
Enhance text-to-SQL model performance
with information sharing and reweight loss

Chi Wei1 & Shaobin Huang1 & Rongsheng Li1

Received: 17 March 2021 /Revised: 16 June 2021 /Accepted: 31 January 2022

The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The goal of Text-to-SQL task is to map natural language queries into equivalent
structured query languages(NL2SQL). On the WikiSQL dataset, the method used by
the state-of-the-art models is to decouple the NL2SQL task into subtasks and then
build a dedicated decoder for each subtask. There are some problems in this method,
such as the model is too complicated, and the ability to learn the dependency
between different subtasks is limited. To solve these problems, this paper innova-
tively introduces the sharing mechanism of multi-task learning into the NL2SQL
task and realizes sharing by letting different subtasks share the same decoder.
Firstly, sharing decoders for different subtasks can effectively reduce the complexity
of the model, and at the same time, allows different subtasks to share knowledge
during the training process so that the model can better learn the dependencies
between different subtasks. This paper also designed a re-weighted loss to balance
the complexity of the SELECT clause and the WHERE clause. We have evaluated
the method in this article on the WikiSQL dataset. The experimental results show
that the accuracy of the proposed model is better than state-of-the-art on the
WikiSQL without execution guided decoding.

Keywords Text-to-SQL .Multi-task learning . Re-weighted loss

https://doi.org/10.1007/s11042-022-12573-0

* Rongsheng Li
dasheng@hrbeu.edu.cn

Chi Wei
2236058667@qq.com

Shaobin Huang
huangshaobin@hrbeu.edu.cn

1 College of Computer Science and Technology, Harbin Engineering University, Harbin 150001,
China

Published online: 28 February 2022

Multimedia Tools and Applications (2022) 81:15205–15217

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-12573-0&domain=pdf
mailto:dasheng@hrbeu.edu.cn

1 Introduction

With the development of digitization, more and more data are stored in the database. These
databases contain a lot of knowledge. Therefore, allowing users to interact with the database
using natural language is a research goal with notable applicable value [16], and the goal of the
Text-to-SQL task is to allow users to interact with the database using natural language. At
present, SQL statements that only involve a single table and simple query still play an
important role in practical application [9]. Therefore, this paper further researches the NL2SQL
model based on the WikiSQL dataset, which only contains single table and simple query.

The WikiSQL dataset released by Zhong et al. in 2017 contains 80,654 natural language
questions, which correspond to manually annotated SQL query statements and data tables [20].
The publication of WikiSQL datasets has greatly stimulated people’s enthusiasm for the
research of NL2SQL. The representative works include the SQLNet [20], TypeSQL [21],
Coarse-to-fine [4], SQLova [8], X-SQL [6] and HydraNet [13]. These works decouple the
NL2SQL tasks into six subtasks, as shown in Fig. 1. In these systems, dedicated decoder are
constructed for each subtask, and the neural network used by these decoders is usually a long
short-term memory network(LSTM) [18].

There are two disadvantages to these advanced models. Firstly, six special decoders make
the model structure very complicated. The complex model structure makes the model difficult
to train and increases training time. Secondly, there are dependencies between different parts
of the SQL query. For example, when the element of the column specified by the Select-
Column is not a number, the result of Select-Aggregation can only be None or Count. If the
element of the column specified by the Select-Column is a number, the result of Select-
Aggregation can also be the Max, Min, and Avg. Ma [9] pointed out that these dependencies
can be obtained from input natural language queries. Therefore, if each subtask uses a
dedicated decoder, the distributed representation of natural language queries received by each
subtask is different, which will inevitably make it difficult for such a model to learn the
dependencies between different subtasks.

In order to solve the problem of complex model structure and challenging to learn the
dependency relationship between different subtasks, this paper proposes a method based on
information sharing. Like the current advanced models. This paper uses BERT [10] as the
encoder to obtain the distributed representation of the input natural language query and its
corresponding table schema. The difference is that this paper no longer constructs a dedicated
decoder for each subtask but one decoder shared by all subtasks. This idea comes from multi-
tasking [12, 15]. The decoder uses a Bi-LSTM network. The input of the decoder is the output
of the pre-training model BERT, and the output of the decoder is the final embedded
representation of natural language query and table schema. When predicting different subtasks,
a fully connected neural network is used to learn features related to specific subtasks. The

SELECT MAX(COL_1) FROM TABLE WHERE COL_2 > 2 AND COL_3 = 4

Select-Aggregation

Select-Column

Where-Column Where-Operator

Where-Number

Where-Value

Fig. 1 Divide the SQL into six parts, each part as a subtask

15206 Multimedia Tools and Applications (2022) 81:15205–15217

attention mechanism is used to capture information more related to the current task. In
addition, on WikiSQL datasets, the average length of the WHERE clause is larger than that
of the SELECT clause. To balance the complexity of the SELECT clause and WHERE clause,
a weight is reassigned for each subtask loss similar to the method proposed by Qi [17].
Compared with the existing methods, the proposed method reduces the size of the decoder to
one-sixth of the original and effectively reduces the complexity of the model. Secondly, all the
subtasks use the same decoder in prediction. The natural language input representation is the
same, which can make the model better learn the dependency relationship between different
subtasks.

We evaluated our model on the WikiSQL and compared it with other advanced models.
Compared with state-of-the-art, the evaluation index for execution accuracy has increased by
0.5% in this paper on the testset without execution guided decoding.

2 Related work

The goal of the semantic parsing task is to map natural language to machine-interpretable
representation, such as code and SQL [11]. The purpose of this paper is to map the natural
language to the equivalent structured query language (NL2SQL), which is a subset of semantic
parsing tasks. The early research of NL2SQL mainly used semantic parsing task for reference
and used the Seq-to-Seq [19] structure with an attention mechanism to map natural language
queries to SQL. However, due to the strong syntax restriction of SQL statements, the Seq-to-
Seq structure cannot impose specific syntax restrictions on the output space [3]. Therefore, the
Seq-to-Seq structure is not suitable for NL2SQL tasks.

To solve this problem, Zhong et al. Proposed the seq2sql model [4]. The task of generating
SQL is decoupled into two parts of developing target SQL query: SELECT clause and
WHERE clause, which is equivalent to adding syntax constraints to the output of the model,
and successfully improves the execution accuracy of the test set to 59.4%. The Seq2SQL [22]
model proves the effectiveness of adding syntax constraints when generating SQL, but the
rules are still too simple. Therefore, the SQLNet [20] model proposed by Seq2SQL further
decomposes the NL2SQL task into six subtasks: Select-Column, Select-Aggregation, Where-
Number, Where-Column, Where-Operator, and Where-Value. This way is equivalent to
adding more substantial syntax constraints to the output of the model. The later SQLova [8]
and X-SQL [6] models also use the decoding method of the SQLNet and have achieved better
performance than human beings on the WikiSQL dataset. These works prove that it is
imperative and necessary to consider SQL syntax rules in decoding.

However, this method of introducing syntax rules by decomposing NL2SQL tasks into
different subtasks will inevitably lead to the independence of each subtask, which makes it
difficult for the model to learn the dependency relationship between different subtasks. In the
face of this problem, the existing advanced models will determine the prediction order of each
subtask according to the dependency relationship between subtasks. First, predict the depen-
dent subtask, and then use the result as the input of the module that depends on the subtask.
Although it can help the model learn the dependencies among tasks to a certain extent, it needs
to design the prediction order artificially. The ability to capture the dependencies among
subtasks is limited. In addition, the X-SQL model uses a fully connected neural network and
attention mechanism to replace LSTM as the decoder of the model, which can effectively
reduce the amount of calculation and improve the effectiveness of the model. X-SQL shows

15207Multimedia Tools and Applications (2022) 81:15205–15217

that the WikiSQL task does not require an overly complicated decoder. The NL2SQL task is
decomposed into six subtasks, and then a select decoder is designed for each subtask, which
will inevitably lead to the complexity of the model structure.

In terms of input, TypeSQL helps the model understand natural language input by adding
additional type information to the words in the input natural language questions [21]. Guo
automatically labels the natural language input and columns using the string matching method
[5]. The way of Guo was also equivalent to adding some prior knowledge to the model.
Although it can improve the performance of the model, it needs additional human work. The
work of Xu [6] and Hwang [8] shows that the more powerful pre-training word vector [10, 14]
can effectively improve the performance of the model. Bogin’s work shows that a graph neural
network is very suitable for embedding table schema. Nodes in graph neural networks can be
used to represent tables and columns, and edges can be used to describe the relationship
between tables and columns [1, 2]. However, graph neural network is mainly used in NL2SQL
tasks involving multi tables and complex queries.

3 Methodology

The model of this paper refers to the works of Guo [5]. Guo designed a dedicated decoder for
each subtask, illustrated in Fig. 2(a). Different from the works of Guo, we design a shared
decoder for subtasks and then use different output layers to predict the output of each subtask,
illustrated in Fig. 2(b). The shared decoder makes the model easier for the model to capture the
association between the subtasks from the natural language. Simultaneously, the model can
use the dependence between the various subtasks to improve the generalization ability.

3.1 Encoder layer

This paper uses BERT as the encoder. The input of the encoder consists of three parts:

Natural language embedding: Use the vocabulary provided by BERT to get the one-hot
code of each input word. Then do the dot product with a trainable matrix W to get the
initial representation qi of each word.
Position embedding: Since BERT is an attention-based model, it cannot capture the
positional relationship between words like LSTM. So BERT needs position embedding of
each input word so that the model can learn position information between words.

BERT

Select-Col Select-Agg Where-Val

BERT

Decoder1 Decoder2 Decoder6

Select-Col Select-Agg Where-Val

Decoder

(a) (b)

Fig. 2 (a) Independent decoder; (b) Shared decoder

15208 Multimedia Tools and Applications (2022) 81:15205–15217

Segment embedding: The input of the encoder should include the table mode and the
natural language question. For the model to distinguish whether the input comes from the
question sentence or the table mode, each word adds a segment embedding.

3.2 Decoder layer

As shown in Fig. 3, h[CLS], h1; h2; h3;⋯; h SEP½ �; hC11 ; hC12 , and hC21 is the output of the

encoder. The representation of the question is hi, the representation of the column is hCij ,

and the dimension is d. The goal of the decoder layer is to acquire two parts of the input of the
NL2SQL task: natural language query and database table schema representation. This paper is
using LSTM as the decoder.

LSTM is an improved version of the recurrent neural network (RNN) network, which was
first proposed by Hochreiter [7]. It can fully capture the sequence information of sequence data
without causing the problem of gradient disappearance, so this article uses it to learn the
sequence information between question words. The structure of LSTM can be formalized
using Formulas (1) through (6):

f t ¼ σ xt ∙ω f
xh þ ht−1∙ω f

hh
0 þ bf

h

� �
ð1Þ

re
d

o
c

n
E

W-NUM W-VALW-OPS-AGG W-COLS-COL

t
u

pt
u

O

Word
Embedding

Segment
Embedding

Position
Embedding Attention

r
e

d
o

ce
D

Fig. 3 Overview of our model. Encoder encodes natural language and column into dense vectors. Decoder
parses the output of the encoder into two parts of the input of the NL2SQL task: natural language query Wemb_n
and database table schema representation rci . Output layer generates the final SQL according to Wemb_n and rci

15209Multimedia Tools and Applications (2022) 81:15205–15217

it ¼ σ xt ∙ωi
xh þ ht−1∙ωc

hh
0 þ bih

� �
ð2Þ

c
0
t ¼ tanh xt ∙ωc

xh þ ht−1∙ωc
hh

0 þ bch
� �

ð3Þ

ct ¼ it⊗c
0
t þ f t⊗ct−1 ð4Þ

ot ¼ σ xt ∙ωo
xh þ ht−1∙ωo

hh
0 þ boh

� �
ð5Þ

ht ¼ ot⊗tanh ctð Þ ð6Þ
Where σ indicates sigmoid activation function, and tanh indicates hyperbolic tangent activa-
tion function. ft, it, ot represent the three states of the network at timestep t, which are called
forget gate, input gate, and output gate. ω and b represent the learnable weight parameters and
bias parameters of the network. c

0
t combines the three types of information ft, it and ot, and

passes down with timestep t, which represents the information flowing. ht represents the
hidden layer feature at timestep t of the network, and also represents the output value at that
moment.

3.3 Output layer

The output layer generates the final SQL according to the Wemb _ n and rCi . Like Xu [6] and
Hwang [8], the NL2SQL task is decoupled into six subtasks, and each subtask predicts a part
of the SQL statement. Unlike them, the six subtasks in our model use the same natural
language query and database table schema representation, which can better learn the depen-
dencies between subtasks.

Select-Column task (S-COL) predicts the column of the SELECT clause, and Select-
Aggregation task (S-AGG) predicts the aggregate function of the column. The probability of
S-COL is computed as

PS−COL Cið Þ ¼ Softmax WS−COL rCi ;Wemb n½ �ð Þ� � ð7Þ
Where WS − COL ∈ R1 × d. Before the Select-Aggregate task(S-AGG), the context semantic
vector is re-weighted according to the result of S-COL so that the information related to the S-
AGG task has more weight. When S-COL selects column i,

cWemb n1 ¼ σ WAi Wemb n; rCi½ �� �
∙Wemb n ð8Þ

Where WAi∈Rd�2d , the probability of aggregator is computed as

PS−AGG A jjCi
� � ¼ Softmax

�
WS−AGG : j½ � rCi ;cWemb n1

h i� �
ð9Þ

Where WS − AGG ∈ R6 × d with six being the number of aggregators.

15210 Multimedia Tools and Applications (2022) 81:15205–15217

The remaining four tasks W-NUM, W-COL, W-OP, and W-VAL together determine the
WHERE clause. The Where-Number task (W-NUM) predicts the number of columns in the
WHERE clause. This paper assumes that the WHERE clause contains only four columns at
most. So W-NUM is a five-category task.

PW−NUM nð Þ ¼ Softmax WW−NUMWemb n
� �

; n ¼ 1; 2; 3; 4 ð10Þ
Where WW − NUM ∈ R4 × d. The Where-Column (W-COL) task predicts the columns of the
WHERE clause. The probability of W-COL is computed as:

PW−COL Cið Þ ¼ Softmax WW−COL rCi ;Wemb n½ �ð Þ� � ð11Þ
WhereWW − COL ∈ R1 × d. According to the result of W-NUM, the top-n probability columns
are selected as the columns of WHERE clause. Before the Where-Operator task(W-OP), the
context semantic vector is re-weighted according to the result of W-COL, so that the
information related to W-OP has more weight. Assume W-COL selects column i

cWemb n2 ¼ σ WOi Wemb n; rCi½ �� �
∙Wemb n ð12Þ

Where WOi∈Rd�2d . The probability of W-OP is computed as

PW−OP OjjCi
� � ¼ Softmax WW−OP : j½ � rCi ;cWemb n2

h i� �� �
ð13Þ

Where WW − OP ∈ R3 × d with four being the number of operators.
The Where-Value (W-VAL) predicted the value of the WHERE clause. In this paper, the

W-VAL is predicting a subset of questions, which is simplified to predict the starting position
of the subset:

PW−VAL
start q jjCi

� �
¼ Softmax g Ustarthq j

þ Vstart rCi ;cWemb n2
h i� �� �� �

ð14Þ

And the end position

PW−VAL
end q jjCi

� �
¼ Softmax g Uendhq j

þ Vend rCi ;cWemb n2
h i� �� �� ��

ð15Þ

Where g(x) = Wx + b and Ustart 、 Vstart 、 Uend 、 Vend ∈ Rm × d.

3.4 Reweight loss

The loss function of multi-task learning is the weighted sum of the loss function of each task

L ¼ ∑
n

i¼1
αiLi ð16Þ

Where Lirepresents the loss of the i-th subtask, and αi represents the weight of the subtask.
Generally, the importance of all subtasks is the same, so α = 1. This average weighting method
has the advantages of simple structure, easy implementation, and low computation. But in this
task, because the average length of the SELECT clause and WHERE clause is different, the
training difficulty is different. However, the average weighting method always keeps the same
weight for various subtasks in the training phase, so the average weighting method cannot
balance the training difficulty of the two clauses. Therefore, we hope that the weight of

15211Multimedia Tools and Applications (2022) 81:15205–15217

subtasks is no longer equal, to help the network maintain the balance of contribution of each
subtask, to ensure the quality of the final results. In a word, this paper proposes the following
weighting method

L=6 ¼ 0:1292* Lsc þ Lsað Þ þ 0:1854* Lwn þ Lwc þ Lwo þ Lwvð Þ ð17Þ
The coefficients in this formula are based on the statistics of theWikiSQL dataset. Specifically, in
the training set of the WikiSQL, the average length of the WHERE clause is 1.3615, and the
average length of the SELECT clause is 1. So the weight vector of subtask is a = [1, 1,
1.3615,1.3615,1.3615,1.3615,1.3615], and then normalize it to get the final lossweight of subtask.

4 Experiment

4.1 Dataset

This paper uses the WikiSQL [22] dataset to train and test the model, which is currently the
most extensive labeled NL2SQL task dataset. Like the existing method, we use the default
split method of the WikiSQL to split the dataset into the train set, validation set, and test set.
The training set contains 56,356 pieces of data, the validation set contains 8422 pieces of data,
and the test set contains 15,879 pieces of data. In order to ensure the validity of the test set, the
test set of the WikiSQL does not include any tables that have appeared in the training set and
validation set.

4.2 Evaluation

The logical form accuracy Acclf is used as an optimization goal during the training period.

Acclf ¼ Nlf

N
ð18Þ

Where Nlf is the number of queries has exact string match with the ground truth query used to
collect the para-phrase.

Execution accuracy Accex is also a common index to evaluate the performance of the
NL2SQL model.

Accex ¼ Nex

N
ð19Þ

Where Nex is the number of queries that, when executed, result in the correct result.
For S-COL, S-AGG, W-NUM,W-OP, and W-VAL, the cross-entropy loss function is used

as the loss function. The W-COL task uses KL divergence as the loss function. Because W-
COL may contain multiple columns and the order of the columns will not affect the accuracy
of the results, but the cross-entropy loss function is sensitive to the order.

4.3 Optimization

The optimization used in this paper is Adaptive Moment Estimation (Adam). This method can
be seen as a combination of the momentum method and RMSprop. It not only uses momentum

15212 Multimedia Tools and Applications (2022) 81:15205–15217

as the parameter update direction but also adjusts the learning rate adaptively. The parameter
update of the Adam is computed as

Δθt ¼ −
αffiffiffiffiffiffiffiffiffiffiffiffiffibGt þ ε

q bMt ð20Þ

Where bMt ¼ Mt
1−βt

1
, bGt ¼ Gt

1−βt
2
, Mt = β1Mt − 1 + (1 − β1)gt, and Gt = β2Gt − 1 + (1 − β2)gt ·

gt. gt is the gradient of parameter θ at the current time step t. β1 and β2 are the attenuation rates
of the two moving averages, and are usually taken as β1 = 0.9, β2 = 0.99.

4.4 Experimental setup

This paper uses BERT-base as the encoder. In particular, we use the trained BERT-base model
parameters submitted by Guo [5] and others to initialize our BERT-base model. The hidden
layer dimension of LSTMn are 300 dimensions, and the hidden layer dimension of LSTMh are
100 dimensions. Use the Adam algorithm to train the model. We set the batch size to 32 and
the epochs to 200. Using BERT fine-tune, the learning rate is 10−5, and the learning rate of the
acquisition layer and the output layer is 0.0005. Use drop-out regularization and set the drop-
out value to 0.2.

The experiment in this paper is based onWindows 10 Operation System and RTX3090; the
programming language is python3.7, and the deep learning framework used is Pytorch1.4.

4.5 Result

4.5.1 Test accuracy

We compared our method with the advanced method of NL2SQL based on the task
decoupling method on the WikiSQL dataset. These works include Seq2SQL [22],
SQLNet [20], TypeSQL [21], SQLova [8], X-SQL [6], HydraNet [13] and Guo [5].
On the test set without executive guidance (EG), the execution accuracy of the
method based on BERT-base in this paper is better than other methods, including
SQLova using BERT-Large and X-SQL model based on MT-DNN. The pre-training
models BERT-Large and MT-DNN are better than that of BERT-base, but even
though the performance of the pre-training model has disadvantages, our model is
very competitive (Table 1).

In order to understand and analyze the performance of the model in more detail, Table 2
shows the test accuracy of each model on the six subtasks. Table 2 shows that the test accuracy
of the subtasks of the model in this paper is not outstanding compared with the existing
models, which means that having all subtasks share one encoder will weaken the expressive
ability of the model.

Since subtasks with incorrect predictions will appear in different SQL query predic-
tions, the accuracy of overall test execution is lower than that of subtasks, and the greater
this difference between the two execution accuracy, the smaller correlation between the
various subtasks. The experimental results show that the subtasks test execution accuracy
of the model in this paper is not outstanding compared with the existing model, but the
overall test accuracy is better than the existing models, which proves that our model has

15213Multimedia Tools and Applications (2022) 81:15205–15217

better performance in learning the dependence between subtasks. Further, this result
shows that the idea of sharing decoders proposed in this paper is effective, and it is
helpful for the model to learn the dependencies between different subtasks.

In addition, for the result with re-weight loss, the test accuracy of the four subtasks related
to the WHERE clause has been improved. The overall test execution accuracy and logical
form accuracy have also been improved. The experimental result shows that the re-weighting
loss proposed in this paper is useful and can help the model effectively balance the complexity
of the WHERE clause and the SELECT clause, thereby improving the performance of the
model.

The most important thing is that the value of this paper is more about the idea of letting
different subtasks share the same decoder and the application of re-weighting losses, not just
higher accuracy.

4.5.2 Train time

This paper allows six subtasks to share the same decoder based on the sharing mechanism, so
the decoder layer’s complexity is effectively reduced. In order to measure the influence of the
shared decoder on the complexity of the model decoder, we compared the training time of the
model with and without the shared decoder. Except for whether to share decoder, the
hyperparameters and experimental settings are the same. We take the training time of the first
20 rounds, repeat ten times, and take the average of ten experiments for comparison. The result
is shown in Fig.4.

Table 1 The accuracy of models on the verification/test set

Model Dev Test

AccLF AccEX AccLF AccEX

Seq2SQL 49.5 60.8 48.3 59.4
SQLNet 63.2 69.8 61.3 68.0
TypeSQL 68.0 74.5 66.7 73.5
SQLova 81.6 87.2 80.7 86.2
X-SQL 83.8 89.5 83.3 88.7
HydraNet 83.6 89.1 83.8 89.2
Guo 84.3 90.1 83.7 89.2
This work 84.4 90.1 83.6 89.5
This work-RLC 84.3 90.4 83.9 89.7

Table 2 Test accuracy of the subtasks

Model Scol Sagg Wno Wcol Wop Wval

SQLova 96.8 90.6 98.5 94.3 97.3 95.4
X-SQL 97.2 91.1 98.6 95.4 97.6 96.6
HydraNet 97.6 91.4 98.4 95.3 97.4 96.1
Guo 97.4 90.0 99.1 97.9 98.1 97.6
This work 96.7 90.5 98.1 96.6 96.9 96.3
This work-RLC 96.7 90.5 98.2 96.8 97.2 96.6

15214 Multimedia Tools and Applications (2022) 81:15205–15217

Average the training time of the first 20 rounds. The training time of the model
with the shared decoder is 1398.32 s, the training time of the model without the
shared decoder is 1625.69 s, and the training time is shortened by 13.99%. The
experimental result concluded that the sharing mechanism effectively reduces the
complexity of the model.

4.5.3 Case analyse

In this section, we use the model proposed by Guo [5] as the baseline for case analysis. We
found a total of 198 cases in which the baseline prediction was incorrect, and this paper
prediction was correct on the WikiSQL testset. The number of mistakes on each subtask is
shown in Table 3:

Table 4 shows three NL2SQL cases in which the baseline prediction was incorrect, but this
paper prediction was correct on the WikiSQL test set. In the first example, the baseline
incorrectly predicted the S-AGG result as Count. The baseline model obviously failed to
understand the semantics of the natural language. It is found that in the second example, the
W-VAL prediction error of the baseline is caused by the fact that when “something in
something” appears in the query, the where clause is usually affected, resulting in overfitting
of the baseline. In the Third example, since there is no explicit character in the header “%” in
the data table, the model must understand natural language to predict accurate SQL statements.
In summary, these examples show that the work of this paper can improve the model’s ability
to understand natural language, better capture the dependencies between subtasks, and prevent
the model from overfitting.

Fig. 4 Comparison of training time between shared decoder model and without-shared decoder model

Table 3 The number of mistakes on each subtask

Scol Sagg Wno Wcol Wop Wval Total

Num 8 30 2 41 3 39 198

15215Multimedia Tools and Applications (2022) 81:15205–15217

5 Conclusion and future work

This paper innovatively regards the Text-to-SQL task on the WikiSQL dataset as a multi-task
learning task. Based on the sharing mechanism of multi-task learning, this paper simplifies the
decoder layer of the existing method, which improves the efficiency of model training and
enhances the model’s ability to capture dependencies between different subtasks, thereby
improving improved model performance. In order to solve the problem of varying complexity
between the SELECT clause and the WHERE clause of the SQL statement involved in the
WikiSQL dataset, this paper proposes a method of re-weighting the loss, which further
improves the performance of the model.

However, there are still some problems with this paper. The method of sharing the decoder
weakens the expressive ability of the model. At the same time, the technique of re-weighting
the loss proposed in this paper is relatively simple and static. So in the future, we will try to
improve the expressive ability of the model and find a more effective way to weight the loss.

References

1. Bogin B, Berant J, Gardner M (2019) Representing Schema Structure with Graph Neural Networks for
Text-to-SQL Parsing[C]//Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 4560–4565

2. Bogin B, Gardner M, Berant J (2019) Global Reasoning over Database Structures for Text-to-SQL
Parsing[C]. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 3650–
3655.

3. Dong L, Lapata M (2016) Language to Logical Form with Neural Attention[C]//Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 33–43.

4. Dong L, Lapata M (2018) Coarse-to-Fine Decoding for Neural Semantic Parsing[C]//Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). : 731–
742.

5. Guo T and Gao H (2019) Content Enhanced BERT-based Text-to-SQL Generation. arXiv preprint arXiv:
1910.07179

6. He P, Mao Y, Chakrabarti K, et al. (2019) X-SQL: reinforce schema representation with context[J]. arXiv e-
prints, arXiv: 1908.08113

7. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

Table 4 Cases

Type Description

NL What is the number of s sikh where 955 is the number of buddhists?
Ground Select s Sikh Where Buddhist=995
Baseline Select Count(s Sikh) Where Buddhist=995
This paper Select s Sikh Where Buddhist=995
NL If % lunsford is 51.82% what is the % mcconnell in Letcher?
Ground Select % McConnell Where % Lunsford=51.82%
Baseline Select % McConnell Where % Lunsford=51.82% and County=Letcher
This paper Select % McConnell Where % Lunsford=51.82%
NL The man who received 87,676 votes in Queens won what percentage of the total for the election?
Ground Select % Where Queens=87,676
Baseline Select Total Where Queens=87,676
This paper Select % Where Queens=87,676

15216 Multimedia Tools and Applications (2022) 81:15205–15217

8. Hwang W et al. (2019) A comprehensive exploration on wikisql with table-aware word contextualization.
arXiv preprint arXiv:1902.01069,

9. Jianqiang MA et al. (2020) Mention Extraction and Linking for SQL Query Generation. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 6936–6942.

10. Kenton JDMWC, Toutanova LK (2019) BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding[C]//Proceedings of NAACL-HLT. 4171–4186.

11. Krishnamurthy J, Dasigi P, and Gardner M (2017) Neural semantic parsing with type constraints for semi-
structured tables. in Proceedings of the 2017 Conf Empir Method Nat Language Process .

12. Liu X, He P, Chen W, et al. (2019) Multi-Task Deep Neural Networks for Natural Language
Understanding[C]//Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. : 4487–4496.

13. Lyu Q et al. (2020) Hybrid ranking network for text-to-sql. arXiv preprint arXiv:2008.04759
14. Pennington J, Socher R and Manning CD (2014) Glove: Global vectors for word representation. in

Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)
15. Pires T, Schlinger E, Garrette D (2019) How Multilingual is Multilingual BERT?[C]//Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics. : 4996–5001.
16. Popescu A-M, Etzioni O, and Kautz H (2003) Towards a theory of natural language interfaces to databases.

in Proceedings of the 8th international conference on Intelligent user interfaces
17. Qi K, et al. (2020) Multi-task MR Imaging with Iterative Teacher Forcing and Re-weighted Deep Learning.

arXiv preprint arXiv:2011.13614
18. Sundermeyer M, Schlüter R and Ney H (2012) LSTM neural networks for language modeling. in Thirteenth

annual conference of the international speech communication association
19. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. Adv Neural Inf

Proces Syst 27:3104–3112
20. Xu X, Liu C, Song D (2018) SQLNet: Generating Structured Queries From Natural Language Without

Reinforcement Learning
21. Yu T et al (2018) TypeSQL: Knowledge-based type-aware neural text-to-SQL generation. In: 2018

Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL HLT 2018. Assoc Comput Linguistics (ACL):588–594

22. Zhong V, Xiong C, Socher R (2018) Seq2SQL: generating structured queries from natural language using
reinforcement learning[J]

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

15217Multimedia Tools and Applications (2022) 81:15205–15217

	Enhance text-to-SQL model performance with information sharing and reweight loss
	Abstract
	Introduction
	Related work
	Methodology
	Encoder layer
	Decoder layer
	Output layer
	Reweight loss

	Experiment
	Dataset
	Evaluation
	Optimization
	Experimental setup
	Result
	Test accuracy
	Train time
	Case analyse

	Conclusion and future work
	References

