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Abstract— Generally, the main components of autonomous
driving system consists of perception (geometry recognition,
localization, and objects detection & tracking) and navigation
processes (global & local path planning, and controller). In this
paper, we focus on finding an accurate position for Unmanned
Ground Vehicle (UGV) in urban environments. A GPS sensor is
fundamentally used to get a current global position, but its
accuracy is susceptible to satellite geometry or receiver’s
conditions; even though high performance guaranteed GPS
such as differential-GPS (DGPS) always return precise
position(position error is less than 0.4m) because of problems
such as disconnection between base station and vehicle. The
position-errors, even few meters, could engender serious
accidents when UGV is driving under urban environments. In
this paper, we suggest the localization algorithm and novel lane
detection algorithm. The detected lane information is
implemented to overcome GPS sensor’s position-errors. First,
our novel lane detection algorithm is described, and then the
localization algorithm is discussed. This paper also provides
experimental results of the lane-detection and the localization in
urban environment by using UGV.

I. INTRODUCTION

An Unmanned Ground Vehicle (UGV) has been researched
and developed for decades. Especially, the DARPA (Defense
Advanced Research Projects Agency) Grand Challenge had
inspired researches related to UGV. Among various kinds of
modules (e.g., object detection & tracking, traffic signal
recognition, localization, path planning, etc.,) for autonomous
driving, we are focusing on localization in this paper.

The basic idea of global localization is searching a current
position on a map regardless of map is given. For UGV, a
GPS-sensor is generally used to get the global position, but
other sensors are also implemented to increase accuracy of
position [2] [3] A depth camera (e.g., the Microsoft Kinect
sensor) [1], stereo camera [2], and LIDAR (e.g., Velodyne
HD-LIDAR 64-beam scanner) [3] have implemented with
GPS sensor to obtain more precise position. However, these
additional sensors are required more processing time and
computations. For example, additional localization method
that is using 3D scan-matching with LIDAR sensor needs
much more computations than using only a GPS sensor, while
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Figure 1. Scenario of autonomous driving under urban environments with
only-GPS sensor and the practical localization with lane detection.

its result is better. In addition, there are external supporting
methods for increasing accuracy of positions such as DGPS.
However, external supporting methods are depending on the
status of communication.

Therefore, we propose the practical localization algorithm
to overcome GPS sensor’s errors without external supports.
For the algorithm, lane information is implemented, with
single camera and GPS sensor in this paper. There are related
researches that applied lane information for different purposes.
Sayanan Sivaraman and Mohan Manubhai Trivedi [4]
implemented lane information to detect and trace other
vehicles on road. They mentioned that lane is helpful to
prevent false alarms in detecting vehicles assuming the
vehicles are driving on lane. Z. Tao et al., [5] implemented
lane for localization. The purpose of applying lane
information is similar to our research, but the algorithm is
totally different. In [5], they are using lane patterns as a set of
features to construct the map called mobile-map. The mobile
map consists of synchronized sequential data that includes
global positions, orientations, and lanes. Through the
mobile-map, they can access a position by searching a
matched lane pattern in the map. On the other hand, our map
called the road information file (R/F) is including the center
positions and orientations of lanes. In comparing two different
localization methods, RIF is easier and simpler to construct
than a mobile-map. It doesn’t need lots of memory spaces
even if map is expending continuously while the mobile-map
needs much more memory spaces. In addition, we don’t use
matching algorithms that need additional computations and
time while the Z. Tao et al.,, apply the point-to-curve
map-matching process [6].

This paper is structured as follows: In section II, we
introduce  SAMSUNG TECHWIN’s Unmanned Ground
Vehicle and RIF. In section III, an novel lane detection
algorithm is described. Section IV shows how to calculate and
compensate GPS sensor’s position errors by using lane
information and RIF. Lastly, experimental results are shown
in section V and discussion and future work are in section VI.
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II. RELATED WORK

A. Samsung Techwin (STW) Unmanned Ground Vehicle

STW recreated a commercial vehicle (model is QM5 made
by Renault Samsung), to UGV. STW has been researching
and developing autonomous vehicles and robots for various
purposes. Actually, STW-UGV was designed not just for an
autonomous driving vehicle, but also one of surveillance
solutions to secure broad sites like airports or power plants.
December 2011, STW successfully demonstrated an
intelligent mobile surveillance system at Incheon International
Airport. At that time, a pen-tilt-zoom (PTZ) camera was
installed on the top of UGV’s roof to detect and warn
unauthorized people. STW-UGYV basically embeds three laser
scanners, one GPS sensor, and a camera. The sensors are
assigned depending on the UGV’s applications. It is able to
drive 90km/h (max-speed) fully autonomously on urban
environments [figure 2].
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Figure 2. The samsung techwin unmanned ground vehicle & autonomous
driving system.

B. Road Information File (RIF)

For UGV under urban environments, we need not only a
geographic map, but also traffic information such as speed
limitation and structures of transactions. RIF includes traffic
and road information. Road is consisted by lanes, and each
lane is represented by a set of global coordinates and
orientations. Different types of zones such as intersection
zone, parking zone, and school zone are also described. It is
usually used in path planning, but perception modules
implement it to reduce a processing time and avoid false
alarms. For example, it is not efficient that the traffic signal
detector, one of perception modules, is always trying to detect

signals when the vehicle is driving the road where is no signal.

Therefore, RIF can be a reference for each module to decide
when and where it should be executed. In this paper, RIF is
assisting to save process time and avoid false alarms in
detecting the lane. Also it is used to calculate and compensate
GPS sensor’s position errors as well.

III. AN NOVEL LANE DETECTION

There are different kinds of vision-based methods in lane
detection. In [8], Shengyan Zhou et. al., categorized the
methods into three classes: feature-based, region-based, and
model-based. Here, we are using a feature-based method to
detect a lane. As we described in section I, the purpose of lane
detection is to overcome GPS sensor’s position errors and
compensate it to get more accurate position. Specifically, our
algorithm uses the location of robot in lane to measure GPS
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sensor errors. And, the vehicle location in lane is represented
as a distance between left (or right) line and a center of vehicle.
Before discussing specific algorithms, we define terms. A lane
is consisted of two lines: left-line and right-line. Each line is
reconstructed by finding and connecting two control points:
start-point and end-point denoting SP and EP. SP and EP are
selected from each pool of Candidate-SPs and Candidate-EPs
respectively. Fundamentally, candidate points are collected
from control points (CPs) and CPs are obtained by detecting
lane features from camera images.

In this section, we are going to explain sequential processes
of the novel lane detection following steps: (1) detecting lane
features and collecting CPs, (2) generating Candidate-SPs and
searching Candidate-EPs, (3) selecting two SPs for left-line
and right-line, and (4) filtering Candidate-EPs and
determining lane. Figure 3 is a diagram showing the overview
of the lane detection process.
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Figure 4. The sequence of receiving lane features from camera-image.

A. Detecting Lane Features and Collecting Control Points

Vision based lane detection is not only susceptible to a
status of the painted lane on road (e.g. dirt, deletion, or etc.),
but also the brightness of environment. That is why we choose
feature-based method for lane detection; a model trained by
various lane-samples would find lane-features on camera
image. The artificial neural networks (ANNs) is implemented
to detect lane features from images accepting ZuWhan Kim’s
analysis in [7]. We collect 21402 training samples and train an
ANNs-model whose structure is four layers (input, output, and
two hidden layers). The size of training samples is 9x3 pixels,
and the samples are collected from bird’s eye view images as
shown in Figure 4 and [7]. Among detected features, we find
CPs by following steps: a) grouping features by dividing them
through grids as shown in Figure 5-Stage 1, b) finding a
line-pattern in each grouped features by Hough Transform,
and c) storing start-points and end-points of found
line-patterns as CPs; CPs will be referred when selecting
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Candidate-EPs and scoring lines of the lane during RANdom
SAmple Consensus (RANSAC).

B.  Generating candidate-SPs and Searching Candidate-EPs

A lane is represented by left-line and right-line, and a set of
SP and EP is necessary to draw each line. Therefore, we
should find the most appropriate four points (two SPs and two
EPs) to detect a lane. Two SPs will be chosen from generated
Candidate-SPs , and two EPs will be selected from CPs that
were collected previously. To generate Candidate-SPs, we are
using line-patterns that were taken by Hough Transform in
III-A. First, we set a searching area (rectangular sized 2
meters width and 3 meters height) in front of the vehicle
because the line-patterns where are far from the vehicle are not
eligible to generate them accurately; a dotted-rectangular in
Figure 5 is representing the searching area. Second, we
generate  Candidate-SPs by  extrapolating  selected
line-patterns to the front of the vehicle as shown in Figure 5-
Stage 3. Next, searching Candidate-EPs is following steps: a)
extrapolating the selected line-patterns to the top of the image,
b) setting rectangular boundaries (width 3 pixels) of which the
extrapolated lines are centered as shown in Figure 5- Stage 4,
and c) choosing a CP where is at uppermost in each boundary.
The chosen CPs will be Candidate-EPs.

C. Selecting two SPs for left-line and right-line

We divide Candidate-SPs into two classes by using K-mean
to recognize which SP could become a part of left-line or
right-line; one class (C*™ is for finding a SP of left-line (SPIEﬁ),
and another (C"®") is for detecting a SP of right-line (SP"¢").
For K-mean, initial mean-values of C'*" and C"" are set
left-most and right-most points respectively among
Candidate-SPs as shown in Figure 6; the classes are defined as
eq. (1) and (2). Next, we implement the Mutual-Expectation to
choose two points, SP*" and SP"®", in the two classes as
shown as in Table I This is because that the
Mutual-Expectation (ME) [9] is efficient to find the best
answer given noisy data-sets if and only if each data-set
represents different information, but are related each other. .
To be specific, we have two different data-sets, C'*" and C"¢",
and they have a relation that left-line’s location is always
distanced from right-line constantly. To choose the best SP in
each class, we calculate likelihoods of every Candidate-SPs in
both classes by using Gaussian distribution as shown in Figure
6-(a) and (b). Following the concept of ME, the likelihoods of
SPs in C*" are obtained through SPs in C"®" by setting the
mean-values of Gaussian distributions like eq. (5) and (6).
SP*" and SP"¢" will be chosen as one of Candidate-SPs whose
likelihood is the biggest in each class.

C¥"= {sp,”", sp,"”", ..., sp,”" } where sp,/" = (x, y) (1)
Cright _ {Splright’ szright’ o Spmright}where Spmright:(xm,ym) (2)
Dy = (ISP5" Jx = [SPEN] ) / L,,,, (3)

where [ Pos |. x refers to x-coordinate of Pos (position).
Lyivet = Lo X Dipm 4)
,ui left = Spi right - Lpbcels l = {1,2a [ERE] m} (5)
Hi right = Sp; tef + Lpixel> = {1727 sy }’l} (6)
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Figure 5. Steps in collecting CPs, generating SP-candidates, and searching
EP-candidates. In stage 1, dots are features of lane obtained by ANNs. In
stage 2~4, dots are CPs. Stage 3 and 4 show extrapolations of lines to
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Figure 6. The process of obtaining likelihoods of Candidate-SPs in both
classes. Rectangular and circular points are Candidate-SPs in C"#" and C'*"
respectively. (a) and (b) are representing likelihoods for Candidate-SPs in
Ce" and C'*", K-mean is started with two initial mean-values for two
caterories. L pixel is a given width of lane.

TABLE L PSEUDO CODE FOR CHOOSING SP**" AND SP*"" By ME

/* Assuming that width (meters) of lane is given, we need to
convert width’s unit from meters to pixels */

/* Dp,l,c,,‘,)[ (pixel prf:rhtmetc_:r) is updated at time ¢ by using detected
SP*" and SP™®™ at time #-1*/

Lmeter = 33> /* Lane’s Wldth iS 3.3m */
igh
Dy = ([SPL5 - [SPEEH].x ) / Lneer

/* SPtr_i"iht and SPtl_"’flt are detected start-point of
right-line and left-line at t-1, Eq (3) and (4) */
Lpixel = Lineter X Dppm /* Pixels of lane’s width */
/* Converting and updating End */
/* Classifying Candidate-SPs */ )
[Ciett> Crignd] = k-mean(initM*", initM"¢", Candidate_SPs)

/* set mean-values and standard deviation for Gaussian
distribution */

/* standard deviation is half of lane’s width */

Std = Lpixel / 2 )

For i from 0 to size of C"&"

‘uéeft: Splfight - Lpixel /* Eq (5) */
For j from 0 to size of C'*"
Pamy = [ ,(SPY", ", std) /% Eq(7) */
P = Tt /* Eq9) *
End for
End for
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For i from 0 to size of C*"

p =S+ Ly /* Eq (6) */
For j from 0 to size of Crfgh‘
Ponp' = f (P}, "™, std) /¥ Eq(7) *
[;right_'_: Rﬁght /* Eq (8) */
End for
End for

/* choose a point that has biggest likelihood in each class as a
SP*/
/* choose best SP of right-line*/
t_right = p/*9"
t left = p**
For i from 1 to size of C'*f
If (t_left < P'/*)then

t left=p'* /* Eq (10) */
SPy; = spieft  /* choose a point whose likelihood is
the biggest in the class*/
end if
End for

/* choose best SP of left-line*/
For i from 1 to size of C"eM
If (t_right < P"*9") then

t_right = p7o"

SPright = Sp:'ight

/* Eq(11) */
/* choose a point whose likelihood is
the biggest in the class*/
end if
End for

To obtain vehicle’s position through detected lane, the
pixels per a meter (D,,,,) should be defined to convert from
pixels to meters because the obtained distance between the
vehicle and lane on image is represented by pixels. Initially,
D,,m 1s set by using calibration borad on flat ground, but it is
autonomously updated over time. The updating D,,, is
necessary because it is depending on camera’s pitch, and the
pitch is changing when vehicle is driving through bumps,
uphill, or downhill. As shown in Eq. (3) and (4), it is updated
by using detected lane at previous moment, and implemented

to convert given width of lane (L) to L, .
o . _(x_ﬂgight or left)z
R T ()
where 0 = L/ 2
ri igh igh
I)j ight _ ?=1 f:g(sp;‘lg t’ 'u;”lg t,O') (8)
wherei={1,2,..,n}and j={1,2,...,m}
] 1 1
P = ST fy (oot "L o) ©)
wherei={1,2,..,m}and j={1,2,...,n}
t right = argmiaX(Piright), i={1,2,..,m}  (10)
t left= argm]aX(leeft), i={1,2,...n} (11

D. Filtering candidate-EPs and Determining Lane

We use the RIF to filter some of candidate-EPs. The
unnecessary candidate-EPs are filtered by choosing points that
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satisfy following conditions: 1) EP’s x-coordinate is smaller
than SP,;’s x coordinate on right-curve or 2) EP’s x coordinate
is larger than SP,,,,’s x-coordinate on left curve. Because RIF
includes lane information as a set of positions and orientations,
we can recognize whether current lane’s shape is straight,
left-curve, or right-curve by calculating curvature of forward
lane’s positions. For example, there are SP*", SP™ and
Candidate-EPs on the left-curve in Figure 7. Through RIF
information, we can expect that the lane’s shape would be
left-curve before detecting the lane completely, and then
remove unnecessary Candidate-EPs (EP; and EP,) following
the above condition-2. This helps to avoid false alarms and
reduce computations.

Finally, left-line and right-line will be detected by using
RANdom SAmple Consensus (RANSAC) with two SPs and
Candidate-EPs. Iteratively, randomly chosen EP and SP*" or
SP"" will produce hypotheses for lane such as Case 2 in
Figure 7, and left-line and right-line are chosen among them
by scoring. The score of each hypothesis is the number of CPs
where are inside of each boundary. The rectangular
boundaries of which each produced line is centered are set as
shown Case 1 in Figure 7. The two lines that obtained the
highest score in each group (C'*" and C"¢") become left-line
and right-line. Lastly, we check the consistency of detected
lines over time. Specifically, comparing between detected
lines at ¢ and #-1, if the difference is over the threshold, the
lines at ¢ are considered as false alarms based on an
assumption that lane’s location cannot be jumped to far away
at once. After detection of current lane, vehicle’s location can
be recognized. As we mentioned before, vehicle’s location on
the lane is represented by using a distance (meters) from a
center of vehicle to left (or right) line as shown in Eq. (12) and
(13). The wvehicle’s center-position (Pos,.) is given as a
coordinate on a camera image.

Dy = Abs([Pos,]. x - [SP'*].x ) / D, (12)
Dyignt = Abs([Pos,]. x - [SP""].x ) /D, (13)
Vehicle - werL FP
A imEP,
A\ i i
[v W
] l?ll .o “‘l l'tl. :
\ \ dl i‘I -.‘\%. “,li 0
'I*', . ‘\:‘ﬁ' N
|I=||. ‘\\““e '
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Figure 7. The scoring process (Case 1) and two different methods for
producing hypotheses for lane. The result of only-RANSAC is Case 2 and
one of RANSAC after filtering Candidate-EPs is Case 3. In cases,
rectangular dots are refering to Candidate-EPs, and the triangular dots on
bottom are SPs. In case 2 and 3, lines and dotted lines are produced
hypotheses for left-line and right-line.

IV. LocCALIZATION BY GPS, LANE, AND RIF

In this paper, GPS sensor’s errors are measured and
compensated by using detected lane information with RIF.
Applying the taken position from lane detection into RIF,
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vehicle’s rough global position is predicted. And, the
predicted global position is implemented to calculate GPS
sensor’s errors by measuring difference between the predicted
position and GPS sensor’s position.

A. Converting Vehicle’s location on lane to global position

Dy or D, taken from lane detection is provided as a
vehicle’s location. However, both are not global coordinate,
but distance (meters) from left-line or right-line. To calculate
GPS sensor’s errors, we need to convert the obtained distance
from left-line or right-line to global position. R/F and GPS
sensor’s position are implemented. Initially, the lane’s number
is given, and R/F includes lane information as s set of global
positions (lane’s center positions) and orientations like shown
Eq.(14). Among lane positions in RIF, the closest position
(Peioses) to position taken from GPS sensor (Py,,) is chosen to
convert the distance on lane to global position. The converted
position (P, egiceq) is taken through Eq. (15) and (16) as shown
in Table II and Figure 8.

Plne c= {1 (0L, 0D, @0, 6%), ..., (pl, 61)}  (14)

where pb = (x,,y,), and 6 is a heading (front-direction of
vehicle), and 7 is a lane’s number.

Diffexp = Djerr — ( Lmeter/ 2 )
Ppred[cled = ( [Pclosexl] X+ Diffexpa [Pclo.x‘esl] -y )

(15)
(16)

TABLE IIL PSEUDO CODE FOR CONVERTING VEHICLE’S LOCATION TO

GLOBAL POSITION BY USING RIF

/* Dy is obtained distance from lane detection*/

/* Py, is current position taken from GPS sensor.*/

lane num =1 /* Initial lane’s number is given */
/* Searching the closest a global position to P,,, in RIF */

- lane_
Pclosesr _f(PlaC,lr“l’l:_Cnum’ ngs )

gps

/* Calculate distance from vehicle to lane’s center position */
Diff,, = Djosp = ( Lipeter / 2) /* Eq(15) *

/* Predicted position is taken */

Ppredicred: ( [Pclosesr] X+ Diffexpa [P(rlosest] -y ) /* Eq (1 6) */

Meanwhile, the predicted position has uncertainty on y-axis
as shown in Figure 8 (shaded ellipses are representing
uncertainty of each position) when vehicle’s local x-y
coordinate plane is defined that the vehicle’s front direction is
y-axis and its orthogonal line is x-axis. This is because that
lane information can be used to correct the position only on
x-axis of the local coordinate plane. Moreover, the
uncertainty of predicted position will affect in measuring GPS
sensor’s errors and obtaining accurate position. However, this
is not critical because the lane is not parallel permanently, thus
vehicle’s local x-y coordinate plane is rotated following lane’s
shape. In other words, the uncertainty will not be accrued
permanently because the vehicle’s coordinate plane is rotating
depending on lane’s shape as shown in Figure 8; vehicle’s
local x-y coordinate planes at different positions are x1-y1,
x2-y2, and x3-)3.
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B. Measuring GPS sensor’s errors & Obtaining New Position

To calculate GPS sensor’s errors, P ,.iqeq and Py, should be
on same x-y coordinate plane by fitting their heading because
headings of P, ciices and Py, are based on RIF and current
vehicle’s orientation respectively. We set 90° as a common
heading (y-axis) and rotate both points through rotation
function f; as shown Eq. (17), (18), and (19). After GPS
sensor’s error is obtained by Eq. (20), m numbers of errors are
stored and implemented to get a revised position (P, eq) as
shown in Table IiI.

_[cosf —sind] [P.x
S (P,0)= [sinG cos@ ] [P.y 7
P;ﬁédicted :fr (Ppredicteda (907 6predicted ) (1 8)
P;fg :fr (ngsa (90_ egps ) (19)

\
.
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n-1 -
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Uncertaintyﬁh
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TR Kt
A ng; S v ; \ :
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®: Elements of Pigs -, - - 2Pz 4

Figure 8. Analysis of GPS sensor’s errors through lane information with
RIF. Pgps and Ppredictea are representing the vehicle’s positions received from
GPS sensor and lane detection respectively. P, represents ith lane’s
positions Opregictea AN Oyenice-are headings of Ppregicres and Pgps. The shaded
ellipses is representing uncertainty of each position.

TABLE III. PSEUDO CODE FOR OBATAINING REVISED POISITION

/* Stores m numbers of E,,, */

vector VE gps gps

If size of VE,, equal to m then
/% After m numbers of B, are collected, oldest value is
removed and new is stored at every time */
remove first'value in VE gps
push_back an obtained new Egp into VEgy
/* m numbers of E,,, are collected and get average value of
them to obtain a revised position by Eq. (21) */
double avgE,,, = sum( VE,,, ) / m

/* compensating GPS sensor’s errors by Eq. (22) */

rot _ t
prevised_ grgs + anEgPS
Else
push_back an obtained new Egy into VEg
End if

Elps = [Pottaicteal- X — [Pygt].x where tis time  (20)
avgEgps = (Efpe ™ + -+ Efps + ELp) /m - (21)
Plovisea= ([Pgge]. x + avgE gy, [P5E]. ¥ ) (22)
Pt = £ (Pl Siseds (90— Ogpe) (23)

Because the revised position is based on rotated orientation,
final new position (Py5") will be obtained by rotating reverse
the revised position as shown in Eq. (23).
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V. EXPERIMENTAL RESULTS

As shown in Figure 2, we installed a camera at the top-center
of the vehicle and it takes 800x600 pixels sized image with 15
fps speed. We tested lane detection and localization algorithm
at Midan City (South Korea). The driving path for experiment
is 2.5km-long and shape is shown in figure 9. The STW-UGV
is equipped with a NovAtel’s SPAN-CPT (Single Point L1
mode: accuracy is 1.5 meters). In addition, RIF is built by
using DGPS (accuracy is 0.4 meters). ProPak-v3 GPS receiver
is implemented for base-station, and it communicates with
rover through Pacific Crest’s ADL Vantage Pro.

Figure 9. Midan City Map. Dotted line is the path for evaluating lane
detection algorithm. Localization is tested on the path (from waypoint A to
B). DGPS is installed at C.

First, we evaluate the novel lane detection algorithm. The
algorithm is performed under various conditions such as day,
night, and rainy because lane detection implements images
coming from a camera, and the camera is usually susceptible
to brightness and weathers. According to the experimental
result, the lane-detection module detects 12 fps speed. Figure
8 is showing experimental results of the detections under
different conditions. (a) and (e) are at daytime, (c) and (g) are
at nighttime, and (b) and (f) are in rainy day. Moreover, (d)
and (h) are showing the results of lane detection when another
vehicle occludes lane partially; (a), (b), and (c) are on
left-curve while (e), (f), and (g) are on straight-road. In each
scene, there are three lines; the center-line refers to vehicle’s
center position, and two side lines are left-line and right-line.
Occasionally, inaccurate result is observed on curves such as
Figure 10-(a) because the algorithm is approximating
detected lane-features to a straight line. However, it is
ignorable because the pure GPS sensor’s position is updated
by using avgE,,, not E,;.

In addition, the filtering Candidate-EPs before RANSAC is
more efficient in detecting lane as shown in Figure 11. (b) is
using filtering and (c) is not. The results are that (b) and (c)
generate 16 and 23 possible hypotheses respectively.
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Figure 11. The comparison of two methods in generating hypotheses of lane
during RANSAC. (a) is camera view of scene. (b) is an obtained result of
RANSAC after filtering Candidate-EPs, and (c) is one of RANSAC-Only.

Therefore, it is obvious that (b) has less computation than
(c) in generating and evaluating (or scoring) the hypotheses
for lane. Moreover, (b) has less number of possible
hypotheses that could result in false alarms than (c). The full
experimental result of lane detection can be accessed at
http://www.hantw. com/itsc2014.html.

Figure 12. The comparision between GPS sensor’s positions and revised
positions. (a) is a scene of our visualizer. In (b), revised positions and GPS’s
positions are represented. In (c), upper image is vehicle’s position on lane
and bottom one is a screenshot of lane detection view.

Second, we analyze performance of the localization
algorithm by comparing the ground truth with revised
position and pure GPS sensor’s position. Figure 12 is our
analysis-tool that can record different information (lane
detection, pure GPS position, revised position, and ground
truth) simultaneously and analyze them. In the figure, RIF'’s
Pos is referring ground-truth obtained from DGPS. The
Revised Pos and GPS’s Pos are the positions received from
the localization algorithm and a GPS sensor respectively.
Defining that the position error is the distance from RIF’s
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Pos to another position, we took results as shown Figure 13.
The x and y-axis in the graph are representing time and
position errors while driving the given path (from A to B in
Figure 9). Specifically, the maximum and minimum position
errors of GPS sensor are 1.75786 and 0.000352506 meters
while 0.75786 and 0.000628652 meters are the errors of
revised positions.

——Revised Position Errors
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Figure 14. Gaussian distribution of position-errors.

Also, Gaussian distributions of the errors are representing
that the revised position is more accurate (position errors:
about 0.27240.126 meters) than pure GPS sensor’s (0.82
+0.457 meters) as shown in Figure 14. The full experimental
results are accessible at http./www.hantw.com/itsc2014.html.
The movie clips are recorded while vehicle is driving
autonomously. There are two results, one is driving with only
GPS sensor’s positions and another is driving with the revised
positions. We can observe that the UGV invades another lane
when driving with pure GPS sensor’s positions, while it
doesn’t with the revised positions. Therefore, we conclude
that the localization algorithm is appropriate to measure and
overcome GPS sensor’s position errors, and obtain more
accurate positions. This is one of great localization solutions
for UGV under urban environments.

VI. CONCLUSION & FUTURE WORK

This paper is suggesting novel lane detection and
localization algorithm. As shown the experimental results, the
lane detection algorithm performs well under various
conditions, and the localization with lane information is
efficient to overcome GPS sensor’s position errors. Moreover,
the method is easily applicable in industrial fields rather than
using expensive sensors or heavy computations. However, the
suggested algorithm has uncertainty of position on vehicle’s
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y-axis (forward direction) as we described in section IV-(a).
Therefore, we are trying to apply additional solutions such as
stop-line or traffic-signal detection to reduce the uncertainty
on y-axis and obtain more accurate position as a future work.
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