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ABSTRACT

Graph neural networks (GNNs) have been extensively studied for prediction tasks
on graphs. Most GNNs assume local homophily, i.e., strong similarities in local
neighborhoods. This assumption limits the generalizability of GNNs, which has
been demonstrated by recent work on disassortative graphs with weak local ho-
mophily. In this paper, we argue that GNN’s feature aggregation scheme can be
made flexible and adaptive to data without the assumption of local homophily. To
demonstrate, we propose a GNN model with a global self-attention mechanism
defined using learnable spectral filters, which can attend to any nodes, regardless
of distance. We evaluated the proposed model on node classification tasks over
seven benchmark datasets. The proposed model has been shown to generalize well
to both assortative and disassortative graphs. Further, it outperforms all state-of-
the-art baselines on disassortative graphs and performs comparably with them on
assortative graphs.

1 INTRODUCTION

Graph neural networks (GNNs) have recently demonstrated great power in graph-related learning
tasks, such as node classification (Kipf & Welling, 2017), link prediction (Zhang & Chen, 2018) and
graph classification (Lee et al., 2018). Most GNNs follow a message-passing architecture where,
in each GNN layer, a node aggregates information from its direct neighbors indifferently. In this
architecture, information from long-distance nodes is propagated and aggregated by stacking multiple
GNN layers together (Kipf & Welling, 2017; Velickovic et al., 2018; Defferrard et al., 2016). However,
this architecture underlies the assumption of local homophily, i.e. proximity of similar nodes. While
this assumption seems reasonable and helps to achieve good prediction results on graphs with strong
local homophily, such as citation networks and community networks (Pei et al., 2020), it limits GNNs’
generalizability. Particularly, determining whether a graph has strong local homophily or not is a
challenge by itself. Furthermore, strong and weak local homophily can both exhibit in different parts
of a graph, which makes a learning task more challenging.

Pei et al. (2020) proposed a metric to measure local node homophily based on how many neighbors
of a node are from the same class. Using this metric, they categorized graphs as assortative (strong
local homophily) or disassortative (weak local homophily), and showed that classical GNNs such as
GCN (Kipf & Welling, 2017) and GAT (Velickovic et al., 2018) perform poorly on disassortative
graphs. Liu et al. (2020) further showed that GCN and GAT are outperformed by a simple multi-
layer perceptron (MLP) in node classification tasks on disassortative graphs. This is because the
naive local aggregation of homophilic models brings in more noise than useful information for such
graphs. These findings indicate that these GNN models perform sub-optimally when the fundamental
assumption of local homophily does not hold.

Based on the above observation, we argue that a well-generalized GNN should perform well on
graphs, regardless of their local homophily. Furthermore, since a real-world graph can exhibit both
strong and weak homophily in different node neighborhoods, a powerful GNN model should be
able to aggregate node features using different strategies accordingly. For instance, in disassortative
graphs where a node shares no similarity with any of its direct neighbors, such a GNN model should
be able to ignore direct neighbors and reach farther to find similar nodes, or at least, resort to the
node’s attributes to make a prediction. Since the validity of the assumption about local homophily is
often unknown, such aggregation strategies should be learned from data rather than decided upfront.
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To circumvent this issue, in this paper, we propose a novel GNN model with global self-attention
mechanism, called GNAN. Most existing attention-based aggregation architectures perform self-
attention to the local neighborhood of a node (Velickovic et al., 2018), which may add local noises in
aggregation. Unlike these works, we aim to design an aggregation method that can gather informative
features from both close and far-distant nodes. To achieve this, we employ graph wavelets under a
relaxed condition of localization, which enables us to learn attention weights for nodes in the spectral
domain. In doing so, the model can effectively capture not only local information but also global
structure into node representations.

To further improve the generalizability of our model, instead of using predefined spectral kernels, we
propose to use multi-layer perceptrons (MLP) to learn the desired spectral filters without limiting
their shapes. Existing works on graph wavelet transform choose wavelet filters heuristically, such
as heat kernel, wave kernel and personalized page rank kernel (Klicpera et al., 2019b; Xu et al.,
2019; Klicpera et al., 2019a). They are mostly low-pass filters, which means that these models
implicitly treat high-frequency components as “noises” and have them discarded (Shuman et al., 2013;
Hammond et al., 2011; Chang et al., 2020). However, this may hinder the generalizability of models
since high-frequency components can carry meaningful information about local discontinuities, as
analyzed in (Shuman et al., 2013). Our model overcomes these limitations by incorporating fully
learnable spectral filters into the proposed global self-attention mechanism.

From a computational perspective, learning global self-attention may impose high computational
overhead, particularly when graphs are large. We alleviate this problem from two aspects. First,
we sparsify nodes according to their wavelet coefficients, which enables attention weights to be
distributed across the graph sparsely. Second, we observed that spectral filters learned by different
MLPs tend to converge to be of similar shapes. Thus, we use a single MLP to reduce redundancy
among filters, where each dimension in the output corresponds to one learnable spectral filter. In
addition to these, following (Xu et al., 2019; Klicpera et al., 2019b), we use a fast algorithm to
efficiently approximate graph wavelet transform, which has computational complexity O(p× |E|),
where p is the order of Chebyshev polynomials and |E| is the number of edges in a graph.

To summarize, the main contributions of this work are as follows:

1. We propose a generalized GNN model which performs well on both assortative and disas-
sortative graphs, regardless of local node homophily.

2. We exhibit that GNN’s aggregation strategy can be trained via a fully learnable spectral
filter, thereby enabling feature aggregation from both close and far nodes.

3. We show that, unlike commonly understood, higher-frequency on disassortative graphs
provides meaningful information that helps improving prediction performance.

We conduct extensive experiments to compare GNAN with well-known baselines on node classifica-
tion tasks. The experimental results show that GNAN significantly outperforms the state-of-the-art
methods on disassortative graphs where local node homophily is weak, and performs comparably
with the state-of-the-art methods on assortative graphs where local node homophily is strong. This
empirically verifies that GNAN is a general model for learning on different types of graphs.

2 PRELIMINARIES

Let G = (V,E,A,x) be an undirected graph with N nodes, where V , E, and A are the node set,
edge set, and adjacency matrix of G, respectively, and x : V 7→ Rm is a graph signal function that
associates each node with a feature vector. The normalized Laplacian matrix of G is defined as
L = I −D−1/2AD−1/2, whereD ∈ RN×N is the diagonal degree matrix of G. In spectral graph
theory, the eigenvalues Λ = diag(λ1, ..., λN ) and eigenvectors U of L = UΛUH are known as the
graph’s spectrum and spectral basis, respectively, where UH is the Hermitian transpose of U . The
graph Fourier transform of x is x̂ = UHx and its inverse is x = Ux̂.

The spectrum and spectral basis carry important information on the connectivity of a graph (Shuman
et al., 2013). Intuitively, lower frequencies correspond to global and smooth information on the graph,
while higher frequencies correspond to local information, discontinuities and possible noise (Shuman
et al., 2013). One can apply a spectral filter g as in Equation 1 and use graph Fourier transform
to manipulate signals on a graph in various ways, such as smoothing and denoising (Schaub &
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Figure 1: Illustration of a spectral node attention layer on a 3-hop ego network of the central node v
from the CITESEER dataset. Node classes are indicated by shape and color. Passing the graph through
two learned spectral filters (adaptive spectral filters) place attention scores on nodes, including node
v itself. Nodes with positive attention scores are presented in color. Node features are aggregated for
node v according to attention scores (aggregation via global attention). The low-pass filter attend
to local neighbors (filter 1), while the high-pass filter skips the first hop and attend the nodes in the
second hop (filter K). The resulting embeddings from multiple heads are then concatenated before
being sent to the next layer (multi-head concatenation). Note that we have visualized learned filters
from experiments.

Segarra, 2018), abnormally detection (Miller et al., 2011) and clustering (Wai et al., 2018). Spectral
convolutions on graphs is defined as the multiplication of a signal x with a filter g(Λ) in the Fourier
domain, i.e.

g(L)x = g(UΛUH)x = Ug(Λ)UHx = Ug(Λ)x̂. (1)
When a spectral filter is parameterized by a scale factor, which controls the radius of neighbourhood
aggregation, Equation 1 is also known as the Spectral Graph Wavelet Transform (SGWT) (Hammond
et al., 2011; Shuman et al., 2013). For example, Xu et al. (2019) uses a small scale parameter s < 2
for a heat kernel, g(sλ) = e−λs, to localize the wavelet at a node.

3 PROPOSED APPROACH

Graph neural networks (GNNs) learn lower-dimensional embeddings of nodes from graph structured
data. In general, given a node, GNNs iteratively aggregate information from its neighbor nodes, and
then combine the aggregated information with its own information. An embedding of node v at the
kth layer of GNN is typically formulated as

mv = aggregate({h(k−1)
u |u ∈ Nv})

h(k)
v = combine(h(k−1)

v ,mv),

whereNv is the set of neighbor nodes of node v,mv is the aggregated information from the neighbors,
and h(k)

v is the embedding of the node v at the kth layer (h(0)
v = xv). The embedding hnv of the node

v at the final layer is then used for some prediction tasks. In most GNNs, Nv is restricted to a set of
one-hop neighbors of node v. Therefore, one needs to stack multiple aggregation layers in order to
collect the information from more than one-hop neighborhood within this architecture.

Adaptive spectral filters. Instead of stacking multiple aggregation layers, we introduce a spectral
attention layer that rewires a graph based on spectral graph wavelets. A spectral graph wavelet ψv
at node v is a modulation in the spectral domain of signals centered around the node v, given by an
N -dimensional vector

ψv = Ug(Λ)UHδv, (2)
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where g(·) is a spectral filter and δv is a one-hot vector for node v.

The common choice of a spectral filter is heat kernel. A wavelet coefficient ψvu computed from
a heat kernel can be interpreted as the amount of energy that node v has received from node u in
its local neighborhood. In this work, instead of using pre-defined localized kernels, we use multi-
layer perceptrons (MLP) to learn spectral filters. With learnable spectral kernels, we obtain wavelet
coefficients

ψv = Udiag(MLP(Λ))UHδv. (3)

Similar to that of a heat kernel, the wavelet coefficient with a learnable spectral filter ψvu can be
understood as the amount of energy that is distributed from node v to node u, under the conditions
regulated by the spectral filter. Note that we use the terminology wavelet and spectral filter inter-
changeably as we have relaxed the wavelet definition from (Hammond et al., 2011) so that learnable
spectral filters in our work are not necessarily localized in the spectral and spatial domains. Equation 3
requires the eigen-decomposition of a Laplacian matrix, which is expensive and infeasible for large
graphs. We follow Xu et al. (2019); Klicpera et al. (2019b) to approximate graph wavelet transform
using Chebyshev polynomials (Shuman et al., 2013) (see Appendix A for details).

Global self-attention. Unlike the previous work (Xu et al., 2019) where wavelet coefficients are
directly used to compute node embeddings, we normalize wavelet coefficients through a softmax
layer

av = softmax(ψv),

where av ∈ RN is an attention weight vector. With attention weights, an update layer is then
formalized as

h(k)
v = σ

(
N∑
u=1

avuh
(k−1)
u W (k)

)
, (4)

where W (k) is a weight matrix shared across all nodes in the kth layer and σ is ELU nonlinear
activation. Unlike heat kernel, the wavelet coefficient with a learnable spectral kernel is not localized.
Hence, our work can actively aggregate information from far-distant nodes. Note that the update layer
is not divided into aggregation and combine steps in our work. Instead, we compute the attention avv
directly from a spectral filter.

Sparsified node attentions. With predefined localized spectral filters such as a heat kernel, most of
wavelet coefficients are zero due to their locality. In our work, spectral filters are fully learned from
data, and consequently attention weights obtained from learnable spectral filters do not impose any
sparsity. This means that to perform an aggregation operation we need to retrieve all possible nodes
in a graph, which is time consuming with large graphs. From our experiments, we observe that most
of attention weights are negligible after softmax. Thus, we consider two sparsification techniques:

1. Discard the entries of wavelet bases that are below a threshold t, i.e.

ψ̄vu =

{
ψvu if ψvu > t

−∞ otherwise.
(5)

The threshold t can be easily applied on all entries of wavelet bases. However, it offers
little guarantee on attention sparsity since attention weights may vary, depending on the
learning process of spectral filters and the characteristics of different datasets, as will be
further discussed in Section 4.2.

2. Keep only the largest k entries of wavelet bases for each node, i.e.

ψ̄vu =

{
ψvu if ψvu ∈ topK({ψv0, ..., ψvN}, k)

−∞ otherwise,
(6)

where topK is a partial sorting function that returns the largest k entries from a set of wavelet
bases {ψv0, ..., ψvN}. This technique guarantees attention sparsity such that the embedding
of each node can be aggregated from at most k other nodes. However, it takes more
computational overhead to sort entries since topK has a time complexity of O(N +k logN).

4



Under review as a conference paper at ICLR 2021

Table 1: Dataset statistics. We categorize the datasets into assortative and disassortative based on
their homophily (β).

Category Dataset #Nodes #Edges #Classes #Features Density β

Assortative
CORA 2,708 5,429 7 1,433 1.44e-3 0.83
CITESEER 3,327 4,732 6 3,703 8.23e-4 0.71
PUBMED 19,717 44,338 3 500 2.28e-4 0.79

Disassortative

CORNELL 183 298 5 1,703 1.68e-2 0.11
TEXAS 183 325 5 1,703 1.77e-2 0.06
WISCONSIN 251 515 5 1,703 1.49e-2 0.16
CHAMELEON 2277 36101 5 2,325 1.21e-2 0.25

The resulting ψ̄ from either of the above techniques is then fed into the softmax layer to compute
attention weights. The experiments for comparing these techniques will be discussed in Section 4.2.

We adopt multi-head attention to model multiple spectral filters. Each attention head aggregates node
information with a different spectral filter, and the aggregated embedding is concatenated before being
sent to the next layer. We can allocate an independent MLP for each of attention heads; however, we
found independent MLPs tend to learn spectral filters of similar shapes. Hence, we adopt a single
MLP: RN → RN×M , where M is the number of attention heads, and each column of the output
corresponds to one adaptive spectral filter.

We name the multi-head spectral attention architecture as a global node attention network (GNAN).
The design of GNAN is easily generalizable, and many existing GNNs can be expressed as special
cases of GNAN (see Appendix D). Figure 1 illustrates how GNAN works with two attention heads
learned from the CITESEER dataset. As shown in the illustration, the MLP learns adaptive filters such
as low-band pass and high-band pass filters. A low-band pass filter assigns high attention weights in
local neighborhoods, while a high-band pass filter assigns high attention weights on far-distant nodes,
which cannot be captured by a one-hop aggregation scheme.

4 EXPERIMENTS

To evaluate the performance of our proposed model, we conduct experiments on node classification
tasks with assortative graph datasets, where the labels of nodes exhibit strong homophily, and
disassortative graph datasets, where the local homophily is weak and labels of nodes represent their
structural roles. To quantify the assortativeness of graphs, we use the metric β introduced by Pei et al.
(2020),

β =
1

|V |
∑
v∈V

βv and βv =
|{u ∈ Nv|`(u) = `(v)}|

|Nv|
, (7)

where `(v) refers to the label of node v. β measures the homophily of a graph, and βv measures the
homophily of node v in the graph. A graph has strong local homophily if β is large and vice versa.

4.1 EXPERIMENTAL SETUP

Baseline methods. We evaluate two variants of GNAN which only differ in the method used
for sparsification: one adopts Equation 5 called GNAN-T, and the other adopts Equation 6 called
GNAN-K. We compare both variants against 11 benchmark methods: vanilla GCN (Kipf & Welling,
2017) and its simplified version SGC (Wu et al., 2019); two spectral methods, one using the Cheby-
shev polynomial spectral filters (Defferrard et al., 2016) and the other using the auto-regressive
moving average (ARMA) filters (Bianchi et al., 2019); the graph attention model GAT (Velickovic
et al., 2018); APPNP which allows adaptive neighbourhood aggregation using personalized page
rank (Klicpera et al., 2019a); three sampling-based approaches, GraphSage (Hamilton et al., 2017),
FastGCN Chen et al. (2018) and ASGCN (Huang et al., 2018); and Geom-GCN which targets
prediction on disassortative graphs (Pei et al., 2020). We also include MLP in the baselines since it
performs better than many GNN-based methods on disassortative graphs (Liu et al., 2020).
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Table 2: Micro-F1 results for node classification. The proposed model consistently outperforms the
other variants of GNN on disassortative graphs and performs comparably on assortative graphs.

Method CORA CITESEER PUBMED CORNELL TEXAS WISCONSIN CHAMELEON

GCN 87.4± 0.2 78.5± 0.5 87.8± 0.2 59.2± 3.2 64.1± 4.9 64.1± 6.3 67.6
Chebyshev 88.2± 0.2 79.4± 0.4 89.3± 0.3 76.5± 9.4 79.7± 5.0 82.5± 2.8 66.0± 2.3
ARMA 85.2± 2.5 76.7± 0.5 86.3± 5.7 74.9± 2.9 82.2± 5.1 78.4± 4.6 62.1± 3.6
GAT 87.6± 0.3 77.7± 0.3 83.0± 0.1 58.9± 3.3 60.0± 5.7 62.0± 5.2 64.9
SGC 87.2± 0.3 78.8± 0.4 81.1± 0.3 58.1± 4.6 58.9± 6.1 51.8± 5.9 33.7± 3.5
GraphSAGE 86.3± 0.6 77.4± 0.5 89.2± 0.5 67.3± 6.9 82.7± 4.8 77.6± 4.6 51.1± 0.5
APPNP 88.4± 0.3 77.6± 0.6 86.0± 0.3 70.3± 9.3 79.5± 4.6 81.2± 2.5 45.3± 1.6
FastGCN 86.1± 0.4 78.1± 0.7 86.0± 0.8 72.7± 6.8 68.4± 4.6 68.8± 5.4 42.8± 2.4
ASGCN 86.8± 0.4 77.9± 0.3 88.0± 0.7 73.0± 6.1 68.1± 7.7 66.3± 6.5 49.5± 1.5
Geom-GCN 86.3± 0.3 81.4± 0.3 89.1± 0.1 75.4 73.5 80.4 68.0

MLP 72.1± 1.3 74.9± 1.8 88.6± 0.2 81.4± 6.3 79.2± 6.1 82.7± 4.5 48.5

GNAN-T* 87.5± 0.5 79.0± 1.1 89.9± 0.9 82.7± 8.3 85.1± 5.7 85.9± 3.8 66.1± 3.1
GNAN-K* 87.2± 0.3 79.3± 0.6 88.7± 0.5 81.4± 10.1 82.4± 5.1 86.3± 3.7 68.7± 2.8

Datasets. We evaluate our model and the baseline methods on node classification tasks over three
citation networks: CORA, CITESEER and PUBMED (Sen et al., 2008), three webgraphs from the
WebKB dataset1: WISCONSIN, TEXAS and CORNELL, and another webgraph from Wikipedia called
CHAMELEON (Rozemberczki et al., 2019). We divide these datasets into two groups, assortative and
disassortative, based on their β. The details of these datasets are summarized in Table 1.

Hyper-parameter settings. For the citation networks, we follow the experimental setup for node
classification from (Hamilton et al., 2017; Huang et al., 2018; Chen et al., 2018) and report the
results averaged on 10 runs. For the webgraphs, we run each model on the 10 splits provided by
(Pei et al., 2020) and take the average, where each split uses 60%, 20%, and 20% nodes of each
class for training, validation and testing, respectively. The results we report on GCN and GAT are
better than Pei et al. (2020) due to converting the graphs to undirected before training 2. Geom-GCN
uses node embeddings pre-trained from different methods such as Isomap (Tenenbaum et al., 2000),
Poincare (Nickel & Kiela, 2017) and struc2vec (Ribeiro et al., 2017). We hereby report the best
micro-F1 results among all variants for Geom-GCN.

We use the best-performing hyperparameters specified in the original papers of baseline methods. For
hyperparameters not specified in the original papers, we use the parameters from (Fey & Lenssen,
2019). We report the test accuracy results from epochs with the smallest validation loss and highest
validation accuracy. Early termination is adopted for both validation loss and accuracy, and the
training is thus stopped when neither of validation loss and accuracy improve for 100 consecutive
epochs. We use a two-layer GNAN where multi-head’s filters are learned using a MLP of 2 hidden
layers and then approximated by Chebyshev polynomials. Each layer of the MLP consists of a linear
function and a ReLU activation. To avoid overfitting, dropout is applied in each GNAN layer on both
attention weights and inputs equally.

4.2 RESULTS AND DISCUSSION

We use two evaluation metrics to evaluate the performance of node classification tasks: micro-F1
and macro-F1. The results with micro-F1 are summarized in Table 2, and the results with macro-F1
are provided in Table 3 in the appendix. Overall, on assortative citation networks, GNAN performs
comparably with the state-of-the-art methods, ranking first on PUBMED and second on CORA and
CITESEER in terms of micro-F1 scores. On disassortative graphs, GNAN outperforms all the state-
of-the-art methods by a margin of at least 2.4% and MLP by a margin of at least 1.3%. These results
indicate that GNAN can learn spectral filters adaptively based on different characteristics of graphs.

Although our model GNAN performs well on both assortative and disassortative graphs, it is unclear
how GNAN performs on disassortative nodes whose neighbors are mostly of different classes in
an assortative graph. Thus, we report an average classification accuracy on disassortative nodes at
different levels of βv in Figure 2 for the assortative graph datasets CITESEER and PUBMED. The

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
2https://openreview.net/forum?id=S1e2agrFvS
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Figure 2: Micro-F1 results for classification accuracy on disassortative nodes (βv ≤ 0.5). GNAN
shows better accuracy on classifying disassortative nodes than the other methods.

nodes are binned into five groups based on βv. For example, all nodes with 0.3 < βv ≤ 0.4 belong
to the bin at 0.4. We have excluded CORA from the report since it has very few nodes with low βv .

The results in Figure 2 show that all GNNs based on local aggregation schemes perform poorly when
βv is low. One may argue that the performance on disassortative graphs might improve by stacking
multiple GNN layers together to obtain information from far-distant nodes. However, it turns out
that this approach introduces an oversmoothing problem in local aggregation-based GNNs (Li et al.,
2018). On the other hand, GNAN outperforms the other GNN-based methods on disassortative nodes,
suggesting that adaptive spectral filters reduce local noise in aggregation while allowing far-distant
nodes to be attended to.

Attention sparsification. The two variants of GNAN use slightly different sparsification techniques
to speed up computation. For each node v, GNAN-T uses a threshold t to eliminate low ψvu
(Equation 5), thereby sparsifying the resulting attention matrix. However, t cannot control the level
of sparsification precisely. In comparison, GNAN-K keeps the k largest φvu (Equation 6); therefore
it guarantees a certain level of sparsification. Nonetheless, GNAN-K requires a partial sorting which
adds an overhead of O(n+ k logN). To further analyze the impact of attention sparsity on runtime,
we plot the density of an attention matrix with respect to both k (Figure 3.a and 3.c) and t (Figure 3.b
and 3.d). The results are drawn from two datasets: the disassortative dataset CHAMELEON and the
assortative dataset CORA. As expected, GNAN-K shows a stable growth in the attention density as
the value of k increases. GNAN-T, on the other hand, demonstrates fluctuation in density with t and
reaches the lowest density at t = 1e− 9 and t = 1e− 6 for CORAand CHAMELEON, respectively.
We observe that the attention weights tend to converge to similar small values on all nodes when t
goes beyond 0.001 in both datasets. To study how efficiency is improved via sparsification, we also
plot the training time averaged over 500 epochs in Figure 3. It shows that the model GNAN runs
much faster when attention weights are well-sparsified. In our experiments, we find the best results
are achieved on k < 20 for GNAN-K and t < 1e− 5 for GNAN-T. Thus, the model GNAN not only
runs faster, but also performs better when attention weights are well-sparsified.

Frequency range ablation. To understand how adaptive spectral filters contribute to GNAN’s
performance on disassortative graphs, we conduct an ablation study on spectral frequency ranges.
We first divide the entire frequency range (0 ∼ 2) into a set of predefined sub-ranges exclusively,
and then manually set the filter frequency responses to zero for each sub-range at a time in order to
check the impact of each sub-range on the performance of classification. By doing so, the frequencies
within a selected sub-range do not contribute to neither node attention nor feature aggregation,
therefore helping to reveal the importance of the sub-range. We consider three different lengths of
sub-ranges, i.e., step=1.0, step=0.5, and step=0.25. The results of frequency ablation on the three
assortative graphs are summarized in Figure 4. The results for step=1.0 reveal the importance of
high-frequency range (1 ∼ 2) on node classification of disassortative graphs. The performances are
significantly dropped by ablating high-frequency range on all datasets. Further investigation at the
finer-level sub-ranges (step=0.5) shows that sub-range 0.5 ∼ 1.5 has the most negative impact on
performance, whereas the most important sub-range varies across different datasets at the finest level
(step=0.25). This finding matches our intuition that low-pass filters used in GNNs underlie the local
node homophily assumption in a similar way as naive local aggregation. We suspect the choice of
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Figure 3: Attention matrix density and training runtime with respect to k and t. Attention matrix is
effectively sparsified by both k and t, which improves runtime efficiency. Note that the density is
not monotonically increasing for GNAN-T since the threshold is applied to the "learnable" attention
weights. When all values of ψ are below t, the density becomes 100% as a result of the softmax
normalization.

low-pass filters also relates to oversmoothing issues in spectral methods (Li et al., 2018), but we leave
it for future work.

Attention head ablation. In GNAN, each head uses a spectral filter to produce attention weights.
To delve the importance of a spectral filter, we further follow the ablation method used by (Michel
et al., 2019). Specifically, we ablate one or more filters by manually setting their attention weights to
zeros. We then measure the impact on performance using micro-F1. If the ablation results in a large
decrease in performance, the ablated filters are considered important. We observe that all attention
heads (spectral filters) in GNAN are of similar importance, and only all attention heads combined
produce the best performance. Please check Appendix C for the detailed results.

5 RELATED WORK

Graph neural networks have been extensively studied recently. We categorize work relevant to ours
into three perspectives and summarize the key ideas.

Attention on graphs. Graph attention networks (GAT) (Velickovic et al., 2018) was the first to
introduce attention mechanisms on graphs. GAT assigns different importance scores to local neighbors
via attention mechanism. Similar to other GNN variants, long-distance information propagation in
GAT is realized by stacking multiple layers together. Therefore, GAT suffers from the oversmoothing
issue (Zhao & Akoglu, 2020). Zhang et al. (2020) improve GAT by incorporating both structural and
feature similarities while computing attention scores.

Spectral graph filters and wavelets. Some GNNs also use graph wavelets to extract information
from graphs. Xu et al. (2019) applied graph wavelet transform defined by Shuman et al. (2013)
in GNNs. Klicpera et al. (2019b) proposed a general GNN argumentation using graph diffusion
kernels to rewire the nodes. Donnat et al. (2018) used heat wavelet to learn node embeddings in
unsupervised ways and showed that the learned embeddings closely capture structural similarities
between nodes. Other spectral filters used in GNNs can also be viewed as special forms of graph
wavelets (Kipf & Welling, 2017; Defferrard et al., 2016; Bianchi et al., 2019). Coincidentally, Chang
et al. (2020) also noticed useful information carried by high-frequency components from a graph
Laplacian. Similarly, they attempted to utilize such components using node attentions. However, they
resorted to the traditional choice of heat kernels and applied such kernels separately to low-frequency
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Figure 4: Micro-F1 with respect to an ablated frequency range on disassortative graphs. We divide
the frequency range into a set of sub-ranges with different lengths. The results (a) and (d) reveal
the importance of high-frequency range (1 ∼ 2). Further experiments show that there is a subtle
difference in the most important range across datasets, but it ranges between (0.75 ∼ 1.25).

and high-frequency components divided by a hyperparameter. In addition to this, their work did not
link high-frequency components to disassortative graphs.

Prediction on disassortative graphs. Pei et al. (2020) have drawn attention to GCN and GAT’s poor
performance on disassortative graphs very recently. They tried to address the issue by essentially
pivoting feature aggregation to structural neighborhoods from a continuous latent space learned by
unsupervised methods. Another attempt to address the issue was proposed by Liu et al. (2020). They
proposed to sort locally aggregated node embeddings along a one-dimensional space and used a
one-dimensional convolution layer to aggregate embeddings a second time. By doing so, non-local
but similar nodes can be attended to.

Although our method shares some similarities in motivation with the aforementioned work, it is
fundamentally different in several aspects. To the best of our knowledge, our method is the first to
learn spectral filters as part of supervised training on graphs. It is also the first architecture we know
that computes node attention weights purely from learned spectral filters. As a result, in contrast to
commonly used heat kernel, our method utilizes high-frequency components of a graph, which helps
prediction on disassortative graphs.

6 CONCLUSION

In this paper, we study the node classification tasks on graphs where local node homophily is weak.
We argue the assumption of local homophily is the cause of poor performance on disassortative
graphs. In order to design more generalizable GNNs, we suggest that a more flexible and adaptive
feature aggregation scheme is needed. To demonstrate, we have introduced the global node attention
network (GNAN) which achieves flexible feature aggregation using learnable spectral graph filters.
By utilizing the full graph spectrum adaptively via the learned filters, GNAN is able to aggregate
features from nodes that are close and far. For node classification tasks, GNAN outperforms all
benchmarks on disassortative graphs, and performs comparably on assortative graphs. On assortative
graphs, GNAN also performs better for nodes with weak local homophily. Through our analysis, we
find the performance gain is closely linked to the higher end of the frequency spectrum.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural networks with
convolutional ARMA filters. CoRR, abs/1901.01343, 2019.

Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Somayeh Sojoudi, Junzhou Huang, and Wenwu Zhu.
Spectral graph attention network. CoRR, abs/2003.07450, 2020.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via importance
sampling. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in Neural Information Processing Systems (NeurIPS), pp.
3837–3845, 2016.

Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node embeddings via
diffusion wavelets. In Proceedings of the 24th ACM International Conference of Knowledge Discovery &
Data Mining (KDD), pp. 1320–1329, 2018.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. CoRR,
abs/1903.02428, 2019.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Balaji Krishnapuram,
Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (eds.), Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pp. 855–864. ACM, 2016. doi: 10.1145/2939672.2939754.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 1024–1034,
2017.

David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral graph theory.
Applied and Computational Harmonic Analysis, 2011. ISSN 10635203. doi: 10.1016/j.acha.2010.04.005.

Wen-bing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph representa-
tion learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pp.
4563–4572, 2018.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
Proceedings of the 5th International Conference on Learning Representations (ICLR), 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph neural
networks meet personalized pagerank. In Proceedings of the 7th International Conference on Learning
Representations (ICLR), 2019a.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning. In
Advances in Neural Information Processing Systems (NeurIPS), pp. 13333–13345, 2019b.

John Boaz Lee, Ryan A. Rossi, and Xiangnan Kong. Graph classification using structural attention. In
Proceedings of the 24th ACM International Conference on Knowledge Discovery & Data Mining (KDD), pp.
1666–1674, 2018.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In Zoubin Ghahramani,
Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger (eds.), Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada, pp. 2177–2185, 2014.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Proceedings of the 32nd Conference on Artificial Intelligence (AAAI), pp. 3538–3545,
2018.

Meng Liu, Zhengyang Wang, and Shuiwang Ji. Non-local graph neural networks. CoRR, abs/2005.14612, 2020.

10



Under review as a conference paper at ICLR 2021

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pp. 14014–14024,
2019.

B. A. Miller, M. S. Beard, and N. T. Bliss. Matched filtering for subgraph detection in dynamic networks. In
2011 IEEE Statistical Signal Processing Workshop (SSP), pp. 509–512, 2011.

Edoardo Di Napoli, Eric Polizzi, and Yousef Saad. Efficient estimation of eigenvalue counts in an interval.
Numer. Linear Algebra Appl., 23(4):674–692, 2016. doi: 10.1002/nla.2048.

Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. In
Advances in Neural Information Processing Systems, 2017.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representations. In
Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani (eds.), The 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA
- August 24 - 27, 2014, pp. 701–710. ACM, 2014. doi: 10.1145/2623330.2623732.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as matrix
factorization: Unifying deepwalk, line, pte, and node2vec. In Yi Chang, Chengxiang Zhai, Yan Liu, and
Yoelle Maarek (eds.), Proceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018, pp. 459–467. ACM, 2018. doi:
10.1145/3159652.3159706.

Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. Struc2vec: Learning node representations
from structural identity. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017. ISBN 9781450348874. doi: 10.1145/3097983.3098061.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. CoRR,
abs/1909.13021, 2019.

Akie Sakiyama, Kana Watanabe, and Yuichi Tanaka. Spectral Graph Wavelets and Filter Banks with Low
Approximation Error. IEEE Transactions on Signal and Information Processing over Networks, 2(3):230–245,
2016. ISSN 2373776X. doi: 10.1109/TSIPN.2016.2581303.

Michael T. Schaub and Santiago Segarra. Flow smoothing and denoising: Graph signal processing in the edge-
space. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 735–739,
2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad. Collective
classification in network data. AI Magazine, 29(3):93–106, 2008.

David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The emerging
field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular
domains. IEEE Signal Process. Mag., 30(3):83–98, 2013.

Jian Tang, Meng Qu, and Qiaozhu Mei. PTE: predictive text embedding through large-scale heterogeneous text
networks. In Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I. Webb, Dragos D. Margineantu,
and Graham Williams (eds.), Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015, pp. 1165–1174. ACM, 2015a. doi:
10.1145/2783258.2783307.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: large-scale information
network embedding. In Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi (eds.), Proceedings of
the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pp.
1067–1077. ACM, 2015b. doi: 10.1145/2736277.2741093.

J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality
reduction. Science, 2000. ISSN 00368075. doi: 10.1126/science.290.5500.2319.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In Proceedings of the 6th International Conference on Learning Representations (ICLR),
2018.

11



Under review as a conference paper at ICLR 2021

H. Wai, S. Segarra, A. E. Ozdaglar, A. Scaglione, and A. Jadbabaie. Community detection from low-rank
excitations of a graph filter. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4044–4048, 2018.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger. Simplifying
graph convolutional networks. In Proceedings of the 36th International Conference on Machine Learning
(ICML), volume 97, pp. 6861–6871, 2019.

Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. Graph wavelet neural network. In Proceedings
of the 7th International Conference on Learning Representations (ICLR), 2019.

Kai Zhang, Yaokang Zhu, Jun Wang, and Jie Zhang. Adaptive structural fingerprints for graph attention networks.
In Proceedings of the 8th International Conference on Learning Representations (ICLR), 2020.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pp. 5171–5181, 2018.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In Proceedings of the 8th
International Conference on Learning Representations (ICLR), 2020.

12



Under review as a conference paper at ICLR 2021

APPENDIX

A GRAPH SPECTRAL FILTERING WITHOUT EIGEN-DECOMPOSITION

Chebyshev polynomials approximation has been the de facto approximation method for avoiding eigen-
decomposition in spectral graph filters. It has been commonly used in previous works Hammond et al. (2011);
Sakiyama et al. (2016); Xu et al. (2019). We hereby use it to approximate Equation 3. In fact, other approxima-
tion methods can also be used for the purpose, such as the Jackson-Chebychev polynomials (Napoli et al., 2016)
but we will leave it for future study. Briefly, in Chebyshev polynomial approximation, the graph signal filtered
by a filter g(L) is approximated as g̃(L), and represented as a sum of recursive polynomials (Sakiyama et al.,
2016):

g̃(L)x =
{1

2
c0 +

p∑
i=1

ciT̄i(L)
}
x (8)

where T̄0 = 1, T̄1(L) = 2(L− 1)/λmax, T̄i(L) = 4(L− 1)T̄i−1/λmax − T̄i−2(L), and

ci =
2

S

S∑
m=1

cos
(πi(m− 1

2
)

S

)
× g
(λmax

2

(
cos
(π(m− 1

2
)

S
+ 1
)))

(9)

for i = 0, ..., p, where p is the approximation order, S is the number of sampling points and is normally set to
S = p+ 1.

In Equation 3, MLP is used to produce the filter responses so we have g = MLP in Equation 9. The above
equation is differentiable so the parameters in MLP can be learned by gradient decent from the loss function.
The above approximation has a time complexity of O(p× |E|), so that the complexity for Equation 3 is also
O(p × |E|). Please note, while Chebyshev polynomials are mentioned in both our method and ChevNet,
however they are used in fundamentally different ways: ChevNet uses the simplified Chebyshev polynomials
as the polynomial filter directly, while we use it as a method to approximate the filtering operation. Naturally,
approximation error reduces while a larger p is used, which is also why we have p > 12 in our model.

B FURTHER EXPERIMENT RESULTS

We provide the macro-F1 scores on the classification task in Table 3. The proposed model outperforms the other
models on disassortative graphs and performs comparable on the assortative graphs.

Table 3: Macro-F1 for node classification task.

Method CORA CITESEER PUBMED CORNELL TEXAS WISCONSIN CHAMELEON

GCN 86.0± 0.3 72.0± 1.6 86.8± 0.2 24.1± 9.1 34.0± 5.7 37.6± 9.2 −
Chebyshev 86.8± 0.3 74.1± 1.0 88.7± 0.3 53.6± 17.6 64.1± 12.4 52.9± 7.7 65.9± 2.4
ARMA 80.2± 6.8 66.4± 0.4 81.6± 13.9 48.5± 9.3 69.1± 12.3 53.3± 7.1 60.7± 6.3
GAT 86.4± 0.4 69.2± 1.0 81.6± 0.1 19.0± 2.8 26.5± 6.8 30.0± 5.2 −
SGC 86.0± 0.3 74.7± 1.2 79.8± 0.3 21.9± 8.5 23.2± 7.5 35.9± 6.3 31.3± 4.4
GraphSAGE 85.2± 0.1 74.2± 0.6 88.7± 0.6 49.2± 10.9 62.9± 9.6 63.7± 12.4 51.6± 0.4
APPNP 87.0± 0.4 70.2± 1.4 84.8± 0.3 39.6± 16.6 61.0± 8.8 55.8± 5.7 44.0± 1.8
FastGCN 84.5± 0.5 72.0± 2.3 84.6± 0.8 47.6± 13.0 38.9± 7.5 41.8± 10.6 40.3± 3.4
ASGCN 85.7± 0.5 75.4± 0.4 86.9± 0.7 54.3± 11.5 45.2± 10.0 43.4± 11.5 48.6± 1.4
Geom-GCN 85.1± 0.3 76.9± 0.5 88.5± 0.1 − − − −
MLP 67.2± 2.5 67.6± 3.5 88.1± 0.2 63.0± 12.3 61.7± 15.2 54.6± 11.5 −
GNAN-T* 86.4± 0.4 74.1± 1.9 89.2± 1.0 66.6± 15.3 72.0± 10.6 63.5± 7.0 65.7± 3.4
GNAN-K* 87.2± 0.3 79.3± 0.6 87.9± 0.8 64.3± 20.1 66.3± 13.1 64.6± 6.2 68.5± 2.1

C ABLATION STUDY ON FILTERS

We provide the detailed version of Figure 4 (c) and (f) in Figure 5.

We further ablated attention head to check the importance of each head in classification.

Ablating all but one spectral filter. In GNAN, each head uses a filter to produce spectral attention weights.
To delve the importance of a filter, we follow the ablation method used by (Michel et al., 2019). Specifically,
we ablate one or more filters by manually setting the attention scores to zeros. We then measure the impact on
performance using micro-F1. If the ablation results in a large decrease in performance, the ablated fitlerbank(s)
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Figure 5: Full details of the performances on frequency ablation at 0.25 level.

is considered important. The results are summarized in Table 4a. All attention head (filters) in GNAN are of
similar importance, and only all heads combined produces the best performance.

Ablating only one spectral filter. We then examine performance differences by ablating one filter only
and keeping all other fitlerbanks Table 4b. Different with above, ablating just one fitlerbank only decreases
performance by a small margin. Moreover, ablating some fitlerbanks does not impact prediction performance at
all. This is an indicator of potential redundancies in the filters. We leave the redundancy reduction in the model
for future work.

Table 4: Ablation study on attention head (filter). We use 12 attention heads for CORA and PUBMED,
and 14 heads for CITESEER.

(a) Test accuracy by keeping only one filter

Dataset
Head 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CORA -2.10% -2.10% -1.30% -2.10% -1.50% -2.10% -2.10% -2.10% -1.40% -1.50% -2.10% -1.30% - -
CITESEER -1.8% -2.0% -1.7% -1.7% -1.8% -1.8% -1.7% -1.9% -1.7% -1.9% -1.7% -1.7% -1.9% -1.9%
PUBMED -4.30% -4.40% -4.40% -5.40% -4.30% -5.40% -5.40% -5.40% -4.30% -4.30% -4.30% -5.40% - -

(b) Test accuracy by ablating only one filter

Dataset
Head 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CORA 0.00% 0.00% -0.30% 0.00% -0.40% 0.00% 0.00% 0.00% -0.40% -0.40% 0.00% -0.40% - -
CITESEER -0.20% -0.30% -0.70% -0.70% -0.40% -0.60% -0.80% 0.00% -0.60% 0.00% -0.80% -0.50% 0.00% 0.00%
PUBMED -0.80% -0.80% -0.70% 0.00% -0.80% 0.00% 0.00% 0.00% -0.70% -0.80% -0.80% 0.00% - -

D CONNECTIONS TO OTHER METHODS

In this section, we show GNAN has strong connection to existing models, and many GNNs can be expressed as
a special case of GNAN under certain conditions.

D.1 CONNECTION TO GCN

A GCN (Kipf & Welling, 2017) layer can be expressed as
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h(k)
v = ReLU(

N∑
u=1

âvuh
(k−1)
u W (k))

where âvu is the elements from the vth row of the symmetric adjacency matrix

Â = D̃−1/2ÃD̃−1/2 where Ã = A+ IN , D̃vv =

N∑
u=1

Ãvu

So that

âvu =

{
1 if evu ∈ E
0 if evu /∈ E

Therefore, GCN can be viewed as a case of Equation 4 with σ = ReLU and avu = âvu

D.2 CONNECTION TO POLYNOMIAL FILTERS

Polynomial filters localize in a node’s K-hop neighbors utilizing K-order polynomials (Defferrard et al., 2016),
most of them takes the following form:

gθ(Λ) =

K−1∑
k=0

θkΛk

where θk is a learnable polynomial coefficient for each order. Thus a GNN layer using a polynomial filter
becomes

h(k)
v = ReLU(

N∑
u=1

Ugθ(Λ)UThu)

which can be expressed using Equation 4 with W (k) = IN , σ = ReLU and avu = (Ugθ(Λ)UT )vu. In
comparison, our method uses a MLP to learn the spectral filters instead of using a polynomial filter. Also, in our
method, coefficients after sparsification and normalization are used as directly as attentions.

D.3 CONNECTION TO GAT

Our method is inspired by and closely related to GAT (Velickovic et al., 2018). To demonstrate the connection,
we firstly define a matrix Φ where each column φv is the transformed feature vector of node v concatenated
with feature vector of another node (including node v itself) in the graph.

φv = ||Nj=0[Whv||Whu] (10)

GAT multiplies each column of Φ with a learnable weight vector α and masks the result with the adjacencyA
before feeding it to the nonlinear function LeakyRelu and softmax to calculate attention scores. The masking
can be expressed as a Hadamard product with the adjacency matrixA which is the congruent of a graph wavelet
transform with the filter g(Λ) = I − Λ:

Ψ = A = D
1
2U(I − Λ)UTD

1
2 (11)

And the GAT attention vector for node i become

av = softmax(LeakyReLU(αTφv � ψ̄v)) (12)

where ψ̄v is the vth row of Ψ after applying Equation 5 with t = 0, � denotes the Hadamard product, as of
(Velickovic et al., 2018).

In comparison with our method, GAT incorporate node features in the attention score calculation, while node
attentions in our methods are purely computed from the graph wavelet transform. Also, attentions in GAT are
masked byA, which means the attentions are restricted to node v’s 1-hop neighbours only.
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D.4 CONNECTION TO SKIP-GRAM METHODS

Skip-gram models in natural language processing are shown to be equivalent to a form of matrix factorization
(Levy & Goldberg, 2014). Recently Qiu et al. (2018) proved that many Skip-Gram Negative Sampling (SGNS)
models used in node embedding, including DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015b), PTE (Tang
et al., 2015a), and node2vec (Grover & Leskovec, 2016), are essentially factorizing implicit matrices closely
related to the normalized graph Laplacian. The implicit matrices can be presented as graph wavelet transforms
on the graph Laplacian. For simplicity, we hereby use DeepWalk, a generalized form of LINE and PTE, as an
example. Qiu et al. (2018) shows DeepWalk effectively factorizes the matrix

log

(
vol(G)

T
(

T∑
r=1

P r)D−1

)
− log(b) (13)

where vol(G) =
∑
vDvv is the sum of node degrees, P = D−1A is the random walk matrix, T is the

skip-gram window size and b is the parameter for negative sampling. We know

P = I −D−
1
2LD

1
2 = D−

1
2U(I − Λ)UTD

1
2

So Equation 13 can be written using graph Laplacian as:

log

(
vol(G)

T
D−

1
2

T∑
r=1

(I −L)rD
1
2

)
− log(b)

Or, after eigen-decomposition, as:

M = log

(
vol(G)

Tb
D−

1
2U

T∑
r=1

(I − Λ)rUTD
1
2

)
(14)

where U
∑T
r=1(I − Λ)rUT , denoted as ψsg , is a wavelet transform with the filter gsg(λ) =

∑T
r=1(1− λ)r .

Therefore, DeepWalk can be seen a special case of Equation 4 where:

av =

{
ψv if v = k

0 if v 6= u

AssigningH = W = I , K = 1 and σ(X) = log( vol(G)
Tb

D−
1
2XD

1
2 ). We have

h′i = FACTORIZE(σ(ai)) (15)

where FACTORIZE is a matrix factorization operator of choice. Qiu et al. (2018) uses SVD in a generalized
SGNS model, where the decomposed matrix Ud and Σd from M = UdΣVd is used to obtain the node
embedding Ud

√
Σd.
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