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Abstract

Molecular conformer generation is a fundamental task in computational chemistry.
Several machine learning approaches have been developed, but none have outper-
formed state-of-the-art cheminformatics methods. We propose torsional diffusion,
a novel diffusion framework that operates on the space of torsion angles via a
diffusion process on the hypertorus and an extrinsic-to-intrinsic score model. On a
standard benchmark of drug-like molecules, torsional diffusion generates superior
conformer ensembles compared to machine learning and cheminformatics meth-
ods in terms of both RMSD and chemical properties, and is orders of magnitude
faster than previous diffusion-based models. Moreover, our model provides exact
likelihoods, which we employ to build the first generalizable Boltzmann generator.
Code is available at https://github.com/gcorso/torsional-diffusion.

1 Introduction

Many properties of a molecule are determined by the set of low-energy structures, called conformers,
that it adopts in 3D space. Conformer generation is therefore a fundamental problem in computational
chemistry [Hawkins, 2017] and an area of increasing attention in machine learning. Traditional
approaches to conformer generation consist of metadynamics-based methods, which are accurate
but slow [Pracht et al., 2020]; and cheminformatics-based methods, which are fast but less accurate
[Hawkins et al., 2010, Riniker and Landrum, 2015]. Thus, there is growing interest in developing
deep generative models to combine high accuracy with fast sampling.

Diffusion or score-based generative models [Ho et al., 2020, Song et al., 2021]—a promising class of
generative models—have been applied to conformer generation under several different formulations.
These have so far considered diffusion processes in Euclidean space, in which Gaussian noise is
injected independently into every data coordinate—either pairwise distances in a distance matrix
[Shi et al., 2021, Luo et al., 2021] or atomic coordinates in 3D [Xu et al., 2022]. However, these
models require a large number of denoising steps and have so far failed to outperform the best
cheminformatics methods.

We instead propose torsional diffusion, in which the diffusion process over conformers acts only
on the torsion angles and leaves the other degrees of freedom fixed. This is possible and effective
because the flexibility of a molecule, and thus the difficulty of conformer generation, lies largely
in torsional degrees of freedom [Axelrod and Gómez-Bombarelli, 2022]; in particular, bond lengths
and angles can already be determined quickly and accurately by standard cheminformatics methods.
Leveraging this insight significantly reduces the dimensionality of the sample space; drug-like
molecules2 have, on average, n = 44 atoms, corresponding to a 3n-dimensional Euclidean space,
but only m = 7.9 torsion angles of rotatable bonds.

∗Equal contribution. Correspondence to {bjing, gcorso}@mit.edu.
2As measured from the standard dataset GEOM-DRUGS [Axelrod and Gómez-Bombarelli, 2022]
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Figure 1: Overview of torsional diffusion. Left: Extrinsic and intrinsic views of torsional diffusion
(only 2 dimensions/bonds shown). Right: In a step of reverse diffusion (A), the current conformer is
provided as a 3D structure (B) to the score model, which predicts intrinsic torsional updates (C). The
final layer of the score model is constructed to resemble a torque computation around each bond (D).
Y refers to the spherical harmonics and Vb the learned atomic embeddings.

Torsion angle coordinates define not a Euclidean space, but rather anm-dimensional torus Tm (Figure
1, left). However, the dimensionality and distribution over the torus vary between molecules and
even between different ways of defining the torsional space for the same molecule. To resolve these
difficulties, we develop an extrinsic-to-intrinsic score model (Figure 1, right) that takes as input
a 3D point cloud representation of the conformer in Euclidean space (extrinsic coordinates), and
predicts as output a score on a torsional space specific to that molecule (intrinsic coordinates). To do
so, we consider a torsional score for a bond as a geometric property of a 3D point cloud, and use
SE(3)-equivariant networks to predict them directly for each bond.

Unlike prior work, our model provides exact likelihoods of generated conformers, enabling training
with the ground-truth energy function rather than samples alone. This connects with the literature
on Boltzmann generators—generative models which aim to sample the Boltzmann distribution of
physical systems without expensive molecular dynamics or MCMC simulations [Noé et al., 2019,
Köhler et al., 2021]. Thus, as a variation on the torsional diffusion framework, we develop torsional
Boltzmann generators that can approximately sample the conditional Boltzmann distribution for
unseen molecules. This starkly contrasts with existing Boltzmann generators, which are specific for
the chemical system on which they are trained.

Our main contributions are:

• We formulate conformer generation in terms of diffusion modeling on the hypertorus—
the first demonstration of non-Euclidean diffusion on complex datasets—and develop an
extrinsic-to-intrinsic score model that satisfies the required symmetries: SE(3) invariance,
torsion definition invariance, and parity equivariance.

• We obtain state-of-the-art results on the GEOM-DRUGS dataset [Axelrod and Gómez-
Bombarelli, 2022] and are the first method to consistently outperform the established
commercial software OMEGA [Hawkins, 2017]. We do so using two orders of magnitude
fewer denoising steps than GeoDiff [Xu et al., 2022], the best Euclidean diffusion approach.

• We propose torsional Boltzmann generators—the first Boltzmann generator based on diffu-
sion models rather than normalizing flows and the first to be useful for a class of molecules
rather than a specific system.

2 Background

Diffusion generative models Consider the data distribution as the starting distribution p0(x) of a
forward diffusion process described by an Ito stochastic differential equation (SDE):

dx = f(x, t) dt+ g(t) dw, t ∈ (0, T ) (1)
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where w is the Wiener process and f(x, t), g(t) are chosen functions. With sufficiently large T , the
distribution pT (x)—the prior—approaches a simple Gaussian. Sampling from the prior and solving
the reverse diffusion

dx =
[
f(xt, t)− g2(t)∇x log pt(x)

]
dt+ g(t) dw̄ (2)

yields samples from the data distribution p0(x) [Anderson, 1982, Song et al., 2021]. Diffusion, or
score-based, generative models [Ho et al., 2020, Song et al., 2021] learn the score∇x log pt(x) of the
diffused data with a neural network and generate data by approximately solving the reverse diffusion.
The score of the diffused data also defines a probability flow ODE—a continuous normalizing flow
that deterministically transforms the prior into the data distribution [Song et al., 2021]. We leverage
the insight that, in many cases, this flow makes it possible to use diffusion models in place of
normalizing flows and highlight one such case with the torsional Boltzmann generator.

Diffusion generative models have traditionally been used to model data on Euclidean spaces (such as
images); however, De Bortoli et al. [2022] recently showed that the theoretical framework holds with
relatively few modifications for data distributions on compact Riemannian manifolds. The hypertorus
Tm, which we use to define torsional diffusion, is a specific case of such a manifold.

Several methods [Salimans and Ho, 2022, Vahdat et al., 2021, Nichol and Dhariwal, 2021] have been
proposed to improve and accelerate diffusion models in the domain of image generation. Among
these, the most relevant to this work is subspace diffusion [Jing et al., 2022], in which the diffusion is
progressively restricted to linear subspaces. Torsional diffusion can be viewed in a similar spirit, as
it effectively restricts Euclidean diffusion to a nonlinear manifold given by fixing the non-torsional
degrees of freedom.

Molecular conformer generation The conformers of a molecule are the set of its energetically
favorable 3D structures, corresponding to local minima of the potential energy surface.3 The gold
standards for conformer generation are metadynamics-based methods such as CREST [Pracht et al.,
2020], which explore the potential energy surface while filling in local minima [Hawkins, 2017].
However, these require an average of 90 core-hours per drug-like molecule [Axelrod and Gómez-
Bombarelli, 2022] and are not considered suitable for high-throughput applications. Cheminformatics
methods instead leverage approximations from chemical heuristics, rules, and databases for signif-
icantly faster generation [Lagorce et al., 2009, Cole et al., 2018, Miteva et al., 2010, Bolton et al.,
2011, Li et al., 2007]; while these can readily model highly constrained degrees of freedom, they fail
to capture the full energy landscape. The most well-regarded of such methods include the commercial
software OMEGA [Hawkins et al., 2010] and the open-source RDKit ETKDG [Landrum et al., 2013,
Riniker and Landrum, 2015].

A number of machine learning methods for conformer generation has been developed [Xu et al.,
2021a,b, Shi et al., 2021, Luo et al., 2021], the most recent and advanced of which are GeoMol
[Ganea et al., 2021] and GeoDiff [Xu et al., 2022]. GeoDiff is a Euclidean diffusion model that
treats conformers as point clouds x ∈ R3n and learns an SE(3) equivariant score. On the other hand,
GeoMol employs a graph neural network that, in a single forward pass, predicts neighboring atomic
coordinates and torsion angles from a stochastic seed.

Boltzmann generators An important problem in physics and chemistry is that of generating
independent samples from a Boltzmann distribution p(x) ∝ e−E(x)/kT with known but unnormalized
density.4 Generative models with exact likelihoods, such as normalizing flows, can be trained to match
such densities [Noé et al., 2019] and thus provide independent samples from an approximation of the
target distribution. Such Boltzmann generators have shown high fidelity on small organic molecules
[Köhler et al., 2021] and utility on systems as large as proteins [Noé et al., 2019]. However, a separate
model has to be trained for every molecule, as the normalizing flows operate on intrinsic coordinates
whose definitions are specific to that molecule. This limits the utility of existing Boltzmann generators
for molecular screening applications.

3Conformers are typically considered up to an energy cutoff above the global minimum.
4This is related to but distinct from conformer generation, as conformers are the local minima of the

Boltzmann distribution rather than independent samples.
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3 Torsional Diffusion

Consider a molecule as a graph G = (V, E) with atoms v ∈ V and bonds e ∈ E ,5 and denote
the space of its possible conformers CG. A conformer C ∈ CG can be specified in terms of its
intrinsic (or internal) coordinates: local structures L consisting of bond lengths, bond angles, and
cycle conformations; and torsion angles τ consisting of dihedral angles around freely rotatable bonds
(precise definitions in Appendix A). We consider a bond freely rotatable if severing the bond creates
two connected components of G, each of which has at least two atoms.6 Thus, torsion angles in
cycles (or rings), which cannot be rotated independently, are considered part of the local structure L.

Conformer generation consists of learning probability distributions pG(L, τ ). However, the set of
possible stable local structures L for a particular molecule is very constrained and can be accurately
predicted by fast cheminformatics methods, such as RDKit ETKDG [Riniker and Landrum, 2015]
(see Appendix F.1 for verification). Thus, we use RDKit to provide approximate samples from
pG(L), and develop a diffusion-based generative model to learn distributions pG(τ | L) over torsion
angles—conditioned on a given graph and local structure.

Our method is illustrated in Figure 1 and detailed as follows. Section 3.1 formulates diffusion
modeling on the torus defined by torsion angles. Section 3.2 describes the torsional score framework,
Section 3.3 the required symmetries, and Section 3.4 our score model architecture. Section 3.5
discusses likelihoods, and Section 3.6 how likelihoods can be used for energy-based training.

3.1 Diffusion modeling on Tm

Since each torsion angle coordinate lies in [0, 2π), the m torsion angles of a conformer define a
hypertorus Tm. To learn a generative model over this space, we apply the continuous score-based
framework of Song et al. [2021], which holds with minor modifications for data distributions on
compact Riemannian manifolds (such as Tm) [De Bortoli et al., 2022]. Specifically, for Riemannian
manifold M let x ∈ M , let w be the Brownian motion on the manifold, and let the drift f(x, t),
score ∇x log pt(x), and score model output s(x, t) be elements of the tangent space TxM . Then
equation 2 remains valid—that is, discretizing and solving the reverse SDE on the manifold as a
geodesic random walk starting with samples from pT (x) approximately recovers the original data
distribution p0(x) [De Bortoli et al., 2022].

For the forward diffusion we use rescaled Brownian motion given by f(x, t) = 0, g(t) =
√

d
dtσ

2(t)

where σ(t) is the noise scale. Specifically, we use an exponential diffusion σ(t) = σ1−t
min σ

t
max as in

Song and Ermon [2019], with σmin = 0.01π, σmax = π, t ∈ (0, 1). Due to the compactness of the
manifold, however, the prior pT (x) is no longer a Gaussian, but a uniform distribution over M .

Training the score model with denoising score matching requires a procedure to sample from the
perturbation kernel pt|0(x′ | x) of the forward diffusion and compute its score. We view the
torus Tm ∼= [0, 2π)m as the quotient space Rm/2πZm with equivalence relations (τ1, . . . τm) ∼
(τ1 + 2π, . . . , τm) . . . ∼ (τ1, . . . τm + 2π). Hence, the perturbation kernel for rescaled Brownian
motion on Tm is the wrapped normal distribution on Rm; that is, for any τ , τ ′ ∈ [0, 2π)m, we have

pt|0(τ ′ | τ ) ∝
∑

d∈Zm

exp

(
−||τ − τ ′ + 2πd||2

2σ2(t)

)
(3)

where σ(t) is the noise scale of the perturbation kernel pt|0. We thus sample from the perturbation
kernel by sampling from the corresponding unwrapped isotropic normal and taking elementwise
mod 2π. The scores of the kernel are pre-computed using a numerical approximation. During
training, we sample times t at uniform and minimize the denoising score matching loss

JDSM(θ) = Et
[
λ(t)Eτ0∼p0,τt∼pt|0(·|τ0)

[
||s(τt, t)−∇τt log pt|0(τt | τ0)||2

]]
(4)

where the weight factors λ(t) = 1/Eτ∼pt|0(·|0)

[
||∇τ log pt|0(τ | 0)||2

]
are also precomputed. As

the tangent space TτTm is just Rm, all the operations in the loss computation are the familiar ones.

5Chirality and other forms of stereoisomerism are discussed in Appendix F.3.
6Notably, this counts double bonds as rotatable. See Appendix F.3 for further discussion.
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For inference, we first sample from a uniform prior over the torus. We then discretize and solve
the reverse diffusion with a geodesic random walk; however, since the exponential map on the
torus (viewed as a quotient space) is just expτ (δ) = τ + δ mod 2π, the geodesic random walk is
equivalent to the wrapping of the random walk on Rm.

3.2 Torsional score framework

Figure 2: A: The torsion τ
around a bond depends on a
choice of neighbors. B: The
change ∆τ caused by a rela-
tive rotation is the same for all
choices. C: The sign of ∆τ
is unambiguous because given
the same neighbors, τ does not
depend on bond direction.

While we have defined the diffusion process over intrinsic coor-
dinates, learning a score model s(τ , t) directly over intrinsic co-
ordinates is potentially problematic for several reasons. First, the
dimensionality m of the torsional space depends on the molecular
graph G. Second, the mapping from torsional space to physically
distinct conformers depends on G and local structures L, but it is
unclear how to best provide these to a model over Tm. Third, there
is no canonical choice of independent intrinsic coordinates (L, τ );
in particular, the torsion angle at a rotatable bond can be defined as
any of the dihedral angles at that bond, depending on an arbitrary
choice of reference neighbors (Figure 2 and Appendix A). Thus,
even with fixed G and L, the mapping from Tm to conformers is
ill-defined. This posed a significant challenge to prior works using
intrinsic coordinates [Ganea et al., 2021].

To circumvent these difficulties, we instead consider a conformer
C ∈ CG in terms of its extrinsic (or Cartesian) coordinates—that is,
as a point cloud in 3D space, defined up to global roto-translation:
CG ∼= R3n/SE(3). Then, we construct the score model sG(C, t)
as a function over CG rather than Tm. The outputs remain in the
tangent space of Tm, which is just Rm. Such a score model is
simply an SE(3)-invariant model over point clouds in 3D space
sG : R3n × [0, T ] 7→ Rm conditioned on G. Thus, we have reduced
the problem of learning a score on the torus, conditioned on the
molecular graph and local structure, to the much more familiar
problem of predicting SE(3)-invariant scalar quantities—one for
each bond—from a 3D conformer.

It may appear that we still need to choose a definition of each torsion
angle τi so that we can sample from pt|0(· | τ ) during training and
solve the reverse SDE over τ during inference. However, we leverage the following insight: given
fixed local structures, the action onC of changing a single torsion angle τi by some ∆τi can be applied
without choosing a definition (Figure 2). Geometrically, this action is a (signed) relative rotation
of the atoms on opposite sides of the bond and can be applied directly to the atomic coordinates in
3D. The geometric intuition can be stated as follows (proven in Appendix B and discussed further in
Appendix F.2).
Proposition 1. Let (bi, ci) be a rotatable bond, let xV(bi) be the positions of atoms on the bi side
of the molecule, and let R(θ, xci) ∈ SE(3) be the rotation by Euler vector θ about xci . Then for
C,C ′ ∈ CG, if τi is any definition of the torsion angle around bond (bi, ci),

τi(C
′) = τi(C) + θ

τj(C
′) = τj(C) ∀j 6= i

if ∃x ∈ C,x′ ∈ C ′.
x′V(bi)

= xV(bi)

x′V(ci)
= R (θ r̂bici , xci) xV(ci)

(5)

where r̂bici = (xci − xbi)/||xci − xbi ||.

To apply a torsion update ∆τ = (∆τ1, . . .∆τm) involving all bonds, we apply ∆τi sequentially in
any order. Then, since training and inference only make use of torsion updates ∆τ , we work solely
in terms of 3D point clouds and updates applied to them. To draw local structures L from RDKit, we
draw full 3D conformers C ∈ CG and then randomize all torsion angles to sample uniformly over
Tm. To solve the reverse SDE, we repeatedly predict torsion updates directly from, and apply them
directly to, the 3D point cloud. Therefore, since our method never requires a choice of reference
neighbors for any τi, it is manifestly invariant to such a choice. These procedures are detailed in
Appendix C.
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3.3 Parity equivariance

The torsional score framework presented thus far requires an SE(3)-invariant model. However, an
additional symmetry requirement arises from the fact that the underlying physical energy is invariant,
or extremely nearly so, under parity inversion [Quack, 2002]. Thus our learned density should respect
p(C) = p(−C) where −C = {−x | x ∈ C}. In terms of the conditional distribution over torsion
angles, we require p(τ (C) | L(C)) = p(τ (−C) | L(−C)). Then,
Proposition 2. If p(τ (C) | L(C)) = p(τ (−C) | L(−C)), then for all diffusion times t,

∇τ log pt(τ (C) | L(C)) = −∇τ log pt(τ (−C) | L(−C)) (6)

Because the score model seeks to learn sG(C, t) = ∇τ log pt(τ (C) | L(C)), we must have
sG(C, t) = −sG(−C, t). Thus, the score model must be invariant under SE(3) but equivari-
ant (change sign) under parity inversion of the input point cloud— i.e. it must output a set of
pseudoscalars in Rm.

3.4 Score network architecture

Based on sections 3.2 and 3.3, the desiderata for the score model are:

Predict a pseudoscalar δτi := ∂ log p/∂τi ∈ R that is SE(3)-invariant and parity equivariant
for every rotatable bond in a 3D point cloud representation of a conformer.

While there exist several GNN architectures which are SE(3)-equivariant [Jing et al., 2021, Satorras
et al., 2021], their SE(3)-invariant outputs are also parity invariant and, therefore, cannot satisfy the
desired symmetry. Instead, we leverage the ability of equivariant networks based on tensor products
[Thomas et al., 2018, Geiger et al., 2022] to produce pseudoscalar outputs.

Our architecture, detailed in Appendix D, consists of an embedding layer, a series of atomic convolu-
tion layers, and a final bond convolution layer. The first two closely follow the architecture of Tensor
Field Networks [Thomas et al., 2018], and produce learned feature vectors for each atom. The final
bond convolution layer constructs tensor product filters spatially centered on every rotatable bond
and aggregates messages from neighboring atom features. We extract the pseudoscalar outputs of this
filter to produce a single real-valued pseudoscalar prediction δτi for each rotatable bond.

Naively, the bond convolution layer could be constructed the same way as the atomic convolution
layers, i.e., with spherical harmonic filters. However, to supply information about the orientation
of the bond about which the torsion occurs, we construct a filter from the product of the spherical
harmonics with a representation of the bond (Figure 1D). Because the convolution conceptually
resembles computing the torque, we call this final layer the pseudotorque layer.

3.5 Likelihood

By using the probability flow ODE, we can compute the likelihood of any sample τ as follows [Song
et al., 2021, De Bortoli et al., 2022]:

log p0(τ0) = log pT (τT )− 1

2

∫ T

0

g2(t) ∇τ · sG(τt, t) dt (7)

In Song et al. [2021], the divergence term is approximated via Hutchinson’s method [Hutchinson,
1989], which gives an unbiased estimate of log p0(τ ). However, this gives a biased estimate of p0(τ ),
which is unsuitable for our applications. Thus, we compute the divergence term directly, which is
feasible here (unlike in Euclidean diffusion) due to the reduced dimensionality of the torsional space.

The above likelihood is in torsional space pG(τ | L), τ ∈ Tm, but to enable compatibility with the
Boltzmann measure e−E(x)/kT , it is desirable to interconvert this with a likelihood in Euclidean
space p(x | L),x ∈ R3n. A factor is necessary to convert between the volume element in torsional
space and in Euclidean space (full derivation in Appendix B):
Proposition 3. Let x ∈ C(τ , L) be a centered7 conformer in Euclidean space. Then,

pG(x | L) =
pG(τ | L)

8π2
√

det g
where gαβ =

n∑
k=1

J (k)
α · J (k)

β (8)

7Additional formalism is needed for translations, but it is independent of the conformer and can be ignored.
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where the indices α, β are integers between 1 and m+ 3. For 1 ≤ α ≤ m, J (k)
α is defined as

J
(k)
i = J̃

(k)
i − 1

n

n∑
`=1

J̃
(`)
i with J̃

(`)
i =

{
0 ` ∈ V(bi),
xbi
−xci

||xbi
−xci

|| × (x` − xci) , ` ∈ V(ci),
(9)

and for α ∈ {m+ 1,m+ 2,m+ 3} as

J
(k)
m+1 = xk × x̂, J

(k)
m+2 = xk × ŷ, J

(k)
m+3 = xk × ẑ, (10)

where (bi, ci) is the freely rotatable bond for torsion angle i, V(bi) is the set of all nodes on the same
side of the bond as bi, and x̂, ŷ, ẑ are the unit vectors in the respective directions.

3.6 Energy-based training

By computing likelihoods, we can train torsional diffusion models to match the Boltzmann distribution
over torsion angles using the energy function. At a high level, we minimize the usual score matching
loss, but with simulated samples from the Boltzmann distribution rather than data samples. The
procedure therefore consists of two stages: resampling and score matching, which are tightly coupled
during training (Algorithm 1). In the resampling stage, we use the model as an importance sampler
for the Boltzmann distribution, where Proposition 3 is used to compute the (unnormalized) torsional
Boltzmann density p̃G(τ | L). In the score-matching stage, the importance weights are used to
approximate the denoising score-matching loss with expectations taken over p̃G(τ | L). As the
model learns the score, it improves as an importance sampler.

Algorithm 1: Energy-based training epoch
Input: Boltzmann density p̃, training pairs

{(Gi, Li)}i, torsional diffusion model q
for each (Gi, Li) do

Sample τ1, . . . τK ∼ qGi(τ | Li);
for k ← 1 to K do

w̃k = p̃Gi(τk | Li)/qGi(τk | Li);

Approximate JDSM for p0 ∝ p̃ using {(w̃i, τi)}i;
Minimize JDSM;

This training procedure differs substantially
from that of existing Boltzmann generators,
which are trained as flows with a loss that
directly depends on the model density. In
contrast, we train the model as a score-based
model, but use it as a flow—both during train-
ing and inference—to generate samples. The
model density is needed only to reweight
the samples to approximate the target density.
Since in principle the model used for resam-
pling does not need to be the same as the model
being trained,8 we can use very few steps (a shallow flow) during resampling to accelerate training,
and then increase the number of steps (a deeper flow) for better approximations during inference—an
option unavailable to existing Boltzmann generators.

4 Experiments

We evaluate torsional diffusion by comparing the generated and ground-truth conformers in terms of
ensemble RMSD (Section 4.3) and properties (Section 4.4). Section 4.1 first discusses a preprocessing
procedure required to train a conditional model pG(τ | L). Section 4.5 concludes with torsional
Boltzmann generators. See Appendix H for additional results, including ablation experiments.

4.1 Conformer matching

In focusing on pG(τ | L), we have assumed that we can sample local structures L ∼ pG(L) with
RDKit. While this assumption is very good in terms of RMSD, the RDKit marginal p̂G(L) is only an
approximation of the ground truth pG(L). Thus, if we train on the denoising score-matching loss
with ground truth conformers—i.e., conditioned on ground truth local structures—there will be a
distributional shift at test time, where only approximate local structures from p̂G(L) are available.
We found that this shift significantly hurts performance.

We thus introduce a preprocessing procedure called conformer matching. In brief, for the training
split only, we substitute each ground truth conformer C with a synthetic conformer Ĉ with local
structures L̂ ∼ p̂G(L) and made as similar as possible to C. That is, we use RDKit to generate

8For example, if the resampler were perfect, the procedure would reduce to normal denoising score matching.
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Table 1: Quality of generated conformer ensembles for the GEOM-DRUGS test set in terms of
Coverage (%) and Average Minimum RMSD (Å). We compute Coverage with a threshold of δ =
0.75 Å to better distinguish top methods. Note that this is different from most prior works, which
used δ = 1.25 Å.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

Method Mean Med Mean Med Mean Med Mean Med

RDKit ETKDG 38.4 28.6 1.058 1.002 40.9 30.8 0.995 0.895
OMEGA 53.4 54.6 0.841 0.762 40.5 33.3 0.946 0.854
GeoMol 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
GeoDiff 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090
Torsional Diffusion 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729

L̂ and change torsion angles τ̂ to minimize RMSD(C, Ĉ). Naively, we could sample L̂ ∼ p̂G(L)
independently for each conformer, but this eliminates any possible dependence between L and τ
that could serve as training signal. Instead, we view the distributional shift as a domain adaptation
problem that can be solved by optimally aligning pG(L) and p̂G(L). See Appendix E for details.

4.2 Experimental setup

Dataset We evaluate on the GEOM dataset [Axelrod and Gómez-Bombarelli, 2022], which provides
gold-standard conformer ensembles generated with metadynamics in CREST [Pracht et al., 2020].
We focus on GEOM-DRUGS—the largest and most pharmaceutically relevant part of the dataset—
consisting of 304k drug-like molecules (average 44 atoms). To test the capacity to extrapolate to
the largest molecules, we also collect from GEOM-MoleculeNet all species with more than 100
atoms into a dataset we call GEOM-XL and use it to evaluate models trained on DRUGS. Finally, we
train and evaluate models on GEOM-QM9, a more established dataset but with significantly smaller
molecules (average 11 atoms). Results for GEOM-XL and GEOM-QM9 are in Appendix H.

Evaluation We use the train/val/test splits from Ganea et al. [2021] and use the same metrics to
compare the generated and ground truth conformer ensembles: Average Minimum RMSD (AMR) and
Coverage. These metrics are reported both for Recall (R)—which measures how well the generated
ensemble covers the ground-truth ensemble—and Precision (P)—which measures the accuracy of
the generated conformers. See Appendix G for exact definitions and further details. Following the
literature, we generate 2K conformers for a molecule with K ground truth conformers.

Baselines We compare with the strongest existing methods from Section 2. Among cheminfor-
matics methods, we evaluate RDKit ETKDG [Riniker and Landrum, 2015], the most established
open-source package, and OMEGA [Hawkins et al., 2010, Hawkins and Nicholls, 2012], a commer-
cial software in continuous development. Among machine learning methods, we evaluate GeoMol
[Ganea et al., 2021] and GeoDiff [Xu et al., 2022], which have outperformed all previous models on
the evaluation metrics. Note that GeoDiff originally used a small subset of the DRUGS dataset, so
we retrained it using the splits from Ganea et al. [2021].

4.3 Ensemble RMSD

Torsional diffusion significantly outperforms all previous methods on GEOM-DRUGS (Table 1 and
Figure 3), reducing by 30% the average minimum recall RMSD and by 16% the precision RMSD
relative to the previous state-of-the-art method. Torsional diffusion is also the first ML method to
consistently generate better ensembles than OMEGA. As OMEGA is a well-established product used
in industry, this represents an essential step towards establishing the utility of conformer generation
with machine learning.

Torsional diffusion offers specific advantages over both GeoDiff and GeoMol, the most advanced
prior machine learning methods. GeoDiff, a Euclidean diffusion model, requires 5000 denoising steps
to obtain the results shown, whereas our model—thanks to the reduced degrees of freedom—requires
only 20 steps. In fact, our model outperforms GeoDiff with as few as 5 denoising steps. As seen in
Table 2, this translates to enormous runtime improvements.
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Figure 3: Mean coverage for recall (left) and precision (right) when varying the threshold value δ on
GEOM-DRUGS.
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Table 2: Median AMR and runtime (core-secs per con-
former) of machine learning methods, evaluated on CPU
for comparison with RDKit.

Method Steps AMR-R AMR-P Runtime

RDKit - 1.002 0.895 0.10
GeoMol - 0.834 0.841 0.18
GeoDiff 5000 0.809 1.090 305

Torsional
Diffusion

5 0.685 0.963 1.76
10 0.580 0.791 2.82
20 0.565 0.729 4.90

Table 3: Median absolute error of gener-
ated v.s. ground truth ensemble properties.
E,∆ε, Emin in kcal/mol, µ in debye.

Method E µ ∆ε Emin

RDKit 0.81 0.52 0.75 1.16
OMEGA 0.68 0.66 0.68 0.69
GeoMol 0.42 0.34 0.59 0.40
GeoDiff 0.31 0.35 0.89 0.39
Tor. Diff. 0.22 0.35 0.54 0.13

Compared to torsional diffusion, GeoMol similarly makes use of intrinsic coordinates. However,
since GeoMol can only access the molecular graph, it is less suited for reasoning about relationships
that emerge only in a spatial embedding, especially between regions of the molecule that are distant
on the graph. Our extrinsic-to-intrinsic score framework—which gives direct access to spatial
relationships—addresses precisely this issue. The empirical advantages are most evident for the large
molecules in GEOM-XL, on which GeoMol fails to improve consistently over RDKit (Appendix H).
On the other hand, because GeoMol requires only a single-forward pass, it retains the advantage of
faster runtime compared to diffusion-based methods.

4.4 Ensemble properties

While RMSD gives a geometric way to evaluate ensemble quality, we also consider the chemical
similarity between generated and ground truth ensembles. For a random 100-molecule subset of
DRUGS, we generate min(2K, 32) conformers per molecule, relax the conformers with GFN2-xTB
[Bannwarth et al., 2019],9 and compare the Boltzmann-weighted properties of the generated and
ground truth ensembles. Specifically, the following properties are computed with xTB [Bannwarth
et al., 2019]: energy E, dipole moment µ, HOMO-LUMO gap ∆ε, and the minimum energy Emin.
The median errors for torsional diffusion and the baselines are shown in Table 4. Our method
produces the most chemically accurate ensembles, especially in terms of energy. In particular, we
significantly improve over GeoMol and GeoDiff in finding the lowest-energy conformers that are
only (on median) 0.13 kcal/mol higher in energy than the global minimum.

9Results without relaxation (which are less chemically meaningful) are in Appendix H.
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4.5 Torsional Boltzmann generator

Table 4: Effective sample size (out of 32)
given by importance sampling weights over
the torsional Boltzmann density.

Temp. (K)

Method Steps 1000 500 300

Uniform – 1.71 1.21 1.02

AIS
5 2.20 1.36 1.18

20 3.12 1.76 1.30
100 6.72 3.12 2.06

Torsional
BG

5 7.28 3.60 3.04
20 11.42 6.42 4.68

Finally, we evaluate how well a torsional Boltzmann
generator trained with MMFF [Halgren, 1996] ener-
gies can sample the corresponding Boltzmann density
over torsion angles. We train and test on GEOM-
DRUGS molecules with 3–7 rotatable bonds and use
the local structures of the first ground-truth conform-
ers. For the baselines, we implement annealed impor-
tance samplers (AIS) [Neal, 2001] with Metropolis-
Hastings steps over the torsional space and tune the
variance of the transition kernels.

Table 4 shows the quality of the samplers in terms of
the effective sample size (ESS) given by the weights
of 32 samples for each test molecule, which measures
the α-divergence (with α = 2) between the model
and Boltzmann distributions [Midgley et al., 2021]. Our method significantly outperforms the AIS
baseline, and improves with increased step size despite being trained with only a 5-step resampler.
Note that, since these evaluations are done on unseen molecules, they are beyond the capabilities of
existing Boltzmann generators.

5 Conclusion

We presented torsional diffusion, a method for generating molecular conformers based on a diffusion
process restricted to the most flexible degrees of freedom. Torsional diffusion is the first machine
learning model to significantly outperform standard cheminformatics methods and is orders of
magnitude faster than previous Euclidean diffusion models. Using the exact likelihoods provided by
our model, we also train the first system-agnostic Boltzmann generator.

There are several exciting avenues for future work. A natural extension is to relax the rigid local
structure assumption by developing an efficient diffusion-based model over the full space of intrinsic
coordinates while still incorporating chemical constraints. Moreover, torsional diffusion—or similar
ideas—could be applicable to larger molecular systems, for which fast, parsimonious models of
structural flexibility could benefit applications such as drug discovery and protein design.
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