
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROLL-AE: A SPATIOTEMPORAL INVARIANT AUTOEN-
CODER FOR NEURONAL ELECTRO-PHYSIOLOGY

Anonymous authors
Paper under double-blind review

ABSTRACT

Micro-electrode array (MEA) assays enable high-throughput recording of the elec-
trophysiological activity in biological tissues, both in vivo and in vitro. While
various classical and deep learning models have been developed for MEA signal
analysis, the majority focus on in vivo experiments or specific downstream ap-
plications in vitro. Consequently, extracting relevant features from in vitro MEA
recordings has remained largely dependent on particular curated features known as
neural metrics. In this work, we introduce Roll-AE, a novel autoencoder designed
to extract spatiotemporally invariant features from in vitro MEA recordings. Roll-
AE serves as a foundational model that facilitates a wide range of downstream tasks.
We demonstrate that 1) Roll-AE’s embeddings outperform those from standard
autoencoders across various classification tasks, and 2) Roll-AE’s embeddings ef-
fectively characterize electrophysiological phenotypic traits in induced Pluripotent
Stem Cells (iPSC)-derived neuronal cultures.

1 INTRODUCTION

In vitro micro-electrode array (MEA) assays provide a unique opportunity to obtain rich high-
throughput electro-physiological data from induced Pluripotent Stem Cell (iPSC) (Takahashi &
Yamanaka, 2006)-derived neuronal cultures (Fukushima et al., 2016; Kayama et al., 2018). MEA
enables monitoring and recording of the extra-cellular action potentials in a non-invasive manner and
provides valuable insights into the development and organization of neuronal networks (Novellino
et al., 2011; Maeda et al., 2016). MEA has been particularly useful in the context of disease modeling,
where excitability phenotypes are used to quantify the effects of genetic mutations and potential
treatments of Parkinson’s disease, Amyotrophic Lateral Sclerosis (ALS), Tuberous Sclerosis Complex
(TSC), etc. (Woodard et al., 2014; Wainger et al., 2014; Winden et al., 2019)

Although MEAs on in-vitro cell cultures have increased in popularity over the past decade, existing
methodologies to analyse this type of data remain limited. Most existing methods are based on a
collection of hand-crafted features called neural metrics (Mossink et al., 2021; Wainger et al., 2014;
Kim et al., 2020). These methods (Mack et al., 2014; Bryson et al., 2022; Kapucu et al., 2022; Passaro
et al., 2021) apply principal component analysis, factor analysis, or similar dimension reduction
techniques to distill and analyze electro-physiological recordings. Neural metrics generally include
descriptive statistics on different activity patterns such as sporadic neuronal firing, synchronous firing
across electrodes, rapid consecutive firings (bursts), and bursts across multiple electrodes (network
bursts). Fig. 7a lists the neural metrics curated by the commonly used Axion Biosystems (Biosystems,
2024) algorithm. Analysis of these neural metrics comes with several limitations. First, data
aggregation in a predefined manner results in a loss of resolution. A typical MEA recording involves
action-potential data on 6-96 wells per plate and 8-64 electrodes per well at a millisecond sampling
rate. This high-resolution data is then compressed to 30-40 predefined metrics, many of which are
redundant because they are functionally linked to other metrics. This compression often leads to
significant loss of information which adversely impacts the quality of both phenotypes and disease
models. Second, these neural metrics depend on multiple manually picked hyperparameters (e.g.,
burst threshold). This may lead to high variance with respect to different experimental conditions
(e.g., culture media, seeding cell density, etc.). Third, when an event either rarely occurs or does not
occur in a recording (e.g., absence of bursts during low electro-physiological activity), a substantial
portion of the neural metrics becomes unavailable. Handling such missingness in the data analysis
stage is not trivial. Traditional imputation methods assume that the metric exists in reality but was
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not observed. In this case, the metric is unavailable or undefined rather than not unobserved. This
further creates a potential for neuronal metrics to be volatile and attain outlier values.

Over the past decade, deep learning models have revolutionized the fields of computer vision, natural
language processing, video and speech recognition (LeCun et al., 2015; Chai et al., 2021; Chai & Li,
2019). Recent applications of deep learning in neuroscience have shown promising advancement
especially in processing electroencephalogram (EEG) data or in vivo recordings (van Leeuwen et al.,
2019; Schirrmeister et al., 2017; Buccino et al., 2018). Several recent statistical and machine-learning
methods have been developed to understand the neuronal biology from live electro-physiological
recordings of mouse-brains (Wu et al., 2017; Williams et al., 2020; Valente et al., 2022; Keeley et al.,
2020). On passive MEA recordings of in vitro tissue cultures however, such applications are still
limited. Recent works (Matsuda et al., 2022; Zhao et al., 2019), mainly deriving inspiration from
computer vision, use of end-to-end convolutional neural networks (CNN) (Krizhevsky et al., 2012) on
rasterized MEA signals for classifying gene knockouts and drug responses. Beyond models developed
for specific tasks, foundational models such as autoencoders, or in general, feature extraction through
self-supervised learning models, remains unexplored.

The MEA data modality is different from the image data modality and requires different calibration
techniques. An important requirement for MEA is that the recordings remain invariant to shifts in
time or changes in the orientation of the electrodes. When learning features from MEA recordings,
it is important for a model to learn features that do not change if the recording is moved in time
by a fixed amount, nor should they change if the spatial arrangement of the electrodes is permuted
keeping the inter-electrode distances intact. These invariances are crucial as any temporal shift is
determined by when the recording started and they have no biological relevance. Similarly, different
spatial arrangements of the electrodes only reflect the arbitrary order in which they were arranged in
the data matrix. Classical point process models (Snyder & Miller, 2012; Deutsch & Pfeifer, 1981)
for analyzing spatiotemporal time-series data, in theory, can address this invariance issue. However,
these models often require specific parametric assumptions, which can be overly restrictive for feature
learning. Additionally, there is no widely adopted point process model for the analysis of in vitro
MEA data; instead, in the broader field of neuronal electrophysiology, ad-hoc models (Amarasingham
et al., 2006; Bogaard et al., 2009) are typically devised based on specific research hypotheses.

The spatiotemporal invariance for MEA recordings is analogous to orientational (rotation, translation,
scale, mirror-flip) invariance of images for computer vision, where data augmentation is a standard
technique of choice for model calibration (Perez & Wang, 2017). However, data augmentation
does not guarantee that the encoded embeddings generated from an original image and a differently
oriented image will be the same. Recent works (Burgess et al., 2024; Lohit & Trivedi, 2020)
have proposed autoencoder architectures that guarantee such orientational invariance for 2D and
spherical (3D) images by using orientation-equivariant convolution layers and a spatial pooling
layer. Moreover, theoretical developments in the deep set literature (Zaheer et al., 2017) and group-
equivariant methods (Cohen & Welling, 2016) provided necessary building blocks in understanding
these invariance principles. Our work is deeply inspired by these recent developments.

In this paper, we show that augmentation techniques, even though slightly improve the model
performances, still fail to learn important features for detecting subtle and complex firing patterns.
For this reason, we propose Roll-AE, an novel autoencoder architecture that explicitly and completely
calibrates for spatiotemporal invariance while extracting relevant features from MEA recordings.
Roll-AE constructs invariant sets from given recordings and learns a set-to-set mapping with a low-
dimensional bottleneck. Roll-AE is intended to be a foundational model for in vitro MEA recordings
and its learned features can be used for multiple downstream tasks. We first demonstrate on a
synthetic dataset that the Roll-AE embeddings have superior performance in identifying unique and
complex firing patterns compared to standard autoencoders with augmentation. Then, we demonstrate
multiple downstream applications of Roll-AE embeddings on an real iPSC-derived neuronal culture to
illustrate that the proposed architecture captures meaningful multi-dimensional biological phenotypes
useful for disease modeling and treatment discovery.
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2 ROLL-AE

2.1 NOTATIONS

Let x ∈ Ω ⊆ RD be a D-length time-series (or spike-train) from a feature space Ω and let xi be
the i-th element of x. Let ND = {0, 1, . . . , D − 1}, and πi : Ω → Ω for i ∈ ND, be a cyclic
permutation function where πi(x) = (xD−i+1, xD−i+2, . . . , xD, x1, x2, . . . , xD−i). Intuitively,
πi(x) cyclically shifts x’s elements by i positions, and we can define such cyclic permutations as
shifts. Let Π(x) = {πi(x) : i ∈ ND} be the set of all D shifts of x and Π(Ω) = {Π(x) : x ∈ Ω}
be the set of all Π(x) where x ∈ Ω.

2.2 STANDARD AUTOENCODER ARCHITECTURE

The standard autoencoder on the input feature space Ω is a map fθ,ϕ : Ω → Ω with the encoder
gθ : Ω → Rk, decoder hϕ : Rk → Ω, and loss function ℓ : Ω×Ω → R. Here, θ and ϕ are parameters
of the encoder and decoder, respectively. Let the output of gθ (x) to be the encoded embedding of
x ∈ Ω and E = {gθ (x) : x ∈ Ω} to be the embedding space.

The goal of an autoencoder is to reconstruct a given input. Specifically, the network is trained to
minimize a reconstruction loss ℓ (x, x̂) where x̂ = fθ,ϕ (x) = hϕ (gθ (x)) is the forward propagation
reconstruction of a given input x ∈ Ω. When Ω = RD, a commonly adopted loss function is the
mean-squared loss, defined as ℓ (x, x̂) = 1

D

∑D
i=1 (xi − x̂i)

2.

A limitation of the standard autoencoder is that it suffers from the lack of shift-invariance. This means
that two spike-trains x and πi(x), which are just shifted versions of each other, are interpreted as
different spike-trains and encoded into different embeddings in the embedding space, i.e., gθ (x) ̸=
gθ (πi(x)). In the electro-physiology context, a shift is purely determined by when the recording
started and has no biological relevance. Hence, any difference between the embeddings of two shifted
spike-trains should only represent noise or potentially confounding information.

Shift-invariance in time-series data is analogous to the rotational invariance of autoencoders applied
in image processing, where we want the network to learn the same encoded embeddings from
different rotations of the same image. A standard way to handle such invariances is to apply
augmentations (Perez & Wang, 2017; Caron et al., 2021). In the context of MEA, this means, at
each training iteration, a randomly selected shifted spike-train πi(x) is used as the input instead of
x, and the reconstruction loss is calculated with respect to the original input x. Notice that even if
augmentation encourages the network to reconstruct the original spike-train x, it does not guarantee
that gθ (x) = gθ (πi(x)) for all i, which means the invariance problem is only partially tackled by
augmentation. Drawing inspiration from recently proposed methods (Burgess et al., 2024; Lohit &
Trivedi, 2020) that achieves orientation-invariance for 2D and spherical (3D) images, in the following
section we introduce a novel architecture that enforces shift-invariance directly in the encoding
process, ensuring that gθ (x) = gθ (πi(x)).

2.3 ROLL-AE

A shift-invariant loss ρ : Ω → Ω is defined such that the distance ρ (πi(x), πj(x)) between two
shifts πi(x) and πj(x) of the same spike-train is zero for any i, j ∈ ND, or in other words, the
shifted spike-trains are treated as the same spike-train. This can be achieved by defining the distance
metric to be ρ (x, x′) = L (Π (x),Π(x′)) where L is a set-based loss such as Chamfer loss (Zhang
et al., 2019), Linear assignment loss (Zhang et al., 2020), etc. Therefore, shift-invariance can be
achieved in an autoencoder architecture by modifying the objective, specifically, by reconstructing
entire sets Π(x) instead of single spike-trains and back-propagating on the set-based loss function
L. Since L is invariant to the ordering of the elements in a set, it guarantees ρ (πi(x), πj(x)) =
L (Π (x),Π(x)) = 0. Formally, Roll-AE can be defined as a network fθ,ϕ : Π (Ω) → Π(Ω) with
the encoder gθ : Π (Ω) → Rk, decoder hϕ : Rk → Π(Ω), and loss L (see Eq. 1).

Encoder Since Roll-AE is a set-to-set mapping, the encoder is constructed based on ideas from
the Deep Set literature (Zaheer et al., 2017; Soelch et al., 2019; Zhang et al., 2019). Explicitly,
for any Π(x) ∈ Π(Ω), the encoder is defined as gθ (Π (x)) = a ({g̃θ (x′) : x′ ∈ Π(x)}), where
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Figure 1: Roll-AE architecture. The input spike-train x is converted into its cyclic permutation set
Π(x) which is passed to the encoder g̃θ. The encoder outputs are grouped by the aggregation function
a into a single embedding. The decoder h̃ϕ reconstructs the putative spike-train x̂ which is converted
into its cyclic permutation set Π(x̂). The reconstruction loss is computed between Π(x) and Π(x̂).

g̃θ (:) Ω → Rk is a Multi-layer Perceptron (MLP) and a is an aggregation function that aggregates
the set of k-dimensional outputs from g̃θ into a single k-dimensional embedding. The purpose of
the aggregation function is to make the learned embeddings invariant of the shifts. Notice that
a ({g̃θ (x′) : x′ ∈ Π(x)}) = a ({g̃θ (x′) : x′ ∈ Π(πi(x))}), and hence gθ (Π (x)) = gθ (Π (πi(x))).
Typically, the average function is used as the aggregator, although other methods can be de-
fined (Soelch et al., 2019). In the case of Roll-AE, the average function is utilized as the aggregation
function.

Decoder The decoder is defined as hϕ (e) = Π
(
h̃ϕ (e)

)
for e ∈ Rk, where h̃ϕ : Rk → Ω is

an MLP. A crucial challenge in constructing Deep Set autoencoders is finding a suitable mapping
from the output of h̃ϕ to the space of sets. Roll-AE does not face this challenge as this mapping is
deterministic and known. Therefore, the forward propagation of the overall Roll-AE architecture is
defined as the mapping fθ,ϕ (Π (x)) = Π

(
h̃ϕ (a ({g̃θ (x′) : x′ ∈ Π(x)}))

)
. Fig. 1 shows Roll-AE

architecture. We note that the trainable parameters in Roll-AE are all contained in the encoder MLP
g̃θ and the decoder MLP h̃ϕ, which are functions that simply map Ω onto Rk and back. As a result,
the number of trainable parameters in Roll-AE remains the same as a standard autoencoder.

Reconstruction Loss Roll-AE uses the Linear Assignment loss as the reconstruction loss between
X = Π(x) and X ′ = fθ,ϕ (Π (x)). Specifically, for any arbitrary ordering of the elements X =

{x(1), x(2), . . . , x(D)} andX ′ = {x′(1), x′(2), . . . , x′(D)}, and denoting Ψ to be the set of all possible
permutations (not just cyclic) of (1, 2, . . . , D), the Linear Assignment loss is defined as,

L (X,X ′) = min
ψ∈Ψ

∑
i∈ND

ℓ
(
x(i), x′ψ(i)

)
. (1)

Computing the Linear assignment loss, in general, is extremely expensive with complexity O(s3)
using the Hungarian algorithm, where s is the cardinality of X (in this context, s = D). However, in
our problem, since both the sets X and X ′ are closed under the cyclic permutation operation, the
computation can be substantially improved to O(r) complexity where r is the order of the cyclic
permutation operation (in this context, r = s = D). Lemma A.1 then simplifies this reconstruction
loss as L (Π (x),Π(x̂)) = D [mini∈ND

ℓ (πi(x), x̂)] , where x̂ = h̃ϕ (a ({g̃θ (x′) : x′ ∈ Π(x)})) is
the putative output train. Further, it trivially follows from Lemma A.1 that the above expression also
applies to Chamfer loss.

Stochastic Shift-invariance Roll-AE further implements stochastic shift-invariance, i.e., instead of
passing all possible shifted spike-trains in Π(x) on each forward propagation iteration, it uniformly
samples spike-trains from Π(x) with sampling rate τ and uses the set of sampled spike-trains as
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inputs. Once the model is trained, the final embeddings can then be calculated by running a final
forward propagation of the encoder with the entire Π(x) as input. This ensures the invariance in
the final embeddings remains intact. In Appendix C, we demonstrate through extensive simulation
studies that stochastic shift-invariance can perform as good or sometimes even better than complete
shift-invariance (τ = 1) while reducing the memory requirement and computation time.

(a) A well and electrodes used
to record electrophysiological
activity.

0 3 6
1 4

2 5 7

x-axis
6 3 0

4 1
7 5 2

y-axis y-axis

2 5 7
1 4

0 3 6

x-axis
7 5 2

4 1
6 3 0

(b) All possible mirror symmetries
of electrodes in a well.

Figure 2: Electro-physiological activity recording and electrode symmetry analysis in a well. On
the left, an image of an well and electrodes from Axon Biosystems (Biosystems, 2024). The eight
circular dots near the center are the recording electrodes, and are arranged in this 3-2-3 (row-wise)
arrangement; on the right; all possible electrode symmetries and corresponding indices. In a typical
recording from (Biosystems, 2024), the electrodes are labeled following the pattern on the top left
corner.

Generic Permutations Roll-AE is not limited to temporal shifts or permutation of input spike-
trains. The above definitions and properties hold as long as Π(x) is a closed group with respect to any
class of cyclic permutations. This allows Roll-AE to handle other interesting classes of permutation
that are relevant for our biological assays. For instance, mirror symmetries can be used to permute
electrodes in a well and enforce spatial invariance on our embeddings. When multiple spike-trains
are simultaneously recorded by different electrodes placed on the same cell culture, they need to be
arranged and inputted into the model in a specific reference order. However, this order is arbitrary, and
any permutation should be biologically equivalent to the reference order as long as the inter-electrode
distances are preserved. Such permutations are given by the mirror flip operation. Fig. 2a shows an
image of an actual eight-electrode well used to record neuronal electrophysilogical activity using an
Axion Biosystems (Biosystems, 2024) MEA machine. Fig. 2b shows all possible electrode orderings
with the top-left graph matching the reference orientation. Notice that the four permutations defined
by mirror symmetry form a closed group under the mirror flip operation which further is a special
case of cyclic permutations. Folding in the mirror symmetries into the previously defined Roll-AE
architecture results in the cardinalities of the input and output sets to become 4D with D temporal
permutations, and four spatial permutations.

In Sec. 3.2, we will consider an actual dataset collected using the system depicted in Fig. 2a and train
Roll-AE using both temporal shift and electrode mirror-symmetry invariances.

3 EVALUATIONS

In this section we evaluate the proposed architecture on two case studies. First, we compare a standard
autoencoder, a standard autoencoder with augmentation, and Roll-AE on a synthetic dataset. Second,
we train and evaluate Roll-AE on a dataset of electro-physiology recordings of neuronal induced
Pluripotent Stem Cells (iPSC) (Takahashi & Yamanaka, 2006) subject to different Small Interfering
RNA (siRNA) (Fire et al., 1998) treatments.
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3.1 SYNTHETIC DATA EVALUATION

Just like in real recordings, we simulate recordings with spike-trains on eight electrodes. To mimic
the electro-physiology and firing patterns of real neuronal cultures, our synthetic dataset has four
tunable parameters that determine the level of activity along four different types of source-events,
namely sporadic spikes (spike), sporadic single-channel bursts (burst), cyclic bursts (cycle), and
network bursts (network). These parameters are formally defined as follows: spike: the probability
of a sporadic firing event at a particular time instance; burst: the probability of a sequence of firing
events starting at a particular time instance for a random duration; cycle: presence or absence of a
repeating pattern of sequence of firing events with a random phase and duration; network: presence
or absence of network bursts where sequences of firing events are recorded simultaneously across
multiple electrodes. Each network burst starts with an originating electrode, and the probability of
observing firing events in other electrodes depend on their proximity to the originating electrode.

(a) High probability of a spike event. (b) High probability of a burst event.

(c) Presence of cyclic bursts. (d) Presence of network bursts.

Figure 3: Examples of synthetically generated spike-trains from eight electrodes tuning the probabili-
ties of spike, burst, cycle, or network firing events.

Fig. 3 depicts some examples of firing patterns where one type of firing event was kept at a high
probability (or present) and the others are kept at a low probability (or absent). For instance, Fig. 3a
shows a recording obtained with high spike but low burst probabilities with no cycle or network
behaviors, resulting in a dense randomly scattered stack of spike-trains. Similarly, Fig. 3d depicts a
recording obtained with the presence of network behavior, but with low spike and burst probabilities,
and absence of cyclic bursts. This results in sparse but vertically aligned spike-trains, mimicking a
low sporadic activity but a well-synchronized network. The explicit details of the data generating
model for the synthetic data are presented in Appendix B. For each of the tunable firing parameters,
we considered two classes, high probability and low probability classes for the spike and burst
parameters, and present and absent classes for cyclic and network parameters. This resulted in a total
of 16 combined classes of firing patterns. For each of these 16 classes, we generated 500 synthetic
recordings, each recording having 300-length spike-trains across eight channels (electrodes).

Model Training We trained three models: a standard autoencoder, a standard autoencoder with
augmentation, and Roll-AE on the synthetic dataset. The hyperparameters (such as training batch-size,
embedding dimension etc.) for each model were selected based on a two-step training/validation
scheme (see Appendix D for training details). The embeddings generated by the trained models were
then compared based on downstream classification tasks.

We trained five classifiers (with 70/30% training/validation data split) using the embeddings from each
autoencoder: four binary classifiers (e.g., high vs low probability of spikes, high vs low probability
of a bursts, etc.) and a multi-class classifier with 16 classes encompassing all combinations of our
synthetic dataset parameters (e.g., low spike, low burst, no cycle, no network vs low spike, low
burst, no cycle, present network vs low spike, low burst, present cycle, present network, and so
on). Specifically, we trained logistic regressors with L2 regularization with the penalty parameter
determined using a 4-fold cross-validation. The best trained logistic regressor was then used to make
predictions on the validation data.

Results Fig. 4 reports the obtained accuracies together with the confusion matrices for the multi-
class task. Overall, Roll-AE outperforms the standard autoencoders across all classification tasks
(see Fig. 4a). Remarkably, Roll-AE achieved a +30% accuracy on the hardest multi-class task. It
is also worth noticing, that augmentation improves the standard autoecoder across all tasks (except
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(a) Accuracy comparison between autoencoders across tasks. Roll-
AE achieves highest accuracy across all binary and mutliclass tasks.

(b) Confusion matrices of standard (left), standard with augmentation (center), and Roll-AE (right) autoencoders
for multi-class classification. The 16 class labels were each formatted as {spike probability}-{burst probability}-
{cycle present}-{network present}.

Figure 4: Roll-AE consistently outperforms standard autoencoders (both with and without augmenta-
tion) on all binary and multiclass classification tasks.
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cycle), while still being sensibly inferior to Roll-AE. Fig. 4b reports the confusion matrices of the
three models for the multiclass task. These plots highlight how Roll-AE embeddings lead to a high
predictive accuracy in our downstream classification tasks while the two standard autoencoders tend
to misclassify similar classes in a multi-class regime.

3.2 SIRNA TREATMENT EVALUATION

As a second case study, we applied the three models on a real electrophysiological dataset obtained
from induced Pluripotent Stem Cells (iPSC) (Takahashi & Yamanaka, 2006) derived neurons subject
to Small Interfering RNA (siRNA) (Fire et al., 1998) treatments. Technically, iPSCs are cells that
have been reprogrammed from skin or blood cells to become other types of cells, in our case, neurons.
siRNAs are artificially synthesized RNA molecules commonly used in molecular biology for silencing
genes of interest. In our case, we apply a double siRNA treatment: the first to silence a gene to trigger
the disease, the second to investigate a possible cure to counteract the effect of the first intervention.

Our neuronal culture was organized on two 96-well plates. Half of the sample set was subject to a
siRNA knockdown (siKD) of the gene of interest, mimicking the effect of the considered disease,
while the other half was subject to a non-targeting control siRNA sequence (NTS) designed to target
no known genes. The NTS treatment is our negative control, i.e., a condition that does not affect the
neuron state. Both siKD and NTS samples have been then treated with 24 different siRNA potential
cures. Among these, there is an additional negative control NTS and a positive control CTRL+
known to reduce neuronal excitability. For each condition, we cultured 4 replicates recorded at nine
different days up to 24 days in vitro. In total we obtained 2 (siKD or NTS)×24 (siRNA treatments)×
4 (replicates) × 9 (days in vitro) × 8 (electrodes) = 13824 raw spike-trains. Each spike-train was
recorded with one milli-second sampling rate for 10 minutes. We bucketized the raw spike-trains
to 500 milli-second bins to end up with spike-train length of D = 1200. To train the models, we
first performed a hyperparameter selection of training batch-size, embedding dimension, learning
rate, and shift-sampling rate (see details in Appendix D). Models with the selected hyperparameters
were then trained to generate the final embeddings. First, we compare the embeddings on an siKD
phenotyping task.

Results - siKD Phenotyping We compared the embeddings from the three models based on their
performance in the classification of siKD wells from NTS wells on each of the 24 siRNA treatments.
Biologically, the effect of siKD is very subtle, and discovering a classifier with good classification
accuracy helps uncover subtle phenotypes in our disease model. We applied a leave-one-well-out
approach, where at each iteration, we left out all the recordings from a particular well with a particular
siRNA treatment, trained a siKD vs NTS classifier on the rest of the wells, and predicted the recordings
of the left-out well. Logistic regressors with L2 regularization and 4-fold cross-validation were used
as the classifiers.

Figure 5: Accuracy comparison between autoencoders for classification of siKD vs NTS on different
siRNA treatments. Roll-AE has the highest accuracy for 15 our of the 24 treatments, in particular, on
NTS.

The average classification accuracies are presented in Fig. 5. For 15 out of the 24 treatments, Roll-
AE embeddings had the highest classification accuracy, and most importantly, Roll-AE had the
highest accuracy on NTS. Next, we demonstrate the application of the Roll-AE embeddings on two
downstream tasks: treatment clustering and neural metrics credentialing.
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Results - Treatment Clustering For this study, we used Roll-AE embeddings to extract biological
insights and characterize treatment similarities. To do so, we considered cells cultured for 24 days
in vitro, reduced the dimension of our embeddings to 10 principal components explaining at least
95% of the variance, computed the centroids of each treatment cluster, and calculated the pairwise
distances between treatment centroids. The obtained results for NTS and siKD treated cells are
organized in the two dendrograms shown in Fig. 6a and Fig. 6b, respectively.

(a) Pairwise distances between genes for NTS cells. (b) Pairwise distances between genes for siKD cells.

Figure 6: Dendrograms of embedding pairwise distances between gene centroids applied to unper-
turbed (NTS) and diseased (siKD) cells.

For cells with NTS, we observe a clear distinction between CTRL+ and NTS treatments, indicating
that the model effectively differentiates CTRL+ (known to reduce cell excitability) from unperturbed
NTS cells. On the other hand, gene_21, which clusters far from CTRL+, is known for inducing
hyperexcitability and stimulating neuronal activity. Furthermore, gene_9, gene_10, and gene_11,
which clustered together, are all components of the same signaling pathway involved in stress and
inflammatory responses.

For cells with siKD, we observe again that NTS and CTRL+ treatments form distinct clusters,
with gene_21 clustering on the opposite side of the hyperexcitability spectrum of the dendrogram.
Interestingly, gene_10 and 11 are still clustering together but gene_9 does not. Additionally, gene_3
and gene_4, which were grouped as hyperexcitable in the NTS cells study, now cluster among
hypoexcitable treatments. This suggests that these genes interact differently with the induced disease
state, leading to different types of neuronal activity depending on the disease state of the cell.

This study is an example of how extracting insights and clustering gene treatments can aid biologists
in formulating hypotheses and identifying recurring patterns across various gene treatments.

Results - Neural Metrics Credentialing The goal of this study is to verify whether the obtained
embeddings retain relevant information on the curated neural metrics provided by the Axon Biosys-
tems instrument that are explicitly computed from raw recordings. The full metric list is reported in
Fig. 7a.

To asses the ability of our embeddings to retain relevant information on these curated neural metrics,
for each metric, we trained a Ridge regressor with an L2 penalty of 1.0. This was trained on 80%
of the entire dataset and then used to predict each metric on the remaining 20%. The correlation
(r-score) between the predicted and observed neuronal metrics from the validation data is shown in
Fig. 7a. The metrics are ranked from the highest to the lowest correlation.

Roll-AE embeddings predict most metrics with high correlation. Out of 44 regressed metrics, 25
had r-score above 0.75, 9 between 0.25 and 0.75, and 10 between -0.1 and 0.25. Fig. 7b illustrates
some scatter plots of actual metric values against the predicted ones. We observed that metrics
useful for phenotypic analyses, including firing, spike, or burst counts and rates, are accurately
captured and predicted. However, certain metrics, such as those related to the inter-burst interval
(IBI coefficient) (Di Credico et al., 2021), demonstrated lower correlations. We hypothesize that this
discrepancy may be attributed to the selected binning size during the compression of the raw signal,
which can potentially eliminate inter-burst information.

Overall, this study demonstrates Roll-AE’s embedding effectiveness in capturing explicit neural
metrics and hence their potential as a tool in phenotypic analyses and downstream tasks.
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(a) r-scores between observed and predicted neural metrics
from Roll-AE embeddings. High r-scores indicate Roll-
AE’s embedding ability to capture explicit neural metrics.

(b) Examples of observed vs predicted neural met-
rics metrics from Roll-AE embeddings with high
(top row) and low (bottom row) r-scores.

Figure 7: Credentialing the Roll-AE embeddings by evaluating its performance in predicting the
neural metrics.

4 CONCLUSION

In this paper, we proposed Roll-AE, a novel spatiotemporal invariant autoencoder for feature extrac-
tion from passive recordings of MEA assays. By leveraging and explicitly imposing the invariances
in the architecture, Roll-AE can extract features that are relevant for identifying unique firing pat-
terns. On synthetic data, we demonstrated that the Roll-AE embeddings far outperform standard
autoencoders (with or without augmentation) in discriminating different individual source-events.
Roll-AE is particularly accurate in the multi-class classification task and showed a +30% accuracy
gain compared to standard autoencoders suggesting Roll-AE’s ability to identify features relevant to
complex and subtle phenotypes. On the siRNA experiment data, we further considered multi-faceted
downstream applications of Roll-AE generated embeddings. We demonstrated the superior perfor-
mance of Roll-AE embeddings in discriminating siKD from NTS highlighting its use in phenotype
discovery. The concordance of the relative clustering of treatments with previous biological evidences
supports the validity of these machine learnt features. Finally, we showed that these embeddings
retain explicit metrics and can be used to predict manually curated features.

The original formulation of Roll-AE came with a few limitations, mainly in regard to computational
efficiency. Constructing the entire set of cyclic permutations and evaluating the Linear Assignment
loss can be computationally demanding. To tackle this issue, we have proposed the stochastic shift-
invariance approach. Another possible approach is to apply discrete time Fourier transformation
to each spike-train to transform them from time domain to frequency domain and apply invariance
to analogous operations to temporal shifts. In our siRNA experiment example, we found that the
embeddings were not able to predict some neural metrics well, predominantly those with inter-spike
interval-related metrics. This could be a consequence of the adopted 500 milli-seconds bin size.
While we have demonstrated its efficacy using in vitro MEA data, the autoencoder design could be
easily generalized for other types of data where such spatiotemporal invariance is relevant. Other
potential use cases for such architectures would be to identify arrhythmia from ECG data and anomaly
detection from sensors.

In conclusion, Roll-AE provides a foundational model for extracting features from in vitro MEA
recordings. The features from Roll-AE enables better identification of unique electro-physiological
activity patterns from MEA recordings, and can be used for a multitude of downstream applications
including the identification of complex cellular phenotypes of different treatments such as siRNA
knock-down, gene knock-outs etc.
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A MATHEMATICAL RESULTS

Lemma A.1. For two sets Π(x) and Π(y); x, y ∈ Ω,

min
ψ∈Ψ

∑
i∈ND

ℓ
(
πi(x), πψ(i)(y)

)
= D ×

[
min
i∈ND

ℓ (πi(x)), y)

]
.

Proof. First, we note that, for any i ∈ ND, ψ ∈ Ψ,

ℓ
(
πi(x), πψ(i)(y)

)
≥ min
j,j′∈ND

ℓ (πj(x), πj′(y)) ,

which implies

min
ψ∈Ψ

∑
i∈ND

ℓ
(
πi(x), πψ(i)(y)

)
≥ D ×

[
min

j,j′∈ND

ℓ (πj(x), πj′(y))

]
. (2)

Lets denote (j∗, j′∗) = argminj,j′ ℓ (πj(x), πj′(y)). Further, let the permutation ψ∗ ∈ Ψ to be a
cyclic permutation that maps j∗ to j′∗, explicitly, ψ∗(j∗) = j′∗. Then,

D ×
[

min
j,j′∈ND

ℓ (πj(x), πj′(y))

]
= Dℓ (πj∗(x), πj′∗(y))

= Dℓ
(
πj∗(x), πψ∗(j∗)(y)

)
= Dℓ

(
πi∗(x), πψ∗(i∗)(y)

)
.

The above is true for any i∗ ∈ ND. Therefore, for ψ = ψ∗, the equality holds in 2, i.e.,

min
ψ∈Ψ

∑
i∈ND

ℓ
(
πi(x), πψ(i)(y)

)
= Dℓ

(
πi∗(x), πψ∗(i∗)(y)

)
∀i∗ ∈ ND.

The final part of the proof holds by selecting i∗ such that ψ∗(i∗) = 0,

ℓ (πi∗(x), π0(y)) = min
i∈ND

ℓ (πi(x), y) .

B SYNTHETIC DATA GENERATION

The synthetic data are simulated as normalized binary tensors. Lets denote the synthetic data
corresponding to the tunable parameters βs, βb, βc, βn as X(βs, βb, βc, βn) with dimensions N ×
E × D, where N = 500 is the number of recordings, E = 8 is the number of electrodes, and
D = 300 is the recording time duration. The parameter βs = {0.02, 0.1} represents the probability
of a sporadic firing event. The parameter βb = {0.005, 0.025} represents the probability of a sporadic
sequence of multiple firing event, or a burst on a single electrode. The parameter βc = {0, 1}
represents the absence or presence of cyclic burst firing pattern, and the parameter βn = {0, 1}
represents the absence or presence of network burst firing pattern. Let the indices n, e, and d represent
single instances of recordings, electrodes, and timepoints. Let us also denote the four different firing
patterns sporadic single firing, sporadic single-channel burst, cyclic single-channel burst, and network
burst as source events.

To simulate the synthetic recordings, first, four source-specific binary recordings were simulated
corresponding to each of the four different source events, and then those recordings were combined
using the binary OR (∨) operation. This means, at any given time-point on a given electrode, a
neuronal firing can be observed due to any combination of the source events. The synthetic data
simulation algorithm is as follows:
Algorithm B.1 (Algorithm to simulate the synthetic recordings). First, initialize the following
parameters: Firing frequency within a burst γb = 0.9, probability of a network burst starting at a
given time point γn = 0.035, and network decay factor δ = 0.8.
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1. Sporadic single firings (Spike): Simulate Z(S)
n,e,d ∼ Bernoulli(βs) i.i.d.

2. Sporadic single-channel bursts (Burst):

(a) Initialize Z(B) = 0.
(b) Simulate burst initiation indicators Sn,e,d ∼ Bernoulli(βb) i.i.d.
(c) For each Sn,e,d = 1,

i. Select a burst duration ∆ = min(D,∆∗) where ∆∗ ∼ DiscUnif({3, 4, 5}), the
discrete Uniform distribution.

ii. Simulate the source-specific firings Z(B)
n,e,i ∼ Bernoulli(γb) for i = d, . . . , d+∆.

3. Cyclic single-channel bursts (Cycle):

(a) Initialize Z(C) = 0. If βc = 0, then skip to step 4. Else, move to the next step.
(b) For each recording n and electrode e,

i. Select a cycle period Qc ∼ DiscUnif({15, 16, . . . , 19}) and phase Pc ∼
DiscUnif({0, 1, . . . , 14}).

ii. Set the burst initiation indicators Sn,e,d = 1 if (d − Pc) is divisible by Qc, 0
otherwise.

iii. For each Sn,e,d = 1,
A. Select a burst duration ∆ = min(D,∆∗) where ∆∗ ∼ DiscUnif({3, 4, 5}),

the discrete Uniform distribution.
B. Simulate the source-specific firings Z(C)

n,e,i ∼ Bernoulli(γb) for i = d, . . . , d+
∆.

4. Network bursts (Network):

(a) If βn = 0, set Z(N) = 0 and skip to step 5. Else, move to the next step.
(b) Simulate burst initiation indicators Sn,e,d ∼ Bernoulli(γn/E) i.i.d.
(c) For each Sn,e,d = 1,

i. Denote e to be the starting electrode, and d to be starting time-point for the network
burst.

ii. Select a burst duration ∆ = min(D,∆∗) where ∆∗ ∼ DiscUnif({3, 4, 5}), the
discrete Uniform distribution.

iii. Simulate the source-specific firings Z(N)
n,e′,i ∼ Bernoulli

(
γbδ

α(e,e′)
)

for i =

d, . . . , d+∆ and e′ ∈ {1, . . . , E}. Here, α(e, e′) represents the physical distance
between the electrodes e and e′ assuming the distance between electrodes 0 and 1
in the configuration described in Fig. 2 to be one unit.

5. Combine the recordings: Obtain the combined recording Z = Z(S) ∨Z(B) ∨Z(C) ∨Z(N).

6. Normalize: The final dataset X(βs, βb, βc, βn) is obtained by normalizing the dataset Z.

C EVALUATING STOCHASTIC SHIFT-INVARIANCE

Here, we evaluate the accuracy, computation time, and memory requirements of the Roll-AE model
under the stochastic shift-invariance strategy based on the synthetic data (generative model B). We
trained the Roll-AE model with different training batch-sizes, embedding dimensions (k), and shift-
sampling rates (τ ). We evaluated the accuracy under each selection of hyperparameters using the
same evaluation scheme outlined in D. All models were trained with learning rate 0.0001.

Fig. 8 shows the classification accuracy, computation time, and memory requirements for each
selection of the hyperparameters. The accuracies were similar across all choices of hyperparameters,
and except for the case with batch-size = 64 and embedding dimension k = 128, the shift-sampling
rate τ = 0.01 resulted in the best accuracy for the 16-class classification task on the second-level
validation dataset (see D). As expected, the computation time was the longest for τ = 1 which implies
the entire set Π(x) was used in each pass of model training. However, the strongest contributor to
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Figure 8: Accuracy, Computation time (Hour), and Memory requirement (MB) for different training
batch-sizes and embedding dimensions (k), with respect to different shift-sampling rates (τ ). All
models were trained on an NVIDIA® V100 GPU.

the computation time was batch size, with batch-size 16 requiring ∼ 1.5− 2 times more computation
time than batch-size 64.

The most important benefit of the stochastic shift-invariance is in the memory requirement. Training
with τ = 0.01 required half as much memory for batch-size = 16, and nearly one-seventh as much
memory for batch-size 64 compared to τ = 1. By requiring substantially lower memory than training
with complete shift-invariance (entire Π(x)), in large datasets, the stochastic shift-invariance strategy
can allow for training with larger batch-sizes on limited GPU memory, which in turn can help reduce
the computation time without impacting the accuracy.

D MODEL TRAINING AND HYPERPARAMETER SELECTION

D.1 MODEL TRAINING

For the synthetic data, we trained the three models with different hyperparameters (listed in Table 1)
on 70% of the data (training) randomly selected, and then applied the trained model on the remaining
30% of the data (validation) to obtain the embeddings. The embeddings of the validation dataset were
then further split into a second-level of 70%-30% training/validation data to evaluate the predictive
accuracy of those embeddings for the 16-class classification task. For this purpose, a 16-class
logistic regression classifier with L2-regularization was trained on the second-level training data,
and then the classes were predicted on the second-level validation data. The penalty parameter
for the L2-regularization was selected based on four-fold cross-validation. Using the two levels of
training/validation data splits, we ensured that both the autoencoder model, and the downstream
classifier are generalizable to previously unseen data. For each of the three models, whichever
hyperparameters led to the highest predictive accuracy in the second-level validation data, were
selected and the models with those selected hyperparameters were then trained on the entire dataset
to generate the final embeddings.

Similar two-level validation approach was taken for selecting hyperparameters in the siRNA data. We
first trained the three models with the same set of hyperparameters (listed in Table 1) and generated
the embeddings based on a 70%-30% training/validation data split. Then, with the embeddings of the
validation dataset, we evaluated a logistic regression classifier (with L2 regularization) of the siKD vs
NTS samples based on a second-level 70%− 30% split of the data. The hyperparameters which led
to the highest accuracy in the second-level validation data were selected for each model. Finally, we
applied the three models with the selected hyperparameters on the entire dataset to generate the final
embeddings.

D.2 HYPERPARAMETERS

Table 1 lists all choices of the training parameters that were considered to train the three autoencoder
models. For the standard autoencoder with augmentation, two augmentation sampling schemes were
evaluated, namely Uniform and Half-mass. For the Uniform sampling scheme, on each epoch, the
augmented recording was randomly selected from the set of all possible shifted (and mirror-flipped)
recordings uniformly. On the contrary, for the Half-mass sampling scheme, with probability 0.5 the
original recording was used as the augmented spike-train, and the with the rest 0.5 probability, the
other shifted (and mirror-flipped) recordings were uniformly selected. The best training parameter
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choice for each autoencoder model was determined based on the performance of the embeddings in
the multi-class classification task for synthetic data, or in the binary classification of siKD and NTS
in the siRNA experiment data. These parameter choices are highlighted in Table 1 in bold.

Table 1: Choice of training parameters for the three autoencoder models. The best choice of
parameters for each autoencoder model are highlighted in bold font (for the synthetic data) or with an
asterisk (for the siRNA experiment data).

Training parameter Standard AE Standard AE + aug. Roll-AE
Training batch-size 8, 16, 32, 64* 8, 16*, 32, 64 8, 16, 32, 64*

Embedding dimension (k) 128*, 256, 512 128, 256*, 512 128, 256, 512*
Learning rate 0.0001, 0.001*, 0.01, 0.1 0.0001*, 0.001, 0.01, 0.1 0.0001*, 0.001, 0.01, 0.1

Augmentation scheme N/A Uniform, Half-mass* N/A
Shift-sampling rate (τ ) N/A N/A 0.01*, 0.05, 0.1, 1

All models had two hidden layers in each of their encoder and decoder MLPs. The hidden layers
in the encoder MLPs had 4k and 2k neurons sequentially, where k is the embedding dimension.
Conversely, the hidden layers in the decoder MLPs had 2k and 4k neurons sequentially. Counting the
k parameters for the output layer of the encoder MLP and the ED parameters for the output layer of
the decoder MLP, our models had a total of (13k +ED) trainable parameters. Mean-squared error
loss was used for the standard autoencoders (with or without augmentation), and Linear assignment
loss was used for Roll-AE. Adam optimizer Kingma & Ba (2017) was used for the back-propagation
in all models. Each model was trained for 200 epochs.
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