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Abstract— Generally, the main components of autonomous 

driving system consists of perception (geometry recognition, 

localization, and objects detection & tracking) and navigation 

processes (global & local path planning, and controller). In this 

paper, we focus on finding an accurate position for Unmanned 

Ground Vehicle (UGV) in urban environments. A GPS sensor is 

fundamentally used to get a current global position, but its 

accuracy is susceptible to satellite geometry or receiver’s 

conditions; even though high performance guaranteed GPS 

such as differential-GPS (DGPS) always  return precise 

position(position error is less than 0.4m) because of problems 

such as disconnection between base station and vehicle.  The 

position-errors, even few meters, could engender serious 

accidents when UGV is driving under urban environments. In 

this paper, we suggest the localization algorithm and novel lane 

detection algorithm. The detected lane information is 

implemented to overcome GPS sensor’s position-errors. First, 

our novel lane detection algorithm is described, and then the 

localization algorithm is discussed. This paper also provides 

experimental results of the lane-detection and the localization in 

urban environment by using UGV. 

I. INTRODUCTION 

An Unmanned Ground Vehicle (UGV) has been researched 
and developed for decades. Especially, the DARPA (Defense 
Advanced Research Projects Agency) Grand Challenge had 
inspired researches related to UGV. Among various kinds of 
modules (e.g., object detection & tracking, traffic signal 
recognition, localization, path planning, etc.,) for autonomous 
driving, we are focusing on localization in this paper.  

The basic idea of global localization is searching a current 
position on a map regardless of map is given. For UGV, a 
GPS-sensor is generally used to get the global position, but 
other sensors are also implemented to increase accuracy of 
position [2] [3] A depth camera (e.g., the Microsoft Kinect 
sensor) [1], stereo camera [2], and LIDAR (e.g., Velodyne 
HD-LIDAR 64-beam scanner) [3] have implemented with 
GPS sensor to obtain more precise position. However, these 
additional sensors are required more processing time and 
computations. For example, additional localization method 
that is using 3D scan-matching with LIDAR sensor needs 
much more computations than using only a GPS sensor, while  
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Figure 1.  Scenario of autonomous driving under urban environments with 

only-GPS sensor and the practical localization with lane detection. 

its result is better. In addition, there are external supporting 
methods for increasing accuracy of positions such as DGPS. 
However, external supporting methods are depending on the 
status of communication. 

Therefore, we propose the practical localization algorithm 
to overcome GPS sensor’s errors without external supports. 
For the algorithm, lane information is implemented, with 
single camera and GPS sensor in this paper. There are related 
researches that applied lane information for different purposes. 
Sayanan Sivaraman and Mohan Manubhai Trivedi [4] 
implemented lane information to detect and trace other 
vehicles on road. They mentioned that lane is helpful to 
prevent false alarms in detecting vehicles assuming the 
vehicles are driving on lane. Z. Tao et al., [5] implemented 
lane for localization. The purpose of applying lane 
information is similar to our research, but the algorithm is 
totally different. In [5], they are using lane patterns as a set of 
features to construct the map called mobile-map. The mobile 
map consists of synchronized sequential data that includes 
global positions, orientations, and lanes. Through the 
mobile-map, they can access a position by searching a 
matched lane pattern in the map. On the other hand, our map 
called the road information file (RIF) is including the center 
positions and orientations of lanes. In comparing two different 
localization methods, RIF is easier and simpler to construct 
than a mobile-map. It doesn’t need lots of memory spaces 
even if map is expending continuously while the mobile-map 
needs much more memory spaces. In addition, we don’t use 
matching algorithms that need additional computations and 
time while the Z. Tao et al., apply the point-to-curve 
map-matching process [6].  

This paper is structured as follows: In section II, we 
introduce SAMSUNG TECHWIN’s Unmanned Ground 
Vehicle and RIF. In section III, an novel lane detection 
algorithm is described. Section IV shows how to calculate and 
compensate GPS sensor’s position errors by using lane 
information and RIF. Lastly, experimental results are shown 
in section V and discussion and future work are in section VI. 
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II. RELATED WORK 

A. Samsung Techwin (STW) Unmanned Ground Vehicle 

STW recreated a commercial vehicle (model is QM5  made 
by Renault Samsung), to UGV. STW has been researching 
and developing autonomous vehicles and robots for various 
purposes. Actually, STW-UGV was designed not just for an 
autonomous driving vehicle, but also one of surveillance 
solutions to secure broad sites like airports or power plants. 
December 2011, STW successfully demonstrated an 
intelligent mobile surveillance system at Incheon International 
Airport. At that time, a pen-tilt-zoom (PTZ) camera was 
installed on the top of UGV’s roof to detect and warn 
unauthorized people. STW-UGV basically embeds three laser 
scanners, one GPS sensor, and a camera. The sensors are 
assigned depending on the UGV’s applications. It is able to 
drive 90km/h (max-speed) fully autonomously on urban 
environments [figure 2]. 

 

 

Figure 2.  The samsung techwin unmanned ground vehicle & autonomous 

driving system. 

B. Road Information File (RIF)  

For UGV under urban environments, we need not only a 

geographic map, but also traffic information such as speed 

limitation and structures of transactions. RIF includes traffic 

and road information. Road is consisted by lanes, and each 

lane is represented by a set of global coordinates and 

orientations. Different types of zones such as intersection 

zone, parking zone, and school zone are also described. It is 

usually used in path planning, but perception modules 

implement it to reduce a processing time and avoid false 

alarms. For example, it is not efficient that the traffic signal 

detector, one of perception modules, is always trying to detect 

signals when the vehicle is driving the road where is no signal. 

Therefore, RIF can be a reference for each module to decide 

when and where it should be executed. In this paper, RIF is 

assisting to save process time and avoid false alarms in 

detecting the lane. Also it is used to calculate and compensate 

GPS sensor’s position errors as well. 

III. AN NOVEL LANE DETECTION 

There are different kinds of vision-based methods in lane 
detection. In [8], Shengyan Zhou et. al., categorized the 
methods into three classes: feature-based, region-based, and 
model-based. Here, we are using a feature-based method to 
detect a lane. As we described in section I, the purpose of lane 
detection is to overcome GPS sensor’s position errors and 
compensate it to get more accurate position. Specifically, our 
algorithm uses the location of robot in lane to measure GPS 

sensor errors. And, the vehicle location in lane is represented  
as a distance between left (or right) line and a center of vehicle. 
Before discussing specific algorithms, we define terms. A lane 
is consisted of two lines: left-line and right-line. Each line is 
reconstructed by finding and connecting two control points: 
start-point and end-point denoting SP and EP. SP and EP are 
selected from each pool of Candidate-SPs and Candidate-EPs 
respectively. Fundamentally, candidate points are collected 
from control points (CPs) and CPs are obtained by detecting 
lane features from camera images. 

In this section, we are going to explain sequential processes 
of the novel lane detection following steps: (1) detecting lane 
features and collecting CPs, (2) generating Candidate-SPs and 
searching Candidate-EPs, (3) selecting two SPs for left-line 
and right-line, and (4) filtering Candidate-EPs and 
determining lane. Figure 3 is a diagram showing the overview 
of the lane detection process. 

 

Figure 3.  The overveiw of an novel lane detection.  

 

Figure 4.  The sequence of receiving lane features from camera-image.  

A.   Detecting Lane Features and Collecting Control Points  

Vision based lane detection is not only susceptible to a 
status of the painted lane on road (e.g. dirt, deletion, or etc.), 
but also the brightness of environment. That is why we choose 
feature-based method for lane detection; a model trained by 
various lane-samples would find lane-features on camera 
image. The artificial neural networks (ANNs) is implemented 
to detect lane features from images accepting ZuWhan Kim’s 
analysis in [7]. We collect 21402 training samples and train an 
ANNs-model whose structure is four layers (input, output, and 
two hidden layers). The size of training samples is 9x3 pixels, 
and the samples are collected from bird’s eye view images as 
shown in Figure 4 and [7]. Among detected features, we find 
CPs by following steps: a) grouping features by dividing them 
through grids as shown in Figure 5-Stage 1, b) finding a 
line-pattern in each grouped features by Hough Transform, 
and c) storing start-points and end-points of found 
line-patterns as CPs; CPs will be referred when selecting 
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Candidate-EPs and scoring lines of the lane during RANdom 
SAmple Consensus (RANSAC). 

B.  Generating candidate-SPs and Searching Candidate-EPs 

A lane is represented by left-line and right-line, and a set of 
SP and EP is necessary to draw each line. Therefore, we 
should find the most appropriate four points (two SPs and two 
EPs) to detect a lane. Two SPs will be chosen from generated 
Candidate-SPs , and two EPs will be selected from CPs that 
were collected previously. To generate Candidate-SPs, we are 
using line-patterns that were taken by Hough Transform in 
III-A. First, we set a searching area (rectangular sized 2 
meters width and 3 meters height) in front of the vehicle  
because the line-patterns where are far from the vehicle are not 
eligible to generate them accurately; a dotted-rectangular in 
Figure 5 is representing the searching area. Second, we 
generate Candidate-SPs by extrapolating selected 
line-patterns to the front of the vehicle as shown in Figure 5- 
Stage 3. Next, searching Candidate-EPs is following steps: a) 
extrapolating the selected line-patterns to the top of the image, 
b) setting rectangular boundaries (width 3 pixels) of which the 
extrapolated lines are centered as shown in Figure 5- Stage 4, 
and c) choosing a CP where is at uppermost in each boundary. 
The chosen CPs will be Candidate-EPs. 

C. Selecting two SPs for left-line and right-line 

We divide Candidate-SPs into two classes by using K-mean 
to recognize which SP could become a part of left-line or 
right-line; one class (C

left
) is for finding a SP of left-line (SP

left
), 

and another (C
right

) is for detecting a SP of right-line (SP
right

). 
For K-mean, initial mean-values of C

left
 and C

right
 are set 

left-most and right-most points respectively among 
Candidate-SPs as shown in Figure 6; the classes are defined as 
eq. (1) and (2). Next, we implement the Mutual-Expectation to 
choose two points, SP

left
 and SP

right
, in the two classes as 

shown as in Table I. This is because that the 
Mutual-Expectation (ME) [9] is efficient to find the best 
answer given noisy data-sets if and only if each data-set 
represents different information, but are related each other. . 
To be specific, we have two different data-sets, C

left
 and C

right
, 

and they have a relation that left-line’s location is always 
distanced from right-line constantly. To choose the best SP in 
each class, we calculate likelihoods of every Candidate-SPs in 
both classes by using Gaussian distribution as shown in Figure 
6-(a) and (b). Following the concept of ME, the likelihoods of 
SPs in C

left
 are obtained through SPs in C

right 
 by setting the 

mean-values of Gaussian distributions like eq. (5) and (6).  
SP

left
 and SP

right
 will be chosen as one of Candidate-SPs whose 

likelihood is the biggest in each class. 

      C
left 

= {sp1
left

, sp2
left

, …, spn
left

 } where spn
left
x

n
, y

n
) 

C
right 

={sp1
right

, sp2
right

, …, spm
right

}where spm
right

x
m
,y

m
) 

 Dppm (      
      .x       

     x) / L
meter

 

where           
refers to x-coordinate of     (position).

 

 Lpixel  =  L
meter

 ⅹ Dppm 

 i 
left

 = spi 
right  

  Lpixel,    i = {1,2, …, m}  

 i 
right

 = spi 
left

   Lpixel,    i = {1,2, …, n} 

 

Figure 5.  Steps in collecting CPs, generating SP-candidates, and searching 

EP-candidates. In stage 1, dots are features of lane obtained by ANNs. In 
stage 2~4, dots are CPs. Stage 3 and 4 show extrapolations of lines to 

generate candidate-SPs and search candidate-EPs respectively.  

 

Figure 6.  The process of obtaining likelihoods of Candidate-SPs in both 

classes. Rectangular and circular points are Candidate-SPs in Cright and Cleft 

respectively. (a) and (b) are representing likelihoods for Candidate-SPs in 
Cright and Cleft. K-mean is started with two initial mean-values for two 

caterories. L pixel is a given width of lane.  

TABLE I.  PSEUDO CODE FOR CHOOSING SPLEFT
 AND SPRIGHT

 BY ME 
 

/* Assuming that width (meters) of lane is given, we need to 

convert width’s unit from meters to pixels */ 

/* Dppm (pixel per meter) is updated at time t by using detected 

SPleft and SPright at time t-1*/ 

 

Lmeter = 3.3;                                     /* Lane’s width is 3.3m */ 

Dppm = (      
     

 .x-       
     .x ) / Lmeter    

 

/*      
     

 and      
      are detected start-point of  

right-line and left-line at t-1,  Eq (3) and (4) */ 

Lpixel = Lmeter ⅹ Dppm                                 /* Pixels of lane’s width */ 

 

/* Converting and updating  End */ 

/* Classifying Candidate-SPs */  

[Cleft, Cright] = k-mean(initMleft, initMright, Candidate_SPs) 

 

/* set mean-values and standard deviation for Gaussian  

distribution */ 

 /* standard deviation is half of lane’s width */ 

  std = Lpixel /     

For  i  from 0 to size of Cright
 

 

         
    

=   
 
       Lpixel                                        /*  Eq (5)  */ 

        For  j  from 0 to size of Cleft 

                     
           

         
    

   std )                      /*  Eq (7)  */ 

             
    

       
    

                                                    /*  Eq (9)  */ 

     End for 

End for 
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For  i  from 0 to size of Cleft
 

 

         
     

=   
 
       Lpixel                                       /*  Eq (6)  */ 

For  j  from 0 to size of Cright 

                     
            

          
     

   std )                 /*  Eq (7)  */ 

             
     

       
     

                                                /*  Eq (8)  */ 

      End for 

End for 

 

/* choose a point that has biggest likelihood in each class as a 

SP*/ 

/* choose best SP of right-line*/ 

t_right =   
     

 

t_left =   
    

 

For  i  from 1 to size of Cleft
 

       If (t_left <    
    

) then 

 t_left =   
    

                                           /*  Eq (10)  */ 

SPleft =   
 
             /* choose a point whose likelihood is  

the biggest in the class*/ 

         end if 

End for  

 

/* choose best SP of left-line*/ 

For  i  from 1 to size of Cright
 

       If (t_right <    
     

) then 

 t_right =   
     

                                       /*  Eq (11)  */ 

SPright =   
 
          /* choose a point whose likelihood is  

 the biggest in the class*/ 

         end if 

End for 

 

To obtain vehicle’s position through detected lane, the 
pixels per a meter (Dppm) should be defined to convert from 
pixels to meters because the obtained distance between the 
vehicle and lane on image is represented by pixels. Initially, 
Dppm is set by using calibration borad on flat ground, but it is 
autonomously updated over time. The updating Dppm is 
necessary because it is depending on camera’s pitch, and the 
pitch is changing when vehicle is driving through bumps, 
uphill, or downhill. As shown in Eq. (3) and (4), it is updated 
by using detected lane at previous moment, and implemented 
to convert given width of lane (L

meter
) to L

pixel
.  

      , i 
right or left

,  ) = 
 

 √  
 

 
    

 
             

  

     

where  = Lpixel / 2 

 Pj
right

  =  ∑         
     

  
      

     
,  ) 

where inand j ={1 , 2, …, m} 

 Pj
left 

 =  ∑        
    

  
      

    
,  ) 

where imand j ={1 , 2, …, n} 

 t_right =       
 

   
     

 ,   im 

 t_left =       
 

   
    

 ,       in 

 

D. Filtering candidate-EPs and Determining Lane 

We use the RIF to filter some of  candidate-EPs. The 
unnecessary candidate-EPs are filtered by choosing points that 

satisfy following conditions: 1) EP’s x-coordinate is smaller 
than SPleft’s x coordinate on right-curve or 2) EP’s x coordinate 
is larger than SPright’s x-coordinate on left curve. Because RIF 
includes lane information as a set of positions and orientations, 
we can recognize whether current lane’s shape is straight, 
left-curve, or right-curve by calculating curvature of forward 
lane’s positions. For example, there are SP

left
, SP

right
, and 

Candidate-EPs on the left-curve in Figure 7. Through RIF 
information, we can expect that the lane’s shape would be 
left-curve before detecting the lane completely, and then 
remove unnecessary Candidate-EPs (EP3 and EP4) following 
the above condition-2. This helps to avoid false alarms and 
reduce computations.  

Finally, left-line and right-line will be detected by using 
RANdom SAmple Consensus (RANSAC) with two SPs and 
Candidate-EPs. Iteratively, randomly chosen EP and SP

left
 or 

SP
right

 will produce hypotheses for lane such as Case 2 in 
Figure 7, and left-line and right-line are chosen among them 
by scoring. The score of each hypothesis is the number of CPs 
where are inside of each boundary. The rectangular 
boundaries of which each produced line is centered are set as 
shown Case 1 in Figure 7. The two lines that obtained the 
highest score in each group (C

left
 and C

right
) become left-line 

and right-line. Lastly, we check the consistency of detected 
lines over time. Specifically, comparing between detected 
lines at t and t-1, if the difference is over the threshold, the 
lines at t are considered as false alarms based on an 
assumption that lane’s location cannot be jumped to far away 
at once. After detection of current lane, vehicle’s location can 
be recognized. As we mentioned before, vehicle’s location on 
the lane is represented by using a distance (meters) from a 
center of vehicle to left (or right) line as shown in Eq. (12) and 
(13). The vehicle’s center-position (Posvc) is given as a 
coordinate on a camera image.  

 Dleft = Abs(          -    
        ) / Dppm

 

 Dright = Abs(          -    
            / Dppm





Figure 7.  The scoring process (Case 1) and two different methods for 

producing hypotheses for lane. The result of only-RANSAC is Case 2 and 
one of RANSAC after filtering Candidate-EPs is Case 3. In cases, 

rectangular dots are refering to Candidate-EPs, and the triangular dots on 

bottom are SPs. In case 2 and 3, lines and dotted lines are produced 
hypotheses for left-line and right-line. 

IV. LOCALIZATION BY GPS, LANE, AND RIF  

In this paper, GPS sensor’s errors are measured and 
compensated by using detected lane information with RIF. 
Applying the taken position from lane detection into RIF, 
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vehicle’s rough global position is predicted. And, the 
predicted global position is implemented to calculate GPS 
sensor’s errors by measuring difference between the predicted 
position and GPS sensor’s position.  

A.  Converting Vehicle’s location on lane to global position  

Dleft or Dright taken from lane detection is provided as a 
vehicle’s location. However, both are not global coordinate, 
but distance (meters) from left-line or right-line. To calculate 
GPS sensor’s errors, we need to convert the obtained distance 
from left-line or right-line to global position. RIF and GPS 
sensor’s position are implemented. Initially, the lane’s number 
is given, and RIF includes lane information as s set of global 
positions (lane’s center positions) and orientations like shown 
Eq.(14). Among lane positions in RIF, the closest position 
(Pclosest) to position taken from GPS sensor (Pgps) is chosen to 
convert the distance on lane to global position. The converted 
position (Ppredicted) is taken through Eq. (15) and (16) as shown 
in Table II and Figure 8.  

        
  

= { (  
 ,    

 ), (  
 ,    

 ), …, (  
 ,    

 ) } 

where   
 x

n
, y

n
), and   

  is a heading (front-direction of 
vehicle), and i is a lane’s number. 

 Diffexp = Dleft – ( Lmeter / 2 )  

 Ppredicted = ( [Pclosest].x + Diffexp, [Pclosest].y ) 



TABLE II.  PSEUDO CODE FOR CONVERTING VEHICLE’S LOCATION TO 

GLOBAL POSITION BY USING RIF 

 

/* Dleft is obtained distance from lane detection*/ 

/* Pgps is current position taken from GPS sensor.*/ 

lane_num = 1                        /*   Initial lane’s number is given   */ 

 

/* Searching the closest a global position to Pgps in RIF */ 

Pclosest = f (       
        , Pgps ) 

 

/* Calculate distance from vehicle to lane’s center position */ 

Diffexp = Dleft – ( Lmeter / 2 )                                    /*   Eq (15)   */ 

 

/* Predicted position is taken */ 

Ppredicted = ( [Pclosest].x + Diffexp, [Pclosest].y )            /*   Eq (16)   */ 
 

 

Meanwhile, the predicted position has uncertainty on y-axis 
as shown in Figure 8 (shaded ellipses are representing 
uncertainty of each position) when vehicle’s local x-y 
coordinate plane is defined that the vehicle’s front direction is 
y-axis and its orthogonal line is x-axis. This is because that 
lane information can be used to correct the position only on 
x-axis of the local coordinate plane. Moreover, the 
uncertainty of predicted position will affect in measuring GPS 
sensor’s errors and obtaining accurate position. However, this 
is not critical because the lane is not parallel permanently, thus 
vehicle’s local x-y coordinate plane is rotated following lane’s 
shape. In other words, the uncertainty will not be accrued 
permanently because the vehicle’s coordinate plane is rotating 
depending on lane’s shape as shown in Figure 8; vehicle’s 
local x-y coordinate planes at different positions are  x1-y1, 
x2-y2, and x3-y3.  

B. Measuring GPS sensor’s errors & Obtaining New Position 

To calculate GPS sensor’s errors, Ppredicted and Pgps should be 
on same x-y coordinate plane by fitting their heading because 
headings of Ppredicted and Pgps are  based on RIF and current 
vehicle’s orientation respectively. We set 90° as a common 
heading (y-axis) and rotate both points  through rotation 
function fr as shown Eq. (17), (18), and (19). After GPS 
sensor’s error is obtained by Eq. (20), m numbers of errors are 
stored and implemented to get a revised position (Prevised) as 
shown in Table III. 

 fr (P, θ ) = [
         
        

]  [
   
   

]              (17) 

           
    = fr (Ppredicted, (90– θpredicted )           (18)  

     
    = fr (Pgps, (90– θgps )                       (19)  

 

Figure 8.  Analysis of GPS sensor’s errors through lane information with 

RIF. Pgps and Ppredicted are representing the vehicle’s positions received from 

GPS sensor and lane detection respectively. Pi
lane represents ith lane’s 

positions θpredicted and θvehicle.are headings of Ppredicted and Pgps.The shaded 

ellipses is representing uncertainty of each position. 

TABLE III.  PSEUDO CODE FOR OBATAINING REVISED POISITION 

 

vector  vEgps                  /*  Stores m numbers of Egps  */ 

If size of vEgps equal to m then 

/*    After m numbers of Egps are collected, oldest value is  

removed and new is stored at every time                 */ 

remove firstfvalue in vEgps 

push_back an obtained new Egps into vEgps 

 

/*  m numbers of Egps are collected and get average value of 

them to obtain a revised position by Eq. (21)               */ 

double avgEgps = sum( vEgps        

 

/* compensating GPS sensor’s errors by Eq. (22) */ 

        
   =     

    +                                     

Else   

       push_back an obtained new Egps into vEgps 

End if 
 

 

     
  = [          

   ]   [    
   ]    where t is time

         =      
            

        
      

         
   = ( [    

       +        , [    
       )

     
    = fr

-1
 (        

   , (90– θgps )                (23)  

Because the revised position is based on rotated orientation, 
final new position (    

     will be obtained by rotating reverse 

the revised position as shown in Eq. (23). 
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V. EXPERIMENTAL RESULTS 

As shown in Figure 2, we installed a camera at the top-center 
of the vehicle and it takes 800×600 pixels sized image with 15 
fps speed. We tested lane detection and localization algorithm 
at Midan City (South Korea). The driving path for experiment 
is 2.5km-long and shape is shown in figure 9. The STW-UGV 
is equipped with a NovAtel’s SPAN-CPT (Single Point L1 
mode: accuracy is 1.5 meters). In addition, RIF is built by 
using DGPS (accuracy is 0.4 meters). ProPak-v3 GPS receiver 
is implemented for base-station, and it communicates with 
rover through Pacific Crest’s ADL Vantage Pro. 
 

 

Figure 9.  Midan City Map. Dotted line is the path for evaluating lane 

detection algorithm. Localization is tested on the path (from waypoint A to 
B). DGPS is installed at C. 

First, we evaluate the novel lane detection algorithm. The 

algorithm is performed under various conditions such as day, 

night, and rainy because lane detection implements images 

coming from a camera, and the camera is usually susceptible 

to brightness and weathers. According to the experimental 

result, the lane-detection module detects 12 fps speed. Figure 

8 is showing experimental results of the detections under 

different conditions. (a) and (e) are at daytime, (c) and (g) are 

at nighttime, and (b) and (f) are in rainy day. Moreover, (d) 

and (h) are showing the results of lane detection when another 

vehicle occludes lane partially; (a), (b), and (c) are on 

left-curve while (e), (f), and (g) are on straight-road. In each 

scene, there are three lines; the center-line refers to vehicle’s 

center position, and two side lines are left-line and right-line. 

Occasionally, inaccurate result is observed on curves such as 

Figure 10-(a) because the algorithm is approximating 

detected lane-features to a straight line. However, it is 

ignorable because the pure GPS sensor’s position is updated 

by using avgEgps, not     
 . 

 

In addition, the filtering Candidate-EPs before RANSAC is 

more efficient in detecting lane as shown in Figure 11. (b) is 

using filtering and (c) is not. The results are that (b) and (c) 

generate 16 and 23 possible hypotheses respectively.  

 

Figure 10.  Results of lane-detection under various conditions.  

 

Figure 11.  The comparison of two methods in generating hypotheses of lane 

during RANSAC. (a) is camera view of scene. (b) is an obtained result of 

RANSAC after filtering Candidate-EPs, and (c) is one of RANSAC-Only. 

Therefore, it is obvious that (b) has less computation than 

(c) in generating and evaluating (or scoring) the hypotheses 

for lane. Moreover, (b) has less number of possible 

hypotheses that could result in false alarms than (c). The full 

experimental result of lane detection can be accessed at 

http://www.hantw. com/itsc2014.html. 

 

 

Figure 12.  The comparision between GPS sensor’s positions and revised 
positions. (a) is a scene of our visualizer. In (b), revised positions and GPS’s 

positions are represented. In (c), upper image is vehicle’s position on lane 

and bottom one is a screenshot of lane detection view. 

Second, we analyze performance of the localization 

algorithm by comparing the ground truth with revised 

position and pure GPS sensor’s position. Figure 12 is our 

analysis-tool that can record different information (lane 

detection, pure GPS position, revised position, and ground 

truth) simultaneously and analyze them. In the figure, RIF’s 

Pos is referring ground-truth obtained from DGPS. The 

Revised Pos and GPS’s Pos are the positions received from 

the localization algorithm and a GPS sensor respectively. 

Defining that the position error is the distance from RIF’s 
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Pos to another position, we took results as shown Figure 13. 

The x and y-axis in the graph are representing time and 

position errors while driving the given path (from A to B in 

Figure 9). Specifically, the maximum and minimum position 

errors of GPS sensor are 1.75786 and 0.000352506 meters 

while 0.75786 and 0.000628652 meters are the errors of 

revised positions.  

 

 

Figure 13.  History of revised position errors and pure GPS position errors. 

 

Figure 14.  Gaussian distribution of position-errors. 

Also, Gaussian distributions of the errors are representing 

that the revised position is more accurate (position errors: 

about 0.272±0.126 meters) than pure GPS sensor’s (0.82 

±0.457 meters) as shown in Figure 14. The full experimental 

results are accessible at http://www.hantw.com/itsc2014.html. 

The movie clips are recorded while vehicle is driving 

autonomously. There are two results, one is driving with only 

GPS sensor’s positions and another is driving with the revised 

positions. We can observe that the UGV invades another lane 

when driving with pure GPS sensor’s positions, while it 

doesn’t with the revised positions. Therefore, we conclude 

that the localization algorithm is appropriate to measure and 

overcome GPS sensor’s position errors, and obtain more 

accurate positions. This is one of great localization solutions 

for UGV under urban environments. 

VI. CONCLUSION & FUTURE WORK 

This paper is suggesting novel lane detection and 
localization algorithm. As shown the experimental results, the 
lane detection algorithm performs well under various 
conditions, and the localization with lane information is 
efficient to overcome GPS sensor’s position errors. Moreover, 
the method is easily applicable in industrial fields rather than 
using expensive sensors or heavy computations. However, the 
suggested algorithm has uncertainty of position on vehicle’s 

y-axis (forward direction) as we described in section IV-(a). 
Therefore, we are trying to apply additional solutions such as 
stop-line or traffic-signal detection to reduce the uncertainty 
on y-axis and obtain more accurate position as a future work. 
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