® = v°.

Part III. Controlling the error of contractive compressor and the double momentum estimator. By Lemma 5 we have
foreachi=1,...,n,andany0 <n <landt >0

E[[lgr - ut*|P] < (y%)E[HgwaHQ}+%E[Ilu%vfll2} G4

4 2,4
+6%E [va - Vfi(l’t,ﬁf)HQ] + GL%IE {th _ xt+1|ﬂ oo,

Averaging inequalities (34) over i = 1,...,n, denoting V; := L5y E [H gt — u‘;Hﬂ, and summing up the resulting
inequality fort = 0,...,T — 1, we obtain

T-1 T-1 T-1 ~ T-1
1=~ 12071 = ~ 12901 =~ 120%* 1 2t
T2V S 2 Q2 P D R

= t=0 t=0 t=0
1202 (1912 1 2 g 3L2
< Z( ﬁzRﬁw e A
a n t=0
12L2 4 1 20> | 12
i n'o 77 Po
121912 1 < 12- 7302 12 3L2 21 12
< Tz T Z R, + ag + 1 Z R; + 77
t=0
12024 1 2 oamto? 12
+ =Y Rt +5=P
2
« T P « o?T
27612 1 8dn3o? 12902 2mto?  12pt ~
— R P
o? T; et o? + a? + o +a2T0

(35)

Part IV. Combining steps I, IT and III with descent lemma. By smoothness (Assumption 1) of f(-) it follows from
Lemma 1 that for any v < 1/(2L) we have

flathy < (xt)_%HVf(xt>H2 %Hmt-&-l _th2+% Hgt_vf(l_t)H2 (36)
< 16 - G I9IED| - g et o

371 37 3
#g e ol ol 5 et - v
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Subtracting f* from both sides of (36), taking expectation and defining §; := E [f(z') — f*], we derive
1 T-1 ,
¢
7" IV £@)|P]
SIREL Zv+3 ZQ 3l ZP Lisp
t ¢ LT oA ¢

E(|Ivs@n)|7]

IN

) 721 Iz 352 1995 52 o g2
9 250 3-276L° Z 3 8477 o +3 12n°0 +3 2no
I

- fyT a? a? e
3 19L2 X L3 77;0
3ﬂf§f et 1IN

— n 242 T — ¢
361 18 3
Py+ —Py+ —P,
+ 2T o+ T 0+77T 0
_ 26 | 3- 8432 n 3-12n°0? n 3-2nto? . 22102
~T a? a? @ n
60L2 3.276L2 1 | 1 «—
~—|=%"r
36n* 21
P+ =P,
+ 2T 0+77T 0
260 288n30?  6ntc?  22n0%  36mt ~ 21
= — Py + —P,
Tt ar et tapht

where (i) holds due to (30), (35) and (33), the last two steps hold because of the assumption on the step-size, and 7 < 1,
which completes the proof of the first part of Theorem.

Notice that it suffices to take the same initial batch-size as in the proof of the Theorem 4 in order to "remove" ]50 and P,
terms, since the power of 7 in front of P is larger here compared to the proof of Theorem 4. The choice of the momentum

. — 2\ /4 1
that the choice 7 = min { ot B (L‘SW ) , (Lam) /2} ensures that

/4 1 3 2 2
Ly’ Lgn\ /2 n’o Lég no Lég
parameter such that n < (702T ) ,n < (T’ZT ) ensures that 5 < T and < 0T Therefore, we can guarantee

2T 2T

B[lvsen)] < oD (M) (o)
=~ aT OZ2/3T nT .

O
L.1. Controlling the Error of Second Momentum Estimator
Lemma 4. Let Assumption 1 be satisfied, and suppose 0 < n < 1. For everyi =1,...,n, let the sequences {v!},-, and
{ul},~, be updated via
Ut vt 1+77(va( 7§)_’Ut 1)7
u- 4 n (U — ut 1) .
Define the sequences vt = 1 ZZ Lok and ut = 1 Zi:l ul. Then for everyi=1,...,nandt > 0 it holds
_ 12 _ N
EUM*ﬁH}SO*mEWélfﬁWH+&EN¢1fvmf1W}
+6L2E [t — 21 |*] + 0%, (37)
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E [Hut — vt”ﬂ <(1-nE [Hut_l - vt_lﬂﬂ + 6nE [Hvt_l — Vf(ar;t_l)H2
2 2

+6L%E [||o* — 2 [|*] + . (38)

Proof. By the update rule of v}, we have

E[fuf - off*] = E[JJut™ = ol +nef -]
= (1= 0PE [||of — ut!|]]
- u—nFE_Wl—nW?4+nVﬁuaﬁ>—u*wﬁ
= (=0 (||t~ = o) + (it = VA )]
= ﬂanEﬁ@é**vTU+WWT‘—Vﬁ@ﬂ»+mVﬁ@) Vi eD)|’]
= (=B [Be [l = of ™) 40l = V@) + 0V i) - Vit )]
= U—mQ@UM?I—ﬁ*+Mﬁ*—Vﬁ@%W}+ﬁENVMﬂ£b—Vﬂ@W”)
< (1 —0)%E [Jui™t = o 4l = V@) ]+
< - (14 g) Bl - ot
# (14 2) R ot - VO] + oo
< @=mE[[ul o]+ SnE ol = VAGY|P] + 0%
< (=B |[ul™t = o] + 60 [0t = Vit
+6nE [[|V fi(a!) = Vil )] + 120
< (U= [[lu =i 7] + 6nE ol = Vit

+6L?nE [th — mt_lHQ] + 1?02,

where the first inequality holds Assumption 2, the second inequality holds by Young’s inequality, and the last step uses
smoothness of f;(-) (Assumption 1), which concludes the proof of (37).

Foreacht = 0,...,T — 1, define a random vector £ := (¢%,...,&!) and denote by V f (2! ft“) =130 Vit &)
Note that the entries of the random vector &' are independent and E¢: [V f (2, £')] = V f(2!), then we - have

ot =ty (V€)= o)

where v := L 3" ol uf := 137" | u! are auxiliary sequences. Therefore, we can similarly derive

31



Momentum Provably Improves Error Feedback!

Bl o] = E[Jl' = of + 0t — )]
= (=0 [[|o* - u ]
= (=R [ = ne' "t 49Vt e - u ]
= (=% [ = o) (e - VAt €)]]
= Q=R [ = o) T = V) + 0V - Vi)
= (L=0)%E [Ee [[[(u'™! = o'"1) 4 (o™ = V() +0(V () = V1" €)]]]

+67E [[V£(a') - Vit 7] + T

< (1-n)°E
<

+(1
< (1-nE|
< (1—77)Ei
< (1*77)E:

+612

(L =n? (B [lu" =o'~ + (0™ = Vf@)|*] + 7 [|V S, €)= V@]

2 2
[Hut_l — o7ttt - Vf(a?t))HQ} + %

=n? (1+ ) E [[lu~t =]

2\ o t—1 INIE no’

+n)nE[Hv fo(x)||}+ -
- - 2 2
e e [ g i

Jut=t = o] + 6 [l = V)]

2 .2

n

=t = o] + 6 [t = V)]

2_2
e [t ot ) + T2
n

where the first inequality holds Assumption 2, the second inequality holds by Young’s inequality, and the last step uses
smoothness of f(-) (Assumption 1), which concludes the proof of (38). O

L.2. Controlling the Error of Contractive Compression and Double Momentum Estimator

Lemma 5. Let Assumption 1 be satisfied, and suppose C is a contractive compressor. For every i = 1,... n, let the
sequences {v!},<q, {ul},~q and {9t} be updated via

vl = o (Vi) — o,
ul w = (of Ul
g = gt +C(uf—g7)

Then for everyi =1,...,nandt > 0 it holds

fla—ulf] < (1= 5)B[le — ot ]+ SR [t o] 3

6n’ - - —-1y2 6L 102
2B ot - Ve ] + R [l — ot 4 o
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Proof. By the update rules of g}, u} and v}, we derive

Eflg —ufl®] = E[lloi" —ul+cti-g|]

C - B [[u = g el = ) (Vi) - o]

= (- E[ul™ =gt el = ) 4 AV fila) — ol
02 (V fila €)= V()]

= (1= QE[|[Ee [ui™" — g/~ +n(v! ™! )+ (Vi) = o)
+? (Vfi(a', &) = V()]

= (- [fut - g +n<vf*—u Y+ PV filet) o)
+(1 - a)'B [V filat, &) - V1]

< -+ pE [ - g:*\ﬂ
+(1=a)(1+p7E [[n(vi ™ = i) + (Vi) — o]
+n402

(iv)

21— oE[[lu - g ] +nte?
+BE [0} = ul™h) + nA(Vhilet ) = o) + (Vi) - Vi)
< -0 [ — g7 + 380 [t ]
+380'E [[[vi ™ = Y fi(a" )]
+360'E [|[V£i(a") - Vfiat Y] +n'o?

(=) E [[lui~ = gt71*] +3607E [[|ot =" — ut =]

IN

+380'E [[oi ™!~ VA

+36L?774]E {th — xkl”ﬂ +nto?
where (i) is due to definition of a contractive compressor (Definition 1), (ii) follows by the update rule of v} and u, (iii)
and (v) hold by Young’s inequality for any p > 0. In (iv), we introduced the notation  := 1 — (1 — «)(1 + p), and

B:=(1—a)(1+ p~1). The last step follows by smoothness of f;(-) (Assumption 1). The proof is complete by the choice
p = a/2, which guarantees 1 — § <1 — «/2,and 35 <6/ . O
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J. EF21-SGDM with Absolute Compressor

In this section, we complement our theory by analyzing EF21-SGDM under a different class of widely used biased
compressors, namely, absolute compressors, which are defined as follows.

Definition 2 (Absolute compressors). We say that a (possibly randomized) map C : R? — R< is an absolute compression
operator if there exists a constant A > 0 such that

E [[[C(z) — z|*] < A?, Vz € RY. (40)

This class includes important examples of compressors such as hard-threshold sparsifier (Sahu et al., 2021), (stochatsic)
rounding schemes with bounded error (Gupta et al., 2015) and scaled integer rounding (Sapio et al., 2021).

Algorithm 4 EF21-SGDM (abs)

Input: starting point z°, step-size v > 0, momentum 7 € (0, 1], initial batch size Bip
e g Bini . .
Initialize v = gf = 5— > " Vf;(20,&) ;) fori=1,...,m;¢9° = L 371" | ¢}
fort =0,1,2,..., T —1do
Master computes 't = 2! — vg' and broadcasts 2**! to all nodes
for all nodes ¢ = 1, ..., n in parallel do
Compute momentum estimator v ™! = (1 — n)v! +nV fi(x!+1 )
t+1_ ¢
Compress ¢/t = C (%) and send ¢/ to the master

7

Update local state gf“ =g+ ’ycﬁ“
end for
I(\I/Itzilster computes gt = L 570 gt via gttt = gt 4+ L3 Aclt!
end for

To accomodate absolute compressors into our EF21-SGDM method, we need to make a slight modification to our algorithm,
see Algorithm 4. At each iteration, before compressing the difference vf“ — gt, we divide it by the step-size . Later, we
multiply the compressed vector cf“ by 7, i.e., have

t+1 t
v — q:
9 =g +7C < 5 gl)-

Such modification is necessary for absolute compressors because by Definition 2 the compression error is not proportional
to ||xH2, but merely an absolute constant A2, In fact, Algorithm 4 is somewhat more universal in the sense that it can be also
applied for contractive compressors.'> We derive the following result for EF21-SGDM (abs).

Theorem 6. Let Assumptions 1 and 2 hold. Let 7 be sampled uniformly at random from the iterates of the method. Let

Algorithm 4 run with an absolute compressor (Definition 2). For all n € (0,1] and Biiy > 1, with v < &, we have

2
E[|[v/aT)*] <o (ff;l +7A% + ”Z) : @1

where Wo 1= 69 + %E {HUO — Vf(a) ||2} is a Lyapunov function. With the following step-size, momentum parameter, and

/3 1/2 2
n . L3(50 Légn o
v 4L7 Ui mln{ s <A2T) ; < 52T ) init L50n ( )

efioneni] = o(He+ (%) (47)")

Bt is straightforward to modify the proof of our Theorem 4 for the case when Algorithm 4 is applied with a contractive compressor.

initial batch size

we have
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Corollary 4. Under the setting of Theorem 6, we have E [HVf(a?T) H] <ceafterT =0 (Leéo A‘SO + < L(s“) iterations.

Remark 2. The sample complexity result in Corollary 4 matches the one derived for DoubleSqueeze algorithm (Tang et al.,
2020), which is different from Algorithm 4.

Proof. Similarly to the proof of Theorem 4, we control the error between g* and V f(2?) by decomposing it into two terms
lg* = Vi) < 2llg* —o'|” + 2|’ - VA <2 Z gt = ofl” + 2l — v s

Again, for the second term above we can use the recursion developed for momentum estimator Lemma 2. However, since
. 2 . .

we use a different compressor here, we need to bound ||g! — v!||” term differently, thus we invoke Lemma 6 for absolute

COMPIesSor.

Part 1. Controlling the error of momentum estimator on average for v*. Denote P, := E |||v* — V f(z?) ||2], Ry :=

E {th — gttt HQ} . Similarly to Part I of the proof of Theorem 4, we have by Lemma 2

T

|
—

1

T—

1

P TZ t+—+n—TPO 43)
t=0

gM

3L?
n?
Part II. Controlling the error of absolute compressor and momentum estimator. By Lemma 6 we have for any
0O<n<landt>0

ZE[ -] <24 (44)

Part III. Combining steps I and II with descent lemma. By smoothness (Assumption 1) of f(-) it follows from Lemma 1
that for any v < 1/(2L) we have

1
L B L e L LRl el el e T 45)
1 ~
< J6H = G INIEOIF = 4 et = ot Ve e

Subtracting f* from both sides of (45), taking expectation and defining &; := E [f(x?) — f*], we derive

T—-1
efivienl] = 7 ZE[Ivser]

26 1 1= 11

. ~

< 240N V42N P-—-S"R

= o7 + T tz:; t+ T ZO 'T 2T tz:; t

W) 200 ., — 11«

< 222 +21 $7 p — 3 R

S SpEMiATE Z TP Z ’

@) 24, ) 612 1 = 2770

< 0oy (2L +Lnp

= o7 + 27 + o T 0
26,

< —0+272A2+—+—P0
~T n

(46)
where in (¢) and (i) we apply (43), (44), and in the last step we use the assumption on the step-size v < n/(4L).
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/3 1
Setting v = -, and taking 7 < (ZZ‘STO) we can ensure that * A < Z‘%, since n < (i@%’) /2 we have "Z < f}‘;’
Finally, by setting the initial batch-size to B;,;; = an’ we have n—TPO = nTn”ﬁ < %9. Therefore, we derive
T—1
1 20, o200, 1
=D E [HW M < AL +U—TP0
t=0
8L3y  n?A?  2no? o?

= o1 T n 9T B

(9<L6° by A 0(L50)1/2>

T T/ (nT)'/>
47)

J.1. Controlling the Error of Absolute Compression

Lemma 6. Let C be an absolute compressor and gﬁ'l be updated according to Algorithm 4, then for t > 0, we have
13 B [llgh - ll?] < A

Proof. By the update rule for gf“ in Algorithm 4 and Definition 2, we can bound

eflot -] = e () - -t

o ()
Y Y

T

2
1 < ~2AZ
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K. EF21-STORM/MVR

Algorithm 5 EF21-STORM/MVR
1: Input: z°, step-size y > 0, parameter n € (0,1], Binit > 1
2: Initialize wf = g9 = - Z MV fi(a0,8);) fori=1,...,n; g0 = LS9
3: fort:0,172,...7T—1 o
4:  Master computes 't = 2t — ~¢* and broadcasts z**! to all nodes

5. forallnodesi = 1,...,n in parallel do
6: Draw £/7! and compute two (stochastic) gradients V f;(z?, ££1) and V f; (x4, ¢111)
7 Compute variance reduced STORM/MVR estimator
8: L+1 vj ( t+]7§L+l> + (1 - ’])(wf B vfz(‘Lt 51[+1))
9: Compress it = C(witt — gt) and send ¢l ™! to the master
10: Update Jocal state gt =gt 4ttt
11:  end for
12: Master computes g'™! = L 37" gt viagtt =gt +1 LS citt
13: end for
Assumption 3 (Individual smoothness). For each i = 1,...,n, every realization of & ~ D;, the stochastic gradient

V fi(x,&;) is £;-Lipschitz, i.e., for all x,y € R?
IV fi(2.&) =V fily, &)l < Lillz —yll.-

We denote (% := Ly

Theorem 7. Let Assumptions 1, 2 and 3 hold. Let 37 be sampled uniformly at random from the iterates of the method. Let

Algorithm 5 run with a contractive compressor. For all € (0,1] and Bipyy > 1, with v < min {8%, §7 %} , we have
. 2 \\ 32 2g o
IE{HVf(xT)H } 3(9(0+" +17 +77), 48)
T «a « n
where Uy := 0y + 7IE [Hv —Vf(zx H } Ly [Hv —Vfi(z H } With the following step-size, momentum

parameter, and mmal batch size

~ 2/7 ~ 2/5 -~ 2/3
 fa va ym - 0600 USoc 0Bov/m
’Ymm{SZ, 60 8 }’ (A <02\/ET "\ o2y/nT "\ Toer )

2
and Bipy = max{ an } we have

L50’n7 T
~ ~ 6/7 ~ 4/5 ~ 2/3
Loy 05 50"/ 80"/ l8o0
E 2] < L0, o 0 0 0
9@ < o oT ~var “\awyar) T\argar) T\ T
Corollary 5. Under the setting of Theorem 7. we have E[HV f(ch)H] < e after T =

7 ~. 1y ~ 1 ~
Loy 0500/ 05002 P00\ .
@ ((152 t s s T ol e T mes ) Herations.

Recently, Yau and Wai (2022) propose and analyze a DoCoM-SGT algorithm for decentralized optimization with contractive
compressor under the above Assumption 3. When their method is specialized to centralized setting (with mixing constant

p = 1), their total sample complexity becomes O ( ;2 + % + nsd) (see Table 1 or Theorem 4.1 in (Yau and Wai,

2022)). In contrast, the sample complexity given in our Corollary 5 improves the dependence on ¢ in the last term and,
moreover, achieves the linear speedup in terms of n for all stochastic terms in the sample complexity.
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Proof. Similarly to the proof of Theorem 4, we control the error between g¢ and V f(x!) by decomposing it into two terms
t NIE t t(|2 t ty]|2 RS t t(|2 t ty]|2
lo* ~ Vs < 2l — | 2t~ V| <253 gt ] + 2wt - Vo)
i=1

In the following, we develop a recursive bound for each term above separately.

Part 1. Controlling the variance of STORM/MYVR estimator for each w! and on average w'. Recall that by Lemma 7-
(55), we have foreachi =1,...,n,andany0 <n < landt >0

E [[wi = Vi |] < (0= nE [[lof - Vi@E)|?] + 268 [l - 2t |*] + 2072, (49)

Averaging inequalities (49) overi = 1,...,n and denoting P; := 1 3" | E [||wf — V/fi(zh) \\2} R, :=E {th — it HQ}
we have

ﬁt+1 S (]. - n)ﬁt + 222Rt + 27720'2

Summing up the above inequality for £t = 0,...,T — 1, we derive
T—1 = T—1
1 ~ 2071 1 ~
—Y P<=—N R +2n0®+ —PF,. (50)
r t=0 n T t=0 T

1
— 5. 1
b (51)

Part I1. Controlling the variance of contractive compressor and STORM/MVR estimator. By Lemma 8 we have for
eachi=1,...,n,andany0 <np<landt >0

E|llgrt! =t *] < (1-5)E[llof —wi]*] + b L [} - Vi)
n <4L +€2> E {thﬂ _ xtH } + 20202, (52)

Averaging inequalities (52) over i = 1,...,n, denoting V; := 15 E {H gt — waﬂ, and summing up the resulting
inequality fort = 0,...,7T — 1, we obtain

T—1 T—1 = 5 T—1
1 — ~ 821 < ~ (8L% 22\ 1 2202
— < = P, = 4| =
8L 202 167762 1
<a2+ . ZRf
163 2 22 2 8
L 160°0* 2o n

Pp.
a? a +oz2T 0 (53)

!
QL\.’)
~

IN

Part ITII. Combining steps I and II with descent lemma. By smoothness (Assumption 1) of f(-) it follows from Lemma 1
that for any v < 1/(2L) we have

fah)

IN

T4y Hm
1 1 n

=t =Py S gk = w4 [t = Ve
=1

£ =TIV = = e+ = 2t[P+ 2 lgt - s 54

< S =3IV - ¢
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Subtracting f* from both sides of (54), taking expectation and defining §; := E [f(x') — f*], we derive

ellvsanl] = X E[lvrer]

< 25°+21TZ_1\7+21TZ_1P ! 1%3
P —m = t m t— 5.0 m
")/T T t=0 T t=0 2,‘}/2 T t=0 '
G) 25, (1612 42 322\ 1 = 1
< = — = P, R
< 7T+<a2+oz+a2 Tt:O Zt Tt:O :
+3277302 n 4?02 167 ]50
a2 o
@) 25y (1602 42 32902 A2 1 | 1
< = — — - —)=%Y"R
T 4T ( a? * * a2 T m 292 ) T ; ‘
32362 4Anto?  dno®  16n ~ 2
260 32n30%  4An?o?  4no? 161 = 2
< 0 Py+ —P
- 7T+ o2 + o + n +042T 0+77T o

where in (7) we apply (53), in (é¢) we use (51), and the last step follows by assumption on the step-size, which proves (48).

We now find the particular values of parameters. Using w? 1 Z " Vi 75?7 ;) foralli=1,...,n, we have

Binit

Py=E [Hw —Vf(x ||} and Py = Z]E{Hw —Vfi(z H]

’IlB it 1n1t
We can substitute the choice of v and obtain
T2 do. 77 o? r]2 no? o2 no?
E[[vian|’] = o n
[vs@Ol T Tt 1N Binie T * a? BT
_ 0 L% n 250 Z(So n n3o? n n?o? Lot no? n o? n no?
oT  JaT  /onT = o2 a n BT = o?BiT
Since Bijpj; > M —, we have
T2 Z(So 250 Z(So n3o?  n?c?  no? no?
v = o B ).
V7@l ol © VvaT + T et et T et a2 BT
7 2/7 7 %/s 7 %/s
Notice that the choice of the momentum parameter such that < (f;s\“/‘%;) , < (Uff;fT) ,n < (@7}%) , and
_ 2/3 . _ ) _ _
n < (72532‘\2/%"“) ensures that "i‘;z < \/‘%T, —”252 < \/%T, % < \/%T, and QEMT < \/@T Therefore, we have

2 2

12 Z(SQ Zéo 2(500'1/3 v 2(500'1/2 e Z(SQO' /e Z&()O' o a1/3
E T = — B - 0
[HVf(x ) } © ol © VaT + a'/3\/nT + a'/r\/nT T\ T + N B3

nit

Using Byt > %, we obtain

~ ~ ~ 6/7 ~ 4/5 ~ 2/3
AT (|12 o L50 6(50 4500' /3 4500' /2 E(S()O'
E [HVf(x i } =0 ol VvaT * a'/#\/nT * a'/4\/nT T\ T
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Controlling the variance of STORM/MVR estimator.

Lemma 7. Let Assumptions 2 and 3 be satisfied, and suppose 0 < n < 1. Foreveryi =1,...,n, let the sequence {wf}t>0
be updated via w! Tt = V f;(z!1, &) + (1 — n)(w! — V fi(a?, 1)) Define the sequence w® := L 3" | w!. Then for
everyit=1,...,nandt > 0 it holds

E [[wi = Vi || < (0= nE [[juf - Vi@)|?] + 268 |l - 27| + 2072, (55)
B [ = 7] < 0 -8 [t - 9 ra)] + 228 [ -] + 27 56
—
Proof. For each t = 0,...,T — 1, define a random vector &' := (&,... &) and denote by Vf(zt ¢') =

L3 Vii(a', &) Note that the entries of the random vector & are independent and E¢: [V f(2,£")] = Vf(a'),
then we have

+1 _ Vf($t+1,ft+1) 4 (1 _ 77) (wt _ Vf($t7§t+1)) ,
where w' = £ 37" | w! is an auxiliary sequence.

We define
1 n
_ (et ety ot t._ * t
=Vfi(z" &) — Vii(x), V. nilv

W= V(') = Vit €7) + VAETLE) — VE@ET), W= = 3 W

Then by Assumptions 2, we have
E[V] =EW]=E] =E W] =0, (57)
t 12 2 t12 o’
(V7] <ot E[] <2 59)

Furthermore, we can derive

n 2
B [[w[°] ;;w:

= S E[IP] + o SR v W)
nte b i)
(’L) 1 n -
2 B[]+ e E )
=1 7
1 n - T
= S [
=1
< Y E[IVAETLET) - sz-<x2£f“>|’2]
i=1
1 n
< aydmflat -] = Tl -],
=1
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where (i) holds by the conditional independence of W} and W;, and the last inequality follows by the individual smoothness
of stochastic functions (Assumption 3). Therefore, we have

B[] < 28 [l -], E [P < Sk et o], (59

where the first inequality is obtained by using a similar derivation.

By the update rule for w?, we can also derive

Vi) = (1-n) (0 =VfE,Let) + (Ve - Vi)
= (1—n) (w' =Vf@")) +n (V) - V@)
+(1 =) (Vf(2") = V(@' &) + Vet = V™))
= (L—n) (w' = V")) +npV™* + (1 -

Therefore, we have

E (o =V < E[Ben [0 -m) (' - VIGH) +mVe + 0 -]
= (L= 0PE ||l = V@] +E [+ (10— ]
< @l = VG| + 20 V] 428 ]
< =B [t - wa)] + 250 SR et o).

where the last inequality holds by (58) and (59). Similarly for each ¢ = 1, ..., n, we have
wit = Vi) = (1 —n) (wf = Vfi(z") + Vi + 1 - mW]. (60)

Thus,

B[t = VAT < (0= nE [ful - Vi@ + 20%° + 28R,

Controlling the variance of contractive compression and STORM/MVR estimator.

Lemma 8. Let Assumptions 1, 2 and 3 be satisfied, and suppose 0 < n < 1. For everyi = 1,...,n, let the sequences
{wl},~o and {9t} be updated via

w!t Vi@t e + (1 —n)(w) — Vfi(a' &),
gttt = glC(wt —gl).

Then for everyi = 1,...,nandt > 0 it holds
ALt |2 o t t(2 4n?
E[llg =] < (1= 5) E [lof - wlll] + “5E [Juf - V)]
2 «
2
+ <4QLZ +€§> E [||act+1 - xtHQ] + 2?02 (61)
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Proof. By the update rule of w!, g¢, and definition of V¥, W given in the proof of Lemma 7, we can derive
E g —u?|’] = Effc@i* —gh - @i - gh)|]
< (- B [utt - g7

(1= ) [[|(1 =) (w] = V(") + VI + (=)W + Vi) = gl
= (1= a)E [Egn [[[(1 = n) (w! = Vfila") + Vi 4+ (1= Wi+ Vfie"*) = g |°]]
(1= a)E [[|(1 =) (w! = V(") + Vila™*) = gf]

+(1 = a)E [yt + (1= W]
= (1= [[|(wf - g!) + (V™) = Vi(at) = n (w! = Vfi(a")|]

+(1 = )E [yt + (1= W]

< (1-a)(1+p)E [[|wl - g]
(1 - a) (14 p ) B[ (VA = Vfila®)) — 1 (!~ Vi) ]
+2(1 - a)rPE [[VEH ] + 201 — @)1 — n)%E [ We]°]

Y a-0E|lul - o]

BB [|[ (V£ = Vfila)) = (wf = Vfila) ]

+2(1 = o) [[VEH*] + 201 — @)1 - m)%E [ W]

< -0k [l - o] + 2078 [Jut - V4]
428K {vai(xtﬂ) — Vfi(a! )H } + 202K [thﬂ _ xt’ﬂ + 21202
< (-0 [[|uf - g!|*] +260°E [||wt - V()]

+ (2L} + ) E [Hmt“ -z } + 2n%0?,

where (i) holds by Definition 1, (i) follows from (60), (i) holds by unbiasedness of V!™! and W} (57). In (iv) we use
Young’s inequality twice, in (v) we introduce the notation § := 1 — (1 — a)(1+ p) and 8 := (1 — a)(l +p7 1Y), in (vi) we
again use Young’s inequality and the bound (58) and (59). The last step holds by smoothness of f;(-) (Assumption 1). The
proof is complete by the choice p = «/2, which guarantees 1 — 0 <1 — «/2,and 23 < 4/« . O
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L. Simplified Proof of SGDM: Time Varying Parameters and No Tuning for Momentum
Sequence

In this section, we give a simplified proof of SGDM in the single node setting (n = 1) without compression (o = 1). The
following theorem shows that the momentum parameter can be chosen in a parameter agnostic'* way as n; = 1/y/f + 1 (or
n: = 1/+/T + 1), instead of being a constant depending on problem parameters as it is suggested in our main Theorem 4. In
other words, using SGDM with time varying momentum does not introduce any additional tuning of hyper-parameters.

Theorem 8. Let Assumptions 1, 2 hold. Let n = 1 and Algorithm 2 run with identity compressor C, i.e., a = 1, and
(possibly) time varying momentum 1, € (0, 1] and step-size paramters ~; = yn; with y € (0,1/3L)]. Let 2T be sampled
from the iterates of the algorithm with probabilities p; = 1,/ (Zz:_ol ), then

2
E{va(i,T)HQ} < 277! +20 Zt 0 77t’
Zt =0 "
where A := f(2°) — f* ++E [Hv —Vf(z H } is the Lyapunov function.

Proof. By Lemma 2 denoting P; := E [||vt — Vf(:ct)||2] ,R; :=E [th — zttl ||2] , we have

3L2 9 9
Pt+1§Pt_77tPt+7n Ry +mio”. (62)
t
By descent Lemma 1, we have for any v; > 0
e 6= GBS = 5 (L= wl) Bt P (63)

where &y := E [f(z') — f*]. Define the Lyapunov function as A; = dy + vP;. Then summing up (63) with a v multiple of
(62) and noticing that v; < v, we get

A €A = TE[|VFE)[] - 5 (1—7L 67°L%) R, + o’

Since v < 1/(3L), we have 1 — vL — 6v2L? < 0, and, therefore, by telescoping we can derive

E[HW(&:T)HQ} - (Tim> 1Tzlmrﬁ[nvf ||]

2A0y™ +2(72 Zt =0 77t
Zt o Tt

IN

O

The above theorem suggests that to ensure convergence, we can select any momentum sequence such that o >ito n? < oo,
and y_,° n? — oo for t — co. The parameter ~y, which determines the step-size ; = 7, should be set to y = 1/(3L)
(to minimize the upper bound). Let us now consider some special cases.

Deterministic case. If o = 0, we can set it to be any constant . = n € (0, 1] and derive

2[ieseni] < 5 =0 (57).

'“That is, independently of the problem specific parameters
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Stochastic case. For 02 > 0, we can select time-varying 1; = \/tlT or constant 7, = \/%H which gives ZZ:Ol n? =

O (log(T)), and 37"y = (\/T).Thus

e [Ivsah)] -0 (B ).

Notice that if we set 7, as above, we do not need any tuning of momentum parameter. Only tuning of paramter - is required
to ensure convergence with optimal dependence on 7', as in SGD without momentum. Of course, this rate is not yet optimal

1
in other parameters, e.g., o2 and L. To make it optimal in all problem parameters, we can set 7 = max {1, ({;é\j‘i) / 2}

similarly to the statement of Theorem 3.

M. Revisiting EF14-SGD Analysis under BG and BGS Assumptions

In this section, we revisit the analysis of the original variant of error feedback (EF14-SGD) to showcase the difficulty in
avoiding BG/BGS assumptions commonly used in the nonconvex analysis of this variant. In summary, the key reason for
BG/BGS assumption is to bound the second term in (67) or (68).

Recall that EF14-SGD has the update rule (Stich et al., 2018)

1 n
eH=at =g, g'=— Zlgf, (64)
P

et = el +yVfi(at &) - gt

EF14-SGD: ! (65)
g = C (e T E)
where {e!},-, are error/memory sequences with e = 0 foreachi = 1,...,n. Lete’ := 1 ZZ 1 et. The proof of this
method relies on so called perturbed iterate analysis, for which one defines a "virtual sequence : @t = ot — et. Thenitis
verified by direct substitution that for any £ > 0
=5 =yt Zn:Vf'(xt &)
n ' 3 YAV
i=1
If follows from Lemma 9 in (Stich and Karimireddy, 2021) that for any v < 1/2r and ¢t > 0
~ ~ ’}/L(T L2 2
E[f@*)] <E[f@)] - TE[[Vr@)|*] + L+ SE [|e]7] -
Telescoping the recursion above and setting 5o := f(z") — f*, we have
1= o1 46 27L0 1
t 0 2 t
TtE_%E{IIVﬂx)H | < F+ Ty ;E{He I°]- (66)

Now it remains to bound efficiently the average error term E {HetHQ} =E {H L5~ ie1 € H } By Jensen’s inequality, we
have

2




Momentum Provably Improves Error Feedback!

and develop a bound for each E {Het I } individually. Denote by z := el +yV f;(z!, £!), then

)] < Efice) -]
< (1-o)E [He + Vi, €| }
< 1-a)(1+9)E [Heﬂﬂ i (1 . 2) E [t &)|]
< (1-9)E[Jelf] + Lk vsete)] . (©7)

where we used Definition 1 and Young’s inequality.

BG asssumption. If we assume bounded (stochastic) gradients (BG), i.e., E {HVfi(m, §i)||2] < G?*foralli=1,...,n,
then using (67) we can derive

1= 2 6v°G
— E t <
S

Combining this bound with (66), we have

T-1 2 2,22
%ZE [Iv5)]?] < 2 | 2ylo” | 12L77°G7

~T n a?
- . 1 (002 P e \ V2 125
The step-size choice v = min § 7, | 7722 , (T ng) , allows us to bound the RHS by =572, and guarantees
2 Léy  (L&G\"*  (Lsy\"
=[ies6n] -o (%2 2)")
Vsl 7 \ar ) T\ar
or, equivalently, 7' = O (LE‘SO L(fg?,G + ﬁgﬁ) sample complexity to find a stationary point. This analysis using BG

assumption and derived sample complexity is essentially a simplified version of the one by Koloskova et al. (2020).'

BGS asssumption. If we assume bounded gradient similarity (BGS), i.e., 23" | E [||sz(:v) - Vf(z) ||2} < G2, we
can slightly modify the derivation in (67) as follows

E[llei*] < - ||+ )]
= (1= Q)E [let + 79 i(a")] ] +(1— )k [|Vfila',€) - V)]
< 1-w (1 + g) E [Heﬂﬂ + <1 > [HvaL || } +~%0?
a 37
< (1= 5)E[I®] + ZEE (956 7] + 202 (68)
Averaging the above inequalities over i = 1, ..., n and using BGS assumption, i.c., = > | E [||Vfl(x)||2} < ||V f())? +
G? , we can derive via averagingovert = 0,...,T — 1
1= 2 672 1 2G2 24202
1] = S sl L

Combining the above inequality with (66), we have

2 27202 272 2
(1_12Lw> ZE[HVf ] 460 2’)/L0'+12’7LG+4’7L0'.

n o? o

'5Up to a smoothness constant and the fact that Koloskova et al. (2020) works in a more general decentralized setting.
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. . 1/2 2 /3 1/ 1921,2~2 .
By setting v = min {va (%) , (%) , (%) }, we have (1 - T"Y) > 1, and the RHS is at most

%. Therefore,
- Loy [ L6G\7"* [ Légo\7"* (Lo
E [V }:O<0¢T+< ol ) \Var) T\ar) |

L60 L(;()G + Léoa’ + L50

or, equivalently, T’ = O ( ) sample complexity. Notice that in the single node case (n = 1), we

0/62 el Vae3 net
2/3 1/2
have G = 0, and by Young’s inequality (?%‘,) < é La‘fﬁ + 2 (%) . Therefore, the above rate recovers the one by

Stich and Karimireddy (2021) in the single node setting.
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