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Abstract

Sarcasm in social media, often expressed001
through text-image combinations, poses chal-002
lenges for sentiment analysis and intention min-003
ing. Current multi-modal sarcasm detection004
methods have been demonstrated to overly rely005
on spurious cues within the textual modality,006
revealing a limited ability to genuinely iden-007
tify sarcasm through nuanced text-image inter-008
actions. To solve this problem, we propose009
InterCLIP-MEP, which introduces Interactive010
CLIP (InterCLIP) with an efficient training011
strategy to extract enriched text-image repre-012
sentations by embedding cross-modal infor-013
mation directly into each encoder. Addition-014
ally, we design a Memory-Enhanced Predictor015
(MEP) with a dynamic dual-channel memory016
that stores valuable test sample knowledge dur-017
ing inference, acting as a non-parametric clas-018
sifier for robust sarcasm recognition. Exper-019
iments on two benchmarks demonstrate that020
InterCLIP-MEP achieves state-of-the-art per-021
formance, with significant accuracy and F1022
score improvements on MMSD and MMSD2.0.023
Our code is in the supplementary material.024

1 Introduction025

Sarcasm, with its subtlety and complexity, plays026

a key role in communication by conveying irony,027

mockery, or hidden meanings (Muecke, 1982;028

Gibbs and O’Brien, 1991; Gibbs and Colston,029

2007). Automatically detecting sarcasm in text030

has become an important research area, support-031

ing tasks like sentiment analysis and intent min-032

ing (Pang et al., 2008; Tsur et al., 2010; Bouazizi033

and Ohtsuki, 2015). With the rise of social media034

platforms like Twitter and Reddit, users often use035

text-image combinations to express their messages.036

As a result, multi-modal sarcasm detection is in-037

creasingly important, posing challenges in under-038

standing the complex relationship between textual039

and visual cues to identify sarcasm.040

(c) A visualization example of recognizing
multi-modal sarcasm cues
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Figure 1: An overview of the shortcomings of existing
multi-modal sarcasm detection pipelines. In panels (a)
and (b), we present two main multi-modal sarcasm de-
tection pipelines, with shortcomings indicated by a red
question mark. In panel (c), we visually show an exam-
ple of multi-modal sarcasm cues correctly or incorrectly
recognized in a multi-modal sarcasm sample.

As shown in Figures 1(a) and 1(b), many meth- 041

ods rely on dual unimodal pre-trained encoders, 042

such as ViT(Dosovitskiy et al., 2021) and BERT 043

(Devlin et al., 2019), as the backbone for encod- 044

ing text-image pairs, followed by specific feature 045

fusion (Xu et al., 2020; Pan et al., 2020; Liang 046

et al., 2021, 2022; Wen et al., 2023; Tian et al., 047

2023; Wei et al., 2024). However, this approach 048

may not capture multi-modal sarcasm cues as effec- 049

tively as multi-modal pre-trained models like CLIP 050

(Radford et al., 2021). In Figure 1(a), the use of a 051

learnable classification head to predict labels from 052

fused representations is common but often associ- 053

ated with high predictive entropy and significant 054

uncertainty. Wei et al. (2024) pioneered the con- 055

struction of a static semantic space using historical 056

training samples, where more robust predictions 057

are obtained during inference through KNN-based 058

querying and voting, as illustrated in Figure 1(b). 059

However, while CLIP has been proven to be effec- 060
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tive in serving as a text-image encoder for multi-061

modal sarcasm detection (Qin et al., 2023), it still062

struggles to capture multi-modal sarcasm cues due063

to the inherent inconsistency of sarcasm, which064

conflicts with CLIP’s direct alignment of text and065

image. Furthermore, relying on a static semantic066

space for inference is ill-suited to handle the dy-067

namic nature of evolving sample distributions. In068

fact, Qin et al. (2023) have shown that many mod-069

els rely on spurious cues in the MMSD benchmark070

(Cai et al., 2019), leading to biased results.071

Building on the limitations of prior multi-modal072

sarcasm detection approaches, we propose Inter-073

active CLIP (InterCLIP) as the backbone, embed-074

ding cross-modal representations directly into text075

and vision encoders to enhance the understanding076

of multi-modal sarcasm cues (Figure 2, left). To077

complement this, we design a Memory-Enhanced078

Predictor (MEP) that dynamically utilizes histori-079

cal test sample features to create a more adaptive080

and reliable non-parametric classifier for final pre-081

dictions (Figure 2, right). Together, these compo-082

nents form the proposed framework, InterCLIP-083

MEP. Furthermore, InterCLIP-MEP employs an ef-084

ficient training strategy that fine-tunes cross-modal085

interactions through a lightweight adaptation mech-086

anism, ensuring computational efficiency while087

delivering state-of-the-art performance (Figure 2,088

left). Overall, our contributions are as follows:089

• We introduce InterCLIP-MEP1, a novel090

framework for multi-modal sarcasm detection,091

which combines Interactive CLIP (InterCLIP)092

for enhanced text-image interaction encoding093

and Memory-Enhanced Predictor (MEP) for094

more robust and reliable sarcasm predictions.095

• We propose an efficient training strategy that096

significantly reduces computational overhead097

compared to state-of-the-art methods. By in-098

troducing approximately 20.6x fewer train-099

able parameters, our approach reduces GPU100

memory usage by about 2.5x and accelerates101

computation by roughly 8.7x with a batch size102

of 128, all while maintaining superior perfor-103

mance on a single NVIDIA RTX 4090 GPU.104

• Through extensive experiments on the MMSD105

and MMSD2.0 benchmarks, we show that106

InterCLIP-MEP improves accuracy by 1.08%107

and F1 score by 1.51% over state-of-the-art108

methods, especially on MMSD2.0.109
1Our code is available in the supplementary material.

2 Related Work 110

Early research in sarcasm detection focused primar- 111

ily on text data (Bouazizi and Ohtsuki, 2015; Amir 112

et al., 2016; Baziotis et al., 2018). With the rise of 113

social media, detecting sarcasm in text-image pairs 114

has become more challenging, driving the develop- 115

ment of multi-modal approaches. Schifanella et al. 116

(2016) were among the first to explore multi-modal 117

social media posts for identifying sarcasm cues. 118

Building on this, Cai et al. (2019) introduced the 119

MMSD benchmark, demonstrating the effective- 120

ness of a hierarchical fusion model that integrates 121

image features. This benchmark has since become 122

a foundation for multi-modal sarcasm detection, 123

inspiring subsequent studies (Xu et al., 2020; Pan 124

et al., 2020; Liang et al., 2021, 2022; Liu et al., 125

2022; Qin et al., 2023; Wen et al., 2023; Tian et al., 126

2023; Wei et al., 2024). 127

However, the MMSD benchmark was later found 128

to contain spurious cues that could lead to model 129

bias (Qin et al., 2023). To mitigate this, Qin 130

et al. (2023) introduced the MMSD2.0 benchmark, 131

which removes these cues and corrects mislabeled 132

samples. Re-evaluations on MMSD2.0 revealed 133

significant performance drops in existing models, 134

emphasizing the need for more robust approaches. 135

In parallel, Tang et al. (2024) explored the use of 136

large language models (LLMs) in multi-modal sar- 137

casm detection, incorporating instruction templates 138

and retrieval modules. While promising, the per- 139

formance improvements were modest compared to 140

the substantial computational cost. 141

In this work, we present InterCLIP-MEP, a 142

lightweight and efficient framework that achieves 143

competitive performance without the high resource 144

demands of LLM-based approaches. By overcom- 145

ing the limitations of current methods, our ap- 146

proach offers a practical and scalable solution for 147

multi-modal sarcasm detection. 148

3 Methodology 149

An overview of InterCLIP-MEP is illustrated in 150

Figure 2. Initially, we elaborate on the Interac- 151

tive CLIP (InterCLIP) and its training strategy, fol- 152

lowed by an in-depth explanation of the Memory- 153

Enhanced Predictor (MEP). 154

3.1 Interactive CLIP 155

The input to Interactive CLIP (InterCLIP) is a text- 156

image pair P = (T, I), where T represents a piece 157
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Figure 2: Overview of our framework. (I) Training Interactive CLIP (InterCLIP): Vision and text representations
are extracted using separate encoders and embedded into the top-n layers of the opposite modality’s encoder for
interaction. The top-n layers are fine-tuned with LoRA, while the rest of the encoder remains frozen. Final vision
and text representations are concatenated and used to train a classification module for identifying multi-modal
sarcasm. A projection module is also trained to project representations into a latent space. (II) Memory-Enhanced
Predictor (MEP): During inference, InterCLIP generates interactive representations. The classification module
assigns pseudo-labels, and the projection module provides projection features. MEP updates dynamic memory with
these features and pseudo-labels. The final prediction of the current sample is made by comparing its projected
feature with those in memory.

of text and I represents an image. Here, for sim-158

plicity, we do not consider the case of batch inputs.159

The text encoder T extracts the vanilla text rep-160

resentations Ft:161

Ft = T (T )162

= {htbos(tbos), h
t
1(t1), . . . , h

t
n(tn), h

t
eos(teos)},

(1)
163

where ti denotes a text token, n is the length of T164

after tokenization, tbos and teos are special tokens165

required by the text encoder. Here, hti(·) ∈ Rdt166

represents the dt-dimensional encoded representa-167

tion of the corresponding token ti, with i ranging168

from 1 to n, including the beginning-of-sequence169

(bos) and end-of-sequence (eos) tokens.170

The vision encoder V extracts the vanilla image171

representations Fv:172

Fv = V(I) = {hvcls(pcls), h
v
1(p1), . . . , h

v
m(pm)},

(2)173

where I is processed into multiple patches pi, m is174

the number of patches, and pcls is a special token175

required by the visual encoder. Here, hvi (·) ∈ Rdv176

represents the dv-dimensional encoded representa-177

tion of the corresponding pi, with i ranging from178

1 to m, including the classification (cls) token.179

Specifically, both Ft and Fv are representations180

from the final layer outputs of their respective en- 181

coders. Conditioning on Ft or Fv, we can obtain 182

the interactive text representations F̃t or the inter- 183

active image representations F̃v: 184

F̃t = T (T |Fv), F̃v = V(V |Ft). (3) 185

We use h̃ti(·) ∈ Rdt and h̃vi (·) ∈ Rdv to denote 186

the re-encoded interactive representations of each 187

text token and image patch, respectively. 188

To be specific, we condition only the top-n self- 189

attention layers of the text or vision encoder, where 190

n is a hyperparameter that will be analyzed in the 191

experiment section. Figure 3 illustrates the struc- 192

ture of the conditioned self-attention layers. Given 193

that the text and vision encoder in CLIP share a 194

similar architecture, for brevity, we denote the in- 195

put representations to the self-attention layers of 196

the text or vision encoder as Ht/v, which are de- 197

rived from the outputs of the previous layer. The 198

previous layer can either be conditioned or non- 199

conditioned. Due to the dimensional mismatch be- 200

tween the embedded representations Fv/t and the 201

corresponding encoder representation space, we in- 202

troduce an adapting projection layer Ft/v to project 203

Fv/t into the appropriate representation space. 204

To fuse the input representations Ht/v with 205

the projected embedded representations F
′

v/t = 206

Ft/v(Fv/t), we concatenate them and feed them 207
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Figure 3: Structure of the conditional self-attention.

into the attention layer to obtain the transformed208

representations. We then extract the transformed209

input representations H
′

t/v from the output. Follow-210

ing Ganz et al. (2024), we apply a gated projection211

layer Gt/v along with the self-attention’s projec-212

tion head Ht/v using a learnable gating mecha-213

nism to compute the self-attention output repre-214

sentations H
′′

t/v. Given the similarity between the215

self-attention layers of the vision encoder and the216

text encoder, we use the text encoder T to illustrate217

the process as follows:218

F
′
v = Ft(Fv), Fv ∈ Rm×dv ,F

′
v ∈ Rm×dt ,

H
′
t = Attnt(Ht ⊕ F

′
v)[:n],

Ht,H
′
t ∈ Rn×dt ,Ht ⊕ F

′
v ∈ R(n+m)×dt ,

H
′′
t = Ht(H

′
t) + Gt(H

′
t) · tanh(βt),H

′′
t ∈ Rn×dt .

(4)

219

Here, ⊕ denotes the concatenation operation,220

and βt is a learnable gating parameter initialized221

to 0 to ensure training stability. The subsequent222

computation follows the original CLIP (Radford223

et al., 2021), ultimately yielding the interactive224

representations F̃t.225

InterCLIP supports three interaction modes for226

fusing text and image features into the final repre-227

sentation h̃f ∈ Rdt+dv :228

• T2V: Text representations Ft are embedded229

into the vision encoder to produce interactive230

image representations F̃v. h̃f is formed by231

concatenating hteos and h̃vcls.232

• V2T: Image representations Fv are embedded233

into the text encoder to produce interactive234

text representations F̃t. h̃f is formed by con-235

catenating h̃teos and hvcls.236

• Two-way (TW): Both text and image repre-237

sentations Ft and Fv are embedded into each238

other’s encoders, resulting in F̃t and F̃v. h̃f239

is formed by concatenating h̃teos and h̃vcls.240

We will analyze the effectiveness of these three 241

interaction modes in the experimental analysis. 242

Training Strategy. As shown in Figure 2 (left), 243

to adapt InterCLIP for MEP, we introduce an ef- 244

ficient training strategy. Using InterCLIP as the 245

backbone to obtain fused features of the samples, 246

we introduce a classification module and a projec- 247

tion module. 248

Given the fused features of a batch of samples 249

H̃f ∈ RN×(dt+dv), the classification module Fc 250

calculates the probabilities ŷ of these samples being 251

sarcastic or non-sarcastic: 252

ŷ = softmax(Fc(H̃
f )), ŷ ∈ RN×2, (5) 253

where N denotes the batch size. We optimize Fc 254

using binary cross-entropy loss: 255

Lc = − 1
N

∑N
i=1 [yi log(ŷi,1) + (1− yi) log(1− ŷi,0)] ,

(6) 256

where yi denotes the label of the i-th sample, with 257

sarcastic labeled as 1 and non-sarcastic as 0, and ŷi 258

denotes the prediction for the i-th sample. 259

The projection module Fp maps H̃f into a latent 260

feature space: 261

Ĥf = norm(Fp(H̃
f )), Ĥf ∈ RN×df , (7) 262

where norm(·) denotes L2 normalization, and df 263

represents the dimension of the projected features. 264

In this space, the cosine distance between features 265

of the same class is minimized, while the distance 266

between features of different classes is maximized. 267

We use a label-aware cosine similarity loss to opti- 268

mize Fp: 269

Lp = mean(Ĥf
P · ĤfT

N )+mean(1− Ĥf
P · ĤfT

P ) 270

+ mean(1− Ĥf
N · ĤfT

N ), (8) 271

where Ĥf
P and Ĥf

N represent the projected features 272

of positive and negative samples, respectively. 273

We fully train the modules Fc, Fp, the adapting 274

projection layers (Ft and Fv), the gated projec- 275

tion layers (Gt and Gv), and the learnable gating 276

parameters (βt and βv). We use LoRA (Hu et al., 277

2022) to fine-tune parts of the weight matrices W 278

in the self-attention modules of all encoders, specif- 279

ically various combinations of Wq, Wk, Wv, and 280

Wo. We consider W and the rank r of LoRA as 281

hyperparameters for our study. All learnable parts 282

are optimized by minimizing the joint loss: 283

L = Lc + Lp. (9) 284
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Algorithm 1 Memory-Enhanced Predictor
Input: Memory size L, Learned InterCLIP model, classifica-
tion module Fc and projection module Fp

Output: Final prediction ŷp

1: Initialize memoryM∈ 02×L×df

2: Initialize index I ∈ 02

3: Initialize entropy records C ∈ 02×L

4: for i← 1 to Ntest do
5: h̃f

i ← InterCLIP(Pi)

6: ŷi ← softmax(Fc(h̃
f
i ))

7: ℓpsei ← argmaxj(ŷi,j), j ∈ {0, 1}
8: ci ← −ŷi,0 log ŷi,0 − ŷi,1 log ŷi,1
9: ĥf

i ← norm(Fp(h̃
f
i ))

10: if I[ℓpsei ] < L then
11: M[ℓpsei ][I[ℓpsei ]]← ĥf

i

12: C[ℓpsei ][I[ℓpsei ]]← ci
13: I[ℓpsei ]← I[ℓpsei ] + 1
14: else
15: j ← GetMaxIdx(C[ℓpsei ])
16: if ci < C[ℓpsei ][j] then
17: M[ℓpsei ][j]← ĥf

i

18: C[ℓpsei ][j]← ci
19: end if
20: end if
21: logits ←

[∑I[0]
k=0(ĥ

f
iM[0]T )k,

∑I[1]
k=0(ĥ

f
iM[1]T )k

]
22: ŷp

i ← softmax(logits)
23: yield ŷp

i

24: end for

3.2 Memory-Enhanced Predictor285

As depicted in Figure 2 (right), we present the286

Memory-Enhanced Predictor (MEP) that builds287

upon the learned InterCLIP, along with the clas-288

sification module and the projection module, lever-289

aging the valuable historical knowledge of test sam-290

ples to enhance multi-modal sarcasm detection.291

The detailed computational process of MEP is292

provided in Algorithm 1, where Ntest denotes the293

number of test samples. MEP uses the trained In-294

terCLIP to extract fused features of the samples.295

It utilizes the classification module Fc to assign a296

pseudo-label ℓpsei to each sample Pi and the pro-297

jection module Fp to obtain the sample’s projected298

feature ĥfi . To store valuable projected features of299

test samples as historical knowledge, MEP main-300

tains a dynamic fixed-length dual-channel memory301

M ∈ R2×L×df , where L is the memory length302

per channel. The first channel stores projected fea-303

tures of non-sarcastic samples, while the second304

channel stores those of sarcastic samples. Based305

on the pseudo-label ℓpsei , the appropriate memory306

channel M[ℓpsei ] is selected for updating. If the307

selected channel has available space, the sample’s308

projected features are added directly, and the pre-309

diction entropy is recorded. If the memory is full,310

the prediction entropy of all samples in the memory311

MMSD/MMSD2.0 Sarcastic Non-sarcastic All

Train 8,642/9,576 11,174/10,240 19,816/19,816
Validation 959/1,042 1,451/1,368 2,410/2,410
Test 959/1,037 1,450/1,372 2,409/2,409

Table 1: Statistics of MMSD and MMSD2.0.

is compared with that of the current sample. Sam- 312

ples with the highest entropy are replaced, ensuring 313

the retained samples have lower entropy. Finally, 314

the current sample’s projected feature is combined 315

with the historical features stored in both memory 316

channels M using cosine similarity to yield the 317

final prediction. 318

4 Experiment 319

4.1 Experimental Settings 320

Datasets and metrics. Following Qin et al. 321

(2023), we evaluate performance on MMSD (Cai 322

et al., 2019) and MMSD2.0 (Qin et al., 2023) us- 323

ing accuracy (Acc.), precision (P), recall (R), and 324

F1-score (F1) as metrics. We present the statistics 325

of the two datasets in Table 1. 326

Baselines. We compare the effectiveness of the 327

InterCLIP-MEP framework against several uni- 328

modal and multi-modal methods. For text modality 329

methods, we compare with TextCNN (Kim, 2014), 330

Bi-LSTM (Zhou et al., 2016), SMSD (Xiong et al., 331

2019), and RoBERTa (Liu et al., 2019). For image 332

modality methods, we compare with ResNet (He 333

et al., 2016) and ViT (Dosovitskiy et al., 2021). We 334

compare with state-of-the-art multi-modal meth- 335

ods, including HFM (Cai et al., 2019), Att-BERT 336

(Pan et al., 2020), CMGCN (Liang et al., 2022), 337

HKE (Liu et al., 2022), DIP (Wen et al., 2023), 338

DynRT (Tian et al., 2023), Multi-view CLIP (Qin 339

et al., 2023), and G2SAM (Wei et al., 2024), which 340

employ various techniques such as hierarchical fu- 341

sion, graph neural networks, and dynamic routing 342

for multi-modal sarcasm detection. 343

4.2 Main Results 344

To validate the effectiveness of our InterCLIP-MEP 345

framework, we conduct experiments using the orig- 346

inal CLIP as the backbone instead of InterCLIP, 347

referred to as w/o Inter. We compare this config- 348

uration with three interaction modes of InterCLIP: 349

w/ V2T, w/ T2V, and w/ TW. 350

For each experiment, we condition only the top 351

four layers of the self-attention modules, with the 352

projection dimension df set to 1024. We set the 353
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Method MMSD2.0 MMSD

Acc. (%) F1 (%) P (%) R (%) Acc. (%) F1 (%) P (%) R (%)

Text

TextCNN (Kim, 2014) 71.61* 69.52* 64.62* 75.22* 80.03* 75.32* 74.29* 76.39*

Bi-LSTM (Zhou et al., 2016) 72.48* 68.05* 68.02* 68.08* 81.90* 77.53* 76.66* 78.42*

SMSD (Xiong et al., 2019) 73.56* 69.97* 68.45* 71.55* 80.90* 75.82* 76.46* 75.18*

RoBERTa (Liu et al., 2019) 79.66* 76.21* 76.74* 75.70* 93.97* 92.45* 90.39* 94.59*

Image

ResNet (He et al., 2016) 65.50* 57.58* 61.17* 54.39* 64.76* 61.53* 54.41* 70.80*

ViT (Dosovitskiy et al., 2021) 72.02* 69.72* 65.26* 74.83* 67.83* 63.40* 57.93* 70.07*

Text-Image

HFM (Cai et al., 2019) 70.57* 66.88* 64.84* 69.05* 83.44* 80.18* 76.57* 84.15*

Att-BERT (Pan et al., 2020) 80.03* 77.04* 76.28* 77.82* 86.05* 82.92* 80.87* 85.08*

CMGCN (Liang et al., 2022) 79.83* 76.90* 75.82* 78.01* 86.54* 84.09* -* -*

HKE (Liu et al., 2022) 76.50* 72.25* 73.48* 71.07* 87.36* 72.25* 81.84* 86.48*

DIP (Wen et al., 2023) 80.59† 78.23† 75.52† 81.14† 89.59† 87.17† 87.76† 86.58†

DynRT (Tian et al., 2023) 70.37† 68.55† 63.02† 75.15† 93.59† 91.93† 90.30† 93.62†

Multi-view CLIP (Qin et al., 2023) 85.64* 84.10* 80.33* 88.24* 88.33* 85.55* 82.66* 88.65*

G2SAM (Wei et al., 2024) 79.43† 78.07† 72.04† 85.20† 90.48† 88.48† 87.95† 89.02†

InterCLIP-MEP (Ours)

w/o Inter (L2 = 1024, L1 = 1280) 86.05 84.81 79.83 90.45 88.75 86.31 83.73 89.05
w/ TW (L2 = 128, L1 = 1152) 85.51 84.26 79.15 90.07 88.54 86.32 82.25 90.82
w/ V2T (L2 = 640, L1 = 1024) 86.26 85.00 80.17 90.45 88.92 86.66 83.21 90.41
w/ T2V (L2 = 1024, L1 = 1152) 86.72 85.61 80.20 91.80 88.83 86.37 84.02 88.84

InterCLIP-MEP w/ RoBERTa (Ours)

w/o Inter (L2 = 640, L1 = 128) 77.21 75.55 70.20 81.77 93.94 92.54 90.77 94.37
w/ TW (L2 = 896, L1 = 256) 81.98 80.78 74.69 87.95 93.73 92.28 90.48 94.16
w/ V2T (L2 = 640, L1 = 512) 76.96 75.26 69.98 81.39 93.94 92.54 90.69 94.47
w/ T2V (L2 = 1024, L1 = 384) 82.81 81.55 75.81 88.24 93.73 92.28 90.56 94.06

Table 2: Main results. We use ∗ to indicate that the results are taken from Qin et al. (2023). - indicates that results
are not reported. † indicates our reproduced results. Underlined values represent the best multi-modal baseline for
comparison. Bold values indicate those that surpass the underlined baseline. L2 for MMSD2.0 and L1 for MMSD
denote the optimal MEP memory sizes.

LoRA rank r to 8, fine-tuning the self-attention354

weight matrices W, specifically Wk, Wv, and Wo.355

For the memory size L, we select the optimal size356

from a fixed set of candidate values L 2. The main357

results are shown in Table 2.358

Performance on MMSD2.0. For MMSD2.0, our359

framework consistently outperforms or matches the360

performance of state-of-the-art methods, whether361

using InterCLIP or the original CLIP as the back-362

bone, as shown in Table 2 (InterCLIP-MEP). This363

demonstrates the effectiveness of our training strat-364

egy and MEP. Our results show that w/ V2T and365

w/ T2V outperform w/o Inter, demonstrating that366

InterCLIP captures text-image interactions more367

effectively. Furthermore, w/ T2V achieves superior368

performance compared to w/ V2T, likely due to369

2The fixed candidate values are {128, 256, 384, 512, 640,
768, 896, 1024, 1152, 1280}.

the inherent complexity of the visual space, which 370

presents challenges for the projection layer when 371

mapping vision representations into the text en- 372

coder space. In contrast, w/ TW performs worse 373

than other configurations, possibly because embed- 374

ding representations within both encoders increases 375

the learning difficulty. In summary, InterCLIP 376

with T2V interaction, combined with our training 377

strategy and MEP, delivers the most promising re- 378

sults. These findings underscore the robustness and 379

adaptability of our framework, establishing it as a 380

highly effective solution for capturing nuanced text- 381

image interactions and addressing the complexities 382

of multi-modal sarcasm detection. 383

Performance on MMSD. For MMSD, the 384

RoBERTa-based text modality baseline signifi- 385

cantly outperforms other methods due to spu- 386

rious cues in the text, enabling accurate pre- 387
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Method Accuracy
(%)

Trainable Parameters
(M)

Fitting Time / Epoch
(s)

Inference Time
(s)

GPU Memory Peak
(GB)

Multi-view CLIP 85.64 165 488 51 15.59
DIP 80.59 196 OOM OOM OOM
G2SAM 79.43 116 90 13 18.32
DynRT 70.37 25 370 26 8.03
InterCLIP-MEP 86.72 8 55 6 6.14

Table 3: Efficiency comparison of different methods. To demonstrate the efficiency of InterCLIP-MEP, we selected
several recent baselines for comparison. The analysis was conducted using the MMSD2.0 dataset on a single
NVIDIA RTX 4090 GPU with a batch size of 128. In the table, Fitting Time / Epoch indicates the time required
for each epoch during training and validation and OOM indicates Out of Memory, referring to GPU memory overflow.

w/o Inter w/ TW w/ V2T w/ T2V

Variant Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%)

BASELINE 86.05 84.81 85.51 84.26 86.26 85.00 86.72 85.61
w/o Proj 85.76 84.43 85.43 84.05 85.68 84.22 86.22 84.51
w/o MEP 85.39 83.99 85.22 83.79 86.26 84.78 86.26 84.82
w/o LoRA 82.44 77.73 76.42 74.37 73.31 72.22 75.13 71.79

Table 4: Ablation study of InterCLIP-MEP, with BASELINE denoting results without ablation.

dictions solely based on textual features (Qin388

et al., 2023). Consequently, models like DynRT,389

G2SAM, and DIP, which utilize RoBERTa or BERT390

for text feature extraction, achieve high perfor-391

mance on MMSD but experience a significant drop392

on MMSD2.0. To further investigate, we con-393

duct an additional experiment, InterCLIP-MEP394

w/ RoBERTa, replacing the original text encoder395

with RoBERTa. While this change led to state-of-396

the-art performance on MMSD, it disrupted Inter-397

CLIP’s modality alignment, causing a reasonable398

performance drop on MMSD2.0. This suggests that399

MMSD’s text data contains spurious cues that allow400

models to rely heavily on the text encoder, while401

MMSD2.0, having been cleaned, requires more ro-402

bust multi-modal capabilities. We further find that403

the w/ V2T variant consistently outperforms others404

in both InterCLIP-MEP and InterCLIP-MEP w/405

RoBERTa experiments, underscoring the model’s406

tendency to overly depend on text modality.407

Efficiency Comparison. Our training strategy408

demonstrates both remarkable effectiveness and409

outstanding efficiency. To validate this, we con-410

ducted a comprehensive comparative analysis411

against leading state-of-the-art methods, as detailed412

in Table 3. For instance, the Multi-view CLIP413

method (Qin et al., 2023) employs a multi-layer414

Transformer encoder for feature fusion, which,415

while effective, introduces a significant number of416

trainable parameters. This results in slower training417

and inference speeds and greater memory consump-418

tion. Similarly, the DIP method (Wen et al., 2023) 419

caches historical samples during training, which 420

hinders its ability to support large-batch training 421

under limited resource conditions. In contrast, our 422

method operates with a batch size of 128 while 423

utilizing a significantly smaller number of train- 424

able parameters, which translates to notably faster 425

training and validation cycles. Furthermore, by 426

incorporating minimal parameter modifications to 427

adapt CLIP and utilizing simple yet effective lin- 428

ear layers for representation fusion, our approach 429

achieves superior inference speeds and drastically 430

reduced memory consumption. These results high- 431

light the practicality of our framework, establishing 432

it as a benchmark for both computational efficiency 433

and performance in multi-modal sarcasm detection. 434

4.3 Analysis of InterCLIP-MEP 435

To robustly validate the effectiveness of InterCLIP- 436

MEP, we conduct comprehensive ablation studies 437

and case studies on the more reliable MMSD2.0 438

benchmark, offering deeper insights into its design 439

and performance. In addition, we include visualiza- 440

tion analyses to provide an intuitive understanding 441

of how the framework processes multi-modal sar- 442

casm cues. 443

Ablation study. We remove the projection mod- 444

ule Fp and train only the classification module Fc 445

for prediction, denoted as w/o Proj. To test the 446

necessity of using LoRA (Hu et al., 2022) for fine- 447

tuning, we keep the rest of InterCLIP-MEP un- 448
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: (entropy=0.58)

: (entropy=0.66)

i 'm pretty sure this
cookie cake isn 't

big enough .

the trees are so
beautiful i shed a tear

GT: MEP: 

GT: MEP: 

: (entropy=0.60)

GT: MEP: 

Sample Prediction

everything is a test

Figure 4: Case study of InterCLIP-MEP. In the figure,
GT represents the labels annotated by human experts,
MEP represents the labels predicted by the memory-
enhanced predictor, and Fc represents the labels pro-
vided by the classification module.

changed and freeze all self-attention weights of449

InterCLIP, denoted as w/o LoRA, always selecting450

the optimal memory size L for the MEP during in-451

ference. To evaluate the effectiveness of the MEP,452

we train both Fp and Fc but use only Fc during453

inference, denoted as w/o MEP.454

Table 4 reports all results. All variants show455

performance declines compared to the baseline,456

demonstrating the importance of each module in457

InterCLIP-MEP. For w/ TW and w/o Inter, the458

w/o MEP variant performed worse than the w/o459

Proj variant. However, for w/ T2V and w/ V2T,460

the w/o MEP variant performs better than the w/o461

Proj variant. This suggests that backbones with462

strong image-text interaction capabilities benefit463

from training the classification module Fc along464

with the projection module Fp, even without using465

MEP during inference. We also find that not us-466

ing LoRA to fine-tune the self-attention modules467

results in significant performance loss, indicating468

that the original CLIP’s vanilla space is not directly469

suitable for the sarcasm detection task.470

Case study. As shown in Figure 4, we select471

three examples to further demonstrate the robust-472

ness of InterCLIP-MEP. We observe that direct473

predictions through the classification module Fc474

result in high prediction entropy and incorrect out-475

comes. However, MEP effectively mitigates the476

issue for cases where Fc fails to correctly identify477

the results by using the historical knowledge of the478

test samples. This integration ensures that even479

in complex situations, the model maintains a high480

level of accuracy.481

Sample InterCLIP CLIP

it smells wonderful
out here ! ! – at sea
lions at pier <num>

pinch me i 'm
dreaming ! atlanta

traffic at its best folks

Figure 5: Visual comparison between InterCLIP and
original CLIP. Both InterCLIP and the original CLIP
were fine-tuned using the same training set and identical
parameters. The key distinction is that the original CLIP
does not incorporate interaction.

Visulization. To further validate that InterCLIP 482

is capable of more effectively capturing the interac- 483

tive information between text and images compared 484

to original CLIP, thereby aiding in the detection of 485

sarcasm cues, we use GradCAM (Selvaraju et al., 486

2017) to visualize the areas of focus during the in- 487

ference process of the visual model in Figure 5. We 488

observe that in the first example, which complains 489

about the unpleasant odor caused by the sea lions, 490

InterCLIP focuses more accurately on the location 491

of the sea lions compared to the original CLIP. In 492

the second example, which complains about traffic 493

congestion, InterCLIP correctly focuses on the dis- 494

tribution of cars on the road, whereas the original 495

CLIP’s focus is scattered. 496

5 Conclusion 497

In this paper, we propose InterCLIP-MEP, a novel 498

framework for multi-modal sarcasm detection that 499

directly addresses the challenges of modeling nu- 500

anced text-image interactions and managing predic- 501

tion uncertainty. We design Interactive CLIP (In- 502

terCLIP) to embed cross-modal information within 503

text and image encoders, enabling a deeper under- 504

standing of sarcasm cues. Additionally, we develop 505

a Memory-Enhanced Predictor (MEP) to dynami- 506

cally leverage historical sample knowledge, mak- 507

ing our inference process more robust and adap- 508

tive. Through extensive experiments on MMSD 509

and MMSD2.0 benchmarks, we demonstrate that 510

InterCLIP-MEP achieves state-of-the-art perfor- 511

mance while significantly reducing computational 512

costs. By requiring fewer trainable parameters and 513

less GPU memory, our method offers a lightweight, 514

efficient, and scalable solution, setting a new bench- 515

mark for multi-modal sarcasm detection. 516
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Limitations517

While InterCLIP-MEP delivers strong perfor-518

mance, there remain areas for further refinement.519

For instance, the framework could benefit from ad-520

ditional techniques to better capture sarcasm that521

heavily relies on subtle cultural or highly specific522

contextual cues. Moreover, extending its applica-523

tion to more diverse and less structured datasets524

could be an interesting direction for future work,525

further broadening its practical applicability.526

Ethical Considerations527

This work focuses on advancing multi-modal sar-528

casm detection to improve understanding of com-529

plex communication in online content. While the530

proposed framework enhances detection accuracy531

and efficiency, potential misuse must be consid-532

ered. Automated sarcasm detection could inadver-533

tently amplify biases present in training data or be534

deployed for unethical purposes, such as targeted535

content moderation or surveillance. To mitigate536

these risks, we encourage the responsible use of537

this technology and emphasize the importance of538

using diverse and unbiased datasets during train-539

ing to minimize unintended consequences. Fur-540

thermore, this research strictly adheres to ethical541

guidelines for data collection and usage.542
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A Implementation Details 787

The model training and testing were conducted 788

using PyTorch Lightning3. InterCLIP was con- 789

structed by leveraging the Transformers library 790

(Wolf et al., 2020). For the MMSD2.0 experi- 791

ments, the initial weights for InterCLIP are based 792

on clip-vit-base-patch324. For the MMSD exper- 793

iments, we utilized the roberta-ViT-B-32 model 794

architecture provided by OpenCLIP5, with the pre- 795

trained checkpoint laion2b_s12b_b32k6. Cus- 796

tom scripts were developed to adapt its format 797

to the Transformers library, ensuring compatibil- 798

ity with our framework. The model parameters 799

were optimized using AdamW (Loshchilov and 800

Hutter, 2019), with a learning rate set to 1e-4 for 801

the LoRA fine-tuning modules and 5e-4 for other 802

trainable modules. A cosine annealing scheduler 803

with warmup was employed to dynamically adjust 804

the learning rate, where the warmup steps consti- 805

tuted the first 20% of the total optimization steps, 806

and the minimum learning rate was set to 1% of the 807

initial rate. For the modules Gt/v, Ft/v, Fc, and Fp, 808

simple multi-layer perceptrons (MLPs) were uti- 809

lized. The training processing was performed with 810

a batch size of 64 for 3 epochs. All experiments 811

were run on a machine equipped with an NVIDIA 812

RTX 4090 GPU. 813

B Experimental Details 814

B.1 Hyperparameter details 815

We summarize the hyperparameters involved in 816

InterCLIP-MEP and their descriptions in Table 5. 817

The hyperparameter settings for obtaining the main 818

results in the paper are summarized in Table 6. 819

For other baseline methods, we follow the optimal 820

hyperparameter settings they reported. 821

B.2 Hyperparameter study 822

We further investigate the method using Interactive- 823

CLIP with T2V interaction as the backbone. Keep- 824

ing the other hyperparameters constant, we con- 825

dition different top-n layers of the self-attention 826

modules. We also study the impact of different 827

projection dimensions df , different LoRA ranks 828

r, and different memory sizes L on the w/ T2V 829

3https://lightning.ai/
4https://huggingface.co/openai/

clip-vit-base-patch32
5https://github.com/mlfoundations/open_clip
6https://huggingface.co/laion/

CLIP-ViT-B-32-roberta-base-laion2B-s12B-b32k
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Parameter Description

r The rank of LoRA, determining the dimen-
sion of the low-rank update matrices.

W The weight matrices in the self-attention
module fine-tuned using LoRA, specifically
targeting combinations of W{q,k,v,o}.

top-n The number of top self-attention layers con-
ditioned during fine-tuning.

df The dimensionality of the latent space for the
projected features.

L The configurable range of memory sizes
maintained by the Memory-Enhanced Pre-
dictor (MEP).

Table 5: Summary of hyperparameters.

Param. Value

For trainer

epoch 3
batch_size 64
lr 5e-4
lora_lr 1e-4
warmup_ratio 0.2
min_lr_rate 0.01

For our model

r 8
top-n 4
df 1024
W Wk,Wv,Wo

L {128, 256, 384, 512, 640, 768, 896,
1024, 1152, 1280}

Table 6: Hyperparameter settings.

method. We present all results in Figure 6. Fig-830

ure 6(a) shows that conditioning the top four self-831

attention layers yields the best results. From Figure832

6(b), a rank of 8 is optimal. Figure 6(c) indicates833

the projection dimension is best at 256 or 1024.834

Figure 6(d) reveals that a memory size of 640 in835

MEP outperforms the others, confirming the value836

of historical sample knowledge.837

B.3 Empirical study of self-attention838

fine-tuning and interaction modes839

Keeping the other hyperparameters constant as840

shown in Table 6, we fine-tune all possible weight841

matrices W and employ different interaction842

modes of InterCLIP as the backbone. We consis-843

tently select the optimal memory size from L for844

MEP. We calculate the average metrics for different845

methods and different weight matrices. The results846

are presented in Table 7 and Table 8. We observe847

that fine-tuning the weight matrices Wk,Wv,Wo848

and using the T2V interaction mode of InterCLIP849

are the best choices for InterCLIP-MEP.850

Figure 6: Hyperparameter study curves for w/ T2V.
Panel (d) compares results with those from using only
the classification module Fc for prediction.

C More Visual Examples 851

Figure 7 presents additional examples illustrat- 852

ing the focus differences between InterCLIP and 853

CLIP. These visualizations highlight InterCLIP’s 854

improved ability to capture sarcasm-related cues 855

by focusing on relevant areas in the images. 856

D Extended Experiments 857

To further verify the performance of our framework, 858

we conducted an extended set of experiments. 859

D.1 Benchmark 860

DocMSU (Du et al., 2024) is a recently introduced 861

multi-modal sarcasm benchmark designed specifi- 862

cally for long-text analysis. It facilitates the eval- 863

uation of multi-modal sarcasm comprehension as 864

well as detection tasks. In this study, we concen- 865

trate on the multi-modal sarcasm detection task. 866

The benchmark statistics can be found in Table 9. 867

D.2 Baselines 868

We follow the evaluation protocol of Du et al. 869

(2024). We compare against unimodal baselines: 870

BERT-base (text-only) (Devlin, 2018) and Swin 871

Transformer (image-only) (Liu et al., 2021). For 872

multi-modal approaches, we include CLIP (Rad- 873

ford et al., 2021), Vision-and-Language Trans- 874

former (ViLT) (Kim et al., 2021), and CMGCN 875

(Liang et al., 2022). The method proposed by Du 876

et al. (2024) is taken as the state-of-the-art baseline. 877
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Image InterCLIP CLIP

no jesus on this easter cup ? ! ? ! time to throw a fit !

when you want yo hold bae 's hands but need to keep it as halaal as possible .

sheybi i told you not to buy mr eazi 's ticket ... now he has rubbish your country

Explanation

a visual representation of what goes on in my brain

This sample sarcastically compares a cluttered
desktop to a chaotic brain, highlighting the irony
in the caption. InterCLIP focuses sharply on the
core clutter, aligning well with the sarcastic
undertone. In contrast, CLIP shows scattered
attention, failing to capture key areas effectively.
This demonstrates that InterCLIP better identifies
and visualizes the sarcastic cues in the sample.

This sample sarcastically critiques the lack of
religious imagery on a Starbucks Easter cup with
exaggerated mockery. InterCLIP focuses sharply
on the cup and logo, effectively capturing the
visual elements tied to the caption’s sarcasm. In
contrast, CLIP shows diffuse attention and misses
key areas, highlighting InterCLIP’s superior
ability to recognize and visualize the sarcastic tone.

This sample sarcastically depicts a couple holding
hands through cups to stay “halal,” playfully
mocking the strict modesty practices. InterCLIP
focuses sharply on the hands, cups, and
interaction, effectively capturing the sarcastic tone
and cultural context. In contrast, CLIP shows
scattered attention, missing the key interaction and
connection to the caption. This highlights
InterCLIP’s stronger ability to understand and
represent the sarcasm in the sample.

This sample sarcastically critiques a decision,
humorously blaming the purchase of a concert
ticket for exaggerated consequences like ruining a
country. The scolding and regretful expressions of
the children align with the caption’s sarcasm.
InterCLIP focuses sharply on their faces and
expressions, effectively capturing the key visual
cues, while CLIP shows scattered attention,
missing the central elements. This highlights
InterCLIP’s stronger grasp of the sarcasm.

Figure 7: Additional visual examples showcasing InterCLIP’s improved focus on sarcasm-related visual cues
compared to CLIP.

D.3 Results878

Our InterCLIP-MEP framework demonstrates879

strong performance across various configurations,880

as shown in Table 10. In particular, the w/o Inter881

and w/ V2T variants consistently achieve higher F1882

scores compared to the baselines, thereby showcas-883

ing their robustness in handling multi-modal sar-884

casm detection tasks. Notably, all variants achieve885

nearly perfect recall, highlighting their outstand-886

ing capability in accurately identifying sarcasm887

across diverse datasets. The w/o Inter variant888

also achieves the highest accuracy, further demon-889

strating its effectiveness and precision.890

Overall, the comprehensive results in Table 10891

affirm the unparalleled effectiveness of InterCLIP’s892

modality interaction mechanism and our proposed893

memory-enhanced predictor (MEP), particularly894

in surpassing existing state-of-the-art methods in 895

both accuracy and F1 score, thus setting a new 896

benchmark in the field. 897

E Other Related Works 898

E.1 CLIP adaptation 899

The Contrastive Language-Image Pretraining 900

(CLIP) model (Radford et al., 2021) excels in 901

vision-language tasks. Adapting CLIP for specific 902

domains has shown substantial improvements, as 903

demonstrated by Li et al. (2022) for phrase local- 904

ization, Liang et al. (2023) for open-vocabulary 905

semantic segmentation, and Wang et al. (2023) for 906

action recognition. In this work, inspired by Ganz 907

et al. (2024), we conditionally enhance both the 908

text and vision encoders of CLIP, making it more 909
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W Mean Acc. (%) Mean F1 (%)

Wq 85.14 83.99
Wk 85.09 84.00
Wv 85.34 84.24
Wo 85.39 84.23
Wq,Wk 85.36 84.16
Wq,Wv 85.63 84.40
Wq,Wo 85.73 84.49
Wk,Wo 85.67 84.43
Wv,Wo 85.73 84.54
Wk,Wv 85.70 84.51
Wq,Wk,Wo 85.92 84.63
Wq,Wv,Wo 85.87 84.60
Wq,Wk,Wv 86.05 84.75
Wk,Wv,Wo 86.14 84.92
Wq,Wk,Wv,Wo 85.82 84.55

Table 7: Average results of fine-tuning different weight
matrices W across four baseline methods.

Method Mean Acc. (%) Mean F1 (%)

w/o Inter 85.49 84.32
w/ TW 85.66 84.44
w/ V2T 85.62 84.41
w/ T2V 85.78 84.55

Table 8: Average results of four baseline methods for
fine-tuning different weight matrices W.

effective in capturing the interplay between text910

and images to identify multi-modal sarcasm cues.911

Unlike Ganz et al. (2024), who focused solely912

on embedding text representations into the vision913

encoder, we also explore embedding image repre-914

sentations into the text encoder. Furthermore, their915

approach is limited to general classification tasks916

and does not address the complexities of multi-917

modal sarcasm detection.918

E.2 Memory-enhanced prediction919

Inspired by cognitive science (Stokes, 2015; Badde-920

ley, 2000), memory has been introduced to enhance921

neural networks (Weston et al., 2014; Sukhbaatar922

et al., 2015). Several studies (Wu et al., 2018; Wen923

et al., 2023) have used memory mechanisms to im-924

prove model training, and some (Zhang et al., 2024;925

Wei et al., 2024) leverage memory to store histori-926

cal knowledge, enhancing prediction accuracy. In927

this work, we introduce a memory-enhanced pre-928

dictor for multi-modal sarcasm detection. In con-929

Sarcastic Non-sarcastic All

Train 4,014 46,265 50,279
Validation 1,125 13,097 14,222
Test 555 6,772 7,327

Table 9: Statistics of DocMSU.

Method Acc. F1 P R

BERT-base* 87.12 86.51 77.61 70.37
Swin-Transformer* 74.83 61.51 67.57 56.45
CMGCN* 88.12 75.23 78.11 72.55
CLIP* 96.19 77.62 78.99 76.30
ViLT* 93.15 41.44 69.03 29.61
Du et al. (2024)* 97.83 87.25 81.20 94.27

InterCLIP-MEP (Ours)

w/o Inter 97.84 87.48 78.08 99.45
w/ TW 97.79 87.24 77.48 99.81
w/ V2T 97.83 87.45 77.81 99.82
w/ T2V 97.67 86.65 76.45 99.99

Table 10: Results of the extended experiments.
Underline results denote the compared SOTA baseline,
boldface highlights results that surpass the baseline, and
* indicates results sourced from Du et al. (2024).

trast to other methods, our memory dynamically 930

updates during testing, utilizing relevant historical 931

information for improved accuracy and robustness. 932

F List of Symbols 933

In Table 11, we have listed the main symbols used 934

in the paper and their descriptions. 935
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Symbol Description

T T denotes a short text.
I I represents an image.
P P denotes a text-image pair (T, I).
T T denotes CLIP’s text encoder.
V V denotes CLIP’s vision encoder.
F F represents the final layer representations encoded by either the text or vision encoder, with

text representations as Ft and image representations as Fv.
F̃ F̃ represents the final layer representations encoded by either the text or vision encoder after

embedding representations from another modality, with text representations as F̃t and image
representations as F̃v.

H H represents the input representations for each sub-attention layer in the text or vision
encoders. Each layer’s input comes from the output of the previous layer, denoted Ht for
the text encoder and Hv for the vision encoder.

Ft/v Ft/v denotes the adapting projection layer in the text or vision encoders used to project the
embedded representations of the other modality into the current encoder space. It is denoted
as Ft in the text encoder and Fv in the vision encoder.

F
′

F′ represents the representations projected into the corresponding encoder space. For
example, embedding visual representations Fv in the text encoder and projecting it through
Ft results in F′

v.
H

′
H′ represents the representations after embedding another modality’s representations and
processing them through a self-attention layer.

Ht/v Ht/v denotes the projection module in the self-attention layer used to transform the output
of the self-attention module, denoted Ht for the text encoder and Hv for the vision encoder.

Gt/v Gt/v denotes the projection module in the self-attention layer that has embedded repre-
sentations from another modality, used to jointly transform the output representation in
combination with Ht/v.

H
′′

H′′ represents the final representations in the self-attention layer.
h̃f h̃f denotes the final fused feature obtained from a sample.
Fc Fc denotes the classification module used to assign pseudo-labels to samples.
Fp Fp denotes the projection module used to project samples into a latent space.
ĥf ĥf represents the feature of a sample’s fused feature after transformation by Fp and L2

normalization.

Table 11: List of symbols
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