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Abstract

Training large neural networks on large-scale
datasets requires substantial computational re-
sources, particularly for dense prediction tasks
such as object detection. Although dataset distil-
lation (DD) has been proposed to alleviate these
demands by synthesizing compact datasets from
larger ones, most existing work focuses solely
on image classification, leaving the more com-
plex detection setting largely unexplored. In this
paper, we introduce OD3, a novel optimization-
free data distillation framework specifically de-
signed for object detection. Our approach in-
volves two stages: first, a candidate selection
process in which object instances are iteratively
placed in synthesized images based on their suit-
able locations, and second, a candidate screening
process using a pre-trained observer model to re-
move low-confidence objects. We perform our
data synthesis framework on MS COCO and PAS-
CAL VOC, two popular detection datasets, with
compression ratios ranging from 0.25% to 5%.
Compared to the prior solely existing dataset dis-
tillation method on detection and conventional
core set selection methods, OD3 delivers superior
accuracy, establishes new state-of-the-art results,
surpassing prior best method by more than 14%
on COCO mAPs5 at a compression ratio of 1.0%.
The code is in the supplementary material.

1. Introduction

Deep neural networks have achieved remarkable perfor-
mance across a wide range of computer vision tasks (He
et al., 2016; Ren, 2015; Dosovitskiy, 2020; Kirillov
et al., 2023), but training these models generally requires
substantial computational and data resources. Conven-
tional strategies often involve collecting increasingly large
datasets (Deng et al., 2009) and training ever larger net-
works (Dehghani et al., 2023) to capture data complex-
ity. This paradigm is particularly evident in object detec-
tion (Shao et al., 2019), where the need for rich annota-
tions, such as bounding boxes or even instance masks, can
greatly increase dataset sizes and labeling overhead. As a
result, there is a growing interest in techniques that enable
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Figure 1. Performance of OD> and other methods on COCO
dataset. This illustration compares the mAP performance of our
oD? method with others on COCO with different compression
ratios (IPDs), with an upper bound of 39.8% on the full dataset.

the creation of smaller, more manageable datasets capa-
ble of approximating the performance achieved by train-
ing on the original data. One promising direction in this
area is dataset distillation (DD), which aims to synthesize
condensed datasets that are significantly smaller yet still
effective for training.

The majority of DD approaches have focused on image clas-
sification, where each image contains an object or a domi-
nant label. This narrow scope overlooks the complexity and
diversity of more demanding tasks, specifically object detec-
tion. In contrast to classification, object detection requires
localizing and identifying multiple instances of potentially
different classes in a single image. This jump in task com-
plexity involves learning a mapping from image to label
and predicting bounding boxes and class labels for multiple
regions within the same image. Consequently, methods that
successfully distill datasets for classification often struggle
to adapt to the richer problem space of detection.

Another critical distinction lies in the type of supervision
and evaluation metrics used in object detection tasks. While
classification tasks use labels that can be applied at the im-
age level, detection tasks rely on spatial annotations that
align individual objects to bounding boxes, complete with
class labels. This requirement introduces additional chal-
lenges when creating distilled datasets, as both the geometry
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Figure 2. Tllustration of the OD* framework. In initial stage @, each object in x; € 7T is assigned a random location in the synthesized

imageX; € Sforj=1,...,

IPD, and its overlap with existing candidates is checked to decide placement. After IPD synthesized images

are initially constructed, a pre-trained observer model produces predictions for screening. The observer takes the canvas from the previous
cycle as input, analyzing the entire canvas, including the relationships between different objects and the specific objects present. These
factors influence the output of @ candidate screening. The observer iteratively evaluates the current canvas to identify and remove objects
that do not meet expectations, maintaining alignment with the post-evaluation process. For final reconstruction, the objects are inserted
using their bounding boxes into X; € S. Post-evaluation of § is carried out by fast distilling (Shen & Xing, 2022) knowledge from the
observer model to a target network using PKD (Cao et al., 2022) loss on the respective feature pyramid networks.

(location) and identity (class) of objects must be preserved
or effectively synthesized. Approaches that merely com-
press high-level category information may fail to capture
the crucial spatial relationships and visual diversity that
define detection tasks.

From a cost perspective of synthesis time, optimization-
free approaches of DD prioritize efficiency and simplic-
ity, bypassing computationally intensive iterative processes.
One example is RDED (Sun et al., 2024), which generates
synthetic classification datasets by directly extracting and
combining realistic patches from original data. Using pre-
trained models, it identifies informative crops, ensuring both
diversity and structural integrity. This strategy shows the
practicality and effectiveness of optimization-free methods.

In light of these complexities, we propose Optimization-
free Dataset Distillation for Object Detection (OD3), a novel
framework explicitly tailored to address the unique chal-
lenges of synthesizing small, high-fidelity datasets for object
detection. The framework leverages instance-level labels
with scale-aware dynamic context extension (SA-DCE) to
reconstruct diverse training images guided by an observer
model, which is grounded in two core ideas: (1) an iter-
ative candidate selection process that strategically places
object instances in synthesized images, and (2) a candidate
screening process powered by a pre-trained observer model,

which discards low-confidence objects. By removing the
need for complex optimization procedures in constructing
these synthetic images, OD3 provides a more streamlined
and adaptable approach to DD for dense prediction tasks.
The main contributions of this work are as follows:

* We propose a novel DD framework specifically de-
signed for object detection, named OD3. It involves a
two-stage process: candidate selection, where masked
objects are localized and selected based on minimal
overlap, and candidate screening, where a pre-trained
observer filters unreliable candidates.

« OD? bridges a crucial gap by extending the concept of
dataset distillation beyond the relatively well-explored
territory of image classification to the more challenging
domain of object detection in a training-free scheme.
Through a carefully designed process that handles both
the spatial and semantic requirements of detection, our
framework enables significant reductions in dataset
size without sacrificing performance significantly.

* We evaluate our framework on MS COCO with com-
pression ratios ranging 0.25% to 5% and on PASCAL
VOC from 0.5% to 2.0%. The results demonstrate that
our framework effectively reduces dataset size while
maintaining model accuracy, providing an efficient so-
lution for training object detectors.
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2. Related Work

2.1. Dataset Distillation for Image Classification

Bi-level optimization methods. Bi-level optimization meth-
ods in dataset distillation tackle a nested problem: the in-
ner loop trains a model on the distilled dataset, while the
outer loop optimizes the dataset. Key approaches include
FRePo (Zhou et al., 2022) to utilize neural feature regression
with pooling, gradient matching (Kim et al., 2022) to align
training behavior, feature matching (Wang et al., 2022) to
preserve structural information, distribution matching (Zhao
& Bilen, 2023) to align statistical properties, and trajectory
matching (Cazenavette et al., 2022) to mimic the learning
process. While these methods capture essential data charac-
teristics, their high computational cost has spurred interest
in optimization-free alternatives.

Uni-level Optimization Methods. SRe?L (Yin et al., 2024)
introduces a new framework by decoupling the bi-level opti-
mization into two single-level learning processes, enabling
efficient data condensation for datasets with varying sizes
and image resolutions. Follow-up works include CDA (Yin
& Shen, 2024), G-VBSM (Shao et al., 2024a), LPLD (Xiao
& He, 2024), EDC (Shao et al., 2024b), LWTI (Qin et al.,
2024), etc. Uni-level optimization methods streamline the
dataset optimization process by eliminating nested optimiza-
tion loops. This makes them well-suited for handling large-
scale datasets while maintaining efficiency and scalability.
Finally, an optimization-free paradigm was proposed in
RDED (Sun et al., 2024), which provides an efficient ap-
proach that prioritizes both the realism and diversity.

2.2. Dataset Distillation for Object Detection

Core-set Selection. Coreset selection has emerged as one
solution for reducing dataset size, primarily in image clas-
sification. It shows challenges in object detection, where
multiple objects may appear in a single image. Recently,
CSOD (Lee et al., 2024) introduces Coreset Selection for
Object Detection, which selects image-wise and class-wise
representative features for multiple objects of the same class
using submodular optimization. Similarly, Training-Free
Dataset Pruning (Anonymous, 2024) addresses dataset prun-
ing for instance segmentation, tackling pixel-level annota-
tions and class imbalances without training. However, these
methods often achieve low compression ratios, typically
above 20%. In contrast, our proposed distillation method
compresses the original dataset to 0.5% or less.

Dataset Disitllation. Currently, efforts in dataset distilla-
tion for object detection remain limited. The first frame-
work DCOD (Qi et al., 2024) was proposed for this purpose.
DCOD employs a two-stage process: Fetch and Forge. Dur-
ing the Fetch stage, an object detection model is trained on
the original dataset to extract essential features for localiza-

tion and recognition tasks, similar to the squeezing process
in SRe?L (Yin et al., 2024). In the Forge stage, synthetic im-
ages are generated via model inversion, embedding required
information into the images through uni-level optimization.

3. Method
3.1. Preliminaries

Dataset Distillation for Object Detection. The goal of
oD3 is to compress a large object detection dataset 7 =
{(xi; {< bir,€i1,...>}} (i = 1,...,|T]|) into a much
smaller synthesized dataset S = {(%;, {< bj1,&;1,... >
B} (5 =1,...,|IPD|) that maintains the significant char-
acteristics of 7 in terms of overall performance, where
b = {x.,y., w, h} represents the center of the bounding
box and the width and height of the image. Here, |S| < |T|
and IPD is the notion of images per dataset which reflects
the compression ratio'. The performance of a model with
weights s trained on S should be similar to that of a model
with weights 67 trained on 7, within a small margin €pp.
This can be expressed as:

sup{|Lor — Los|}(xuy,)eT < €DD (1
with £ representing the loss function, and (x,,y,)€ T is
some test or val set associated with 7T .

Definition 3.1 (Optimization-free dataset distillation for
object detection). Our objective is to collect as much ef-
fective information as possible on a “blank canvas”, in-
terpreted as an initially empty image. The information is
considered “effective” if it contains sufficient high-quality
(high-confidence, well-sized) objects.

Information Density. To quantify how thoroughly a canvas
is occupied by valuable objects, we define an Information
Density function ®(x): (o)
g (fo(x

200 = Zng @)
where x is the current canvas (image) under consideration.
fo() is a well-trained object detector parameterized by 6.
g(+) is a function that aggregates detection confidence scores
across all detected objects. a(x) denotes the combined area
of all detected objects on x.

Concretely, we instantiate g(-) and a(-) as follows:
K
2= a(0r)a(or)
K
Zr:O a (OT)

where K is the total number of objects placed on the canvas

X, o, is the r-th object, a(or) represents the area of object

o, q(or) is the detector-derived confidence score for o,-2.

d(x) = ) 3)

'We define IPD (images per dataset) instead of conventional
IPC (images per class) used in classification task as in object de-
tection each image can contain multi-object with different classes.

*In our paper, 4, j and T are the image index of original dataset,
index of distilled image, and object index, respectively.
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Figure 3. Illustration of our sampling controller. It ensures that
the same object is not placed in different distilled images. The
original dataset is divided into IPD segments. Each segment is
distilled into a single image, resulting in a compact dataset S.

Thus, ®(x) measures how confidently and extensively the
canvas is occupied by objects.

Information Diversity. In addition to confidence and size,
we also encourage diversity of objects on the canvas. We
define a simple Information Diversity N'(x) by:

N(x) = N. )

where N is the number of distinct objects on the canvas
x. Even when a few objects exhibit high confidence, hav-
ing more distinct objects can yield richer training signals,
making the distilled data more robust.

3.2. oD® Framework

Overview. Unlike prior dataset distillation methods, our
approach begins with a blank canvas as the starting point
for generating each new synthetic data sample. As shown
in Fig. 2, the data distillation process first proceeds with a
candidate selection stage (orange box, bottom-left), where
object instances are extracted from an existing large-scale
dataset 7. For each image x; € 7, bounding boxes
{bi1,bi2,...,bix} (K is the number of bounding boxes)
capture potentially useful object patches. These patches are
fed into a localization operation, a random yet controlled
placement mechanism that carries out M attempts of in-
serting each candidate onto a reconstructed canvas without
exceeding the overlap threshold. Fig. 3 shows the sampling
strategy that ensures that |S| = IPD and that objects in S
are all unique. This yields a large pool of candidate patches
(b;, 1) on the canvas, where [ is the bounding box label or
class. Our illustration also highlights how some patches that
fail overlap constraints are discarded.

Once a preliminary reconstructed image is assembled, the
process proceeds to the candidate screening / filtering stage.
Here, an observer model (a pre-trained detector) performs
inference on the partially reconstructed canvas. Its predic-
tions are matched with ground-truth boxes that originated

Algorithm 1 Optimization-free Dataset Distillation for Ob-

ject Detection (OD3)

Input: Original dataset 7; Synthetic dataset S; Observer
model 6,s; Overlap threshold 7; Screening thresh-
old n; Images per dataset IPD; Canvas C (initially @
and updated constantly with X); Extension £ in Eq. 7;
Random placement candidate positions (m,, n;) for
t=1,...,M.

for X; € S where |S| = IPD do

while C is not full do

> Candidate Selection & Placement

for (x;,y;) € T do

for <b;,.,c; >c y; do
b;r — b+l > Ly — F(F)

while JoU(b.,., (m;, n;),C) < 7
and attempts < M do
| Place <b/,,c;» > — C; Exit

> Candidate Screening
Filter objects from C for X

yobs = 00bs (C)

for < by, cp>€ Cdo

if Conf(§ ops, b)) < 1 then
| Remove < by, ci > from C

| )A(j «~C
| Append X; to S
Output: Synthesized dataset S

from the bounding boxes inserted into the image. Objects
that fail to meet confidence or consistency criteria are re-
moved, refining the canvas into a high-quality, diversified
arrangement of objects. As a result, the final reconstructed
image X; € S now contains only those patches that pass the
screening process. Also, the bounding box and class annota-
tions associated with these patches are transformed into soft
labels, enabling more nuanced supervision in subsequent
stages. The synthesis process is presented in Algorithm 1,
and we elaborate on the details of each step below.

Iterative Copy-paste and Removal Process. First, each
object candidate is added to the partially formed “blank can-
vas” via random copy-paste. Multiple objects may be
overlaid, so that visual variety is preserved. Next, the ob-
server model runs on this synthesized image and assesses the
confidence of each placed object. Low-confidence objects
that are not matched to the ground truth objects are removed,
refining the canvas into a more coherent scene. This cycle of
add-and-remove iterates multiple times, driving the canvas
toward a final state containing only high-confidence, mid-
overlapping objects. Fig. 2 green boxes in screening stage
indicate an inserted object is deemed infeasible, applying
removal process to maintain quality and coherence.

Soft Label Generation. In image classification, the concept
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of soft labels serves as a foundational element in construct-
ing condensed datasets, yielding substantial performance
gains, as noted by (Yin et al., 2024). Logit-based soft labels,
in particular, play a critical role in improving the generaliza-
tion capability of validation models trained on condensed
datasets through KD framework (Hinton, 2015). However,
when applied to object detection tasks, logit-based soft la-
bels fail to deliver competitive accuracy. This raises the
necessity of developing a specialized soft label design tai-
lored explicitly for dataset distillation in object detection.
The most typical kind of soft label used in object detection
is the output of the feature pyramid network (FPN). This out-
put y™ can be defined as REXHXW where C, H and W
represent the number of channels, the height of the canvas
and the width of canvas, respectively. Once the (feature-
based) soft label {y**} has been obtained, it is employed
during the post-evaluation phase and supervised using the
following loss function (Shu et al., 2021):

Lone = By [y — FO(P8m ()2 (5)

where {(x;,y')}, fP" and fbackbone refer to the condensed
dataset, the FPN in the model and the backbone of the model,
respectively. However, we observe that this form of soft

label is hard to provide sufficient information for detection.

Thus, we consider a channel-wise soft label for enhancing
the performance of the evaluated detector. We leverage the
simple pearson knowledge distillation (PKD) (Cao et al.,
2022) as a basis for designing the soft label generation
mechanism on object detection. Given this, we can give the

fpn ( pbackbone (o Yy e ¢ pfon ( packbone (o
form of soft label as { £ U Std((ffpzzfﬂfﬁﬁf{xi)()’;+s (x:))) 1,
where mean(-), std(-) and € denote the mean operator in

the height and width dimensions, the standard deviation
operator in the height and width dimensions, and very small
amounts, respectively. Finally, the condensed dataset and its
associated soft labels are used to train a new detector initial-
ized randomly to test how well this small synthetic dataset
supports the downstream detection task. As shown in the
post-evaluation stage, the condensed dataset supervises the
target detector training, and the PKD used in post-evaluation
can be formulated as:

feat

Emse = ]E(xi,ygc*’“) Yi
ffpn (fbackbone (Xi ) ) _ mean(ffpn (fbackbone (Xi ) ) ) 2 (6)
Std(ffpn(fbackbone (Xl))) + € ‘ 9’

Scale-aware Dynamic Context Extension. We also pro-
pose a simple scale-aware dynamic context extension (SA-
DCE) for varying sizes of objects in detection-based dataset
distillation as a crucial enhancement that directly addresses
the challenges posed by small objects with limited contex-
tual information. Unlike the optimization-based method (Qi
et al., 2024), which struggles to preserve or amplify con-
textual cues due to their reliance on fixed gradients and
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Figure 4. Extended bounding box for more object context. The
figure shows a reconstructed image along with an extended object
using the SA-DCE function to better capture the object’s context.

pixel-specific updates, context extension involves intention-
ally expanding the bounding region around objects. It can
be formulated as a function of the object’s size:

a(oir) — Qmin

Gmax — Amin

Lextension = F(OiraF> = (1 - ) x7, (7)
where F' is the SA-DCE function, 7 € R is a scalar rep-
resenting a small pre-determined number of pixels, a(o;, )
is the area of r-th object in ¢-th image, and @max and Gpin
represent the maximum and minimum areas of objects in 7.
An example of SA-DCE can be seen in Fig. 4.

This subtle yet impactful modification adds peripheral con-
text that is often missing, especially in small object represen-
tations, providing the model with additional spatial cues that
help in accurate detection. By extending the context, our
model can better differentiate objects from the background,
leading to improved performance, particularly in complex
scenes. Optimization-based methods inherently lack the
flexibility to incorporate such targeted context adjustments,
as they are confined to the synthetic data representation
derived from iterative pixel tuning.

Objective. We combine the two metrics in Eq. 3 and Eq. 4
into a single objective for data distillation:

Sz = arg max (I’(XT) +N(XT), (8)

where x denotes the final condensed canvas (i.e., synthe-
sized image) after T synthesis iterations. In practice, we do
not explicitly find their optimal values separately, as they are
mutually restrictive and entangled. Once the size of the can-
vas is predefined, we can simply perform an ablation study
on the overlap of objects on canvas for the optimal value
that maximizes Sk, as detailed in the following section.

During the iterative data-synthesis process, we update x;
fort =0,1,...,7 — 1 using:

Xi+1 :fremove(fadd(xi))7 1€0,1,2,...,T-1. 9

Here, f.qqa(-) adds new candidate objects to the current
canvas, fremove(-) filters out low-confidence or redundant
objects, thereby refining the composition of x;.
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Iterative Synthesis Methods. We consider two iterative
processes for building the final canvas x.

1. First Form: Add-Only. The process of this startegy is:

Xip1 = fadd(xs), i=0,1,...,T—1 (10)

In this scenario, newly added objects remain on the canvas
even if their confidence is low and if they overlap other
objects smaller than 7. The final objective value is

Gy = ®(x%) + N (x7) (11)
2. Second Form: Add-Then-Remove. The Add-Then-
Remove is a loop to construct then refine distilled images:

Xi+1:fremove(fadd(xi)>7 { :OaL-'-aT_ 1 (12)

Here, each iteration first adds new objects, then filters out
objects whose confidence ¢(o;) is below a threshold 7, or
that fail other criteria (e.g., excessive overlap). The final
objective value is

Go = @ (x7) + N (x7')

The following theorem states that incorporating the re-
move step will positively increases the objective, under
enough iterations and a well-chosen confidence threshold.

Theorem 3.2. (the proof in Appendix C) Under the above
definitions, we have

(13)

Gy > Gi. (14)

Intuition. Because adding a removal step fremove(+) after
every object-addition f,qq(-) enables a more refined com-
position of the canvas, the second form is guaranteed to
achieve at least as high an objective value as the simpler
first form (which lacks a removal step). That is, the second
iterative scheme (add-then-remove) achieves an objective
value at least as large as the add-only approach, under typi-
cal assumptions on how objects are added or removed.

Sketch Proof. Setup: fiemove 1S an operator that detects
objects in the canvas x; and removes those with confidence
below a threshold 7. Concretely:

Step-1: Detection step. Compute fy (x;), i.e., run a pre-
trained detector on the current canvas x;.

Step-2: Scoring each object. For each object o, in x;
(wherer = 1,..., K, K is the number of objects), obtain a
confidence score ¢ (0;, ).

Step-3: Threshold partition (no overlaps assumed). Divide
the objects into two groups O; and Os, one with a confi-
dence level greater than the threshold 7, and the other with
a confidence level less than or equal to the threshold 7:

’7O’iM}7 Whereq(oio) << q(OiM) <n
Oy = {O’iM+1:0iM+2v---»0iK}v

where 7 < ¢ (OiM+1) < q0ipg0) <0

01 = {01‘0,01‘1,. .

< q(oig)
(15)

IPD | Method | | mAP (%) | mAPs; (%) | mAP (%)

Random 3.50 9.70 1.60
Uniform 3.60 9.80 1.60
K-Center 1.70 6.30 0.40
0.25% Herding 1.70 5.80 0.50
DCOD (Qi et al., 2024) 7.20 17.20 4.80
oD? (Ours) 12.80¢56) A 2470475 A | 11.907.1) A
Random 5.50 14.20 2.90
Uniform 5.60 14.30 2.90
0.5% K-Center 2.80 8.90 0.70
Herding 2.60 8.80 0.80
DCOD (Qi et al., 2024) 10.00 21.50 9.00
oD? (Ours) 174074y A 32.10¢:106) A | 17.00,50) A
Random 8.30 19.70 5.30
Uniform 8.40 19.70 5.40
1.0% K—anler 4.00 12.90 1.20
Herding 4.10 12.50 1.30
DCOD (Qi et al., 2024) 12.10 24.70 10.40
op? (Ours) 22.50(4.10.4) A 39.60(*14‘9) A 22.90(4.]2,5) A

Table 1. Performance Comparison on MS COCO. The compres-
sion ratios range from 0.25% to 1.0%. The observer model and
the student model are Faster R-CNN 101 and Faster R-CNN 50.

Step-4: Removing low-confidence objects. All objects
whose confidence < 7 are discarded. Thus the in-
formation density on the canvas changes as follows:
PRI Gr(ow) q(o’ir) N DOV a(oir‘) q(ow) .

PRI a(o”) fo:M+1 a\Oi,
Comparison of Densities. To see why the new density

(after removal) is generally higher or equal, we can inter-
pret % as a probability weight, letting 0;, denote
07;,‘

Yiea

the area X score contribution of object k. Removing those
objects whose confidence is below 7 essentially removes
low-quality (score or area) contributions from the numera-
tor, thereby increasing the average or expected confidence.
If K is sufficiently large, we can consider: E, [q(0; )]
and E,>nr41[¢ (0i,)], a standard probabilistic argument
shows that the expected confidence of the surviving set
{Oirsi1s---»0ix | is at least as high as that of the entire
original set. Formally,

Ers>mt1a(oi,)] = Erla(o;,)],

which implies ® (x7) > ® (xp_1) > -+ > ®(x0) in the
add-then-remove scheme.

(16)

By similar reasoning (via a probabilistic bound on whether
the leftover portion remains undetected), one can show that
the presence of overlaps does not harm the objective in the
add-then-remove scheme. Hence, Gy > (1 even when
overlaps are considered. More details are in our Appendix.

4. Experiments

Experimental Setup. We evaluate OD> with compression
ratios ranging from 0.25% to 5% for MS COCO (Lin et al.,
2014) and from 0.5% to 2% for PASCAL VOC (Evering-
ham et al., 2010). We set the overlap threshold 7 to 0.6 in
the candidate selection stage, the confidence threshold 7 to
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Figure 5. Qualitative results of the synthesis process of 0D> on MS COCO. Initial backgrounds of the canvas are randomly selected
from the training set, and objects are inserted using their bounding-box level labels. Those images are generated at 0.5% IPD.

IPD | Method | | mAP (%) | mAPs (%)

0.5% op3 38.51 38.50
1.0% op3 51.05 51.10
2.0% op3 58.68 58.70

Table 2. Performance on Pascal VOC. The compression ratios
range from 0.5% to 2.0%. The observer model and the student
model for our method are both Faster R-CNN 50.

1PD | Label | mAP mAP;, mAP; mAP, mAP,, mAP;
Mask 10.90 20.80 10.30 3.50 15.10 15.90
0.25% | Bbox 12.40 23.90 11.60 4.90 16.10 18.10
Ex-Bbox 12.80044 2470054 11900034  5.60407A  16.80u074  17.70-0.4)Y
Mask 15.10 28.00 14.80 5.60 2030 2230
0.5% | Bbox 16.60 3030 16.30 6.80 21.70 23.30
Ex-Bbox 17404084 32100154 17.004074 8400164 23004134  22.80057
Mask 21.20 37.40 2130 8.90 26.40 29.90
1.0% | Bbox 22.00 38.70 2230 9.70 27.40 30.10
Ex-Bbox 22504054 39.60009A 2290064 10.60409A  28.00G06A  29.80-03)Y
Mask 30.00 49.50 31.70 15.10 34.80 39.10
5.0% | Bbox 29.90 49.40 31.50 15.00 34.70 38.50

Ex-Bbox  30.100024 49700034 31804034 16206124 3490024 38400,V

Table 3. Ablation Study on Label Type. The impact of using
mask labels, bounding box (BBox) labels, or Ex-BBox in the data
synthesis process across various compression ratios. Ex-Bbox
represents the BBox with the extended context using SA-DCE.

PD | Observer | Target | MAP (%) | mAP5 (%) | mAPz; (%)
RetinaNet RetinaNet 13.90 25.30 13.50
0.25% | Faster R-CNN RetinaNet 14.50 25.70 14.30
Faster R-CNN | Faster R-CNN 12.80 24.70 11.90
RetinaNet RetinaNet 18.40 32.50 18.20
0.5% | Faster R-CNN RetinaNet 17.40 30.20 17.60
Faster R-CNN | Faster R-CNN 17.40 32.10 17.00
RetinaNet RetinaNet 22.20 37.90 22.60
1.0% | Faster R-CNN RetinaNet 22.20 37.40 23.00
Faster R-CNN | Faster R-CNN 22.50 39.60 22.90
RetinaNet RetinaNet 28.30 46.30 29.70
5.0% | Faster R-CNN RetinaNet 30.00 48.60 31.10
Faster R-CNN | Faster R-CNN 30.10 49.70 31.80

Table 4. Cross-Architecture Performance Comparison for OD*
on MS COCO. The results are evaluated across 0.25% to 5.0%.
Observer models use ResNet101 and target models use ResNet50.

0.2 in the candidate screening stage, and M to 40. The fore-
ground objects are inserted into the reconstructed images
using their ground truth bounding boxes with extended con-
text using SA-DCE. The backgrounds of the reconstructed
images are randomly sampled from the respective datasets.

Candidate Candidate

IPD Selection  Screening mAP mAP;; mAP;; mAP, mAP,, mAP,
X X 0.90 2.40 0.40 0.00 1.10 1.20

0.25% v X 9.70 19.10 8.90 3.70 13.10 13.60
v v 12.80  24.70 11.90 5.60 1680  17.70

X X 2.00 4.00 1.90 0.10 2.60 3.10

0.5% v X 1450 2730 13.80 5.90 19.30  20.30
' v 17.40  32.10 17.00 8.40 23.00 2280

X X 7.50 14.10 7.30 0.9 8.90 13.30

1.0% v X 19.00  33.90 19.10 8.70 2440 2570
v v 22.50  39.60 2290 10.60  28.00  29.80

X X 8.60 17.80 7.30 1.10 10.40 16.40

5.0% v X 28.10  46.70 29.60 1400 3400  37.00
' v 30.10 49.70 31.80 1620 3490  38.40

Table 5. Ablation Study on Method Components. We highlight
the impact of candidate selection and screening on MS COCO
performance across varying compression rates.

Synthesis experiments are conducted on a single 4090 GPU.

The canvas sizes used are 484 x 578 for MS COCO and
375 x 500 for PASCAL VOC, which are the average width
and height of the respective full training sets. For the post-
evaluation stage, we use VOC2007 and VOC2012 train/val
splits combined for synthesis and VOC2007 test set for eval-
uation. We use standard COCO metrics (mAP, mAPsg,
and m A Py5) along with size metrics (mAPs, mAP,,, and
mAP,) for the COCO dataset. We use Pascal VOC style
mAP and m A Psg with the area method that uses all points
in the precision-recall curve instead of only 11, which pro-
vides a more precise evaluation (Everingham et al., 2010).
Faster R-CNN-50 models are trained for 96 epochs and the
RetinaNet-50 models for 256 epochs. All post-evaluation
experiments are conducted on 2x 4090 GPUs. Our imple-
mentation is based on the mmdetection (Chen et al., 2019)
and mmrazor (Contributors, 2021) frameworks.

Image Generation Time and Efficiency. Our synthesis
process does not require training, making data generation
highly efficient compared to optimization-based approaches
like DCOD (which did not report generation time). Our
primary time overhead comes from screening by the ob-
server. Specifically, generating the condensed dataset takes
approximately 4.7 hours on MS COCO and 0.74 hours on
PASCAL VOC using a single 4090 GPU.
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Figure 6. Ablation study of overlap threshold 7. mAP and
mAPso are evaluated at different thresholds used in candidate
selection with compression ratios ranging from 0.25% to 5%.

4.1. Experimental Results

Table 1 presents the comparative results of our method on
MS COCO (Lin et al., 2014) with core-set selection meth-
ods and with DCOD (Qi et al., 2024). The core-set selection
methods include: random initialization (Rebuffi et al., 2017),
Uniform (Lee et al., 2024), K-center (Sener & Savarese,
2017), and Herding (Castro et al., 2018; Chen et al., 2012).
Our method, OD3, outperforms all other methods across var-
ious compression ratios (IPD) ranging from 0.25% to 1.0%.
Notably, at 1.0%, we achieve a substantial 14.9% improve-
ment in mAPsg over DCOD. Furthermore, our method
consistently outperforms other core-set selection methods,
with m A Psg improvements of up to 27.1% at 1.0% IPD.
Our method also achieves the highest performance in m AP,
mAPsy and mA P75 at each compression ratio. Since the
authors of DCOD did not report its performance on the
size metrics of MS COCO, we are unable to compare the
methods in that regard. Nonetheless, these results underline
the effectiveness of OD® in achieving superior performance
across a range of compression ratios. We also report results
on PASCAL VOC in Table 2 with different IPDs, where
the method achieves 58.68% m AP at 2.0% compression.

4.2. Ablation Studies

Label type. The type of label used when inserting the
candidate objects into the synthesized image is studied in
Table 3. We consider three types of labels: mask-level label,
BBox-level label, and Ex-Bbox, which refers to a BBox with
extended context using SA-DCE (refer to Sec.3.2). Using
BBox labels outperforms the mask labels across all IPDs
except for 5.0%, where their performance converges to a
similar level. This is because Bbox labels preserves local
context and surrounding environment of individual objects,
providing models with additional cues for recognizing ob-
jects. Using Ex-Bbox further improves performance across
all IPDs, where an improvement of 1.8% in mAPs can
be seen at 0.5% compression. When specifically analyzing
the size metrics, the extended context benefits small objects
the most on the account of large objects, which bridges the

substantial gap between their detection performance.

Overlap threshold. Fig. 6 shows how different values
of overlap thresholds 7 in candidate selection affect the
performance of our method across various compression
ratios. It can be seen that 0.6 consistently optimizes m A Psg
and mAP. This value can be thought of as an optimal
trade-off between ®(x) and N (x).

Cross-architecture generalization. To assess the gener-
alization capability of our condensed datasets, we conduct
experiments with Faster R-CNN (Ren, 2015), a two-stage
detector and RetinaNet (Lin, 2017), a one-stage detector.
Table 4 shows that the distilled datasets can generalize in
heterogeneous settings, where the observer model is a two-
stage detector, and the target model is a one-stage detector,
across varying compression ratios from 0.25% to 5.0%. The
results demonstrate that performance on RetinaNet is compa-
rable to that on Faster R-CNN across all IPDs. Specifically,
at 0.25% 1IPD, mAPs for the Faster R-CNN observer and
RetinaNet target configuration reaches 25.70%, surpassing
the 24.70% obtained in the Faster R-CNN observer and
target setup. At higher compression ratios, such as 1.0%
and 5.0%, RetinaNet continues to yield competitive results,
achieving mAPs scores of 37.40% and 48.60%, respec-
tively. These findings further highlight the robustness of the
distilled datasets, showcasing their effective applicability
across different object detection architectures.

Method Components. Table 5 presents an ablation study
evaluating the impact of candidate selection and candidate
screening on the MS COCO performance across varying
compression ratios (IPD). The table entries where both are
not used correspond to when all objects from the training
set are randomly assigned a location and inserted into the
distilled images without any filtration. The results demon-
strate the effectiveness of both components in improving the
quality of the synthesized dataset. The addition of candidate
screening further improves the results across all compres-
sion ratios. For example, there is 3.5% and a 5.7% increase
in mAP and mAPs for the 1.0% distilled dataset.

5. Conclusion

In this work, we introduced a new OD® framework for
optimization-free dataset distillation in object detection,
achieving significant improvements over existing methods.
Using a novel two-stage process of candidate selection and
candidate screening driven by a pre-trained observer model,
our framework strategically synthesized compact yet highly
effective datasets tailored for object detection. Our method
consistently demonstrated superior performance across mul-
tiple evaluation metrics. For instance, oD? achieved more
than 14.0% improvement in mAPs5, compared to the state-
of-the-art method DCOD on MS COCO, further highlight-
ing the efficacy of our optimization-free approach.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning by introducing OD3, an optimization-
free approach to dataset distillation for object detection. Our
method enhances efficiency and scalability, making high-
quality dataset distillation more accessible while reducing
computational costs. By simplifying the dataset generation
process, we enable the development of more efficient models
that can be deployed in resource-constrained environments.
There are many potential societal consequences of our work,
such as improving the accessibility of powerful machine
learning models for industries with limited computational
resources, and fostering the development of sustainable Al.

References

Anonymous. Training-free dataset pruning for instance
segmentation. In Submitted to The Thirteenth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=rvxWEbTtRY. under review.

Cao, W., Zhang, Y., Gao, J., Cheng, A., Cheng, K., and
Cheng, J. Pkd: General distillation framework for object
detectors via pearson correlation coefficient. In Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K.,
and Oh, A. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 15394-15406. Curran
Associates, Inc., 2022.

Castro, F. M., Marin-Jiménez, M. J., Guil, N., Schmid, C.,
and Alahari, K. End-to-end incremental learning. In
Proceedings of the European conference on computer
vision (ECCV), pp. 233-248, 2018.

Cazenavette, G., Wang, T., Torralba, A., Efros, A. A., and
Zhu, J.-Y. Dataset distillation by matching training tra-
jectories. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4750-
4759, 2022.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun,
S., Feng, W., Liu, Z., Xu, J., et al. Mmdetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019.

Chen, Y., Welling, M., and Smola, A. Super-samples from
kernel herding. arXiv preprint arXiv:1203.3472, 2012.

Contributors, M. Openmmlab model compression
toolbox and benchmark. https://github.com/
open—mmlab/mmrazor, 2021.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A. P., Caron, M., Geirhos,
R., Alabdulmohsin, ., et al. Scaling vision transformers

to 22 billion parameters. In International Conference on
Machine Learning, pp. 7480-7512. PMLR, 2023.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248-255. Teee, 2009.

Dosovitskiy, A. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Everingham, M., Gool, L. V., Williams, C., Winn, J., and
Zisserman, A. The pascal visual object classes (voc)
challenge. International Journal of Computer Vision, 88:
303-338, 2010. doi: 10.1007/s11263-009-0275-4.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Hinton, G. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Kim, J.-H., Kim, J., Oh, S. J., Yun, S., Song, H., Jeong,
J., Ha, J.-W., and Song, H. O. Dataset condensation
via efficient synthetic-data parameterization. In Inter-
national Conference on Machine Learning, pp. 11102—
11118. PMLR, 2022.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo,
W.-Y,, et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 40154026, 2023.

Lee, H., Kim, S., Lee, J., Yoo, J., and Kwak, N. Coreset
selection for object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7682-7691, 2024.

Lin, T. Focal loss for dense object detection. arXiv preprint
arXiv:1708.02002, 2017.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollar, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In Computer Vision—ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, pp. 740-
755. Springer, 2014.

Qi, D., Li, J.,, Peng, J., Zhao, B., Dou, S., Li, J., Zhang,
J., Wang, Y., Wang, C., and Zhao, C. Fetch and
forge: Efficient dataset condensation for object detec-
tion. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=m8MElyzuwp.


https://openreview.net/forum?id=rvxWEbTtRY
https://openreview.net/forum?id=rvxWEbTtRY
https://github.com/open-mmlab/mmrazor
https://github.com/open-mmlab/mmrazor
https://openreview.net/forum?id=m8MElyzuwp
https://openreview.net/forum?id=m8MElyzuwp

Optimization-free Dataset Distillation for Object Detection

Qin, T., Deng, Z., and Alvarez-Melis, D. A label is worth
a thousand images in dataset distillation. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 2001-2010, 2017.

Ren, S. Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. arXiv preprint
arXiv:1506.01497, 2015.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. arXiv preprint
arXiv:1708.00489, 2017.

Shao, S., Li, Z., Zhang, T., Peng, C., Yu, G., Zhang, X.,
Li, J., and Sun, J. Objects365: A large-scale, high-
quality dataset for object detection. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp- 84308439, 2019.

Shao, S., Yin, Z., Zhou, M., Zhang, X., and Shen, Z. Gener-
alized large-scale data condensation via various backbone
and statistical matching. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp- 16709-16718, 2024a.

Shao, S., Zhou, Z., Chen, H., and Shen, Z. Elucidating
the design space of dataset condensation. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024b.

Shen, Z. and Xing, E. A fast knowledge distillation frame-
work for visual recognition. In European conference on
computer vision, pp. 673—690. Springer, 2022.

Shu, C., Liu, Y., Gao, J., Yan, Z., and Shen, C. Channel-
wise knowledge distillation for dense prediction. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 5311-5320, 2021.

Sun, P,, Shi, B., Yu, D., and Lin, T. On the diversity and re-
alism of distilled dataset: An efficient dataset distillation
paradigm. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9390—
9399, 2024.

Wang, K., Zhao, B., Peng, X., Zhu, Z., Yang, S., Wang,
S., Huang, G., Bilen, H., Wang, X., and You, Y. Cafe:
Learning to condense dataset by aligning features. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12196-12205, 2022.

Xiao, L. and He, Y. Are large-scale soft labels necessary
for large-scale dataset distillation? In The Thirty-eighth

10

Annual Conference on Neural Information Processing
Systems, 2024.

Yin, Z. and Shen, Z. Dataset distillation via curricu-
lum data synthesis in large data era. Transactions
on Machine Learning Research, 2024. ISSN 2835-
8856. URL https://openreview.net/forum?
id=P1lazD2nGCl.

Yin, Z., Xing, E., and Shen, Z. Squeeze, recover and rela-
bel: Dataset condensation at imagenet scale from a new
perspective. Advances in Neural Information Processing
Systems, 36, 2024.

Zhao, B. and Bilen, H. Dataset condensation with distri-
bution matching. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pp.
6514-6523, 2023.

Zhou, Y., Nezhadarya, E., and Ba, J. Dataset distillation
using neural feature regression. Advances in Neural In-
formation Processing Systems, 35:9813-9827, 2022.


https://openreview.net/forum?id=PlaZD2nGCl
https://openreview.net/forum?id=PlaZD2nGCl

Optimization-free Dataset Distillation for Object Detection

Appendix
A. Distilled Data Distribution Statistics

Table 6 presents the distribution of images and objects across 12 su-

percategories in MS COCO under different IPD settings as well as 008 — o
in the original dataset. The full dataset (100%) contains 64,115 im- } animal outdoor
ages and 262,465 person-related objects, while the most compressed g pormiture wonts |
version (0.25%) retains only 295 images and 5,313 objects of this %0’06 cchen apptiands
supercategory. Similar reductions are observed across all supercate- :
gories, demonstrating the significant compression effect of the OD3 £ 004
distillation process. We also present the ratio of the number of images _;‘
in a particular supercategory at a certain compression ratio compared .
to the number of images of the corresponding supercategory in the '
original MS COCO dataset in Fig. 7. £

0.00
Fig. 8 further illustrates the relative probability distribution of super- 025% o 10%

categories across dataset versions. Despite significant compression
that can be seen in Table 6, the distribution remains statistically consis-
tent with the original dataset. This shows that OD* does not introduce
any inherent bias toward any specific category.

Figure 7. Percentage of images in the distilled
datasets relative to the full dataset.

IPD Type Supercategory in MS COCO
My person indoor food Kkitchen appliance furniture vehicle animal electronic accessory outdoor sports
100% Images | 64115 15847 16255 20792 7880 29481 27358 23989 12944 17691 12880 23218
(Full Dataset) | Objects | 262465 46088 63512 86677 13479 76985 96212 62566 28029 45193 27855 50940
1.0% Images 1183 733 660 948 260 1012 694 596 615 882 464 423
= Objects | 20158 2876 5956 5922 831 5489 6035 4138 2047 3083 1407 1308
0.5% Images 585 366 313 463 120 496 351 279 270 433 219 212
=7 Objects | 10257 1570 2963 2996 335 2486 3032 2142 848 1374 752 595
0.25% Images 295 187 155 221 50 242 189 142 137 220 115 94
7 Objects | 5313 712 1393 1636 113 1228 1513 985 479 773 360 245

Table 6. Supercategory distribution across different IPD settings. The number of images and objects per supercategory is presented
for the MS COCO (Lin et al., 2014) dataset and the oD? distilled versions. Note that the data in the table is the same as in Fig. 7, but
Fig. 7 displays the values as percentages. It can be seen that both the number of images and objects per supercategory are drastically
compressed. Supercategory-level data is provided instead of fine-grained categories to maintain clarity and simplify comparisons.

_____________________________________________ 1 35
0.35 X ]
S 73 53 59 101 7.4 9.0 33 1.6 5.4 |
food outdoor O S | 30
0.30r animal accessory | | N }
§ 0251 furniturt? sporFs . 25
b electronic appliance -2 69 49 22 103 9.8 85 30 13 5.0 =
g kitchen indoor Q <
0.20f . - @ 208
S vehicle < Baseline (100%) S g
5 o015 person g . 2
o A3 7.3 4.7 2.0 102 10.1 85 29 1.1 5.3 e
5} o
& 0.10 “10
0.05} b
: pe 6.7 52 1.7 11.1 9.4 83 32 0.8 4.8 -5
S
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® @0 Co
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Figure 8. Probability distribution of supercategories across datasets. The figure highlights the relative distribution of each supercategory
in the original MS COCO dataset (100%) and its synthesized counterparts at different compression ratios (0.25%, 0.5%, and 1.0%). This
analysis provides shows that the synthesis process successfully mirrors the distribution of supercategories, A'(z), in the original dataset.
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B. More Ablations

Table 7 further illustrates the impact of SA-DCE on object detection performance. Our SA-DCE method consistently
outperforms both our no-extension and static extension baseline methods. Notably, it improves mAP scores while striking a
balance between small and medium object detection. The no-extension setting suffers from reduced performance on small
objects due to limited contextual information, whereas static extension provides slight improvements but lacks adaptability to
object scale. In contrast, SA-DCE dynamically adjusts the context extension based on object size, leading to significant gains,
particularly in small-object detection. These results demonstrate that SA-DCE effectively enhances detection robustness
while preserving overall performance across different object scales.

IPD Ext-e nsion mAP mAP;; mAP;5; mAP;, mAP,, mAP,

(pixels)
No extension 16.60  30.30 16.30 6.80 21.70 23.30
0.5% | Static extension | 16.80  30.70 16.60 7.40 22.10 22.90

SA-DCE 17.40  32.10 17.00 8.40 23.00 22.80

No extension 22.00 38.70 22.30 9.70 27.40  30.10
1.0% | Static extension | 22.30  38.80 22.90 9.90 27.40 30.40
SA-DCE 22.50 39.60 22.90 10.60 28.00 29.80

Table 7. Ablation Study of SA-DCE. The table evaluates the influence of extending statically and dynamically (using SA-DCE) the
bounding boxes (in pixels) of the objects in the distilled dataset across varying compression ratios on the MS COCO performance. Static
extension refers to applying constant extension 7 to all inserted objects regardless of their size. We set 7 as 10 pixels.

Table 8 highlights the effect of varying the confidence threshold (77) on detection performance. Setting 7 = 0.2 consistently
yields the best overall results across different IPD values, improving mAP and balancing small, medium, and large object
detection. Lower thresholds (n = 0.1) allow more candidates but introduce noise, while higher thresholds (n > 0.3) remove
potentially useful detections, leading to a drop in performance. These findings demonstrate that careful tuning of 7 is crucial
for optimizing detection accuracy.

1PD Ti‘;‘:flﬂfl‘(‘;&) mAP mAP;, mAP.; mAP, mAP,, mAP,
0.1 1110 2170 1050 530 1550  14.50

0.2 1280 2470 1190 560 1680 17.70

0.25% 0.3 1050  21.00 940 490  14.80 13.40
0.4 10.00 1980 900 540  13.80 12.90

05 1020 2030 930 500 1450 12.90

0.1 1700 3150 1660 810 2280  22.60

02 17.40 3210  17.00 840  32.00 22.80

0.5% 0.3 1620  30.10 1590 730 2160 21.60
0.4 1640 3060 1610 840 2250 21.90

0.5 1570 2950 1520 720 2130  20.50

0.1 2170 3830 2220 10.80 27.80  28.90

0.2 2250 39.60 2290 10.60 28.00 29.80

1.0% 0.3 2200 39.00 2230 1060 27.60  29.30
0.4 2200 3880 2240 1020 27.80  28.90

0.5 2180 3850 2220 1030 2770 29.00

Table 8. Ablation Study of Confidence Threshold (). Objects with confidence lower than 7 (determined by observer model) are
removed in the candidate screening stage.

Table 9 analyzes the effect of canvas size on detection performance across different IPD values. The canvas size was selected
based on the average width and height of all training images in the MS COCO dataset, with additional smaller and larger
canvas sizes included for comparison and evaluation. Results indicate that while an optimal canvas size (484 x 578) achieves
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the highest mAP scores, further reduction in canvas dimensions leads to a drop in performance. This suggests that excessively
small canvases limit the available contextual information, negatively impacting detection accuracy. Conversely, overly
large canvases introduce unnecessary background noise, reducing effectiveness. These findings highlight the importance of
selecting a balanced canvas size to maximize object representation while maintaining relevant contextual cues for dataset
distillation.

Canvas

IPD Size (pixels) mAP mAP;; mAP;; mAP, mAP,, mAP;
363 x 433 10.30  20.80 9.10 4.80 13.60 14.20

0.25% 484 x 578 12.80 24.70 11.90 5.60 16.80 17.70
oo 726 x 867 10.50  20.50 9.50 4.70 16.30 12.50
968 x 1156 | 8.80 17.50 7.80 3.60 14.90 10.20

363 x 433 1540 29.10 14.70 7.20 1990  21.50

0.5% 484 x 578 1740  32.10 17.00 8.40 23.00 22.80
=7 726 x 867 15.70  29.10 15.20 7.30 22.60 19.90
968 x 1156 | 13.70  26.00 12.90 7.00 20.00 16.60

363 x 433 | 2090 37.20 21.10 9.80 25.70  28.30

1.0% 484 x 578 | 22.50  39.60 22.90 10.60  28.00 29.80
e 726 x 867 | 21.00  37.30 21.40 10.80 27.60 26.40
968 x 1156 | 16.80  30.40 16.90 8.40 2410  20.40

Table 9. Ablation Study of Canvas Size. The table evaluates the influence of canvas size on the MS COCO performance of the distilled
dataset across varying compression ratios.

C. Proof of Theorem 3.2

Proof. Lett € N be the current iteration index with 0 < ¢ < T'. We assume for this iteration that objects placed on the
canvas x; do not overlap. Let the canvas x; contain K objects {0, }1< ;. We sort these objects according to their confidence
scores ¢(o,) and partition them into two sets based on a threshold #:

{Oimoiu . '7O’iM} where q(Oio) < q(o’il) <-- < q(OiM> < (17)
<

{OiM+17 Oinyas-- s OiK} where n < q(OiM+1) e < q(OiK)'
The first set satisfy E,. [p (¢ (0;,) < 1)] = 2L, Applying the removal operator fremove(X;) discards every object whose
confidence is below 7, i.e., {0iy, s, , - - - ,omf(}.

Hence, the updated canvas x;.1 preserves only those objects whose scores exceed 7, and it may then be “refilled” by
fadd(-) with new (randomly synthesized) objects from the same distribution as in previous iterations.

Then, we can compare the ®(x) of x; and x;11.P(x) can be described as

Z;Vio s (Oij) q (Oij) + Zf:]%-&-l s (Oij) q (Oij)
Z]M:O s (0ij) + Zf:M+1 s (04,)

B(x) = (18)

where 370 /1 s (0;,) and Y0001 5 (0i,) g (0;,) are same for x; and x;41. In general, we will fill the canvas
at each iteration, so Z;Vios (oij) can also be considered constant. And the difference between x; and x;;; is

M, where S is the areas of the canvas. Due to Eo<j<as [p(q(0;;) <n)] = 1 for x;, we can get
p (EOSJSN[ [q (Olj)] - E[U] > 0) = 0, and EOSjSM [p (q (Oij) < ’I’])} = % for Xt+1- Then, we can get

CK-M-1

% 19)

p (Eo<j<n [a (05;)] —E[n] = 0)
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Since object is uniformly distributed, so p and E are able to swap places. Because p (Eogjg M [q (oij)] > 77) = %
for x;1, we can prove that
@ (x7) > @ (x7-1) > @ (X7-2) > -+ > ®(x0) (20)

Consistency of A/(x) and overlaps. As T — oo, the canvas becomes fully populated in both the add-only and add-then-
remove strategies, so the number of objects A/ (x7) is generally similar (i.e., both can fill the canvas to full capacity).

Overlap handling. When T is sufficiently large, the canvas will necessarily be filled, so it can be assumed that the first
form and the second form of N (xr) are consistent. So G5 remains greater than G;. When there are some overlaps of
objects in the iteration, the conclusion still holds. For example, object o, and o overlap, and their overlap region is o4. The
score of og4 is between ¢ (0, ) and g (0p). If both g (0,) and ¢ (0p) are larger or smaller than 7, then both of them will not be
considered. If one is larger and one smaller than 7 (assuming that g (o,) < n and ¢ (o) > 7)), then o, is removed and o,
will also be removed in the process of screening, and the portion left behind (i.e., possibly the mutilated o, — 05 ) may not
be detectable by the detector, or it may be successfully detected. Even assuming that this is undetectable for 0, (i.e., the
confidence score is low), then in the next iteration it will still be removed.

Assume that the probability of having no overlap with another object is p;. The probability that g (6) < 7 is detected
will be po. This probability of it being removed or not having an overlap in the next iteration is p; + (1 — p1) p2, which is
consistently greater than (1 — p;) (1 — p2) when py > 0.5. If py < 0.5, this means that 6y is a qualified sample (detectable
by detector or observer) and therefore does not need to be removed.

Thus, in the presence of overlap, G5 remains greater than G .
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