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ABSTRACT

Chain-of-thought (CoT) via prompting is the de facto method for eliciting reason-
ing capabilities from large language models (LLMs). But for what kinds of tasks
is this extra “thinking” really helpful? To analyze this, we conducted a quantitative
meta-analysis covering over 100 papers using CoT and ran our own evaluations of
20 datasets across 14 models. Our results show that CoT gives strong performance
benefits primarily on tasks involving math or logic, with much smaller gains on
other types of tasks. On MMLU, directly generating the answer without CoT leads
to almost identical accuracy as CoT unless the question or model’s response con-
tains an equals sign, indicating symbolic operations and reasoning. Following this
finding, we analyze the behavior of CoT on these problems by separating plan-
ning and execution and comparing against tool-augmented LLMs. Much of CoT’s
gain comes from improving symbolic execution, but it underperforms relative to
using a symbolic solver. Our results indicate that CoT can be applied selectively,
maintaining performance while saving inference costs. Furthermore, they suggest
a need to move beyond prompt-based CoT to new paradigms that better leverage
intermediate computation across the whole range of LLM applications .

Figure 1: Left: meta-analysis of CoT literature; each point is a reported delta of CoT over direct
answering for some (LLM, task) pair. Right: average performance of using zero-shot CoT v.s. di-
rect answer prompts across five general reasoning categories, covering 20 datasets with 14 LLMs
evaluated on each. In both sets of results, math and other kinds of symbolic reasoning are the do-
mains that consistently see substantial improvements from CoT (red dotted line indicates the mean
improvement from CoT across experiments).

1 INTRODUCTION

Chain-of-thought (CoT) (Nye et al., 2022; Wei et al., 2022) has become a widely used prompting
technique for eliciting reasoning from language models. CoT can provide human-readable expla-
nations of how problems are solved (Joshi et al., 2023; Lanham et al., 2023), but most frequently
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it is invoked to improve an LLM’s ability to answer complex questions via intermediate computa-
tion (Madaan & Yazdanbakhsh, 2022; Wang et al., 2023a; Dziri et al., 2023). Current post-training
schemes for LLMs heavily infuse CoT capabilities into models: systems like ChatGPT or Llama 3.1
default to CoT when given reasoning problems (OpenAI, 2023; Dubey et al., 2024).

CoT has seen widespread usage, but it is most heavily explored in the domain of mathematical rea-
soning (Zhou et al., 2023a; Fu et al., 2023; Chae et al., 2024; Xu et al., 2024b; Qi et al., 2024).
In fact, many “reasoning” methods for LLMs are evaluated only in the math domain; for instance,
Lightman et al. (2024) frame their paper as “complex multi-step reasoning” and Mixtral-Large2’s
release 1 cited effort “enhancing the model’s reasoning capabilities”, but performance is only re-
ported on GSM8K and MATH. CoT is reported to be effective across a wide range of studies, but
many of these studies focus on a narrow slice of the task space. In areas beyond math, results show
that CoT is not as useful (Kambhampati et al., 2024a) or can even hurt performance (Wang et al.,
2024).

In this work, we aim to evaluate where prompt-based CoT helps and why. We begin with a sys-
tematic meta-analysis of recent literature that reports performance of CoT versus direct answering
(DA). We then augment this picture by conducting experiments on 20 datasets and 14 contemporary
LLMs across zero-shot and few-shot prompt settings. Finding 1: CoT only helps substantially
on problems requiring mathematical, logical, or algorithmic reasoning. Figure 1 shows this
holds both across the literature and our own experiments. We find only a few cases of large gain
in other kinds of tasks, and many of these outliers feature some component of symbolic reasoning.
For instance, on MMLU (Hendrycks et al., 2021a) and MMLU Pro (Wang et al., 2024), we analyze
the improvements from CoT and find that CoT only gives benefit on math slices of the dataset. As
much as 95% of the total performance gain from CoT on MMLU is attributed to questions
containing “=” in the question or generated output. For non-math questions, we find no features
to indicate when CoT will help.

How can we better understand why CoT improves on these questions and only these questions?
The math and formal logical reasoning datasets we consider can be broken down into two stages of
processing: a planning step (e.g., parsing a problem into equations) and an execution step (building
intermediate outputs and working towards a solution) (Ye et al., 2023; Wang et al., 2023b; Sun et al.,
2024). Finding 2: CoT primarily helps with the execution step that performs computation and
symbolic manipulation, but falls short of what LLMs with tool augmentation can do. We find
that LMs prompted with CoT can generate executable formal solution plans and execute those plans
better than direct answering. But using LMs to generate a solution plan and then using an external
symbolic solver to solve the plan outperforms using CoT for both steps for these tasks.

These results paint a picture that CoT’s utility is often circumscribed by tool augmentation: on
problems where CoT helps, we already have more powerful tools than CoT that we can employ,
and on “soft reasoning” problems like commonsense where no tools exist, we see limited benefit
from CoT. This characterization has two major implications. First, CoT is unnecessary for many
problems where it is widely employed: there exist more efficient prompting strategies that yield
similar performance for much lower inference cost. Second, we see a critical need to move beyond
prompt-based CoT to more sophisticated approaches based on search, interacting agents, or models
more heavily fine-tuned for CoT. Future work can explore how intermediate computation can be
better used to solve challenging problems outside of the math and symbolic reasoning domains.

2 BACKGROUND: CHAIN-OF-THOUGHT

The tasks we consider in this work consist of a question q ∈ Σ∗ for a vocabulary Σ and an answer
a ∈ L(q) for a label set L(q). L(q) can consist of a data type like boolean or integer, classification
labels, or problem-dependent labels like names of entities from q. One exception that we still
explore is BiGGen Bench (Kim et al., 2024), which instead relies on an LLM-as-a-judge (Dubois
et al., 2023; Zheng et al., 2024b) to provide a label for generated long-form responses.

Prompting and chain-of-thought for reasoning A large language model places distributions over
strings p(y) =

∏n
i=1 pLM(yi) where y ∈ Σ∗. In practice, we can interpret these as conditional

1https://mistral.ai/news/mistral-large-2407/
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distributions p(y | x) where x is a user’s prompt. Typical invocation of an LLM involves forming
a prompt I(q) that wraps the question with additional instruction, then drawing a sample response
ỹ ∼ p(y | I(q)), and finally returning a = extract(ỹ) using some kind of answer extractor.

For the tasks we consider in this work, the output ỹ can take one of two forms. A direct answer
only contains a string realization of a; e.g., y = ( 185, 4) which is detokenized as the answer
a = 1854. A chain of thought is a longer sequence y including other tokens beyond the answer,
e.g., y = ( 185, 6, minus, 2, equals, 185, 4). In both cases, the extract function must parse and
detokenize the output; in CoT, there is some extra work to spot where the answer is placed.

Our prompts can explicitly encourage use of direct answer or chain of thought as strategies, which
we denote as Ida and Icot. For eliciting CoT, this includes strategies like telling a model to “think
step by step” (Kojima et al., 2022). For directly answering a question, a prompt may say “immedi-
ately generate the answer”. We track the average location of the answer in the generated output for
both CoT and direct prompts in Appendix F.3 to ensure that direct answer prompts give the answer
early in the output. We also ensure that extract can parse answers from the generated output for
each model, prompt, and dataset combination used in our experiments, tailoring the extract func-
tion as needed to ensure low unparseable rates for each model and task.2 All prompts and outputs
per dataset per model have been uploaded to Huggingface and we include examples of some of our
prompts in the Appendix J. We also experiment with few-shot CoT prompts, which we find perform
similarly to zero-shot prompts; details about these are given in Appendix E.

Symbolic reasoning Of key importance to this work is whether problems feature symbolic rea-
soning or not. We consider a problem to be symbolic if it can be grounded in a natural, well
agreed-upon formal system. “12× 4” is an example of a symbolic problem, which can be grounded
in mathematics. Other systems include first-order logic (Saparov & He, 2023; Hua et al., 2024) or
planning languages (Liu et al., 2023a; Valmeekam et al., 2023). Formally, for symbolic problems,
we define a function f that acts as a map that produces some symbolic expression S = f(q) from
the question. S can be used as input for a solver to derive an answer, â = solve(S).
Conversely, a problem like where on a river can you hold a cup upright to catch water on a sunny
day? from CommonsenseQA (Talmor et al., 2019) is non-symbolic by our definition. While this
problem could be formalized with some kind of predicate logic (Zhou et al., 2022; Quan et al., 2024;
Zhou et al., 2024) or grounded in some kind of physical simulation (Hao et al., 2023; Wong et al.,
2023), there is not a natural nor well agreed-upon framework for solving it.

We view non-symbolic to symbolic reasoning as a spectrum. MuSR (Sprague et al., 2024) is a
“semisymbolic” dataset in that it does contain an underlying formal system (e.g., for its murder
mysteries portion, the notion that motive(X)∧means(X)∧opportunity(X) =⇒ murderer(X)),
but also involves substantial commonsense reasoning that does not map onto a formal system. In
these cases, we can still form S = f(q), but f must rely heavily on a language model and instantiate
new information for S that is not directly represented in q.

Central claim Figure 1 shows that there are a large number of positive results on CoT reported in
the literature. Informally, we believe many readers of the literature to hold the following view: Icot
will outperform Ida on nearly all reasoning problems, whether those problems involve symbolic
or non-symbolic reasoning. Our evidence does not support this conjecture. We will show that
this performance boost is strongest for symbolic and semi-symbolic tasks, while giving little to no
improvement (or even hurting performance) on non-symbolic tasks.

3 RESULTS FROM THE LITERATURE

Criteria and Process We investigate all papers from ICLR 2024, a representative ML venue, and
two representative NLP venues, EACL 2024 and NAACL 2024 (including Findings and Workshop
papers). This resulted in 4,642 papers total that filtered using automatic and manual methods to
papers including experiments comparing chain-of-thought, Icot, against direct answering prompts,

2We exclude a number of other “CoT-like” approaches in our analysis such as decomposed prompting (Khot
et al., 2023; Zheng et al., 2024a) and multi-agent debate (Du et al., 2023; Chen et al., 2024). We focus on single
prompt approaches. We deal with tool-augmented approaches in Section 5.
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Table 1: A few categories for experimental comparisons. Full list in Appendix B.

Category Description

Symbolic and algorithmic Tasks involving symbol manipulation which can be solved by executing a
program. This includes entity tracking datasets (e.g., SCONE, Coin Flip)
and algorithmic tasks (e.g., BBH word sorting or finding shortest paths in a
graph).

Math Tasks requiring mathematical reasoning, from grade-school math to ad-
vanced mathematics, including physics questions.

Logical reasoning Tasks designed to test for logical reasoning, whether deductive (Saparov
& He, 2023, PrOntoQA), inductive (Bowen et al., 2024) or analogical (Ma
et al., 2024) reasoning, including syllogisms and logical puzzles.

Encyclopedic knowledge Tasks requiring expert-level in-depth knowledge beyond mere common-
sense, usually in an open-book setting.

Mixed datasets Datasets containing a variety of tasks, such as BIG-Bench Hard (BBH) or
MMLU.

. . . . . .

Le#er, Coin

(5) Moral Scenarios

(2) Internal dialogue dataset

GSM8k

(4) BIG-bench Navigate

E-KAR

(3) ScienceQA

(7) Legal Argument Reasoning

PoliMfact, Gossipcop, CoAID

(1) BBH

(9) BIG-bench Epistemic

HotpotQA

(6) Verbalized confidence

(10) BIG-bench Temporal

(8) Commitment Bank

Figure 2: Results from our meta-analysis (grey dots) aggregated by paper and category (blue dots).

Idirect. A total of 110 papers were found that matched our criteria with 1,218 experimental com-
parisons. We then grouped the comparisons by the types of tasks and datasets being evaluated.
More details on our automatic and manual filtering, as well as our categorization, can be found in
Appendix A and B.

Results Figure 2 shows the distribution of CoT deltas (CoT prompt minus the direct answer
prompt performance) across our categorization of different task types found in the literature. Com-
pared to Figure 1, we take the mean results per paper per category, indicated by blue dots, showing
the trend across papers in the literature. The categories are ranked in order of ascending median
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CoT delta. The three categories which benefited the most from CoT are symbolic reasoning, math,
and logical reasoning, with average improvements of 14.2, 12.3, 6.9, respectively. Average perfor-
mance on these top three tasks with CoT was 56.9, whereas performance without CoT was 45.5.
For other categories, the average performance with CoT was 56.8, compared to 56.1 without CoT.
We do not consider this small improvement a victory for CoT. CoT involves more computation than
direct answering, and a truly fair comparison between the methods should match the compute of the
two methods, e.g., ensembling across multiple prompts.

Do any non-math datasets benefit from CoT? On the right side of Figure 2, we show the top
10 outliers from our observed trend, namely papers with high CoT deltas averaged across experi-
ments in tasks other than math, symbolic, or logical reasoning. Although not categorized as math
or logic, several of these are related to logical, mathematical or symbolic reasoning in some way.
From this list, the dataset which benefits the most most from CoT is BIG-bench Hard (BBH) (Suz-
gun et al., 2023), a benchmark consisting largely of problems requiring algorithmic, arithmetic or
logical reasoning. For instance, BIG-bench Navigate is a spatial reasoning task, but relies heavily
on a mathematical primitive of counting steps taken to derive a final conclusion. Similarly, while
BIG-bench Temporal is a temporal reasoning task (answering questions about when certain events
could have occurred), it requires deductive reasoning to solve. In addition, Legal Argument Reason-
ing (SemEval-2024 Task 5) (Bongard et al., 2022) was categorized as context-aware QA, but also
requires substantial reasoning ability. Finally, MMLU-Moral Scenarios (Hendrycks et al., 2021a)
requires answering two independent questions at once, which essentially involves a symbolic com-
bination of two simpler questions.

There are a few outliers that less clearly follow the trend. ScienceQA (Lu et al., 2022) consists
of multiple choice questions across a range of natural and social science disciplines, though it is
hard to interpret gains without knowing breaking down performance by subject or question type.
The dialogue evaluation dataset from Jia et al. (2024) sees large improvements with CoT, but this
is a proprietary dataset, and we note that other essay scoring results in our meta-analysis (Li et al.,
2024; Stahl et al., 2024) did not show improvements with CoT. Other non-math, symbolic or logical
datasets that benefit from CoT are Commitment Bank (de Marneffe et al., 2019) and the task of
eliciting verbalized confidence (Xiong et al., 2024). Nevertheless, these are exceptions to the rule.
The majority of the reported benefits from using CoT in the NLP and ML literature comes from
math or math-related tasks.

4 RESULTS FROM EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset, Models, Prompts All datasets, models, and prompts we evaluate over can be found in
detail in the tables 3, 4, and 5 of Appendix C. We restricted our experiments to English models
commonly used and benchmarked on general reasoning datasets. Our datasets include those which
are widely used in CoT and reasoning literature, including a mix of non-symbolic, semisymbolic,
and symbolic reasoning. They span different formats, including multiple-choice, short-answer, and
free-response; however, most of these datasets are multiple choice or short answer, as CoT is not
typically used in long-form response settings. We also categorize each dataset into a larger category
of reasoning required to solve it: Commonsense, Knowledge, Symbolic, Mathematical, and Soft
Reasoning. We define Soft Reasoning as questions relying on commonsense and natural language
but going beyond simple inferences about these statements. Finally, we explore several prompting
strategies for eliciting reasoning from language models, as past work has emphasized the importance
of the prompt (Yang et al., 2024). However, we generally found slight performance differences; see
Appendix D for details. We therefore focus on prompts similar to Kojima et al. (2022) and Wei et al.
(2022) for zero-shot and few-shot settings, respectively, with alterations to improve the model’s
ability to produce desired behavior (i.e., formats that allow for easily parsed answers). We will
upload all our prompts and outputs for each model for each prompting strategy on Huggingface.

Implementation Details We use a high-throughput inference package, vLLM (Kwon et al., 2023),
for the model inference process. We use greedy decoding on all models. Our prompts are taken from
the Llama 3.1 evaluations when available (Dubey et al., 2024), and minor adjustments are made to
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Figure 3: Left: Performance gain from using CoT for each reasoning category. Right: Performance
gain from using CoT for each dataset, averaged across models and broken out across 5 representative
models. Red lines indicate median improvement. In both plots we see a consistent trend: most
improvements from using CoT are from math and symbolic reasoning.

unify prompting strategies. For other datasets, we either use the standard prompt for the dataset
from the corresponding original paper or implement our own prompt. Our answer parser (extract)
is tailored to each dataset and model. Specific details about each dataset, its prompts, and answer
extractor can be found in Appendix C.

4.2 RESULTS

Where does zero-shot CoT improve over direct prompts? On datasets that require math
(MATH, GSM8K) or formal logic (ContextHub, MuSR to a lesser degree) to answer the problem.

Figure 3 on the left shows the average CoT performance improvement for each reasoning category
from Figure 1 (right); raw numbers can be found in Table 6 of the Appendix. On the right, Figure 3
shows the performance gain from using CoT for each dataset, averaged across all models and for
a selection of individual models. On non-symbolic reasoning categories and datasets, specifically
those that contain questions primarily involving commonsense (CSQA, PIQA, SiQA), language un-
derstanding (WinoGrande), and reading comprehension (AGI LSAT, ARC-Easy, ARC-Challenge),
there is little to no separation between the performance of zero-shot CoT and zero-shot direct answer.
Despite these datasets involving reasoning, CoT does not yield improvement.

By contrast, the mathematical and symbolic categories get larger boosts in improvements alongside
symbolic and many semi-symbolic datasets. MATH and GSM8K show gains as large as 41.6%
and 66.9%, respectively. The semi-symbolic datasets like ContextHub and MuSR Murder Mysteries
show moderate gains. These datasets require the application of logical rules to reach the answer, e.g.,
first-order logic parsed from simple natural language (ContextHub) or more complex commonsense
statements (MuSR Murder Mysteries). All results are shown in the Appendix F.1 as well as a full
list of numeric results for both CoT and direct answer prompting in Table 7. We also explored the
few-shot setting and found it had little impact on when CoT will help; see Appendix E.

Does the answer format impact where CoT will help? Not much. Free response capabilities
required for BigGen Bench may not benefit from pre-planning.

Many of the commonly-used datasets for problems other than math are multiple choice. We high-
light here that CoT has similar performance to direct answer across models for two datasets that
are not multiple-choice and contain varying levels of non-symbolic reasoning. First, MuSiQue
(Trivedi et al., 2022) is a short-form QA task requiring multi-hop reasoning. We consider this a
semi-symbolic dataset as the questions have an explicit multi-hop structure. Because answer spans
in MuSiQue can be paraphrased in many different ways, we use GPT-4o to judge if two answer
spans are equivalent. Despite being semi-symbolic, we see no overall improvement from CoT.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: CoT deltas between MMLU and MMLU Pro performance when a question or generated
response contains an “=” (With =) or not (Without =). We filter out any questions that do not result
in a final answer (degeneration, etc.). CoT primarily helps on the pairs of questions and generations
that contain an “=”, which indicates math-related questions.

Second, BiGGen Bench (Kim et al., 2024) uses free-form responses as the answer to a question,
and an LLM-as-a-judge is used to evaluate these responses on a scale of 1 to 5. Because free-form
responses blur the lines between CoT and direct answering, we create a new prompt that asks the
language model to plan the free response before giving it. We then only pass the free response to
the judge (GPT-4o-mini in our case) with the prompt from Kim et al. (2024). We also filter out any
questions that explicitly state “Think step-by-step”. We plot the performance of BiGGen Bench as
the number of times a response receives a score of 4 or better. Despite including many reasoning
questions (including several categories of math) and other categories, such as planning, we only
see a mild improvement here. Because previous experiments show CoT helping on similar types of
questions in the QA format, the lack of similar improvements here could imply that pre-planning is
insufficient for unlocking reasoning capabilities in the LLM. Future work is needed to prove this.

Are the gains in Knowledge, Soft Reasoning, and Commonsense significant? Mostly no, except
for MMLU, StrategyQA, and MuSR.

We tested the significance of the improvements from CoT on the 13 datasets in the Knowledge, Soft
Reasoning, and Commonsense reasoning categories using paired bootstrapping to assess whether
CoT gives a significant improvement. To account for multiple comparisons, we applied a Bonferroni
correction, setting the p-value to 0.00027 to account for the 14 models and 13 datasets. About
32% (59) of the datasets that show a benefit in these three reasoning categories were considered
significant. Nearly half of these comparisons (26) are on MMLU and MMLU Pro. On these datasets,
we find that CoT is mainly helping on math-related questions. StrategyQA and MuSR also received
a consistent performance boost across 10 and 6 models respectively. StrategyQA is often used to
benchmark reasoning methods and is built specifically to get a benefit from methods that decompose
the question into steps, so a gain in performance is not unprecedented. MuSR, similarly, was built to
have multiple steps of complex natural language reasoning, which may receive benefits from CoT.
The remaining datasets that receive significant benefits are spread across the datasets and models.

Why do MMLU and MMLU Pro get a boost? MMLU and MMLU Pro contain many different
questions requiring different types of reasoning. We separated MMLU and MMLU Pro questions
into two bins, those related to math and those not related to math, by checking if the questions
text or generated response from the LLM includes an “=”. Figure 4 shows that a majority of the
performance gain seen from MMLU and MMLU Pro is from the math slices of each dataset. See
more details in Appendix G.

5 STRENGTHS AND WEAKNESSES OF COT AT FORMAL REASONING

Previous sections establish that CoT primarily helps with symbolic reasoning tasks, but not why.
Many symbolic and semi-symbolic tasks be broken down into two stages (Ye et al., 2023; Pan et al.,
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Figure 5: Prompt variants that separate planning and execution for GSM8K. For all prompt variants
besides direct answer and CoT (not shown), we few-shot prompt an LLM to first generate a Python
program as a solution plan. For Plan + Direct Solver, the LLM is prompted to directly give an
answer from the plan; for Plan + CoT Solver, the LLM is prompted to solve the plan step-by-step
with CoT and give an answer; for Plan + Tool Solver, we feed the plan into a Python interpreter.

2023; Jiang et al., 2024): planning, either via a formal or informal specification via prompting (Sun
et al., 2024; Wang et al., 2023b), and execution, using the same LM or external solvers. In this
section, we attribute the performance gains from CoT on symbolic tasks to these two stages.

Given a question that requires symbolic reasoning, we define the planning stage as extracting all
variables from the context into a formal specification and defining their relations. The execution
stage uses a solver that takes as input a plan and can be run in an orderly fashion to derive the final
answer. Using our notation from Section 2, let f(q) = Im

planning(q) be a mapping of the question
q to a symbolic plan Splan that can be executed by the language model or by an external symbolic
solver, â = solve(Splan), where â is the final answer for q.

By separating planning and execution in this way, we can test how much a language model can gain
from only having a plan, to having a plan and solving it with CoT, or to having a plan and then
solving it with an external symbolic solver. Given a plan Splan ∼ Im

planning(q), we compare the
performance of the settings below to evaluate at which stage LM is most effective and falls short.

5.1 SETTINGS EVALUATED

Settings 1 and 2: Few-shot direct answer and CoT: We use the few-shot direct answer and CoT
prompts from Section 4.1 as baselines. Figure 5 includes an example of each setting on GSM8K.

Settings 3 and 4: Plan + Direct Solver and Plan + CoT Solver: Here we use inspiration from Xu
et al. (2024a) and generate a symbolic plan using the same strategy as Ye et al. (2023). Specifically,
we use a few-shot prompt Im

planning to generate a formal specification Splan that should be executable
by a symbolic solver. In the same prompt LMs are asked to solve their generated specification Splan

and derive the final answer ỹ ∼ p(y | Ida(Splan)), either directly giving the answer after generating
the specification (Plan + Direct Solver) or providing step-by-step explanations and tracking of
intermediate steps for the derivation (Plan + CoT Solver). Particularly, Splan is a Python program
for math datasets, and is a set of first-order logic specifications for logical reasoning datasets.

Setting 5: Plan + Tool Solver: We then evaluate how effective CoT can be at performing symbolic
computations compared with external symbolic solvers. Following prior work on augmenting LMs
with tools for math and logic questions (Ye et al., 2023; Pan et al., 2023; Gao et al., 2023; Chen
et al., 2023), we generate Splan the same way as in CoT Solver, but now feed in the plan into a
symbolic solver (Python interpreter or a SMT Solver), such that â = solve(Splan).

Evaluation Setup: We compare the performance of each setting on math (GSM8K) and logical
reasoning (ContextHub and FOLIO) datasets. We follow Gao et al. (2023) to include GSM8K-Hard,
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Figure 6: Performance of prompt variants that separate planning and execution for math and logical
reasoning datasets. Despite outperforming direct answer for solving a formal plan and deriving the
final answer, CoT is still limited in performing symbolic computations: there is a large performance
boost from Plan + Tool Solver over CoT and Plan + CoT Solver on average across all models.

a minimally modified version that replaces numbers of GSM8K with larger numbers, to account for
the possibility of recent LLMs overfitting GSM8K by data contamination (Zhang et al., 2024).

For Plan + Direct solver and Plan + CoT solver, we use the few-shot prompts from Ye et al. (2023).
For Plan + Tool solver, we use state-of-the-art tool-augmented prompting methods. Particularly, for
GSM8K, we use Program-aided Language Model (Gao et al., 2023, PAL) that executes the LM-
generated plan with a Python interpreter. For logical reasoning datasets, we use Satisfiability-Aided
Language Model (Ye et al., 2023, SatLM) that uses automated theorem prover Z3 (De Moura &
Bjørner, 2008) to solve the generated specifications. If the generated plan cannot be parsed by the
tool, we use random guessing when the question is multiple choice, and mark it incorrect otherwise.

5.2 EVALUATION RESULTS

Figure 6 shows the results across a representative selection of models. Detailed numerical results,
including the unparseable rates of model-generated plans, can be found in Appendix H.

When comparing direct answer with Plan + Direct solver and Plan + CoT solver, we note that for
many datasets and models, only having a plan does not account for most of the performance gain.
Compared with direct answer, CoT or Plan + CoT solver is needed for strong performance.
Tracking the execution with one of these methods gives the strongest accuracy benefit, espe-
cially for math-heavy datasets.

Despite their strength over direct answer and Plan + Direct solver, CoT and Plan + CoT solver are
dominated by Plan + Tool solver in most settings. LLMs are limited by their ability to execute
and track steps compared with symbolic solvers.

We argue that these results provide an explanation of why CoT helps on symbolic tasks. While all
tasks could feasibly benefit from a detailed description of how to solve each individual question (e.g.,
a plan in the context of this section), CoT only outperforms direct answer when these steps require
a substantial amount of tracing and computation. In these settings, we can see clear performance
benefit from using symbolic solvers; CoT appears to be a poor (but universal) approximation to
such solvers. When possible, LLMs should be paired with symbolic solvers at inference time when
solving symbolic tasks to achieve consistently better performance over direct answer and CoT.
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6 DISCUSSION AND RELATED WORK

Where is CoT helping and why? Our results showing CoT improvement for math and logic
aligns well with early work on CoT for LLMs such as Scratchpads (Nye et al., 2022). As CoT
gained popularity, its application has broadened to tasks that canonically do not require multiple
steps. It can often yield small improvements over direct answering. We believe this led to the cur-
rent prevailing sentiment that deliberation should improve performance on any task requiring some
type of reasoning (our original claim from Section 2). However, our results show a clear separation
between performance on non-symbolic and symbolic tasks. If, in theory, any question could benefit
from deliberation, why is CoT only benefiting the questions that can be solved through symbolic
manipulation? Our results from Section 5 suggest that the primary benefit of CoT comes in the
ability to execute symbolic steps and track their output. Not all tasks have this feature: for example,
questions from CommonsenseQA can hardly be translated into formally grounded and executable
solution plans. Datasets like StrategyQA may feature multiple steps of reasoning, but executing
those steps is not complex, so the benefits of CoT are small. It is unclear whether explicitly in-
stilling models with particular modes of deliberation, like process of elimination for multiple choice
questions, might make them more effective for non-symbolic tasks, or whether there’s a fundamental
limitation imposed by their pre-training data. We leave this distinction for future work.

Can we improve CoT further? Our work treats chain-of-thought variants that explicitly don’t
involve multiple inferences. There is evidence that using additional calls to LLMs can help (Du
et al., 2023; Yao et al., 2023; Besta et al., 2023; Chen et al., 2024), but these methods use signif-
icantly increased computation, and careful benchmarking sometimes reveals that naive techniques
are as good as iterative ones (Olausson et al., 2024). However, past theoretical results show that
Transformers are augmented in a fundamental way by CoT (Liu et al., 2023b; Merrill & Sabharwal,
2024); we believe this indicates the potential for improving CoT beyond prompt-based CoT. On
the other hand, recent methods showing benefit from “internalizing” CoT (Deng et al., 2024) may
indicate that explicit generation of intermediate tokens is not used to its full potential.

Limitations One set of tasks we do not cover in our experiments (except for BiGGen Bench) is
long-horizon planning. However, many works in the literature have already discussed the efficacy
of planning with CoT. We also do not address the data contamination of some of these models on
the datasets. We try to mitigate this by including multiple models, datasets (new and old), and our
meta-analysis. For more discussion of planning and dataset contamination, see Appendix I.

7 CONCLUSION

In this work, we characterize the performance of prompt-based CoT through a meta-analysis of the
literature and experiments across different models, datasets, and prompts. We find that CoT predom-
inantly helps on math and formal logic, largely due to its ability to trace the intermediate steps of a
problem. But CoT rarely outperforms tool-augmented approaches for these same problems. We be-
lieve that CoT remains a powerful technique, but to give improvement across a wider range of NLP
tasks, research should move beyond prompt-based CoT to new paradigms like search, interacting
agents, or better fine-tuned models.

REPRODUCIBILITY

For our experiments, we provide in-depth details of how we evaluated models on each dataset in
Section 4.1 and Appendix C. Furthermore, we release all prompts for every dataset on Huggingface,
including per model output and sampling parameters. For our meta-analysis of the literature, we
describe our filtering criteria and process of annotating experiments into high-level categories in
Section 3 and Appendix B. We also release the full list of papers in our meta-analysis together with
extracted experimental comparisons and task category annotations.
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A META-ANALYSIS EXPANDED DETAILS ON CRITERIA AND PROCESS

Automatic Selection and Paper Filtering We investigate all papers from ICLR 2024, a repre-
sentative ML venue, and two representative NLP venues, EACL 2024 and NAACL 2024 (including
Findings and Workshop papers). We filtered all 4,642 papers (2,259 from ICLR 2024 and 2,382
from the two ACL-affiliated conferences) for those with at least two occurrences of “CoT”, “chain-
of-thought”, or “chain of thought”, resulting in 516 papers. There are conceivably papers using CoT
called by another name (e.g., Scratchpads), but we believe these 516 give a representative sample
appropriate for systematic analysis.

Manual Paper Filtering and Results Extraction We then filter down to papers that perform a
comparison of CoT prompting vs. direct prompting, whether or not this is core to the paper’s research
question. We manually filtered the 516 papers in question and extracted the key results from those
that remained. We excluded multimodal models, CoT-fine-tuned models, any experiments where
the “CoT” method involves multiple forward passes (e.g., self-consistency (Wang et al., 2023c) and
tree-of-thought (Yao et al., 2023)),3 and systems that augment LLMs with external tools (discussed
more in Section 5).

For each paper passing through these criteria, we manually extracted the results from key tables com-
paring CoT and direct answer prompts. We only include results where the CoT and direct prompts
are run on the same model and same dataset while being on a scale of 0 to 100 (excluding Likert scale
evaluations, for example) for a more direct comparison. When papers include various CoT or direct
answer prompts (including zero/few-shot variants), we always take the best-performing prompt for
both. We focus on key test results where applicable, excluding dev sets if they are reported alongside
test and also excluding numbers from ablations or nonstandard subsets of datasets.

This resulted in a total of 1,218 experimental comparisons across 110 papers (35 from ICLR and 75
from NAACL and EACL) covering 264 datasets. Details and more information will be available in
our GitHub Repo.

Categorization Given the large number of tasks and datasets being compared, we grouped each
task into a set of 14 categories. These categories were determined based on the description (and
possibly examples) of the task, not taking into account system performance. These categories ab-
stract over traditional NLP task classifications (e.g., NER, reading comprehension) and take into
account both the task format and the kinds of reasoning involved. Definitions for several categories
are shown in Table 1 and the full description is given in Appendix B.

B QUANTITATIVE META-ANALYSIS

See the full list of categories and their descriptions that we used for the meta-analysis in Table 2.

C EXPANDED EXPERIMENTAL DETAILS

A full list of the datasets can be found in Table 4. Each model can be seen in Table 5. We use
one answer parser for all datasets of the same answer response format (one for multiple choice,
short answer, etc.); however, some datasets require special handling and have edge cases that we
handle separately from the rest of the datasets. Similarly, for each model, we use the exact same
prompt across them, except when closed source models require different prompts because they do
not allow for partial completions (i.e., when we cannot put “let’s think step by step” to warm-start
the assistant’s response). All prompts are given in our Huggingface repo, including the model output
and what our answer parser extracted as the answer.

Experiments were conducted either by invoking APIs or by running open-source models on our own
hardware, mostly on a machine with 8 A40s or 4 Quadro RTX 8000s. All locally hosted models were

3These systems use more compute than direct answer, and there is not a clear comparison to be made here.
Moreover, our anecdotal coverage of these methods shows that they are most used for math, coding, and logic
settings, for which we already have high representation among reported CoT methods.
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Table 2: Categories and their descriptions for the meta-analysis.

Category Description

Symbolic and algorithmic Tasks involving symbol manipulation which can be solved by executing a
program. This includes entity tracking datasets (e.g., SCONE, Coin Flip)
and algorithmic tasks (e.g., BBH word sorting or finding shortest paths in a
graph).

Math Tasks requiring mathematical reasoning, from grade-school math to ad-
vanced mathematics, including physics questions.

Logical reasoning Tasks designed to test for logical reasoning, whether deductive (Saparov
& He, 2023, PrOntoQA), inductive (Bowen et al., 2024) or analogical (Ma
et al., 2024) reasoning, including syllogisms and logical puzzles.

Commonsense reasoning Datasets designed to test for commonsense knowledge and reasoning, i.e.,
world knowledge that most people would have, rather than specialized
expert-level knowledge in a discipline acquired after years of study.

Encyclopedic knowledge Tasks requiring expert-level in-depth knowledge beyond mere common-
sense, usually in an open-book setting.

Spatial and temporal rea-
soning

Datasets designed to test for an understanding of space and spatial relations
(e.g., navigation) or reasoning involving time and sequences over time.

Multi-hop QA Questions involving the composition of multiple steps of reasoning in order
to arrive at an answer, such as “What is the capital of the country whose
scientist discovered penicillin?”

Context-aware QA Tasks such as closed-book QA and reading comprehension involving rea-
soning about a given text in context. The context is often a short passage,
but could also take the form of a knowledge graph (KBQA) or a table. This
category also includes information extraction tasks, such as NER or relation
extraction.

Entailment Tasks involving establishing the inferential relation between two texts, pro-
totypically NLI, but also including fact verification.

Text classification Tasks involving the classification of a text into a small set of categories,
such a topic or sentiment classification, but also involving tasks such as
hate speech detection and misinformation detection.

Generation Tasks involving text generation, including machine translation, dialogue,
question generation, as well as code generation. Tasks such as SQL exe-
cution (Lei et al., 2024) or systematic transformations of data (e.g., SCAN
(Lake & Baroni, 2018)) are excluded because they can be solved by execut-
ing a program.

Meta-linguistic Tasks probing for models’ knowledge of linguistics, such as identifying the
main subject of a sentence or solving linguistic puzzles.

Mixed datasets Datasets containing a variety of tasks, such as BIG-Bench Hard (BBH) or
MMLU.

Other Tasks which did not fit in any of the other categories, such as evaluating AI
safety, eliciting models’ verbalized confidence, or melody retrieval.

hosted with vLLM. All parameters given to the vLLM API endpoint are given in the Huggingface
repo as well.

D OTHER COT PROMPT VARIANTS

D.1 TESTING PERFORMANCE VOLATILITY ACROSS PROMPTS

To test the impact of prompt choice on performance, we performed our zero-shot experiment on
Llama 3.1 8B with 7 different datasets and 4 different zero-shot CoT prompting strategies common
in the literature (Kojima et al., 2022; Wang et al., 2023b; Zhou et al., 2023b; Yang et al., 2024).
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Table 3: Models, datasets, and prompting strategies used in our experiments. Models marked with †
are run with a 4k context size window. Note that Gemma has a larger than 4k context size window,
but VLLM only supports up to a 4k context size window for it. Models marked with * indicate
closed-source models that cannot handle prefixed assistant messages. Datasets marked with △ do
not have a few-shot setting.

Models Llama 2 7B Chat † (Touvron et al., 2023), Mistral 7B Instruct v0.3 (Jiang et al., 2023), Llama
3.1 8B Instruct (Dubey et al., 2024), Llama 3.1 70B Instruct, Gemma 2 9B It† (Riviere &
et. al, 2024), Phi-3 Small 8k Instruct (Abdin et al., 2024), gpt-4o-mini-2024-07-18*, gpt-4o-
2024-08-06*, Gemini 1.5 Flash*(Reid & et. al, 2024), Gemini 1.5 Pro*(Reid & et. al, 2024),
claude-3-haiku-20240307* (Anthropic, a), claude-3-5-sonnet-20240620* (Anthropic, b)

Datasets CommonsenseQA (Talmor et al., 2019), StrategyQA (Geva et al., 2021), SiQA△ Sap et al.
(2019), PiQA△ (Bisk et al., 2019), Winogrande△ (Sakaguchi et al., 2021), GPQA (Rein et al.,
2023), MuSR (Sprague et al., 2024), ContextHub (Levels 1 and 2 only) (Hua et al., 2024),
ARC△ (Clark et al., 2018), AGIEval LSAT (Zhong et al., 2023), MMLU (Hendrycks et al.,
2021a), MMLU Pro (Wang et al., 2024), MATH (Hendrycks et al., 2021b), GSM8K (Cobbe
et al., 2021), GSM8K-hard (Gao et al., 2023), FOLIO (Han et al., 2022), MuSiQue△ (Trivedi
et al., 2022), Big-Bench Hard (Suzgun et al., 2023; Srivastava et al., 2022), BiGGen Bench
(Kim et al., 2024)

Prompts zero-shot direct answer, zero-shot CoT (Kojima et al., 2022), few-shot direct answer (Brown
et al., 2020), few-shot CoT (Wei et al., 2022)

Table 4: List of datasets used in our experiments. We categorize each dataset into one of five
categories based on the type of reasoning required: Commonsense, Knowledge, Soft Reasoning,
Symbolic, or Mathematical. We also report answer formats. When we use few-shot prompts, we
mark how many examples those prompts contain. BiGGen Bench has many categories of questions
that explicitly ask for CoTs in the response; we ignore those categories for our evaluation.

Dataset Type Answer Format m-Shots

CommonsenseQA Commonsense Multiple choice 7
StrategyQA Commonsense True or False 6
SIQA Commonsense Multiple choice 0
PIQA Commonsense Multiple choice 0
Winogrande Commonsense Multiple choice 0
Arc Easy Knowledge Multiple choice 0
Arc Challenge Knowledge Multiple choice 0
AGIEval LSAT Soft Reasoning Multiple choice 3
BiGGen-Bench Soft Reasoning Free response 0
MMLU Knowledge Multiple Choice 5
MMLU Pro Knowledge Multiple Choice 5
BigBench-Hard Symbolic Multiple Choice 0
MuSR Soft Reasoning Multiple Choice 1
GPQA Mathematical Multiple Choice 3
MuSiQue Soft Reasoning Short Answer 0
GSM8K Mathematical Short Answer 8
GSM8K-Hard Mathematical Short Answer 8
FOLIO Symbolic True, False, or Unknown 4
ContextHub Symbolic True, False, or Neither 3
MATH Mathematical Short Answer 4
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Table 5: List of models for our experiments. We focus on contemporary instruction-tuned models;
although pretrained and smaller language models could be used, they are not the focus of our study.
Prompts and outputs used for each model are available on Huggingface. ∗ Note that Gemma can
accept more than 4k input tokens, but we are restricted to 4k by vLLM.

Model Context Length Is Open Source

Llama 2 7B Chat 4k True
Mistral 7B Instruct v0.3 8k True
Llama 3.1 8B Instruct 128k True
Llama 3.1 70B Instruct 128k True
Gemma 2 9B It 4k∗ True
Qwen 7B Instruct 131k True
Qwen 72B Instruct 131k True
GPT4o-Mini 128k False
GPT4o 128k False
Gemini 1.5 Pro 128k False
Gemini Flash 1m False
Claude 3.5 Sonnet 200k False
Claude 3 Haiku 200k False

Figure 7: Performance of multiple prompts commonly used to elicit reasoning through CoT in the
zero shot setting. Each prompt starts the assistant completion with a different phrase meant to elicit
reasoning. All results are from using Llama 3.1 8B Instruct. For the Kojima variant, we explicitly
place “Let’s think step by step.” in the assistant message. There is very little variation between the
CoT prompts on average.

Figure 7 shows variation due to prompts is typically small and no prompt gives a consistent gain
over the other. For our experiments, this suggests that different prompts have small effects on the
overall outcome on average.

E FEW-SHOT EXPERIMENTS

Compared to a zero-shot prompt, a few-shot prompt additionally contains demonstrations of the
relevant reasoning mode on different problem instances {(v(qi),y

∗
i )}. Few-shot prompts for direct

answer simply encode the answer ai as y∗
i , whereas few-shot prompts for chain-of-thought include

a reasoning trace ending in the correct answer. Now we can define the m-shot direct prompt as
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Figure 8: Average performance improvement from using CoT across different models in the zero-
shot and few-shot settings. Each bar represents how much CoT improves the accuracy for that
specific setting. In general, CoT in the few-shot setting does not change the qualitative performance
of CoT versus zero-shot, though it can change the magnitude for symbolic datasets.

Im
da(q) = vda(q1)a1vda(q2)a2 . . . vda(qm)amvda(q) and the m-shot cot prompt as Im

cot(q) =
vcot(q1)y

∗
1vcot(q2)y

∗
2 . . . vcot(qm)y∗

mvcot(q).

Figure 8 shows the difference between few-shot prompting and the zero-shot setting discussed in
the main text of the paper. We see that using CoT in the few-shot setting largely does not change
the datasets that benefit from it. Only one dataset, MuSR Team Allocation, starts to improve with
few-shot; however, we believe this to be an exception because the final step to derive the answer
is complex in the prompt and clearer in the examples. The magnitude of improvement over direct
answer prompting when using CoT is also similar to the zero-shot setting.

F EXPANDED COT VS DIRECT EXPERIMENTAL RESULTS

F.1 FULL ZERO-SHOT RESULTS
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Table 6: Direct answer and CoT accuracies for each reasoning category across models.

Model Commonsense Knowledge Mathematical Symbolic Soft
DA % CoT % DA % CoT % DA % CoT % DA % CoT % DA % CoT %

Claude-3 Haiku 74.3 77.2 73.0 76.1 18.1 48.2 38.6 48.7 55.9 56.6
Claude-3.5 Sonnet 84.3 85.8 83.8 88.8 38.7 59.0 53.2 67.1 67.6 75.7
GPT-4o Mini 81.8 83.2 73.6 83.1 22.9 59.7 48.1 60.9 61.1 63.5
Gemini 1.5 Flash 80.3 76.8 78.2 81.0 27.2 55.7 47.0 59.7 60.6 62.6
Gemini 1.5 Pro 80.4 78.3 80.9 83.8 35.4 58.5 52.9 62.6 64.1 67.8
Gemma 2 9b 75.0 76.1 74.9 76.9 18.5 50.5 46.7 55.8 58.2 60.5
Gpt-4o 87.3 87.7 82.9 88.6 36.5 63.3 55.7 68.3 65.9 74.0
Meta-Llama 2 7b 51.4 50.9 44.1 46.6 9.3 17.2 22.4 35.4 37.2 37.6
Meta-Llama 3.1 70b 84.2 84.7 82.4 85.6 24.9 54.9 49.0 60.0 65.7 69.5
Meta-Llama 3.1 8b 72.9 73.4 70.1 74.1 16.0 47.8 34.8 51.6 55.0 56.2
Mistral 7b 58.3 61.8 62.0 64.5 10.9 28.9 41.8 45.0 48.6 49.7
Phi-3 Small 8k 70.8 72.5 76.1 79.7 17.8 47.1 51.2 58.7 57.9 56.4
Qwen 2 72b 82.9 84.9 78.6 84.6 23.9 58.5 48.2 58.7 64.2 65.1
Qwen 2 7b 64.0 66.1 65.2 71.3 15.9 53.5 43.8 52.3 54.4 49.4
Average 74.8 75.7 73.3 77.5 22.6 50.2 45.2 56.1 58.3 60.3

Table 7: Zero-shot accuracy for direct answering and CoT prompts on all datasets

Dataset Type Model zero-shot CoT accuracy zero-shot DA accuracy
MuSR Team Allocations Soft Reasoning Llama 2 7b 34.8 37.2
MuSR Team Allocations Soft Reasoning Mistral 7b 38.8 46.8
MuSR Team Allocations Soft Reasoning Llama 3.1 8b 44.0 48.0
MuSR Team Allocations Soft Reasoning Llama 3.1 70b 65.2 66.8
MuSR Team Allocations Soft Reasoning Gemma 2 9b 47.2 44.8
MuSR Team Allocations Soft Reasoning Phi-3 Small 8k 47.2 61.6
MuSR Team Allocations Soft Reasoning Qwen 2 7b 42.0 49.6
MuSR Team Allocations Soft Reasoning Qwen 2 72b 58.0 66.8
MuSR Team Allocations Soft Reasoning GPT-4o Mini 61.2 58.4
MuSR Team Allocations Soft Reasoning Gpt-4o 64.0 63.6
MuSR Team Allocations Soft Reasoning Claude-3 Haiku 56.8 59.2
MuSR Team Allocations Soft Reasoning Claude-3.5 Sonnet 80.4 63.2
MuSR Team Allocations Soft Reasoning Gemini 1.5 Flash 48.8 55.2
MuSR Team Allocations Soft Reasoning Gemini 1.5 Pro 58.4 62.4
SiQA Commonsense Llama 2 7b 53.4 55.9
SiQA Commonsense Mistral 7b 35.9 33.5
SiQA Commonsense Llama 3.1 8b 73.5 73.5
SiQA Commonsense Llama 3.1 70b 78.7 80.9
SiQA Commonsense Gemma 2 9b 74.9 76.3
SiQA Commonsense Phi-3 Small 8k 38.0 40.4
SiQA Commonsense Qwen 2 7b 37.3 39.3
SiQA Commonsense Qwen 2 72b 80.5 80.4
SiQA Commonsense GPT-4o Mini 79.0 80.0
SiQA Commonsense Gpt-4o 81.9 81.5
SiQA Commonsense Claude-3 Haiku 75.4 74.8
SiQA Commonsense Claude-3.5 Sonnet 79.7 81.0
SiQA Commonsense Gemini 1.5 Flash 74.5 79.1
SiQA Commonsense Gemini 1.5 Pro 73.9 78.2
MuSiQue Soft Reasoning Llama 2 7b 40.1 36.1
MuSiQue Soft Reasoning Mistral 7b 47.3 47.2
MuSiQue Soft Reasoning Llama 3.1 8b 62.6 64.7
MuSiQue Soft Reasoning Llama 3.1 70b 74.0 72.2
MuSiQue Soft Reasoning Gemma 2 9b 67.7 68.7
MuSiQue Soft Reasoning Phi-3 Small 8k 58.3 64.3
MuSiQue Soft Reasoning Qwen 2 7b 60.7 65.1
MuSiQue Soft Reasoning Qwen 2 72b 56.3 69.0
MuSiQue Soft Reasoning GPT-4o Mini 71.3 68.2
MuSiQue Soft Reasoning Gpt-4o 73.5 70.1
MuSiQue Soft Reasoning Claude-3 Haiku 54.8 56.0
MuSiQue Soft Reasoning Claude-3.5 Sonnet 66.9 70.4
MuSiQue Soft Reasoning Gemini 1.5 Flash 69.8 66.2
MuSiQue Soft Reasoning Gemini 1.5 Pro 69.8 71.3
AGIEval LSAT RC Soft Reasoning Llama 2 7b 31.2 36.4
AGIEval LSAT RC Soft Reasoning Mistral 7b 61.7 61.0
AGIEval LSAT RC Soft Reasoning Llama 3.1 8b 71.0 68.8
AGIEval LSAT RC Soft Reasoning Llama 3.1 70b 84.4 87.0
AGIEval LSAT RC Soft Reasoning Gemma 2 9b 75.1 78.1
AGIEval LSAT RC Soft Reasoning Phi-3 Small 8k 68.8 69.9
AGIEval LSAT RC Soft Reasoning Qwen 2 7b 61.0 66.5
AGIEval LSAT RC Soft Reasoning Qwen 2 72b 83.6 84.4

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 7: Zero-shot accuracy for direct answering and CoT prompts on all datasets

Dataset Type Model zero-shot CoT accuracy zero-shot DA accuracy
AGIEval LSAT RC Soft Reasoning GPT-4o Mini 77.3 74.3
AGIEval LSAT RC Soft Reasoning Gpt-4o 88.1 81.4
AGIEval LSAT RC Soft Reasoning Claude-3 Haiku 71.7 65.1
AGIEval LSAT RC Soft Reasoning Claude-3.5 Sonnet 90.0 89.6
AGIEval LSAT RC Soft Reasoning Gemini 1.5 Flash 78.1 81.0
AGIEval LSAT RC Soft Reasoning Gemini 1.5 Pro 82.2 85.9
CommonsenseQA Commonsense Llama 2 7b 49.4 54.6
CommonsenseQA Commonsense Mistral 7b 68.0 68.0
CommonsenseQA Commonsense Llama 3.1 8b 68.5 74.9
CommonsenseQA Commonsense Llama 3.1 70b 83.5 84.4
CommonsenseQA Commonsense Gemma 2 9b 79.2 80.1
CommonsenseQA Commonsense Phi-3 Small 8k 81.8 80.3
CommonsenseQA Commonsense Qwen 2 7b 78.5 79.0
CommonsenseQA Commonsense Qwen 2 72b 87.4 87.3
CommonsenseQA Commonsense GPT-4o Mini 82.5 83.9
CommonsenseQA Commonsense Gpt-4o 86.5 87.3
CommonsenseQA Commonsense Claude-3 Haiku 80.6 79.0
CommonsenseQA Commonsense Claude-3.5 Sonnet 85.1 84.3
CommonsenseQA Commonsense Gemini 1.5 Flash 79.7 82.6
CommonsenseQA Commonsense Gemini 1.5 Pro 79.9 82.9
GPQA Mathematical Llama 2 7b 28.3 24.3
GPQA Mathematical Mistral 7b 23.0 24.3
GPQA Mathematical Llama 3.1 8b 24.1 25.9
GPQA Mathematical Llama 3.1 70b 23.2 25.9
GPQA Mathematical Gemma 2 9b 26.3 21.2
GPQA Mathematical Phi-3 Small 8k 22.3 20.8
GPQA Mathematical Qwen 2 7b 24.1 24.6
GPQA Mathematical Qwen 2 72b 21.0 18.1
GPQA Mathematical GPT-4o Mini 21.0 24.0
GPQA Mathematical Gpt-4o 23.7 25.9
GPQA Mathematical Claude-3 Haiku 25.4 22.3
GPQA Mathematical Claude-3.5 Sonnet 25.4 25.9
GPQA Mathematical Gemini 1.5 Flash 22.3 22.8
GPQA Mathematical Gemini 1.5 Pro 21.0 23.7
AGIEval LSAT LR Soft Reasoning Llama 2 7b 29.4 33.5
AGIEval LSAT LR Soft Reasoning Mistral 7b 44.1 47.8
AGIEval LSAT LR Soft Reasoning Llama 3.1 8b 59.0 53.9
AGIEval LSAT LR Soft Reasoning Llama 3.1 70b 81.4 81.0
AGIEval LSAT LR Soft Reasoning Gemma 2 9b 64.9 67.6
AGIEval LSAT LR Soft Reasoning Phi-3 Small 8k 64.5 64.1
AGIEval LSAT LR Soft Reasoning Qwen 2 7b 50.6 58.4
AGIEval LSAT LR Soft Reasoning Qwen 2 72b 77.3 75.1
AGIEval LSAT LR Soft Reasoning GPT-4o Mini 65.3 68.2
AGIEval LSAT LR Soft Reasoning Gpt-4o 87.3 83.9
AGIEval LSAT LR Soft Reasoning Claude-3 Haiku 55.7 54.7
AGIEval LSAT LR Soft Reasoning Claude-3.5 Sonnet 83.7 82.7
AGIEval LSAT LR Soft Reasoning Gemini 1.5 Flash 70.0 71.2
AGIEval LSAT LR Soft Reasoning Gemini 1.5 Pro 79.4 80.4
PiQA Commonsense Llama 2 7b 62.1 64.7
PiQA Commonsense Mistral 7b 78.6 77.7
PiQA Commonsense Llama 3.1 8b 85.0 84.2
PiQA Commonsense Llama 3.1 70b 91.8 90.6
PiQA Commonsense Gemma 2 9b 84.0 84.8
PiQA Commonsense Phi-3 Small 8k 89.1 85.5
PiQA Commonsense Qwen 2 7b 84.3 86.2
PiQA Commonsense Qwen 2 72b 92.9 89.1
PiQA Commonsense GPT-4o Mini 93.1 88.6
PiQA Commonsense Gpt-4o 95.9 95.5
PiQA Commonsense Claude-3 Haiku 85.9 86.6
PiQA Commonsense Claude-3.5 Sonnet 94.6 94.5
PiQA Commonsense Gemini 1.5 Flash 84.6 89.8
PiQA Commonsense Gemini 1.5 Pro 88.1 91.3
Arc Easy Knowledge Llama 2 7b 71.1 69.8
Arc Easy Knowledge Mistral 7b 87.5 86.7
Arc Easy Knowledge Llama 3.1 8b 93.0 92.5
Arc Easy Knowledge Llama 3.1 70b 97.5 97.9
Arc Easy Knowledge Gemma 2 9b 94.9 95.8
Arc Easy Knowledge Phi-3 Small 8k 96.0 96.3
Arc Easy Knowledge Qwen 2 7b 89.5 84.7
Arc Easy Knowledge Qwen 2 72b 97.9 97.4
Arc Easy Knowledge GPT-4o Mini 96.8 94.6
Arc Easy Knowledge Gpt-4o 98.9 98.1
Arc Easy Knowledge Claude-3 Haiku 95.1 95.4
Arc Easy Knowledge Claude-3.5 Sonnet 98.6 98.4
Arc Easy Knowledge Gemini 1.5 Flash 96.8 97.2
Arc Easy Knowledge Gemini 1.5 Pro 97.2 94.6
Arc Challenge Knowledge Llama 2 7b 49.2 45.2
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Table 7: Zero-shot accuracy for direct answering and CoT prompts on all datasets

Dataset Type Model zero-shot CoT accuracy zero-shot DA accuracy
Arc Challenge Knowledge Mistral 7b 78.3 76.6
Arc Challenge Knowledge Llama 3.1 8b 86.0 82.6
Arc Challenge Knowledge Llama 3.1 70b 95.0 93.6
Arc Challenge Knowledge Gemma 2 9b 91.0 89.6
Arc Challenge Knowledge Phi-3 Small 8k 91.6 91.0
Arc Challenge Knowledge Qwen 2 7b 83.9 75.3
Arc Challenge Knowledge Qwen 2 72b 96.3 94.6
Arc Challenge Knowledge GPT-4o Mini 93.3 82.6
Arc Challenge Knowledge Gpt-4o 96.0 95.3
Arc Challenge Knowledge Claude-3 Haiku 89.3 89.3
Arc Challenge Knowledge Claude-3.5 Sonnet 96.0 95.3
Arc Challenge Knowledge Gemini 1.5 Flash 92.3 93.6
Arc Challenge Knowledge Gemini 1.5 Pro 91.6 90.6
AGIEval LSAT AR Soft Reasoning Llama 2 7b 17.0 17.4
AGIEval LSAT AR Soft Reasoning Mistral 7b 21.7 19.1
AGIEval LSAT AR Soft Reasoning Llama 3.1 8b 20.4 26.1
AGIEval LSAT AR Soft Reasoning Llama 3.1 70b 32.6 28.7
AGIEval LSAT AR Soft Reasoning Gemma 2 9b 24.8 23.0
AGIEval LSAT AR Soft Reasoning Phi-3 Small 8k 28.3 26.5
AGIEval LSAT AR Soft Reasoning Qwen 2 7b 27.0 23.9
AGIEval LSAT AR Soft Reasoning Qwen 2 72b 29.1 28.3
AGIEval LSAT AR Soft Reasoning GPT-4o Mini 32.2 23.0
AGIEval LSAT AR Soft Reasoning Gpt-4o 37.8 30.0
AGIEval LSAT AR Soft Reasoning Claude-3 Haiku 24.8 23.5
AGIEval LSAT AR Soft Reasoning Claude-3.5 Sonnet 38.3 33.9
AGIEval LSAT AR Soft Reasoning Gemini 1.5 Flash 27.8 27.8
AGIEval LSAT AR Soft Reasoning Gemini 1.5 Pro 30.0 31.7
BiGGen Bench Soft Reasoning Llama 2 7b 61.6 56.8
BiGGen Bench Soft Reasoning Mistral 7b 70.1 68.1
BiGGen Bench Soft Reasoning Llama 3.1 8b 66.5 67.7
BiGGen Bench Soft Reasoning Llama 3.1 70b 78.9 76.9
BiGGen Bench Soft Reasoning Gemma 2 9b 64.7 64.5
BiGGen Bench Soft Reasoning Phi-3 Small 8k 69.7 63.0
BiGGen Bench Soft Reasoning Qwen 2 7b 46.2 69.9
BiGGen Bench Soft Reasoning Qwen 2 72b 74.3 79.9
BiGGen Bench Soft Reasoning GPT-4o Mini 70.3 77.7
BiGGen Bench Soft Reasoning Gpt-4o 86.0 82.0
BiGGen Bench Soft Reasoning Claude-3 Haiku 80.0 80.0
BiGGen Bench Soft Reasoning Claude-3.5 Sonnet 91.4 79.3
BiGGen Bench Soft Reasoning Gemini 1.5 Flash 73.9 68.5
BiGGen Bench Soft Reasoning Gemini 1.5 Pro 78.7 67.1
Winogrande Commonsense Llama 2 7b 49.9 50.4
Winogrande Commonsense Mistral 7b 60.4 56.5
Winogrande Commonsense Llama 3.1 8b 66.5 63.3
Winogrande Commonsense Llama 3.1 70b 84.2 81.2
Winogrande Commonsense Gemma 2 9b 68.7 67.7
Winogrande Commonsense Phi-3 Small 8k 81.5 81.6
Winogrande Commonsense Qwen 2 7b 67.1 60.7
Winogrande Commonsense Qwen 2 72b 81.9 80.7
Winogrande Commonsense GPT-4o Mini 79.2 71.9
Winogrande Commonsense Gpt-4o 89.7 86.5
Winogrande Commonsense Claude-3 Haiku 70.7 66.2
Winogrande Commonsense Claude-3.5 Sonnet 89.4 85.7
Winogrande Commonsense Gemini 1.5 Flash 72.5 74.8
Winogrande Commonsense Gemini 1.5 Pro 75.5 78.3
MMLU Knowledge Llama 2 7b 46.3 41.7
MMLU Knowledge Mistral 7b 60.5 56.5
MMLU Knowledge Llama 3.1 8b 72.6 67.5
MMLU Knowledge Llama 3.1 70b 85.0 83.2
MMLU Knowledge Gemma 2 9b 73.8 71.4
MMLU Knowledge Phi-3 Small 8k 76.3 73.6
MMLU Knowledge Qwen 2 7b 67.0 64.5
MMLU Knowledge Qwen 2 72b 81.3 77.8
MMLU Knowledge GPT-4o Mini 79.9 74.8
MMLU Knowledge Gpt-4o 87.5 83.4
MMLU Knowledge Claude-3 Haiku 72.2 68.4
MMLU Knowledge Claude-3.5 Sonnet 87.2 84.0
MMLU Knowledge Gemini 1.5 Flash 76.3 74.7
MMLU Knowledge Gemini 1.5 Pro 81.3 81.1
StrategyQA Commonsense Llama 2 7b 39.5 31.2
StrategyQA Commonsense Mistral 7b 66.1 55.8
StrategyQA Commonsense Llama 3.1 8b 73.7 68.6
StrategyQA Commonsense Llama 3.1 70b 85.3 83.8
StrategyQA Commonsense Gemma 2 9b 73.7 66.4
StrategyQA Commonsense Phi-3 Small 8k 72.3 66.0
StrategyQA Commonsense Qwen 2 7b 63.2 54.8
StrategyQA Commonsense Qwen 2 72b 81.7 76.9
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Table 7: Zero-shot accuracy for direct answering and CoT prompts on all datasets

Dataset Type Model zero-shot CoT accuracy zero-shot DA accuracy
StrategyQA Commonsense GPT-4o Mini 82.2 84.5
StrategyQA Commonsense Gpt-4o 84.5 85.5
StrategyQA Commonsense Claude-3 Haiku 73.4 65.0
StrategyQA Commonsense Claude-3.5 Sonnet 80.1 76.3
StrategyQA Commonsense Gemini 1.5 Flash 72.5 75.2
StrategyQA Commonsense Gemini 1.5 Pro 74.0 71.4
MuSR Object Placements Soft Reasoning Llama 2 7b 36.3 30.5
MuSR Object Placements Soft Reasoning Mistral 7b 50.8 43.4
MuSR Object Placements Soft Reasoning Llama 3.1 8b 55.5 53.5
MuSR Object Placements Soft Reasoning Llama 3.1 70b 65.6 43.8
MuSR Object Placements Soft Reasoning Gemma 2 9b 63.3 57.0
MuSR Object Placements Soft Reasoning Phi-3 Small 8k 53.1 55.1
MuSR Object Placements Soft Reasoning Qwen 2 7b 48.8 48.4
MuSR Object Placements Soft Reasoning Qwen 2 72b 61.7 45.7
MuSR Object Placements Soft Reasoning GPT-4o Mini 59.0 55.0
MuSR Object Placements Soft Reasoning Gpt-4o 67.6 45.3
MuSR Object Placements Soft Reasoning Claude-3 Haiku 46.9 52.3
MuSR Object Placements Soft Reasoning Claude-3.5 Sonnet 69.5 51.2
MuSR Object Placements Soft Reasoning Gemini 1.5 Flash 61.7 56.2
MuSR Object Placements Soft Reasoning Gemini 1.5 Pro 66.4 50.0
FOLIO Symbolic Llama 2 7b 36.5 33.0
FOLIO Symbolic Mistral 7b 50.7 41.9
FOLIO Symbolic Llama 3.1 8b 58.6 56.7
FOLIO Symbolic Llama 3.1 70b 70.9 69.0
FOLIO Symbolic Gemma 2 9b 66.0 55.7
FOLIO Symbolic Phi-3 Small 8k 68.0 59.6
FOLIO Symbolic Qwen 2 7b 60.6 51.2
FOLIO Symbolic Qwen 2 72b 65.0 65.0
FOLIO Symbolic GPT-4o Mini 65.0 58.1
FOLIO Symbolic Gpt-4o 79.8 62.6
FOLIO Symbolic Claude-3 Haiku 61.6 48.8
FOLIO Symbolic Claude-3.5 Sonnet 73.9 68.5
FOLIO Symbolic Gemini 1.5 Flash 74.9 69.5
FOLIO Symbolic Gemini 1.5 Pro 73.9 74.4
ContextHub Deductive L2 Symbolic Llama 2 7b 34.8 12.6
ContextHub Deductive L2 Symbolic Mistral 7b 48.8 55.1
ContextHub Deductive L2 Symbolic Llama 3.1 8b 52.8 21.5
ContextHub Deductive L2 Symbolic Llama 3.1 70b 50.0 41.1
ContextHub Deductive L2 Symbolic Gemma 2 9b 50.0 43.0
ContextHub Deductive L2 Symbolic Phi-3 Small 8k 52.4 49.1
ContextHub Deductive L2 Symbolic Qwen 2 7b 51.3 39.8
ContextHub Deductive L2 Symbolic Qwen 2 72b 52.8 44.0
ContextHub Deductive L2 Symbolic GPT-4o Mini 47.0 42.0
ContextHub Deductive L2 Symbolic Gpt-4o 54.5 45.6
ContextHub Deductive L2 Symbolic Claude-3 Haiku 45.2 41.8
ContextHub Deductive L2 Symbolic Claude-3.5 Sonnet 53.0 46.2
ContextHub Deductive L2 Symbolic Gemini 1.5 Flash 45.0 39.5
ContextHub Deductive L2 Symbolic Gemini 1.5 Pro 57.3 43.3
ContextHub Abductive L2 Symbolic Llama 2 7b 34.3 31.9
ContextHub Abductive L2 Symbolic Mistral 7b 34.0 25.7
ContextHub Abductive L2 Symbolic Llama 3.1 8b 41.3 37.3
ContextHub Abductive L2 Symbolic Llama 3.1 70b 51.0 44.4
ContextHub Abductive L2 Symbolic Gemma 2 9b 41.5 32.9
ContextHub Abductive L2 Symbolic Phi-3 Small 8k 44.3 32.8
ContextHub Abductive L2 Symbolic Qwen 2 7b 37.8 33.4
ContextHub Abductive L2 Symbolic Qwen 2 72b 45.5 32.2
ContextHub Abductive L2 Symbolic GPT-4o Mini 65.0 55.0
ContextHub Abductive L2 Symbolic Gpt-4o 57.5 46.8
ContextHub Abductive L2 Symbolic Claude-3 Haiku 37.0 31.4
ContextHub Abductive L2 Symbolic Claude-3.5 Sonnet 56.8 40.4
ContextHub Abductive L2 Symbolic Gemini 1.5 Flash 53.1 32.2
ContextHub Abductive L2 Symbolic Gemini 1.5 Pro 53.5 43.7
MMLU Pro Knowledge Llama 2 7b 19.9 19.6
MMLU Pro Knowledge Mistral 7b 31.6 28.4
MMLU Pro Knowledge Llama 3.1 8b 44.8 38.0
MMLU Pro Knowledge Llama 3.1 70b 64.9 55.0
MMLU Pro Knowledge Gemma 2 9b 48.1 42.7
MMLU Pro Knowledge Phi-3 Small 8k 54.8 43.7
MMLU Pro Knowledge Qwen 2 7b 45.0 36.2
MMLU Pro Knowledge Qwen 2 72b 62.8 44.3
MMLU Pro Knowledge GPT-4o Mini 62.3 42.6
MMLU Pro Knowledge Gpt-4o 72.1 55.0
MMLU Pro Knowledge Claude-3 Haiku 47.6 39.0
MMLU Pro Knowledge Claude-3.5 Sonnet 73.4 57.2
MMLU Pro Knowledge Gemini 1.5 Flash 58.5 47.2
MMLU Pro Knowledge Gemini 1.5 Pro 65.3 57.4
MuSR Murder Mysteries Soft Reasoning Llama 2 7b 50.0 50.0
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Table 7: Zero-shot accuracy for direct answering and CoT prompts on all datasets

Dataset Type Model zero-shot CoT accuracy zero-shot DA accuracy
MuSR Murder Mysteries Soft Reasoning Mistral 7b 62.8 55.6
MuSR Murder Mysteries Soft Reasoning Llama 3.1 8b 70.4 57.2
MuSR Murder Mysteries Soft Reasoning Llama 3.1 70b 73.6 69.6
MuSR Murder Mysteries Soft Reasoning Gemma 2 9b 76.8 61.6
MuSR Murder Mysteries Soft Reasoning Phi-3 Small 8k 61.6 58.8
MuSR Murder Mysteries Soft Reasoning Qwen 2 7b 59.2 53.2
MuSR Murder Mysteries Soft Reasoning Qwen 2 72b 80.8 64.4
MuSR Murder Mysteries Soft Reasoning GPT-4o Mini 71.2 63.6
MuSR Murder Mysteries Soft Reasoning Gpt-4o 87.6 70.8
MuSR Murder Mysteries Soft Reasoning Claude-3 Haiku 62.4 56.8
MuSR Murder Mysteries Soft Reasoning Claude-3.5 Sonnet 85.2 70.4
MuSR Murder Mysteries Soft Reasoning Gemini 1.5 Flash 70.8 58.4
MuSR Murder Mysteries Soft Reasoning Gemini 1.5 Pro 77.6 64.0
ContextHub Deductive L1 Symbolic Llama 2 7b 47.7 8.3
ContextHub Deductive L1 Symbolic Mistral 7b 50.3 67.3
ContextHub Deductive L1 Symbolic Llama 3.1 8b 50.7 23.3
ContextHub Deductive L1 Symbolic Llama 3.1 70b 53.8 40.7
ContextHub Deductive L1 Symbolic Gemma 2 9b 56.3 39.2
ContextHub Deductive L1 Symbolic Phi-3 Small 8k 54.8 50.2
ContextHub Deductive L1 Symbolic Qwen 2 7b 59.3 43.3
ContextHub Deductive L1 Symbolic Qwen 2 72b 51.5 44.0
ContextHub Deductive L1 Symbolic GPT-4o Mini 49.3 41.5
ContextHub Deductive L1 Symbolic Gpt-4o 59.3 49.0
ContextHub Deductive L1 Symbolic Claude-3 Haiku 50.5 39.7
ContextHub Deductive L1 Symbolic Claude-3.5 Sonnet 54.5 47.0
ContextHub Deductive L1 Symbolic Gemini 1.5 Flash 47.3 38.5
ContextHub Deductive L1 Symbolic Gemini 1.5 Pro 57.3 46.0
ContextHub Abductive L1 Symbolic Llama 2 7b 29.4 16.4
ContextHub Abductive L1 Symbolic Mistral 7b 46.9 25.8
ContextHub Abductive L1 Symbolic Llama 3.1 8b 43.6 24.2
ContextHub Abductive L1 Symbolic Llama 3.1 70b 55.3 43.9
ContextHub Abductive L1 Symbolic Gemma 2 9b 61.9 58.9
ContextHub Abductive L1 Symbolic Phi-3 Small 8k 62.5 60.3
ContextHub Abductive L1 Symbolic Qwen 2 7b 52.2 47.5
ContextHub Abductive L1 Symbolic Qwen 2 72b 61.9 45.0
ContextHub Abductive L1 Symbolic GPT-4o Mini 61.1 42.2
ContextHub Abductive L1 Symbolic Gpt-4o 74.2 65.6
ContextHub Abductive L1 Symbolic Claude-3 Haiku 35.3 22.8
ContextHub Abductive L1 Symbolic Claude-3.5 Sonnet 80.8 60.3
ContextHub Abductive L1 Symbolic Gemini 1.5 Flash 66.4 47.2
ContextHub Abductive L1 Symbolic Gemini 1.5 Pro 62.2 60.0
Big-Bench Hard Symbolic Llama 2 7b 29.8 31.9
Big-Bench Hard Symbolic Mistral 7b 39.3 35.1
Big-Bench Hard Symbolic Llama 3.1 8b 62.8 45.6
Big-Bench Hard Symbolic Llama 3.1 70b 78.9 54.8
Big-Bench Hard Symbolic Gemma 2 9b 58.7 50.8
Big-Bench Hard Symbolic Phi-3 Small 8k 70.0 55.1
Big-Bench Hard Symbolic Qwen 2 7b 52.6 47.6
Big-Bench Hard Symbolic Qwen 2 72b 75.1 59.0
Big-Bench Hard Symbolic GPT-4o Mini 77.7 49.7
Big-Bench Hard Symbolic Gpt-4o 84.6 64.5
Big-Bench Hard Symbolic Claude-3 Haiku 62.4 47.3
Big-Bench Hard Symbolic Claude-3.5 Sonnet 83.6 56.9
Big-Bench Hard Symbolic Gemini 1.5 Flash 71.3 55.4
Big-Bench Hard Symbolic Gemini 1.5 Pro 71.6 50.3
MATH Mathematical Llama 2 7b 4.2 4.0
MATH Mathematical Mistral 7b 12.4 6.1
MATH Mathematical Llama 3.1 8b 47.2 13.8
MATH Mathematical Llama 3.1 70b 64.4 22.8
MATH Mathematical Gemma 2 9b 45.6 19.1
MATH Mathematical Phi-3 Small 8k 43.2 18.5
MATH Mathematical Qwen 2 7b 53.7 13.3
MATH Mathematical Qwen 2 72b 63.5 23.8
MATH Mathematical GPT-4o Mini 69.6 24.3
MATH Mathematical Gpt-4o 73.3 35.2
MATH Mathematical Claude-3 Haiku 32.7 17.4
MATH Mathematical Claude-3.5 Sonnet 63.8 34.6
MATH Mathematical Gemini 1.5 Flash 54.5 31.3
MATH Mathematical Gemini 1.5 Pro 62.1 39.4
GSM8k-Hard Mathematical Llama 2 7b 6.7 1.8
GSM8k-Hard Mathematical Mistral 7b 21.0 3.0
GSM8k-Hard Mathematical Llama 3.1 8b 34.4 6.0
GSM8k-Hard Mathematical Llama 3.1 70b 46.6 14.0
GSM8k-Hard Mathematical Gemma 2 9b 40.9 8.8
GSM8k-Hard Mathematical Phi-3 Small 8k 33.0 6.9
GSM8k-Hard Mathematical Qwen 2 7b 48.4 5.0
GSM8k-Hard Mathematical Qwen 2 72b 54.8 13.7

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 7: Zero-shot accuracy for direct answering and CoT prompts on all datasets

Dataset Type Model zero-shot CoT accuracy zero-shot DA accuracy
GSM8k-Hard Mathematical GPT-4o Mini 53.9 11.7
GSM8k-Hard Mathematical Gpt-4o 60.3 26.0
GSM8k-Hard Mathematical Claude-3 Haiku 45.3 9.6
GSM8k-Hard Mathematical Claude-3.5 Sonnet 50.8 32.3
GSM8k-Hard Mathematical Gemini 1.5 Flash 54.6 16.2
GSM8k-Hard Mathematical Gemini 1.5 Pro 58.2 26.2
GSM8k Mathematical Llama 2 7b 29.6 6.9
GSM8k Mathematical Mistral 7b 59.2 10.2
GSM8k Mathematical Llama 3.1 8b 85.4 18.5
GSM8k Mathematical Llama 3.1 70b 85.6 37.0
GSM8k Mathematical Gemma 2 9b 89.2 24.9
GSM8k Mathematical Phi-3 Small 8k 90.0 24.9
GSM8k Mathematical Qwen 2 7b 87.9 20.7
GSM8k Mathematical Qwen 2 72b 94.6 40.1
GSM8k Mathematical GPT-4o Mini 94.1 31.8
GSM8k Mathematical Gpt-4o 95.8 58.8
GSM8k Mathematical Claude-3 Haiku 89.4 22.9
GSM8k Mathematical Claude-3.5 Sonnet 96.1 62.2
GSM8k Mathematical Gemini 1.5 Flash 91.4 38.6
GSM8k Mathematical Gemini 1.5 Pro 92.7 52.4

F.2 FULL FEW-SHOT RESULTS

Table 8: Few-shot accuracy for direct answering and CoT prompts on all datasets

Dataset Type Model few-shot CoT accuracy few-shot DA accuracy
AGIEval LSAT RC Soft Reasoning Llama 2 7b 33.1 38.7
AGIEval LSAT RC Soft Reasoning Mistral 7b 52.4 57.2
AGIEval LSAT RC Soft Reasoning Llama 3.1 8b 60.2 70.3
AGIEval LSAT RC Soft Reasoning Llama 3.1 70b 84.4 88.8
AGIEval LSAT RC Soft Reasoning Gemma 2 9b 74.3 79.2
AGIEval LSAT RC Soft Reasoning Phi-3 Small 8k 63.2 65.1
AGIEval LSAT RC Soft Reasoning Qwen 2 7b 61.7 68.8
AGIEval LSAT RC Soft Reasoning Qwen 2 72b 85.9 85.9
AGIEval LSAT RC Soft Reasoning GPT-4o Mini 77.3 71.4
AGIEval LSAT RC Soft Reasoning Gemini 1.5 Flash 79.2 81.8
AGIEval LSAT LR Soft Reasoning Llama 2 7b 33.7 34.7
AGIEval LSAT LR Soft Reasoning Mistral 7b 46.1 48.0
AGIEval LSAT LR Soft Reasoning Llama 3.1 8b 55.7 58.0
AGIEval LSAT LR Soft Reasoning Llama 3.1 70b 83.3 85.1
AGIEval LSAT LR Soft Reasoning Gemma 2 9b 65.7 68.2
AGIEval LSAT LR Soft Reasoning Phi-3 Small 8k 64.7 59.2
AGIEval LSAT LR Soft Reasoning Qwen 2 7b 54.1 61.2
AGIEval LSAT LR Soft Reasoning Qwen 2 72b 77.5 79.6
AGIEval LSAT LR Soft Reasoning GPT-4o Mini 68.4 64.5
AGIEval LSAT LR Soft Reasoning Gemini 1.5 Flash 68.6 72.9
GPQA Mathematical Mistral 7b 23.0 25.9
GPQA Mathematical Llama 3.1 8b 22.1 27.2
GPQA Mathematical Llama 3.1 70b 24.8 24.3
GPQA Mathematical Gemma 2 9b 19.9 22.3
GPQA Mathematical Phi-3 Small 8k 23.9 22.5
GPQA Mathematical Qwen 2 7b 23.4 21.2
GPQA Mathematical Qwen 2 72b 22.8 19.9
GPQA Mathematical GPT-4o Mini 20.0 20.0
GPQA Mathematical Gemini 1.5 Flash 21.9 24.6
CommonsenseQA Commonsense Llama 2 7b 18.2 19.2
CommonsenseQA Commonsense Mistral 7b 73.6 70.4
CommonsenseQA Commonsense Llama 3.1 8b 74.0 76.5
CommonsenseQA Commonsense Llama 3.1 70b 84.7 84.6
CommonsenseQA Commonsense Gemma 2 9b 81.8 80.8
CommonsenseQA Commonsense Phi-3 Small 8k 80.8 80.4
CommonsenseQA Commonsense Qwen 2 7b 80.3 72.9
CommonsenseQA Commonsense Qwen 2 72b 88.4 87.8
CommonsenseQA Commonsense GPT-4o Mini 84.7 84.7
CommonsenseQA Commonsense Gemini 1.5 Flash 81.7 83.3
AGIEval LSAT AR Soft Reasoning Llama 2 7b 19.6 18.7
AGIEval LSAT AR Soft Reasoning Mistral 7b 20.9 22.6
AGIEval LSAT AR Soft Reasoning Llama 3.1 8b 24.8 26.1
AGIEval LSAT AR Soft Reasoning Llama 3.1 70b 36.1 30.9
AGIEval LSAT AR Soft Reasoning Gemma 2 9b 22.2 28.7
AGIEval LSAT AR Soft Reasoning Phi-3 Small 8k 27.8 20.0
AGIEval LSAT AR Soft Reasoning Qwen 2 7b 24.3 23.0
AGIEval LSAT AR Soft Reasoning Qwen 2 72b 27.0 30.0

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 8: Few-shot accuracy for direct answering and CoT prompts on all datasets

Dataset Type Model few-shot CoT accuracy few-shot DA accuracy
AGIEval LSAT AR Soft Reasoning GPT-4o Mini 28.7 26.1
AGIEval LSAT AR Soft Reasoning Gemini 1.5 Flash 28.3 20.4
MMLU Knowledge Llama 2 7b 49.0 42.8
MMLU Knowledge Mistral 7b 63.0 57.0
MMLU Knowledge Llama 3.1 8b 71.7 69.3
MMLU Knowledge Llama 3.1 70b 84.3 83.7
MMLU Knowledge Gemma 2 9b 74.7 72.4
MMLU Knowledge Phi-3 Small 8k 77.3 75.2
MMLU Knowledge Qwen 2 7b 69.9 68.6
MMLU Knowledge Qwen 2 72b 82.7 81.8
MMLU Knowledge GPT-4o Mini 82.3 77.8
MMLU Knowledge Gemini 1.5 Flash 78.1 79.0
StrategyQA Commonsense Llama 2 7b 57.9 30.9
StrategyQA Commonsense Mistral 7b 70.7 72.0
StrategyQA Commonsense Llama 3.1 8b 74.4 65.8
StrategyQA Commonsense Llama 3.1 70b 87.1 84.2
StrategyQA Commonsense Gemma 2 9b 77.1 73.3
StrategyQA Commonsense Phi-3 Small 8k 75.0 71.1
StrategyQA Commonsense Qwen 2 7b 71.9 58.9
StrategyQA Commonsense Qwen 2 72b 83.2 80.1
StrategyQA Commonsense GPT-4o Mini 83.0 86.2
StrategyQA Commonsense Gemini 1.5 Flash 77.0 80.3
ContextHub Abductive L2 Symbolic Llama 2 7b 36.2 35.0
ContextHub Abductive L2 Symbolic Mistral 7b 33.8 30.0
ContextHub Abductive L2 Symbolic Llama 3.1 8b 32.7 36.1
ContextHub Abductive L2 Symbolic Llama 3.1 70b 54.6 51.2
ContextHub Abductive L2 Symbolic Gemma 2 9b 44.8 33.2
ContextHub Abductive L2 Symbolic Phi-3 Small 8k 49.8 34.2
ContextHub Abductive L2 Symbolic Qwen 2 7b 39.6 35.0
ContextHub Abductive L2 Symbolic Qwen 2 72b 54.7 34.9
ContextHub Abductive L2 Symbolic GPT-4o Mini 62.0 60.0
ContextHub Abductive L2 Symbolic Gemini 1.5 Flash 48.6 47.8
ContextHub Abductive L1 Symbolic Llama 2 7b 21.4 16.7
ContextHub Abductive L1 Symbolic Mistral 7b 23.6 21.7
ContextHub Abductive L1 Symbolic Llama 3.1 8b 40.0 36.1
ContextHub Abductive L1 Symbolic Llama 3.1 70b 62.2 58.9
ContextHub Abductive L1 Symbolic Gemma 2 9b 48.9 59.4
ContextHub Abductive L1 Symbolic Phi-3 Small 8k 59.2 56.4
ContextHub Abductive L1 Symbolic Qwen 2 7b 48.6 38.9
ContextHub Abductive L1 Symbolic Qwen 2 72b 53.3 56.1
ContextHub Abductive L1 Symbolic GPT-4o Mini 77.2 59.2
ContextHub Abductive L1 Symbolic Gemini 1.5 Flash 79.7 68.6
MuSR Murder Mysteries Soft Reasoning Mistral 7b 62.0 56.4
MuSR Murder Mysteries Soft Reasoning Llama 3.1 8b 61.6 61.2
MuSR Murder Mysteries Soft Reasoning Llama 3.1 70b 73.2 68.0
MuSR Murder Mysteries Soft Reasoning Gemma 2 9b 81.6 62.0
MuSR Murder Mysteries Soft Reasoning Phi-3 Small 8k 62.0 53.6
MuSR Murder Mysteries Soft Reasoning Qwen 2 7b 56.0 55.6
MuSR Murder Mysteries Soft Reasoning Qwen 2 72b 80.4 66.0
MuSR Murder Mysteries Soft Reasoning GPT-4o Mini 76.0 69.6
MuSR Murder Mysteries Soft Reasoning Gemini 1.5 Flash 70.0 66.4
MuSR Team Allocations Soft Reasoning Mistral 7b 42.8 43.2
MuSR Team Allocations Soft Reasoning Llama 3.1 8b 59.6 51.6
MuSR Team Allocations Soft Reasoning Llama 3.1 70b 89.2 63.6
MuSR Team Allocations Soft Reasoning Gemma 2 9b 48.4 45.6
MuSR Team Allocations Soft Reasoning Phi-3 Small 8k 66.0 46.4
MuSR Team Allocations Soft Reasoning Qwen 2 7b 34.0 40.8
MuSR Team Allocations Soft Reasoning Qwen 2 72b 56.0 66.4
MuSR Team Allocations Soft Reasoning GPT-4o Mini 75.6 60.0
MuSR Team Allocations Soft Reasoning Gemini 1.5 Flash 90.0 54.4
MMLU Pro Knowledge Llama 2 7b 21.5 20.4
MMLU Pro Knowledge Mistral 7b 34.8 26.7
MMLU Pro Knowledge Llama 3.1 8b 44.7 38.0
MMLU Pro Knowledge Llama 3.1 70b 64.4 55.1
MMLU Pro Knowledge Gemma 2 9b 48.5 42.4
MMLU Pro Knowledge Phi-3 Small 8k 54.8 43.2
MMLU Pro Knowledge Qwen 2 7b 46.6 39.0
MMLU Pro Knowledge Qwen 2 72b 62.5 51.6
MMLU Pro Knowledge GPT-4o Mini 63.0 45.0
MMLU Pro Knowledge Gemini 1.5 Flash 59.4 50.6
MuSR Object Placements Soft Reasoning Mistral 7b 55.5 41.0
MuSR Object Placements Soft Reasoning Llama 3.1 8b 66.8 50.4
MuSR Object Placements Soft Reasoning Llama 3.1 70b 67.2 57.4
MuSR Object Placements Soft Reasoning Gemma 2 9b 68.0 58.2
MuSR Object Placements Soft Reasoning Phi-3 Small 8k 62.1 51.6
MuSR Object Placements Soft Reasoning Qwen 2 7b 46.9 43.8
MuSR Object Placements Soft Reasoning Qwen 2 72b 66.4 43.0
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Table 8: Few-shot accuracy for direct answering and CoT prompts on all datasets

Dataset Type Model few-shot CoT accuracy few-shot DA accuracy
MuSR Object Placements Soft Reasoning GPT-4o Mini 67.0 47.0
MuSR Object Placements Soft Reasoning Gemini 1.5 Flash 73.0 54.7
ContextHub Deductive L2 Symbolic Llama 2 7b 34.7 15.0
ContextHub Deductive L2 Symbolic Mistral 7b 63.8 51.4
ContextHub Deductive L2 Symbolic Llama 3.1 8b 76.1 27.3
ContextHub Deductive L2 Symbolic Llama 3.1 70b 82.6 53.6
ContextHub Deductive L2 Symbolic Gemma 2 9b 61.9 47.6
ContextHub Deductive L2 Symbolic Phi-3 Small 8k 61.5 54.0
ContextHub Deductive L2 Symbolic Qwen 2 7b 55.3 36.4
ContextHub Deductive L2 Symbolic Qwen 2 72b 80.2 54.0
ContextHub Deductive L2 Symbolic GPT-4o Mini 59.0 41.0
ContextHub Deductive L2 Symbolic Gemini 1.5 Flash 90.2 42.5
ContextHub Deductive L1 Symbolic Llama 2 7b 34.7 16.0
ContextHub Deductive L1 Symbolic Mistral 7b 46.2 59.2
ContextHub Deductive L1 Symbolic Llama 3.1 8b 73.0 23.0
ContextHub Deductive L1 Symbolic Llama 3.1 70b 67.5 50.0
ContextHub Deductive L1 Symbolic Gemma 2 9b 66.0 45.7
ContextHub Deductive L1 Symbolic Phi-3 Small 8k 74.8 51.8
ContextHub Deductive L1 Symbolic Qwen 2 7b 58.8 37.5
ContextHub Deductive L1 Symbolic Qwen 2 72b 70.7 42.8
ContextHub Deductive L1 Symbolic GPT-4o Mini 59.2 44.3
ContextHub Deductive L1 Symbolic Gemini 1.5 Flash 89.3 49.8
MATH Mathematical Llama 2 7b 4.7 3.9
MATH Mathematical Mistral 7b 13.7 7.1
MATH Mathematical Llama 3.1 8b 41.2 14.2
MATH Mathematical Llama 3.1 70b 61.9 24.2
MATH Mathematical Gemma 2 9b 47.5 19.8
MATH Mathematical Phi-3 Small 8k 42.4 18.9
MATH Mathematical Qwen 2 7b 55.0 15.0
MATH Mathematical Qwen 2 72b 65.3 26.2
MATH Mathematical GPT-4o Mini 71.7 24.6
MATH Mathematical Gemini 1.5 Flash 54.7 32.3
GSM8K Mathematical Llama 2 7b 29.0 7.7
GSM8K Mathematical Mistral 7b 56.2 12.5
GSM8K Mathematical Llama 3.1 8b 86.4 20.1
GSM8K Mathematical Llama 3.1 70b 96.1 39.1
GSM8K Mathematical Gemma 2 9b 89.2 24.9
GSM8K Mathematical Phi-3 Small 8k 90.4 24.5
GSM8K Mathematical Qwen 2 7b 87.6 21.4
GSM8K Mathematical Qwen 2 72b 93.2 40.6
GSM8K Mathematical GPT-4o Mini 94.2 32.8
GSM8K Mathematical Gemini 1.5 Flash 90.6 40.4

F.3 ANSWER EXTRACTOR AND AVERAGE ANSWER SPAN RESULTS

In this section, we report the number of generations from each model on each dataset that our
answer parser could not extract. “-1” denotes that a model was not run on a certain dataset due to
context length limitations in the few-shot setting. We see that these unparseable rates are generally
low across the board. The weakest models struggle on some of the most challenging datasets, but
unparseable rates are all at or below 15%.

We also report the average character index of the beginning of the answer span that the answer
parser extracted. Of particular note is that the direct answer prompts all return an answer within
the first 60 characters, indicating that the answers are returned almost immediately, as desired. CoT
completions are much longer.

G ZOOM-IN: MMLU AND MMLU PRO

MMLU and MMLU Pro show gains from adding CoT, but because these datasets are so broad, they
defy simple characterization. We explore the performance of CoT on each category of MMLU to
understand divergences in CoT performance between these domains. We list the top three categories
where CoT gives the largest error reduction for Llama 3.1 8B and 70B on MMLU and MMLU Pro
in Table 17. Some of these categories are explicitly mathematical in nature, as we might expect from
Figure 3. We can also see that CoT is helping on categories like “business”; upon closer inspection,
we found that these categories frequently involve math as well (e.g., business questions may involve
computations surrounding wealth). We need to more carefully characterize MMLU at the instance
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Figure 9: Performance of zero-shot direct (blue) and zero-shot CoT (orange) across datasets and
models. Graphs are sorted in ascending order by median delta (CoT, direct). The datasets benefiting
substantially are all symbolic or semi-symbolic in nature.
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Table 9: Percentage of responses per dataset per model that our answer parser could not extract an
answer for in the zero-shot direct answer setting. Prompt modifications were made to decrease these
numbers. No model is above 15%.

Zero-shot Direct Answer Unparseable Answer Rate by Percentage

dataset M
eta
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lam
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M
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lam
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Qwen
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de

-3
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u
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-3.
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1.5
Flas

h

Gem
ini

1.5
Pro

CommonsenseQA 1.9 2.5 1.1 0.0 0.8 0.1 1.6 0.7 0.0 0.0 0.1 0.0 0.1 0.2
StrategyQA 0.0 1.9 0.1 0.0 11.7 0.5 4.9 2.7 0.0 0.0 0.0 0.0 0.0 0.2
SiQA 0.2 6.6 0.0 0.1 3.9 0.3 0.1 3.0 0.1 0.1 0.0 0.0 0.0 0.4
PiQA 0.4 6.0 0.0 0.1 3.3 2.1 0.0 5.5 0.2 0.0 0.1 0.0 0.1 0.9
Winogrande 0.0 3.0 0.1 0.0 2.1 0.2 5.1 0.4 0.0 0.0 0.0 0.0 0.0 3.6
Arc Easy 0.0 1.8 0.5 0.0 0.0 0.2 9.1 0.7 3.5 0.4 0.2 0.0 0.0 3.2
Arc Challenge 0.0 2.3 1.0 0.0 0.3 0.7 10.7 0.7 10.0 0.7 0.0 0.0 0.0 5.0
AGIEval LSAT LR 0.4 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 2.5 0.0 0.0 0.2 0.2
AGIEval LSAT AR 0.4 0.0 0.0 0.0 4.3 3.9 0.0 0.0 0.0 8.7 0.0 0.0 0.0 0.0
AGIEval LSAT RC 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.7 0.0 0.0 0.4 0.4
ContextHub Deductive L1 0.0 0.0 0.0 0.0 1.2 0.0 2.3 0.0 0.0 0.0 0.2 0.0 0.0 0.2
ContextHub Deductive L2 0.0 0.0 0.0 0.0 0.0 0.0 2.2 1.0 0.0 0.0 2.8 0.0 0.0 0.0
ContextHub Abductive L1 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ContextHub Abductive L2 0.0 0.0 0.0 0.0 0.0 0.1 1.5 0.2 0.0 0.0 0.8 0.0 0.0 0.0
MuSR Murder Mysteries 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MuSR Team Allocations 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.4 0.4
MuSR Object Placements 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MMLU 0.1 0.0 0.0 0.0 0.1 0.2 3.6 1.2 0.6 0.0 1.3 0.3 0.2 0.7
MMLU Pro 0.7 1.3 1.0 0.3 1.0 3.7 6.8 12.2 0.4 0.3 0.3 0.4 0.6 0.8
GPQA 1.3 7.1 0.0 0.0 8.7 12.7 5.4 15.2 0.0 0.0 1.6 0.0 0.0 0.7
MATH 0.6 6.9 0.3 0.2 0.1 0.1 3.5 3.0 0.8 0.0 0.3 0.0 0.4 0.6
GSM8k 0.2 4.1 2.5 0.0 2.7 0.0 1.7 0.2 0.0 0.0 12.7 5.5 0.0 0.0
BigGen Bench 4.6 0.3 0.9 0.1 0.5 1.0 1.3 1.0 1.3 0.0 0.0 0.1 0.4 0.3
GSM8k-Hard 4.8 7.6 2.0 2.4 0.4 0.2 3.2 1.1 0.1 0.5 5.2 0.5 0.2 0.0
MuSiQue 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1
Folio 4.4 0.0 0.0 0.0 0.0 0.0 3.9 0.0 0.0 12.3 0.0 0.0 0.0 0.5
BigBench-Hard 0.0 0.0 0.0 7.4 0.0 0.2 0.0 0.0 0.0 0.3 0.0 4.5 0.2 12.8

Table 10: Percentage of responses per dataset per model that our answer parser could not extract an
answer for in the zero-shot CoT setting. Prompt modifications were made to decrease these numbers.
No model is above 15%.

Zero-shot CoT Unparseable Answer Rate by Percentage
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h

Gem
ini
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Pro

CommonsenseQA 2.9 1.3 8.6 0.0 0.6 0.1 0.0 0.0 1.6 0.0 0.2 0.3 2.4 2.6
StrategyQA 1.0 0.1 1.1 0.8 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 2.1 4.4
SiQA 0.8 1.8 0.3 0.1 1.6 0.0 0.1 0.1 0.0 0.0 0.3 0.1 3.5 4.0
PiQA 1.6 1.6 0.2 0.1 2.8 0.3 0.5 0.3 0.0 0.0 1.4 0.3 4.6 4.6
Winogrande 0.9 1.4 0.2 0.2 0.9 0.4 0.3 0.0 0.0 0.0 0.0 0.0 2.0 3.4
Arc Easy 0.2 0.4 0.2 0.0 0.5 1.6 1.6 0.0 0.5 0.0 0.0 0.0 0.4 0.5
Arc Challenge 0.0 0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.7 0.7
AGIEval LSAT LR 3.3 2.2 0.0 0.0 1.2 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.8 0.2
AGIEval LSAT AR 4.8 7.0 6.1 2.2 5.7 5.2 4.3 0.4 1.3 1.3 0.0 0.4 4.8 1.7
AGIEval LSAT RC 7.1 1.1 0.0 0.0 0.7 3.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.4
ContextHub Deductive L1 0.7 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
ContextHub Deductive L2 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.4
ContextHub Abductive L1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ContextHub Abductive L2 0.0 0.2 0.1 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.4
MuSR Murder Mysteries 0.0 0.4 0.0 0.0 0.0 11.6 0.4 0.0 0.0 0.0 0.0 0.0 6.8 3.6
MuSR Team Allocations 5.2 3.2 0.8 0.0 0.8 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MuSR Object Placements 0.0 1.6 0.0 0.0 0.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.4
MMLU 1.9 0.6 1.0 0.2 1.5 1.0 0.4 0.2 0.0 0.1 0.0 0.1 3.1 3.2
MMLU Pro 4.4 5.4 13.1 3.3 12.5 3.6 5.4 2.0 2.4 1.9 0.4 0.4 5.0 4.4
GPQA 4.5 10.3 9.4 1.6 8.5 1.8 3.8 0.7 0.0 0.0 0.0 0.0 11.8 15.0
MATH 1.6 5.5 8.2 2.5 2.3 1.6 3.0 0.4 0.4 0.5 0.9 0.0 1.7 1.0
GSM8k 1.7 1.4 0.7 10.5 0.4 0.6 0.4 0.0 0.0 0.0 0.3 0.0 0.1 0.1
BigGen Bench 5.0 0.4 0.5 0.1 0.5 0.4 0.3 9.5 0.0 0.0 0.0 0.1 0.4 0.1
GSM8k-Hard 2.1 8.7 10.2 4.5 10.7 3.2 3.5 1.0 0.8 0.5 3.0 1.8 0.4 2.7
MuSiQue 1.4 0.0 8.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 3.1
Folio 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.5
BigBench-Hard 3.8 5.4 1.8 0.4 1.3 0.1 0.4 0.3 0.0 0.0 0.0 0.0 1.2 0.9

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 11: Percentage of responses per dataset per model that our answer parser could not extract an
answer for in the few-shot direct answer setting. Prompt modifications were made to decrease these
numbers. No model is above 15%.

Few-shot Direct Answer Unparseable Answer Rate by Percentage

dataset M
eta
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lam
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CommonsenseQA 0.0 0.1 0.2 0.0 1.3 0.9 9.9 1.3 0.0 0.6
AGIEval LSAT LR 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
AGIEval LSAT AR 2.6 0.0 0.0 0.0 3.5 5.2 0.0 0.0 0.0 0.0
AGIEval LSAT RC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ContextHub Deductive L1 0.0 2.8 0.0 0.0 0.0 10.7 0.3 0.0 0.0 0.0
ContextHub Deductive L2 0.0 0.1 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0
ContextHub Abductive L1 0.0 2.8 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0
ContextHub Abductive L2 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MuSR Murder Mysteries -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
MuSR Team Allocations -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MuSR Object Placements -1.0 0.0 0.0 0.0 0.4 1.2 0.0 0.0 0.0 0.0
MMLU 4.2 0.2 0.0 0.0 0.1 0.0 0.4 0.1 0.0 0.2
MMLU Pro 5.1 1.2 2.4 0.3 1.0 9.1 0.5 2.6 0.4 0.5
GPQA -1.0 1.3 0.0 0.0 3.6 7.4 13.4 1.1 0.0 0.0
MATH 0.3 5.9 0.3 0.2 0.1 0.1 1.6 2.2 0.0 0.3
GSM8k 0.1 0.1 0.5 0.0 0.1 2.2 0.0 0.2 0.0 0.0

Table 12: Percentage of responses per dataset per model that our answer parser could not extract an
answer for in the few-shot CoT setting. Prompt modifications were made to decrease these numbers.
No model is above 15%.

Few-shot CoT Unparseable Answer Rate by Percentage
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CommonsenseQA 0.7 0.9 1.8 0.1 0.2 0.1 0.0 0.0 0.0 3.4
AGIEval LSAT LR 0.6 0.8 0.4 0.0 1.4 3.1 0.8 0.0 0.0 0.6
AGIEval LSAT AR 2.2 9.1 3.9 0.9 11.7 3.0 3.5 1.7 0.0 1.3
AGIEval LSAT RC 7.8 5.9 0.0 0.0 1.9 9.3 2.6 0.0 0.0 2.2
ContextHub Deductive L1 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.3
ContextHub Deductive L2 0.9 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.3
ContextHub Abductive L1 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ContextHub Abductive L2 3.1 0.0 5.3 0.1 0.0 0.2 0.0 0.0 0.0 0.7
MuSR Murder Mysteries -1.0 1.2 0.0 0.0 0.4 0.8 0.0 0.0 0.0 14.0
MuSR Team Allocations -1.0 2.4 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.4
MuSR Object Placements -1.0 0.4 0.0 0.0 1.2 0.4 0.0 0.0 0.0 0.0
MMLU 0.6 0.8 1.1 0.2 1.5 0.7 0.3 0.2 0.2 2.5
MMLU Pro 0.6 1.9 8.5 2.1 14.1 1.8 1.9 0.8 1.1 3.9
GPQA -1.0 12.1 10.3 0.9 12.9 6.0 5.6 3.3 0.0 13.6
MATH 1.5 6.8 8.2 2.4 11.1 2.6 2.9 1.1 0.5 1.8
GSM8k 0.8 1.3 1.0 0.1 0.5 0.5 0.1 0.0 0.1 0.1
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Table 13: Average character index of where the answer span begins in a generated response for each
dataset and model pair for the zero-shot direct answer setting. We use these numbers as a proxy for
the model following instructions (i.e. generating reasoning before an answer). Prompt modifications
were made to ensure CoT prompts resulted in longer generations and direct answer prompts led to
short generations.

Zero-shot Direct Answer Span Location By Character Index

dataset M
eta
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lam

a 2 7b
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eta

-L
lam

a 3.1
8b
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eta
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lam
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70

b

Gem
ma 2 9b

Phi-
3 Small

8k

Qwen
2 7b

Qwen
2 72

b

GPT-4
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Gpt-
4o

Clau
de

-3
Haik

u

Clau
de

-3.
5 Son

ne
t

Gem
ini

1.5
Flas

h

Gem
ini

1.5
Pro

CommonsenseQA 9 8 27 8 8 8 10 8 8 10 7 7 8 8
StrategyQA 44 45 27 44 44 44 46 44 8 8 42 41 8 7
SiQA 8 8 8 8 8 8 29 8 8 8 6 6 8 8
PiQA 7 8 8 8 8 8 25 8 8 8 4 5 8 8
Winogrande 8 9 8 8 8 8 9 8 8 9 5 4 8 8
Arc Easy 9 8 8 8 8 8 9 8 8 8 7 7 8 8
Arc Challenge 8 8 8 8 8 8 9 8 8 8 7 7 8 8
AGIEval LSAT LR 25 24 24 24 24 24 25 24 43 21 25 25 26 26
AGIEval LSAT AR 25 24 24 24 24 24 26 24 48 23 25 25 26 27
AGIEval LSAT RC 25 24 24 24 24 24 25 24 31 18 25 25 26 25
ContextHub Deductive L1 19 19 19 19 20 19 19 19 19 19 20 20 19 20
ContextHub Deductive L2 19 19 19 19 19 19 19 19 19 19 20 20 19 19
ContextHub Abductive L1 19 19 19 19 20 19 19 19 19 19 20 20 19 19
ContextHub Abductive L2 19 19 19 19 20 19 19 19 19 19 20 20 19 19
MuSR Murder Mysteries 8 8 27 8 8 8 8 8 8 8 6 4 8 8
MuSR Team Allocations 27 22 19 19 27 23 26 22 8 8 30 20 8 8
MuSR Object Placements 8 8 27 8 8 8 8 8 8 8 7 6 8 8
MMLU 19 18 19 19 20 18 18 18 19 19 19 19 19 20
MMLU Pro 20 19 38 19 21 19 19 20 19 19 20 20 19 19
GPQA 19 19 19 19 21 19 19 19 19 19 20 20 19 20
MATH 30 31 28 28 28 30 30 33 28 28 31 29 28 28
GSM8k 22 29 30 28 28 37 24 28 28 28 29 28 28 28
GSM8k-Hard 9 57 11 21 9 13 40 20 7 8 8 8 8 8
Folio 39 8 8 8 8 8 31 13 8 16 5 6 8 70
BigBench-Hard 39 22 25 21 26 32 29 26 28 19 28 28 10 16

Table 14: Average character index of where the answer span begins in a generated response for
each dataset and model pair for the zero-shot CoT setting. We use these numbers as a proxy for the
model following instructions (i.e. generating reasoning before an answer). Prompt modifications
were made to ensure CoT prompts resulted in longer generations and direct answer prompts led to
short generations.

Zero-shot CoT Answer Span Location By Character Index

dataset M
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a 3.1
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a 3.1
70
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Phi-
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de

-3.
5 Son

ne
t
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h
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Pro

CommonsenseQA 441 564 845 1237 236 466 577 341 899 1086 626 1103 214 165
StrategyQA 726 434 996 1131 267 460 363 358 692 1033 754 1158 256 195
SiQA 569 423 841 965 235 528 472 420 847 1094 602 1016 196 169
PiQA 699 455 869 914 207 532 447 364 683 935 578 1092 200 150
Winogrande 377 324 645 694 187 326 391 298 634 750 408 889 200 173
Arc Easy 684 581 1154 1319 367 610 534 355 990 1239 789 1222 340 231
Arc Challenge 763 644 1178 1316 422 596 571 387 1020 1269 828 1240 372 267
AGIEval LSAT LR 2053 1324 1163 1675 524 689 1560 768 949 998 1561 728 906 886
AGIEval LSAT AR 1377 1791 1422 2182 712 1027 1819 1264 1230 1151 1202 849 817 871
AGIEval LSAT RC 1977 1032 1103 1575 779 590 1170 660 973 1079 1628 786 703 709
ContextHub Deductive L1 694 368 759 711 383 327 539 402 540 580 542 556 320 254
ContextHub Deductive L2 842 472 1095 990 614 442 789 585 840 758 777 655 515 503
ContextHub Abductive L1 577 461 747 879 464 440 754 638 788 879 683 594 368 325
ContextHub Abductive L2 861 600 1270 1229 686 571 976 856 1115 1113 894 894 601 551
MuSR Murder Mysteries 495 1592 1958 1847 1210 1246 1241 1718 1961 1965 1671 1759 1349 1213
MuSR Team Allocations 1212 1845 2294 2310 1513 1433 2021 2213 2562 2698 1479 1856 1596 1607
MuSR Object Placements 917 625 1354 1266 695 641 904 819 1593 1536 1210 1455 616 429
MMLU 834 512 663 622 503 277 497 407 400 461 447 409 630 413
MMLU Pro 1371 513 788 716 640 518 954 699 926 940 590 653 660 774
GPQA 1034 778 917 901 806 500 1018 628 541 666 486 472 981 735
MATH 742 1118 1222 1179 748 670 1189 1145 1125 1153 677 675 679 698
GSM8k 572 637 834 719 453 521 709 645 1048 1035 708 680 541 437
GSM8k-Hard 916 939 1027 1069 555 766 1083 1053 1350 1266 594 815 605 512
Folio 724 765 1479 1379 733 668 919 488 1285 1583 907 1194 934 492
BigBench-Hard 596 230 876 861 429 349 315 443 877 973 545 863 455 346
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Table 15: Average character index of where the answer span begins in a generated response for each
dataset and model pair for the few-shot direct answer setting. We use these numbers as a proxy for
the model following instructions (i.e. generating reasoning before an answer). Prompt modifications
were made to ensure CoT prompts resulted in longer generations and direct answer prompts led to
short generations.

Few-shot Direct Answer Span Location By Character Index

dataset M
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lam
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CommonsenseQA 87 8 27 8 8 8 10 8 8 8
AGIEval LSAT LR 25 24 24 24 24 24 24 24 31 24
AGIEval LSAT AR 25 24 24 24 24 24 24 24 27 24
AGIEval LSAT RC 25 24 24 24 24 24 24 24 25 24
ContextHub Deductive L1 19 19 19 19 19 19 19 19 19 19
ContextHub Deductive L2 19 19 19 19 19 19 19 19 19 19
ContextHub Abductive L1 19 19 19 19 19 19 19 19 19 19
ContextHub Abductive L2 19 19 19 19 19 19 19 19 19 19
MuSR Murder Mysteries -1 8 27 8 8 8 8 8 8 8
MuSR Team Allocations -1 21 19 19 27 21 27 23 8 8
MuSR Object Placements -1 8 27 8 8 8 8 8 8 8
MMLU 19 18 19 19 19 18 18 18 19 19
MMLU Pro 19 19 38 19 20 20 19 19 19 19
GPQA -1 19 19 19 19 19 19 19 19 19
MATH 29 36 29 29 28 30 30 41 28 28
GSM8k 22 23 23 22 22 23 22 24 27 28

Table 16: Average character index of where the answer span begins in a generated response for
each dataset and model pair for the few-shot CoT setting. We use these numbers as a proxy for the
model following instructions (i.e. generating reasoning before an answer). Prompt modifications
were made to ensure CoT prompts resulted in longer generations and direct answer prompts led to
short generations.

Few-shot CoT Answer Span Location By Character Index

dataset M
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CommonsenseQA 301 195 470 921 145 192 280 174 219 158
AGIEval LSAT LR 1037 510 464 539 437 359 530 599 894 523
AGIEval LSAT AR 1024 1247 886 768 573 1025 750 835 1033 670
AGIEval LSAT RC 799 378 131 206 164 111 241 205 1086 266
ContextHub Deductive L1 383 386 406 376 359 376 388 364 416 366
ContextHub Deductive L2 736 767 829 822 823 855 612 807 884 809
ContextHub Abductive L1 301 386 428 450 431 413 541 447 575 379
ContextHub Abductive L2 709 586 967 754 804 784 829 821 905 815
MuSR Murder Mysteries -1 1280 1693 1702 1225 1338 1246 1719 1974 1419
MuSR Team Allocations -1 2195 2087 2160 1628 1755 2181 2156 2632 1841
MuSR Object Placements -1 907 1104 1213 706 919 676 963 1351 853
MMLU 282 266 333 245 265 260 267 243 392 218
MMLU Pro 429 397 424 411 516 425 541 325 681 396
GPQA -1 848 782 774 615 711 662 703 670 594
MATH 630 705 584 640 747 529 1074 848 1261 553
GSM8k 374 332 352 352 398 372 415 341 651 314
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Table 17: The top 3 slices benefiting the most from CoT across MMLU and MMLU Pro for Llama
3.1 8b and 70b. 6 out of 12 of these top slices directly contain “math” or “mathematics.” We dive
deeper into each category subsequently and observe that the questions leading to improvements in
the other categories are mathematical in nature as well.

MMLU MMLU Pro

Model Subject Direct (%) CoT (%) Err. Red. (%) N Subject Direct (%) CoT (%) Err. Red. (%) N

Llama 3.1 8b elementary mathematics 46.8 88.4 78.1 378 math 23.6 44.8 27.8 1350
Llama 3.1 8b high school mathematics 39.6 71.5 52.8 270 business 29.4 45.6 23.0 789
Llama 3.1 8b miscellaneous 83.9 89.9 37.3 783 physics 27.9 41.4 18.8 1299

Llama 3.1 70b elementary mathematics 82.3 94.7 70.1 378 math 44.5 68.3 42.9 1351
Llama 3.1 70b medical genetics 93.0 97.0 57.1 100 business 44.0 67.8 42.5 789
Llama 3.1 70b high school mathematics 61.5 82.2 53.8 270 chemistry 40.5 64.0 39.6 1132

level. In doing so, we can test our hypotheses with much finer granularity than possible by relying
on subjective groupings into tasks and categories.

Breakdown by the presence of equations We aim to design an instance-level classifier to deter-
mine if CoT is expected to help on a question or not. That is, we want a function g : q → {0, 1}
where g(q) returns 1 if extract(ỹcot) = y∗ and extract(ỹda) ̸= y∗ where y∗ is the gold answer
to q. We explored different forms of g; however, we ultimately found it most effective to use a
classifier g : (q, ỹcot) → {0, 1} which also consults the chain-of-thought produced by the model.
This allows us to featurize how the LM solves the problem, particularly whether it uses symbolic
reasoning or not.

We find that g can be implemented with a single feature: does q or ỹcot contain a “=”? The “=”
token very strongly indicates the presence of equations in the problem or its solution, which turn out
to be a strong hallmark of symbolic reasoning.4

We plot the overall CoT delta (performance of CoT minus the performance of direct answer) for
both MMLU and MMLU Pro across multiple models between two bins according to this classifier
g, labeled as “With =” and “Without =”, in Figure 4. We also report the amount of performance
gain explained by questions having an “=” vs. not in Appendix G.1. We find that the majority of the
performance gain from CoT on MMLU and MMLU Pro comes from questions that have an “=” in
the question or generated responses. Because “=” are usually found in math problems, we equate
this to CoT primarily benefiting MMLU and MMLU Pro on the math-related questions with very
little to no gain (depending on the model) for non-math questions.

G.1 PERFORMANCE IMPACTS OF “=” ON MMLU AND MMLU PRO

Tables 18 and 19 show the amount of total improvement from using CoT over direct prompting that
can be explained by the presence of “=” on MMLU and MMLU Pro over multiple models.

H FULL RESULTS OF EVALUATIONS ON FORMAL REASONING DATASETS

As discussed in Section 5, we include detailed evaluation results of few-shot direct answer, few-shot
CoT, direct answer solver, CoT solver, and tool-augmented prompting in Table 20. The unparseable
rate stands for the rate of unparseable model responses that either fail to pass our answer extrac-
tion parser (for all methods except tool-augmented prompting) or fail to be executed by symbolic
solvers. For FOLIO and ContextHub, we compute the accuracy by making a random guess for the
unparseable responses; for GSM8K and GSM8K-Hard, we consider the unparseable responses as
incorrect.

We note that all models have a low unparseable rate (< 10%) for all methods except tool-augmented
prompting. By manually inspecting the outputs, we observe that the high unparseable rate for some
models with tool-augmented prompting is caused by these models generating Python programs or

4We explored implementing g with a logistic regression classifier with tf-idf features over the (q, ỹcot)
pairs, trained over a subset of the data from MMLU and MMLU Pro. This classifier actually allowed us to
discover the “=” feature, but its accuracy did not exceed the accuracy of that single feature.
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Table 18: Total CoT deltas on MMLU broken down by the total gain from questions and responses
with an “=” vs. without an “=”.

Model Total CoT Delta CoT delta w/ = CoT delta w/o = Perf. Gain w/ = Fraction of N w/ =

Llama 2 7b 6.0 0.6 5.4 9.8% 10.9%
Mistral 7b 4.1 1.2 2.9 28.6% 9.8%
Llama 3.1 8b 5.5 2.9 2.6 52.9% 9.6%
Llama 3.1 70b 1.9 1.8 0.1 94.0% 10.6%
Gemma 2 9b 2.6 2.0 0.6 78.5% 10.0%
Phi-3 Small 8k 3.1 1.5 1.7 47.4% 8.3%
Qwen 2 7b 2.5 3.0 -0.5 100.0% 9.8%
Qwen 2 72b 3.5 2.4 1.1 67.8% 9.6%
GPT-4o Mini 5.2 3.5 1.7 66.9% 10.5%
GPT-4o 4.2 2.4 1.8 57.6% 10.3%
Claude-3 Haiku 3.7 2.4 1.3 64.4% 9.3%
Claude-3.5 Sonnet 3.2 2.3 0.9 72.1% 10.7%
Gemini 1.5 Flash 3.0 1.7 1.2 59.0% 10.1%
Gemini 1.5 Pro 1.9 1.0 0.9 51.9% 9.6%

Table 19: Total CoT deltas on MMLU Pro broken down by the total gain from questions and re-
sponses with an “=” vs. without an “=”.

Model Total CoT Delta CoT delta w/ = CoT delta w/o = Perf. Gain w/ = Fraction of N w/ =

Llama 2 7b 1.6 1.3 0.3 79.6% 43.6%
Mistral 7b 3.8 1.9 1.9 50.7% 41.8%
Llama 3.1 8b 12.4 10.0 2.4 80.8% 35.2%
Llama 3.1 70b 11.4 11.1 0.3 97.6% 39.6%
Gemma 2 9b 7.6 7.4 0.2 97.9% 40.2%
Phi-3 Small 8k 11.6 9.9 1.7 85.7% 42.7%
Qwen 2 7b 10.0 8.9 1.1 88.6% 41.6%
Qwen 2 72b 19.0 16.1 2.9 84.7% 41.4%
GPT-4o Mini 20.6 18.4 2.3 89.0% 44.0%
GPT-4o 17.7 17.1 0.6 96.7% 44.1%
Claude-3 Haiku 8.7 7.8 0.9 90.1% 42.0%
Claude-3.5 Sonnet 16.2 14.8 1.3 91.9% 43.4%
Gemini 1.5 Flash 12.9 11.8 1.1 91.3% 42.3%
Gemini 1.5 Pro 10.0 8.6 1.4 85.7% 41.8%
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Table 20: Performance and unparseable rates for few-shot direct answer, few-shot CoT, Plan + Direct
Solver, Plan + CoT Solver, and Plan + Tool Solver Solver. “Acc.” stands for accuracy and “% Unp.”
stands for the rate of unparseable model responses that either fail to pass our answer extraction
parser (for all methods except Plan + Tool Solver prompting) or fail to be executed by symbolic
solvers. For FOLIO and ContextHub, we compute the accuracy by making a random guess for the
unparseable responses; for GSM8K and GSM8K-Hard, we consider the unparseable responses as
incorrect.

Dataset Method Mistral 7b Llama 3.1 8b Llama 3.1 70b GPT-4o Mini
Acc. % Unp. Acc. % Unp. Acc. % Unp. Acc. % Unp.

GSM8K Direct Answer 12.5 0.1 20.1 0.5 39.1 0.0 32.8 0.0
GSM8K CoT 56.2 1.4 86.4 1.0 96.1 0.1 94.2 0.1
GSM8K Plan + CoT Solver 45.0 1.0 78.7 0.4 94.7 0.0 92.0 0.1
GSM8K Plan + Direct Solver 10.6 0.1 19.6 0.1 42.2 0.0 39.3 0.0
GSM8K Plan + Tool Solver 59.8 8.6 80.3 1.3 94.4 0.4 90.5 1.5
GSM8K-Hard Direct Answer 2.9 0.7 4.4 0.6 12.8 0.7 12.3 7.6
GSM8K-Hard CoT 20.3 5.0 32.4 9.6 47.8 4.4 52.2 0.5
GSM8K-Hard Plan + CoT Solver 18.7 2.6 32.4 1.3 49.7 0.6 51.5 0.3
GSM8K-Hard Plan + Direct Solver 3.0 0.5 5.5 0.8 15.8 0.1 17.4 0.3
GSM8K-Hard Plan + Tool Solver 44.2 8.9 57.9 1.2 68.0 0.5 70.4 1.4
ContextHub Deductive L1 Direct Answer 59.2 2.8 23.0 0.0 50.0 0.0 44.3 0.0
ContextHub Deductive L1 CoT 46.2 0.2 73.0 0.2 67.5 0.0 59.2 0.0
ContextHub Deductive L1 Plan + CoT Solver 49.5 0.0 64.8 0.0 65.5 0.0 63.2 0.0
ContextHub Deductive L1 Plan + Direct Solver 45.8 3.0 55.8 0.0 53.5 0.0 56.2 0.0
ContextHub Deductive L1 Plan + Tool Solver 68.8 27.8 84.2 11.8 91.7 9.8 90.7 7.8
ContextHub Abductive L1 Direct Answer 21.7 2.8 36.1 0.0 58.9 0.0 59.2 0.0
ContextHub Abductive L1 CoT 23.9 0.0 40.0 0.0 62.2 0.0 76.9 0.0
ContextHub Abductive L1 Plan + CoT Solver 38.3 0.0 42.5 0.0 65.6 0.0 74.2 0.0
ContextHub Abductive L1 Plan + Direct Solver 46.9 3.9 33.3 0.3 63.1 0.0 61.7 0.0
ContextHub Abductive L1 Plan + Tool Solver 59.2 35.8 70.8 9.7 73.9 4.2 74.7 10.3
FOLIO Direct Answer 56.2 12.3 59.6 0.0 69.5 0.0 64.0 0.0
FOLIO CoT 53.7 1.5 56.7 2.5 72.4 2.0 70.4 0.0
FOLIO Plan + CoT Solver 53.7 0.0 55.7 0.0 73.9 0.5 70.4 0.0
FOLIO Plan + Direct Solver 52.7 0.0 54.2 0.0 72.9 0.0 63.5 0.0
FOLIO Plan + Tool Solver 48.8 46.8 54.2 28.6 70.0 16.7 62.6 25.1

formal specifications that fail to follow the format of the formal language (Python or z3) and that lead
to execution errors. Such an issue is particularly severe for the smaller models. However, we note
that despite the high unparseable rate, the overall accuracy of these models with tool augmentation
is still on par with or outperforms other methods.

I DISCUSSION OF LIMITATIONS

I.1 LONG HORIZON PLANNING

One set of tasks where symbolic reasoning helps substantially that our experiments haven’t covered
as thoroughly (with the exception of BiGGen-Bench) is long-horizon planning (Valmeekam et al.,
2023; Xie et al., 2024; Gundawar et al., 2024; Valmeekam et al., 2024). There are two reasons we
don’t treat it here. First, we are primarily interested in tasks that are conveyed in language, and we
see less complex planning in language-only tasks. Second, there has already been a large debate
on the effectiveness of CoT, both pro (Huang et al., 2022; Hu et al., 2023) and against (Valmeekam
et al., 2023; Kambhampati, 2024; Kambhampati et al., 2024b; Stechly et al., 2024a; Guan et al.,
2024; Verma et al., 2024; Gundawar et al., 2024; Stechly et al., 2024b) using CoT and its derivatives
like tree-of-thought (Yao et al., 2023; Kang et al., 2024), that has resulted in complex systems to
help solve planning problems better. While story generation and interpretation involve elements
of planning with natural language (Peng et al., 2022; Karpinska et al., 2024), such tasks are not
conventionally formalized and benchmarked as planning and reasoning.

I.2 DATASET CONTAMINATION

One limitation of our study is the presence of possible data contamination: it is unknown which
benchmarks may have been explicitly pre-trained on by language models. If a model had memorized
answers to benchmark questions, we would expect direct answering to close some of the gap with
CoT, as the model can just reproduce a known answer rather than deriving it from scratch. We argue
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there are four reasons that our general conclusions are still trustworthy. First, we use a range of
language model scales, including small models that have less capacity to memorize. Second, datasets
with poor direct answering performance like GSM8K-Hard are unlikely to have been substantially
memorized. Third, the inclusion of recent datasets such as MuSR (Sprague et al., 2024) and BiGGen
Bench (Kim et al., 2024) helps to defray this risk. Fourth, our survey of the literature includes papers
that were submitted to conferences in 2023, representing a range of older LLMs trained at various
times.
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J EXAMPLE PROMPTS

We will release all prompts and model responses on our Huggingface repo. We list a few prompt
response pairs here in this section.

AGIEval LSAT AR zero-shot CoT prompt for Llama 3.1 70B

<|start_header_id|>user<|end_header_id|>

Explain your reasoning step-by-step for each question before answering.
Give your final answer in the format \"The answer is therefore <A, B, C,
D, E>\". Failure to comply with the answer formatting will result in no
credit.
Of the eight students\u2014George, Helen, Irving, Kyle, Lenore, Nina,
Olivia, and Robert\u2014in a seminar, exactly six will give individual
oral reports during three consecutive days\u2014Monday, Tuesday, and
Wednesday. Exactly two reports will be given each day\u2014one in the
morning and one in the afternoon\u2014according to the following
conditions: Tuesday is the only day on which George can give a report.
Neither Olivia nor Robert can give an afternoon report. If Nina gives a
report, then on the next day Helen and Irving must both give reports,
unless Nina's report is given on Wednesday.Q: Which one of the following
could be the schedule of the students' reports? Answer Choices: (A)Mon.
morning: Helen; Mon. afternoon: Robert Tues. morning: Olivia; Tues.
afternoon: Irving Wed. morning: Lenore; Wed. afternoon: Kyle (B)Mon.
morning: Irving; Mon. afternoon: Olivia Tues. morning: Helen; Tues.
afternoon: Kyle Wed. morning: Nina; Wed. afternoon: Lenore (C)Mon.
morning: Lenore; Mon. afternoon: Helen Tues. morning: George; Tues.
afternoon: Kyle Wed. morning: Robert; Wed. afternoon: Irving (D)Mon.
morning: Nina; Mon. afternoon: Helen Tues. morning: Robert; Tues.
afternoon: Irving Wed. morning: Olivia; Wed. afternoon: Lenore (E)Mon.
morning: Olivia; Mon. afternoon: Nina Tues. morning: Irving; Tues.
afternoon: Helen Wed. morning: Kyle; Wed. afternoon: George
Let's think step by
step.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
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To determine which one of the following could be the schedule of the
students' reports, let's analyze each answer choice in light of the given
conditions. First, let's recall the conditions: 1. Exactly six students
will give reports over three days. 2. Tuesday is the only day George can
give a report. 3. Neither Olivia nor Robert can give an afternoon report.
4. If Nina gives a report, then on the next day Helen and Irving must both
give reports, unless Nina's report is given on Wednesday. Let's evaluate
each answer choice: (A) Mon. morning: Helen; Mon. afternoon: Robert Tues.
morning: Olivia; Tues. afternoon: Irving Wed. morning: Lenore; Wed.
afternoon: Kyle - This choice does not violate any conditions directly.
However, we need to check if it aligns with all the rules, especially
considering the Nina rule, which isn't directly applicable here since Nina
isn't scheduled. George's requirement is also not met since George isn't
scheduled on Tuesday. (B) Mon. morning: Irving; Mon. afternoon: Olivia
Tues. morning: Helen; Tues. afternoon: Kyle Wed. morning: Nina; Wed.
afternoon: Lenore - This choice violates the condition that if Nina gives
a report, then on the next day Helen and Irving must both give reports,
unless Nina's report is given on Wednesday. Since Nina's report is on
Wednesday, this condition is technically not violated, but we need to
ensure all other conditions are met. George is not scheduled on Tuesday,
which is a requirement. (C) Mon. morning: Lenore; Mon. afternoon: Helen
Tues. morning: George; Tues. afternoon: Kyle Wed. morning: Robert; Wed.
afternoon: Irving - This choice meets the condition that George gives a
report on Tuesday. It also does not violate any other conditions directly.
However, we need to ensure that the Nina rule isn't applicable or is met,
which in this case, it's not applicable since Nina isn't scheduled. (D)
Mon. morning: Nina; Mon. afternoon: Helen Tues. morning: Robert; Tues.
afternoon: Irving Wed. morning: Olivia; Wed. afternoon: Lenore - This
choice violates the condition that if Nina gives a report, then on the
next day Helen and Irving must both give reports. Here, Helen is already
scheduled on the same day as Nina, and while Irving is scheduled the next
day, the condition specifies both Helen and Irving must give reports the
next day, which is not the case since Helen's report is on the same day as
Nina's. (E) Mon. morning: Olivia; Mon. afternoon: Nina Tues. morning:
Irving; Tues. afternoon: Helen Wed. morning: Kyle; Wed. afternoon: George
- This choice violates the condition that Tuesday is the only day George
can give a report, as George is scheduled on Wednesday. Given the
analysis, the only choice that does not directly violate any of the given
conditions and meets the specific requirements (especially considering
the placement of George and the handling of the Nina rule where
applicable) is: The answer is therefore (C).
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<|begin_of_text|><|start_header_id|>user<|end_header_id|>

Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer):\nProvide a concise solution
with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:\n\n## Step 1: [Concise description]\n[Brief
explanation and calculations]

## Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

Therefore, the final answer is: $\\boxed{answer}$. I hope it is correct.

Where [answer] is just the final number or expression that solves the
problem.

Problem: Chris labels every lattice point in the coordinate plane with
the square of the distance from the point to the origin (a lattice point
is a point such that both of its coordinates are integers). How many
times does he label a point with the number
$25$?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

MATH zero-shot CoT response for Llama 3.1 70B

## Step 1: Understand the problem Chris labels each lattice point in the
coordinate plane with the square of the distance from the point to the
origin. We need to find how many times he labels a point with the number
25. ## Step 2: Determine the equation for the distance The distance from
a point (x, y) to the origin (0, 0) is given by the equation $\sqrt{xˆ2 +
yˆ2}$. Since Chris labels the points with the square of the distance, we
are looking for points where $xˆ2 + yˆ2 = 25$. ## Step 3: Find the integer
solutions to the equation We need to find all integer values of x and y
that satisfy the equation $xˆ2 + yˆ2 = 25$. The possible values of $xˆ2$
and $yˆ2$ that add up to 25 are: (0, 25), (25, 0), (1, 24), (24, 1), (4,
21), (21, 4), (9, 16), (16, 9). ## Step 4: Count the number of solutions
However, we need to consider that some of these pairs have negative
counterparts, and we should also count those. For example, (-0, 5) and
(0, -5) are also solutions, as well as (-5, 0) and (5, 0). Similarly, (-3,
4), (3, -4), (-4, 3), and (4, -3) are also solutions. So, we have a total
of 12 solutions. The final answer is: $\boxed{12}$.
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<|start_header_id|>system<|end_header_id|>

You are a helpful AI assistant that will answer reasoning questions. You
will always say at the end \"Answer: <Your Answer Letter Choice>\". You
must only pick one answer and you must end your response with \"Answer:
<Your Answer Letter Choice>\"
everytime!<|eot_id|><|start_header_id|>user<|end_header_id|>

Question: Where would you find magazines along side many other printed
works?

Answer Choices:
( A ) doctor
( B ) bookstore
( C ) market
( D ) train station
( E ) mortuary

Only write the answer. Write the answer in the following format: \"Answer:
<your answer>\". You must always give an answer. You may only pick one
answer choice, if you think multiple are correct only pick the one you
think is best.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

CommonsenseQA zero-shot direct answer response for Llama 3.1 70B
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