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Semi-supervised audio tagging with deep co-training and augmentations
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Abstract

In this work, we explored the task of audio tag-
ging in a semi-supervised context. The recently
proposed Deep Co-Training (DCT) algorithm has
shown impressive results in visual object recog-
nition and outperformed other semi-supervised
state-of-the-art methods such as Mean Teacher
and GANs. DCT uses two or more deep neu-
ral networks and adversarial examples to enforce
complementarity between the models trained on
the same data. We adapted DCT to audio tag-
ging, and we report experiments on the publicly
available UrbanSound8K dataset. We compare
models trained with 10% of labeled data using
supervised training and using DCT, which may
benefit from the remaining 90% unlabeled data.
To go further than the original DCT proposal,
we propose to artificially increase the 10% of
labeled files by simply duplicating them in the
mini-batches during learning, and transforming
them with audio data augmentations. If standard
DCT already showed performance gains against
supervised learning (17% relative gain), the use of
duplication combined with data augmentations on
the labeled examples lead to additional significant
performance improvements (26% gain)1.

1. Introduction
The availability of large datasets of audio data, such as Au-
dioSet (Gemmeke et al., 2017), allows the creation of large
deep neural networks with more generalization capability.
Yet, collecting this data is more costly, both financially and
in terms of time. Automatic tools which are based on public
and open annotations bring noise in the labels and reduce
the overall label quality.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1Source code is available at https://github.com/leocances/Deep-
Co-Training.git

Semi-supervised learning (SSL) aims to reduce the need for
labeled data. The unlabeled data are used during training
to guide the model to a better generalization on unseen
data. This is specifically important regarding annotated
data availability and variability for most audio event types.
Semi-supervised learning also reduces the need on annotated
samples in a dataset, reducing its cost and creation time.
This approach is widely observed in computer vision tasks,
and started few years ago in audio domain.

In this work, we focus on audio tagging (AT) in a semi-
supervised setting. AT consists of automatically identifying
sound events in recordings by inferring global labels called
tags. It is often an essential subtask of Sound Event Detec-
tion (SED) application.

The goal is to reach the same performance of a model trained
on the full set of labeled data in a supervised fashion, by
using only parts of the data as labelled. More specifically,
we explore the use of DCT to perform AT with Convolu-
tional Neural Networks (CNN). DCT, an extension to deep
learning of the highly acclaimed Co-Training generic frame-
work for semi-supervised learning (Blum & Mitchell, 1998),
has been recently proposed by Qiao and colleagues (Qiao
et al., 2018). The authors obtained impressive results in
visual object recognition and showed that DCT outperforms
other deep learning competitive approaches, such as Mean
Teacher (Tarvainen & Valpola, 2017).

We test DCT on UrbanSound8K (Salamon et al., 2014),
a publicly available dataset well-suited for AT. Since this
dataset is comprised of labeled data only, we simulate un-
labeled data by using only 10% of the training subset as
labeled data and the remaining 90% as unlabeled data. Do-
ing so allows us to monitor how well DCT is behaving
during training and the performance of our system on the
unlabeled subset.

2. Related work in SSL for audio tagging
Semi-supervised learning (SSL) aims at improving classi-
fication accuracy by using unlabeled data in addition to
labeled data. It is sometime coupled with self-supervised
learning like ReMixMatch (Gidaris et al., 2018)

Some SSL approaches for image recognition were adapted
to audio-related tasks such as pseudo labeling (Lee, 2013),



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Semi-supervised audio tagging with deep co-training and augmentations

mean teacher (Tarvainen & Valpola, 2017), or more recently
guided learning (Lin & Wang, 2019).

Nguyen and colleagues (Nguyen et al., 2018) propose to
use pseudo-labeling for automatic label verification on the
unsupervised part of their subset. They use label smoothing
to further reduce over-fitting. In (Dorfer & Widmer, 2018),
pseudo-labeling is also used but in an iterative process to an-
notate unsupervised files that have been classified with high
confidence. More concretely, they used pseudo-labeling
to verify possibly noisy labels, by comparing the labels of
unverified examples with the predictions of a neural net-
work, which can be interpreted as a version of “supervised”
pseudo-labeling. However, it is an iterative process and can
introduce incorrect annotation if the model misclassifies the
unlabeled samples.

We can find applications of student-teacher and mean
teacher (Tarvainen & Valpola, 2017) in the DCASE 2018
and 2019 task 4 challenge on weakly-supervised SED. The
2018 winners trained CNNs on both a small labeled subset
and a larger unlabeled one (JiaKai, 2018). They used a
Student-Teacher approach, in which two models are built in
a way that makes them complementary and more robust.

More recently, ReMixMatch (Berthelot et al., 2019) ap-
plies a random rotation on strongly augmented images. The
model should then be able to predict which rotation angle is
applied to the input image. This self-supervised loss is then
added to the semi-supervised loss.

To the best of our knowledge, the work reported in this
article is the first use of DCT to perform semi-supervised
audio tagging.

3. Deep co-training (DCT) overview
DCT has been recently proposed by Qiao and col-
leagues (Qiao et al., 2018). It is based on Co-Training
(CT), the widely acclaimed generic framework for semi-
supervised learning proposed by (Blum & Mitchell, 1998).
Co-training’s main idea relies on the assumption that each
data point has two views, and that each view is sufficient
to train a separate model, using labeled data. Predictions
are made with the two models on the examples of an un-
labeled set and the examples with highest confidence are
selected and used to augment the training labeled subset, in
an iterative process.

DCT is an adaptation of CT in the context of deep learning.
Instead of relying on views of the data that are different
(ideally, the two views are conditionally independent given
the class), DCT makes use of adversarial examples. The
unlabeled subset makes up for large part of each mini-batch
during the training. Doing so, it avoids the long iterative
process.

Let S and U be the subsets of labeled and unlabeled data,
respectively, and let f and g be the two neural networks that
are expected to collaborate.

The DCT loss function is comprised of three terms, as shown
in Eq. 1. These terms correspond to loss functions estimated
either on S, U , or both. Note that during training, a mini-
batch is comprised of labeled and unlabeled samples in
a fixed proportion. Furthermore, in a given mini-batch,
the labeled examples given to each of the two models are
different.

L = Lsup + λcotLcot + λdiffLdiff (1)

The first term, Lsup, given in Eq. 2, corresponds to the
standard supervised classification loss function for the two
models f and g, estimated on examples x1 and x2 sampled
from S . In our case, we use categorical Cross-Entropy (CE),
the standard loss function used in classification tasks with
mutually-exclusive classes.

Lsup = CE(f(x1), y1) + CE(g(x2), y2) (2)

In SSL and Co-Training, the two classifiers are expected
to provide consistent and similar predictions on both the
labeled and unlabeled data. To encourage this behavior,
the Jensen-Shannon (JS) divergence between the two sets
of predictions is minimized on examples xu sampled from
the unlabeled subset U only. Indeed, there is no need to
minimize this divergence also on S since Lsup already en-
courages the two models to have similar predictions on S.
Eq. 3 gives the JS analytical expression, with H denoting
entropy.

Lcot = H
(1
2
(f(xu) + g(xu))

)
− 1

2

(
H(f(xu)) +H(g(xu))

)
(3)

For DCT to work, the two models need to be complemen-
tary: on a subset different from S ∪ U , examples that are
misclassified by one model should be correctly classified by
the other model (Krogel & Scheffer, 2004). In deep learn-
ing, this can be achieved by generating adversarial examples
with one model and train the other model to be resistant to
these adversarial samples. To do so, the Ldiff term (Eq. 4) is
the sum of the Cross-Entropy losses between the predictions
f(x1) and g(x′1), where x1 is sampled from S ∪ U and x′1
is the adversarial example generated with model f and x1

taken as input. The second term is the symmetric term for
model g.

Ldiff = CE(f(x1), g(x
′
1)) + CE(g(x2), f(x

′
2)) (4)
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For the adversarial examples generation, we use the Fast
Gradient Signed Method (FGSM, (Goodfellow et al., 2015)),
as in Qiao’s work.

For more in-depth details on the technical aspects of DCT,
the reader may refer to (Qiao et al., 2018). We imple-
mented DCT exactly as described in Qiao’s article, using
PyTorch, and made sure to accurately reproduce their results
on CIFAR-10: about 90% accuracy when using only 10%
of the training data as labeled data (5000 images).

4. Experimental setup
4.1. Audio material

The UrbanSound8K dataset (Salamon et al., 2014) con-
tains 8732 labeled sound excerpts of urban sounds from
10 classes: air conditioner, car horn, children playing, dog
bark, drilling, engine idling, gunshot, jackhammer, siren,
and street music. Their duration is up to four seconds for
each recording, and the corpus is comprised of 8.7 hours in
total. A given class can occur several times within a record-
ing, and the sound classes are mutually exclusive: events of
a single class occur in a given recording. The task involved,
thus, is called monophonic audio tagging.

The dataset comes into a predefined 10-fold split that is
recommended by the authors (Salamon et al., 2014), in
order to get comparable results with other solutions. Thus,
all the results presented here-after were obtained using 10-
fold cross-validation on these splits.

As DCT is a semi-supervised learning method, we artifi-
cially split the training subsets into two parts: one labeled
part denoted by S (for supervised) and one unlabeled part
denoted by U (for unsupervised). We nevertheless use the
ground truth of the latter to verify our results, but we do not
use it during training. The amount of labeled files used for
training represents 10% (873 files) of the complete training
set.

As input to the networks, 64 log-Mel filter-bank (F-BANK)
coefficients were extracted every 25 ms on 50 ms dura-
tion frames, with 20 Hz and 11025 Hz as minimum and
maximum frequency values to compute the Mel bands, re-
spectively. Hence, for each 4-seconds file, a 64×173 matrix
is extracted. For file smaller than 4 seconds, we apply zero
padding at the end of the recordings.

We report performance using standard accuracy averaged
on the 10-folds and standard deviation.

4.2. Model description

Our model is based on a similar architecture than the one
proposed in (Salamon et al., 2014). The model is small, with
62.5 thousand trainable parameters, and allows experiments

to be performed quickly while achieving state of the art per-
formance. Thus, we used it to perform all the experiments
described in Section 6. Its architecture is the following:

• L1: 24 filters with a receptive field of (3,3) and (1, 1)
padding, followed by (4,2) strided max-pooling and a
rectified linear unit (ReLU).

• L2-3: twice 48 filters with a receptive field of (3,3),
followed by (4,2)-strided max-pooling and ReLU.

• L4: 48 filters with a receptive field of (3, 3), ReLU (no
pooling).

• L5: 10 output units, with a softmax activation function.

Dropout (Srivastava et al., 2014) is applied to the input of
the last layer, with probability 0.5.

4.3. Training

DCT loss, describe in Equation 1, introduces some hyper-
parameters that must be finely tuned to obtain good perfor-
mance.

For our system, λcot, λdiff , and epsilon ε are respectively
equal to 5, 0.25, and 0.1. These λ factors are applied to their
respective part of the loss and ε is used for the adversarial
generation. We train our system using stochastic gradient
descent (SGD) (Bottou, 2010) with momentum 0.9 and
weight decay 0.001 during 400 epochs and a batch size of
100 samples. We use a cosine learning rate schedule define
by lr = 0.01 × (1.0 + cos((T − 1) × π/400)) λcot and
λdiff follow a cosine warmup on 160 epochs.

5. Results

Accuracy

Supervised 47.3 ± 4.1
Deep Co-Training 55.4 ± 4.6
Augmented Deep Co-Training 59.7 ± 5.1

Table 1. Categorical accuracy and standard deviation report on the
UrbanSound8k predefined 10 folds cross-validation while using
10% of the dataset as labeled. Deep Co-Training brings a gain of
8.1 points and our best system, “augmented” Deep Co-Training,
an increase of 12.4 points.

The best system, Augmented Deep Co-Training, has been
trained using only 10% of the ground truth available, while
the 90% rest was considered unknown. However, each
training minibatch was composed of 40% of supervised
files. This ratio is reached by duplicating the supervised
files. Therefore, the total number of different annotated files
does not change.
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Pitch shift (see 6.2) augmentation was applied, with 75%
chance, to those duplicated files to avoid overfitting. The
unsupervised files were left untouched.

6. Experiment
If DCT applied to audio tagging already shows an improve-
ment in performance as shown in Table 1, it falls short
of what can be observed when applied to the visual ob-
ject recognition task. To further improve the gain already
provided by the DCT, we have carried out a series of experi-
ments.

We will start by analyzing the effect of the number of labeled
files present in each minibatch, then observe the influence
of specific augmentations according to their chance of being
applied. Finally, we will combine the two to maximize their
respective impacts.

Since DCT can be rather long, the following experiments
are carried on a balanced subsample (10%) of the Urban-
Sound8k Dataset. Only the best experimental result will be
apply on the full dataset for validation.

6.1. Mini-batch supervised ratio

The learning of unlabeled files is possible thanks to the
presence of a minimum number of labeled files. The more
this number increases, the more the system is able to classify
unknown files correctly. Figure 1 shows the result of this
experiment with labeled file ratios per minibatch of 10, 15,
20, 30, 40, 50, and 75%.

The performance improvement is significant and reaches
a plateau at about 45% accuracy (see Figure 1). A model
trained with 50% of supervised file per minibatch is up to 6.7
points more efficient than when the distribution of labeled
and unlabeled samples per minibatch is different than the
default ratio of 10%. On the other hand, the supervised files
are duplicated five times, and over-fitting is inevitable.

Figure 1. Evolution of the accuracy as the ratio of labeled files
per minibatch increases. Experiment realized on the sub-sampled
dataset (10%)

6.2. Augmentation of the supervised subset

To overcome the problem of over-fitting, we augment the
annotated files with different signal processing algorithms,
such as pitch shift or noise addition. The results of this
combination are shown in Figure 2.

The increase in the number of labeled files by mini-batch and
the application of augmentation on these duplicate signals
significantly enhances system performance. The best score
is observed when 40% of the minibatch is supervised with
one chance out of two to apply a pitch shift on the labeled
samples.

The different augmentation tested, some taken from (Sala-
mon et al., 2014), are describe bellow:

• Pitch Shifting (PS): raise or lower the pitch of the audio
sample, Each sample was pitch shifted by 4 values (in
semitones): -3, -2, 2, 3.

• Noise (N): A background noise with a Signal Noise /
Ratio (SNR) of 20db.

• SpecAugment Dropout: where, on the one hand, 1 to
2 chunks of size varying between 8 and 11 frames is
set to zero, and on the other hand, 1 to 2 chunks of size
ranging between 4 and 8 mel-bands is also set to zero.

• SpecAugment Stretch: Where chunk of size vary-
ing from 5 to 16 frames and 4 to 8 mel-bands could
be stretch/compress. After dividing the sample into
chunks, each one had a probability of being stretched
of 30% with a factor randomly picked in [0.8, 1.2].

When the labeled files are duplicated four times (40%),
but the augmentation has a one in two chance of being
applied, then statistically, original data are presented to the
system twice, encouraging over-fitting. This phenomenon
is exacerbated when the percentage of labeled files in each
minibatch increases. A way to mitigate this behavior is
to raise the chance of applying the augmentation as the
percentage of labeled sample increases in the minibatch.
The result of this experiment is presented in Figure 3 and is
realized using the full dataset.

7. Conclusion
In this article, we reported SSL audio tagging experiments
carried out on UrbanSound8K, a publicly available dataset.
We adapted the Deep Co-Training framework, initially pro-
posed for visual object recognition, to audio tagging.

If the performance of DCT alone showed a significant per-
formance gain, virtually increasing the supervised subset
proportion in minibatches while applying augmentation al-
lowed to reduce over-fitting, and resulted in better scores.
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Figure 2. Evolution the accuracy when we combine increasing the number of the labeled file in minibatch with some augmentations on
these files. The experiment is done on the sub-sampled dataset (10%).

Figure 3. Evolution of the accuracy score when increasing the
probability of applying the PS augmentation. These results come
from the best configuration and calculated on the complete dataset.

Using only 10% of the labeled training files and the remain-
ing data as unlabeled, DCT achieved an accuracy score of
55.4%. When we duplicate some of the labeled files to
get a 40% proportion compared to unlabeled samples per
minibatch, together with a 75% chance to apply Pitch shift
augmentation on these files, the system reached 59.7% ac-
curacy. The difference between supervised learning and
“Augmented” DCT, corresponds to 26% relative increase.

There are several lines of work to continue to improve DCT
for sound event classification. We plan to confirm the good
results obtained with DCT and duplication-augmentation
on larger audio datasets, such as DESED (Turpault et al.,
2019), for instance. Since DCT takes advantage of multi-
view learning, we could use different types of features as
input to the network, instead of adversarial examples: the
raw signal together with log-Mel features, for example. In
Qiao’s experiments (Qiao et al., 2018), they show the impact
and usefulness of the loss function λdiff as well as the role
of adversarial examples. We could perform some tests to
validate these observations when using DCT in an audio
tagging task. Another recent promising approach regarding

efficient audio representations is self-supervised learning
approaches, such as PASE+ (Ravanelli et al., 2020). Finally,
we plan to compare DCT with other recent SSL algorithms,
such as FixMatch (Sohn et al., 2020).
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