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ABSTRACT

We propose a transductive meta-learning method that uses unlabelled instances
to improve few-shot image classification performance. Our approach combines a
regularized Mahalanobis-distance-based soft k-means clustering procedure with
a modified state of the art neural adaptive feature extractor to achieve improved
test-time classification accuracy using unlabelled data. We evaluate our method on
transductive few-shot learning tasks, in which the goal is to jointly predict labels
for query (test) examples given a set of support (training) examples. We achieve
new state of the art performance on the Meta-Dataset and the mini-ImageNet and
tiered-ImageNet benchmarks.

1 INTRODUCTION

Deep learning has revolutionized visual classification, enabled in part by the development of large
and diverse sets of curated training data (Szegedy et al., 2014; He et al., 2015; Krizhevsky et al., 2017;
Simonyan & Zisserman, 2014; Sornam et al., 2017). However, in many image classification settings,
millions of labelled examples are not available; therefore, techniques that can achieve sufficient
classification performance with few labels are required. This has motivated research on few-shot
learning (Feyjie et al., 2020; Wang & Yao, 2019; Wang et al., 2019; Bellet et al., 2013), which seeks
to develop methods for developing classifiers with much smaller datasets. Given a few labelled
"support" images per class, a few-shot image classifier is expected to produce labels for a given set of
unlabelled "query" images. Typical approaches to few-shot learning adapt a base classifier network to
a new support set through various means, such as learning new class embeddings (Snell et al., 2017;
Vinyals et al., 2016; Sung et al., 2018), amortized (Requeima et al., 2019; Oreshkin et al., 2018) or
iterative (Yosinski et al., 2014) partial adaptation of the feature extractor, and complete fine-tuning of
the entire network end-to-end (Ravi & Larochelle, 2017; Finn et al., 2017).

In addition to the standard fully supervised setting, techniques have been developed to exploit
additional unlabeled support data (semi-supervision) (Ren et al., 2018) as well as information present
in the query set (transduction) (Liu et al., 2018; Kim et al., 2019). In our work, we focus on the
transductive paradigm, where the entire query set is labeled at the same time. This allows us to exploit
the additional unlabeled data, with the hopes of improving classification performance. Existing
transductive few-shot classifiers rely on label propagation from labelled to unlabelled examples in
the feature space through either k-means clustering with Euclidean distance (Ren et al., 2018) or
message passing in graph convolutional networks (Liu et al., 2018; Kim et al., 2019).

Since few-shot learning requires handling a varying number of classes, an important architectural
choice is the final feature to class mapping. Previous methods have used the Euclidean distance
(Ren et al., 2018), the absolute difference (Koch et al., 2015), cosine similarity (Vinyals et al.,
2016), linear classification (Finn et al., 2017; Requeima et al., 2019) or additional neural network
layers (Kim et al., 2019; Sung et al., 2018). Bateni et al. (2020) improved these results by using a
class-adaptive Mahalanobis metric. Their method, Simple CNAPS, uses a conditional neural-adaptive
feature extractor, along with a regularized Mahalanobis-distance-based classifier. This modification
to CNAPS (Requeima et al., 2019) achieves improved performance on the Meta-Dataset benchmark
(Triantafillou et al., 2019), only recently surpassed by SUR (Dvornik et al., 2020) and URT (Liu et al.,
2020). However, performance suffers in the regime where there are five or fewer support examples
available per class.
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Figure 1: Soft k-means Mahalanobis-distance based clustering method used in Transductive CNAPS.
First, cluster parameters are initialized using the support examples. Then, during cluster update
iterations, query examples are assigned class probabilities as soft labels and subsequently, both soft-
labelled query examples and labelled support examples are used to estimate new cluster parameters.

Motivated by these observations, we explore the use of unlabelled examples through transductive
learning within the same framework as Simple CNAPS. Our contributions are as follows. (1) We
propose a transductive few-shot learner, namely Transductive CNAPS, that extends Simple CNAPS
with a transductive two-step task encoder, as well as an iterative soft k-means procedure for refining
class parameter estimates (mean and covariance) using both labelled and unlabelled examples. (2)
We demonstrate the efficacy of our approach by achieving new state of the art performance on
Meta-Dataset (Triantafillou et al., 2019). (3) When deployed with a feature extractor trained on
their respective training sets, Transductive CNAPS achieves state of the art performance on 4 out
of 8 settings on mini-ImageNet (Snell et al., 2017) and tiered-Imagenet (Ren et al., 2018), while
matching state of the art on another 2. (4) When additional non-overlapping classes from ImageNet
(Russakovsky et al., 2015) are used to train the feature extractor, Transductive CNAPS is able to
leverage this example-rich feature extractor to achieve state of the art across the board on mini-
ImageNet and tiered-ImageNet.

2 RELATED WORK

2.1 FEW-SHOT LEARNING USING LABELLED DATA

Early work on few-shot visual classification has focused on improving classification accuracy through
the use of better classification metrics with a meta-learned non-adaptive feature extractor. Matching
networks (Vinyals et al., 2016) use cosine similarities over feature vectors produced by independently
learned feature extractors. Siamese networks (Koch et al., 2015) classify query images based on
the nearest support example in feature space, under the L1 metric. Relation networks (Sung et al.,
2018) and variants (Kim et al., 2019; Satorras & Estrach, 2018) learn their own similarity metric,
parameterised through a Multi-Layer Perceptron. More recently, Prototypical Networks (Snell et al.,
2017) learn a shared feature extractor that is used to produce class means in a feature space where the
Euclidean distance is used for classification.

Other work has focused on adapting the feature extractor for new tasks. Transfer learning by fine-
tuning pretrained visual classifiers (Yosinski et al., 2014) was an early approach that proved limited
in success due to issues arising from over-fitting. MAML (Finn et al., 2017) and its variants (Mishra
et al., 2017; Nichol et al., 2018; Ravi & Larochelle, 2017) learn meta-parameters that allow fast
task-adaptation with only a few gradient updates. Work has also been done on partial adaptation
of feature extractors using conditional neural adaptive processes (Oreshkin et al., 2018; Garnelo
et al., 2018; Requeima et al., 2019; Bateni et al., 2020). These methods rely on channel-wise
adaptation of pretrained convolutional layers by adjusting parameters of FiLM layers (Perez et al.,
2018) inserted throughout the network. Our work builds on the most recent of these neural adaptive
approaches, specifically Simple CNAPS (Bateni et al., 2020). SUR (Dvornik et al., 2020) and URT
(Liu et al., 2020) are two very recent methods that employ universal representations stemming from
multiple domain-specific feature extraction heads. URT (Liu et al., 2020), which was developed and
released publicly in parallel to this work, achieves state of the art performance by using a universal
transformation layer.

2.2 FEW-SHOT LEARNING USING UNLABELLED DATA

Several approaches (Kim et al., 2019; Liu et al., 2018; Ren et al., 2018) have also explored the
use of unlabelled instances for few-shot visual classification. EGNN (Kim et al., 2019) employs a
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Figure 2: Overview of the neural adaptive feature extraction process used in Transductive/Simple
CNAPS. Figure was adapted from Bateni et al. (2020).

graph convolutional edge-labelling network for iterative propagation of labels from support to query
instances. Similarly, TPN (Liu et al., 2018) learns a graph construction module for neural propagation
of soft labels between elements of the query set. These methods rely on a neural parameterization
of distance within the feature space. TEAM (Qiao et al., 2019) uses an episodic-wise transductive
adaptable metric for performing inference on query examples using a task-specific metric. Song et al.
(2020) use a cross attention network combined with a transductive iterative approach for augmenting
the support set using the query examples. The closest method to our work is Ren et al. (2018).
Their approach extends prototypical networks by performing a single additional soft-label weighted
estimation of class prototypes. Our work, on the other hand, is different in three major ways. First,
we produce soft-labelled estimates of both class mean and covariance. Second, we use an iterative
algorithm with a data-driven convergence criterion allowing for a dynamic number of soft-label
updates, depending on the task at hand. Lastly, we employ a neural adaptive procedure for feature
extraction that is conditioned on a two-step learned transductive task representation, as opposed to
a fixed feature-extractor. As we discuss in Section 4.2, this novel task-representation encoder is
responsible for substantial performance gains on out-of-domain tasks.

3 METHOD

3.1 PROBLEM DEFINITION

Following (Snell et al., 2017; Bateni et al., 2020; Requeima et al., 2019; Finn et al., 2017), we focus
on a few-shot classification setting where a distribution D over image classification tasks (S, Q)
is provided for training. Each task (S, Q) ⇠ D consists of a support set S = {(xi, yi)}n

i=1 of
labelled images and a query set Q = {x⇤

i }m
i=1 of unlabelled images; the goal is to predict labels

for these query examples, given the (typically small) support set. Each query image x⇤
i 2 Q has a

corresponding ground truth label y⇤
i available at training time. A model will be trained by minimizing,

over some parameters ✓ (which are shared across tasks), the expected query set classification loss
over tasks: E(S,Q)⇠D[

P
x⇤
i 2Q� log p✓(y⇤

i |x⇤
i , S, Q)]; the inclusion of the dependence on all of Q

here allows for the model to be transductive. At test time, a separate distribution of tasks generated
from previously unseen images and classes is used to evaluate performance. We also define shot as
the number of support examples per class, and way as the number of classes within the task.

3.2 SIMPLE CNAPS

Our method extends the Simple CNAPS (Bateni et al., 2020) architecture for few-shot visual classifi-
cation. Simple CNAPS performs few-shot classification in two steps. First, it computes task-adapted
features for every support and query example. This part of the architecture is the same as that in
CNAPS (Requeima et al., 2019), and is based on the FiLM meta-learning framework (Perez et al.,
2018). Second, it uses the support set to estimate a per-class Mahalanobis metric, which is used
to assign query examples to classes. The architecture uses a ResNet18 (He et al., 2015) feature
extractor. Within each residual block, Feature-wise Linear Modulation (FiLM) layers compute a
scale factor � and shift � for each output channel, using block-specific adaptation networks  ✓ that
are conditioned on a task encoding. The task encoding g✓(S) consists of the mean-pooled feature
vectors of support examples produced by d✓, a separate but end-to-end learned Convolution Neural
Network (CNN). This produces an adapted feature extractor f✓ (which implicitly depends on the
support set S) that maps support/query images onto the corresponding adapted feature space. We
will denote by S✓, Q✓ versions of the support/query sets where each image is mapped into its feature
representation z = f✓(x). Simple CNAPS then computes a Mahalanobis distance relative to each
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(b) Transductive CNAPS vs. Simple CNAPS
Figure 3: a) Overview of the transductive task-encoding procedure, g✓(S, Q), used in Transductive
CNAPS. b) Transductive CNAPS (right) extends the Mahalanobis-distance based classifier in Simple
CNAPS (left) through transductive soft k-means clustering of the visual space.

class k by estimating a mean µk and regularized covariance Qk in the adapted feature space, using
the support instances:

µk =
1

nk

X

i

I[yi = k] zi, Qk = �k ⌃k + (1� �k)⌃ + �I, �k =
nk

nk + 1
. (1)

Here I[yi = k] is the indicator function and nk =
P

i I[yi = k] is the number of examples with
class k in the support set S. The ratio �k balances a task-conditional sample covariance ⌃ and a
class-conditional sample covariance ⌃k:

⌃ =
1

n

X

i

�
zi�µ

��
zi�µ

�T
, ⌃k =

1

nk

X

i

I[yi = k]
�
zi�µk

��
zi�µk

�T
, (2)

where µ = 1
n

P
i zi is the task-level mean. When few support examples are available for a particular

class, �k is small, and the estimate is regularized towards the task-level covariance ⌃. As the
number of support examples for the class increases, the estimate tends towards the class-conditional
covariance ⌃k. Additionally, a regularizer �I (we set � = 1 in our experiments) is added to ensure
invertibility. Given the class means and covariances, Simple CNAPS computes class probabilities for
each query feature vector z⇤

i through a softmax over the squared Mahalanobis distances with respect
to each class:

p(y⇤ = k | z⇤) / exp
�
� (z� µk)T Q�1

k (z� µk)
�
. (3)

3.3 TRANSDUCTIVE CNAPS

Transductive CNAPS extends Simple CNAPS by taking advantage of the query set, both in the feature
adaptation step and the classification step. First, the task encoder g✓ is extended to incorporate both a
support-set embedding es and a query-set embedding eq such that,

es =
1

K

X

k

1

nk

X

i

I[yi = k] d✓(xi), eq =
1

nq

X

i⇤
d✓(x

⇤
i ), (4)

where d✓ is a learned CNN. The support embedding es is formed by an average of (encoded) support
examples, with weighting inversely proportional to their class counts to prevent bias from class
imbalance. The query embedding eq uses simple mean-pooling; both es and eq are invariant to
permutations of the respective support/query instances. We then process es and eq through two steps
of a Long Short Term Memory (LSTM) network in the same order to generate the final transductive
task-embedding g✓(S, Q) used for adaptation. This process is visualized in Figure 3-a.
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Algorithm 1 Iterative Refinement in Transductive-CNAPS
1: procedure COMPUTE_QUERY_LABELS(S✓, Q✓, Niter)

2: For j ranging over support and query sets, wjk  
⇢

1 if (z0
j , y

0
j) 2 S✓ and yj = k

0 otherwise
3: for iter = 0 · · · Niter do . The first iteration is equivalent to Simple CNAPS;
4: Compute class parameters µk,Qk according to update equations equation 6-equation 7
5: Compute class weights using class parameters according to equation 5
6: break if the most probable class for each query example hasn’t changed
7: end for
8: return class probabilities wjk for j corresponding to Q✓

9: end procedure

(a) In-Domain (b) Out-of-Domain (c) Overall
Figure 4: Class recall (otherwise noted as in-class query accuracy) averaged between classes across
all tasks and (a: In-Domain, b: Out-of-domain, c: all) Meta-Dataset datasets. Class recalls have been
grouped together, averaged and plotted according to the class shot in (a), (b), and (c).

Second, we can interpret Simple CNAPS as a form of supervised clustering in feature space; each
cluster (corresponding to a class k) is parameterized with a centroid µk and a metric Q�1

k , and we
interpret equation 3 as class assignment probabilities based on the distance to each centroid. With
this viewpoint in mind, a natural extension to consider is to use the estimates of the class assignment
probabilities on unlabelled data to refine the class parameters µk,Qk in a soft k-means framework
based on per-cluster Mahalanobis distances (Melnykov & Melnykov, 2014). In this framework, as
shown in Figure 1, we alternate between computing updated assignment probabilities using equation 3
on the query set and using those assignment probabilities to compute updated class parameters.

We will define R✓ = S✓ tQ✓ as the disjoint union of the support set and the query set. For each
element of R✓, which we index by j, we define responsibilities wjk in terms of their class predictions
when it is part of the query set and in terms of the label when it is part of the support set,

wjk =

⇢
p
�
y0

j = k | z0
j

�
z0

j 2 Q✓,
I[y0

j = k] (z0
j , y

0
j) 2 S✓.

(5)

Using these responsibilities we can incorporate unlabelled samples from the support set by defining
weighted estimates µ0

k and Q0
k:

µ0
k =

1

n0
k

X

j

wjk z0
j Q0

k = �0
k⌃

0
k + (1� �0

k)⌃0 + �I, (6)

where n0
k =

P
j wjk defines �0

k = n0
k/(n0

k + 1), and the covariance estimates ⌃0 and ⌃0
k are

⌃0 =
1P
k n0

k

X

jk

wjk

�
z0

j�µ0��z0
j�µ0�T

, ⌃0
k =

1

n0
k

X

j

wjk

�
z0

j�µ0
k

��
z0

j�µ0
k

�T
. (7)

with µ0 = (
P

k n0
k)�1 P

jk wjkz0
j being the task-level mean.

These update equations are simply weighted versions of the original Simple CNAPS estimators from
Section 3.2, and reduce to them exactly in the case of an empty query set.

Algorithm 1 summarizes the soft k-means procedure based on these updates. We initialize our weights
using only the labelled support set. We use those weights to compute class parameters, then compute
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updated weights using both the support and query sets. At this point, the weights associated with the
query set Q are the same class probabilities as estimated by Simple CNAPS. However, we continue
this procedure iteratively until we reach either reach a maximum number of iterations, or until class
assignments argmaxk wjk stop changing.

Unlike the transductive task-encoder, this second extension, namely the soft k-mean iterative estima-
tion of class parameters, is used at test time only. During training, a single estimation is produced
for both mean and covariance using only the support examples. This, as we discuss more in Section
4.2, was shown to empirically perform better. See Figure 3-b for a high-level visual comparison of
classification in Simple CNAPS vs. Transductive CNAPS.

4 EXPERIMENTS

4.1 BENCHMARKS

Meta-Dataset (Triantafillou et al., 2019) is a few-shot image classification benchmark that consists
of 10 widely used datasets: ILSVRC-2012 (ImageNet) (Russakovsky et al., 2015), Omniglot (Lake
et al., 2015), FGVC-Aircraft (Aircraft) (Maji et al., 2013), CUB-200-2011 (Birds) (Wah et al., 2011),
Describable Textures (DTD) (Cimpoi et al., 2014), QuickDraw (Jongejan et al., 2016), FGVCx Fungi
(Fungi) (Schroeder & Cui, 2018), VGG Flower (Flower) (Nilsback & Zisserman, 2008), Traffic Signs
(Signs) (Houben et al., 2013) and MSCOCO (Lin et al., 2014). Consistent with past work (Requeima
et al., 2019; Bateni et al., 2020), we train our model on the official training splits of the first 8 datasets
and use the test splits to evaluate in-domain performance. We use the remaining two dataset as
well as three external benchmarks, namely MNIST (LeCun & Cortes, 2010), CIFAR10 (Krizhevsky,
2009) and CIFAR100 (Krizhevsky, 2009), for out-of-domain evaluation. Task generation in Meta-
Dataset follows a complex procedure where tasks can be of different ways and individual classes
can be of varying shots even within the same task. Specifically, for each task, the task way is first
sampled uniformly between 5 and 50 and way classes are selected at random from the corresponding
class/dataset split. Then, for each class, 10 instances are sampled at random and used as query
examples for the class, while of the remaining images for the class, a shot is sampled uniformly
from [1, 100] and shot number of images are selected at random as support examples with total
support set size of 500. Additional dataset-specific constraints are enforced, as discussed in Section
3.2 of (Triantafillou et al., 2019), and since some datasets have fewer than 50 classes and fewer than
100 images per class, the overall way and shot distributions resemble Poisson distributions where
most tasks have fewer than 10 classes and most classes have fewer than 10 support examples (see
Appendix-A.1). Following Bateni et al. (2020) and Requeima et al. (2019), we first train our ResNet18
feature extractor on the Meta-Dataset defined training split of ImageNet following the procedure in
Appendix-A.3. The ResNet18 parameters are then kept fixed while we train the adaptation network
for a total of sampled 110K tasks using Episodic Training (Snell et al., 2017; Finn et al., 2017) (see
Appendix-A.3 for details).

mini/tiered-ImageNet (Vinyals et al., 2016; Ren et al., 2018) are two benchmarks for few-shot
learning. Both datasets employ subsets of ImageNet (Russakovsky et al., 2015) with a total of 100
classes and 60K images in mini-ImageNet and 608 classes and 779K images in tiered-ImageNet.
Unlike Meta-Dataset, tasks across these datasets have pre-defined shots/ways that are uniform across
every task generated in the specified setting. Following (Nichol et al., 2018; Liu et al., 2018; Snell
et al., 2017), we report performance on the 1/5-shot 5/10-way settings across both datasets with
10 query examples per class. We first train the ResNet18 on the training set of the corresponding
benchmark at hand following the procedure noted in Appendix-A.4. We also consider a more feature-
rich ResNet18 trained on the larger ImageNet dataset. However, we exclude classes and examples
from test sets of mini/tiered-ImageNet to address potential class/example overlap issues, resulting in
825 classes and 1,055,494 images remaining. Then, with the ResNet18 parameters fixed, we train
episodically for 20K tasks (see Appendix-A.2 for details).

4.2 RESULTS

Evaluation on Meta-Dataset: In-domain, out-of-domain and overall rankings on Meta-Dataset are
shown in Table 1. Following Bateni et al. (2020) and Requeima et al. (2019), we pretrain our ResNet
feature extractor on the training split of the ImageNet subset of Meta-Dataset. As demonstrated,
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In-Domain Accuracy (%) Out-of-Domain Accuracy (%) Avg Rank
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RelationNet 30.9±0.9 86.6±0.8 69.7±0.8 54.1±1.0 56.6±0.7 61.8±1.0 32.6±1.1 76.1±0.8 37.5±0.9 27.4±0.9 NA NA NA 10.5 11.0 10.6
MatchingNet 36.1±1.0 78.3±1.0 69.2±1.0 56.4±1.0 61.8±0.7 60.8±1.0 33.7±1.0 81.9±0.7 55.6±1.1 28.8±1.0 NA NA NA 10.1 8.5 9.8
MAML 37.8±1.0 83.9±1.0 76.4±0.7 62.4±1.1 64.1±0.8 59.7±1.1 33.5±1.1 79.9±0.8 42.9±1.3 29.4±1.1 NA NA NA 9.2 10.5 9.5
ProtoNet 44.5±1.1 79.6±1.1 71.1±0.9 67.0±1.0 65.2±0.8 64.9±0.9 40.3±1.1 86.9±0.7 46.5±1.0 39.9±1.1 NA NA NA 8.2 9.5 8.5
ProtoMAML 46.5±1.1 82.7±1.0 75.2±0.8 69.9±1.0 68.3±0.8 66.8±0.9 42.0±1.2 88.7±0.7 52.4±1.1 41.7±1.1 NA NA NA 7.1 8.0 7.3
CNAPS 52.3±1.0 88.4±0.7 80.5±0.6 72.2±0.9 58.3±0.7 72.5±0.8 47.4±1.0 86.0±0.5 60.2±0.9 42.6±1.1 92.7±0.4 61.5±0.7 50.1±1.0 6.6 6.0 6.4
BOHB-E 55.4±1.1 77.5±1.1 60.9±0.9 73.6±0.8 72.8±0.7 61.2±0.9 44.5±1.1 90.6±0.6 57.5±1.0 51.9±1.0 NA NA NA 6.4 4.0 5.9
TaskNorm 50.6±1.1 90.7±0.6 83.8±0.6 74.6±0.8 62.1±0.7 74.8±0.7 48.7±1.0 89.6±0.5 67.0±0.7 43.4±1.0 92.3±0.4 69.3±0.8 54.6±1.1 4.7 4.8 4.8
Simple CNAPS 58.6±1.1 91.7±0.6 82.4±0.7 74.9±0.8 67.8±0.8 77.7±0.7 46.9±1.0 90.7±0.5 73.5±0.7 46.2±1.1 93.9±0.4 74.3±0.7 60.5±1.0 3.4 3.0 3.2
SUR 56.3±1.1 93.1±0.5 85.4±0.7 71.4±1.0 71.5±0.8 81.3±0.6 63.1±1.0 82.8±0.7 70.4±0.8 52.4±1.1 94.3±0.4 66.8±0.9 56.6±1.0 3.1 2.6 2.9
URT 55.7±1.0 94.4±0.4 85.8±0.6 76.3±0.8 71.8±0.7 82.5±0.6 63.5±1.0 88.2±0.6 69.4±0.8 52.2±1.1 94.8±0.4 67.3±0.8 56.9±1.0 1.7 2.8 2.2

Our Method 58.8±1.1 93.9±0.4 84.1±0.6 76.8±0.8 69.0±0.8 78.6±0.7 48.8±1.1 91.6±0.4 76.1±0.7 48.7±1.0 95.7±0.3 75.7±0.7 62.9±1.0 2.1 1.6 1.9

Table 1: Few-shot classification on Meta-Dataset, MNIST, and CIFAR10/100. Error intervals
showcase 95% confidence interval, and bold values indicate statistically significant state of the art
performance. Average rank is obtained by ranking methods on each dataset and averaging the ranks.

mini-ImageNet Accuracy (%) tiered-ImageNet Accuracy (%)

5-way 10-way 5-way 10-way

Model Transductive 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML (Finn et al., 2017) BN 48.7±1.8 63.1±0.9 31.3±1.1 46.9±1.2 51.7±1.8 70.3±1.7 34.4±1.2 53.3±1.3
MAML+ (Liu et al., 2018) Yes 50.8±1.8 66.2±1.8 31.8±0.4 48.2±1.3 53.2±1.8 70.8±1.8 34.8±1.2 54.7±1.3
Reptile (Nichol et al., 2018) No 47.1±0.3 62.7±0.4 31.1±0.3 44.7±0.3 49.0±0.2 66.5±0.2 33.7±0.3 48.0±0.3
Reptile+BN (Nichol et al., 2018) BN 49.9±0.3 66.0±0.6 32.0±0.3 47.6±0.3 52.4±0.2 71.0±0.2 35.3±0.3 52.0±0.3
ProtoNet (Snell et al., 2017) No 46.1±0.8 65.8±0.7 32.9±0.5 49.3±0.4 48.6±0.9 69.6±0.7 37.3±0.6 57.8±0.5
RelationNet (Sung et al., 2018) BN 51.4±0.8 67.0±0.7 34.9±0.5 47.9±0.4 54.5±0.9 71.3±0.8 36.3±0.6 58.0±0.6
TPN (Liu et al., 2018) Yes 51.4±0.8 67.1±0.7 34.9±0.5 47.9±0.4 59.9±0.9 73.3±0.7 44.8±0.6 59.4±0.5
AttWeightGen (Gidaris & Komodakis, 2018) BN 56.2±0.9 73.0±0.6 NA NA NA NA NA NA
TADAM (Oreshkin et al., 2018) BN 58.5±0.3 76.7±0.3 NA NA NA NA NA NA
Simple CNAPS (Bateni et al., 2020) BN 53.2±0.9 70.8±0.7 37.1±0.5 56.7±0.5 63.0±1.0 80.0±0.8 48.1±0.7 70.2±0.6
LEO (Rusu et al., 2018) BN 61.8±0.1 77.6±0.1 NA NA 66.3±0.1 81.4±0.1 NA NA
Transductive CNAPS Yes 55.6±0.9 73.1±0.7 42.8±0.7 59.6±0.5 65.9±1.0 81.8±0.7 54.6±0.8 72.5±0.6

Simple CNAPS (Bateni et al., 2020) + FETI BN 77.4±0.8 90.3±0.4 63.5±0.6 83.1±0.4 71.4±1.0 86.0±0.6 57.1±0.7 78.5±0.5
Transductive CNAPS + FETI Yes 79.9±0.8 91.5±0.4 68.5±0.6 85.9±0.3 73.8±1.0 87.7±0.6 65.1±0.8 80.6±0.5

Table 2: Few-shot visual classification results on 1/5-shot 5/10-way few-shot on mini/tiered-ImageNet.
For CNAP-based model, "FETI" indicates that the feature extractor used has been trained on ImageNet
Russakovsky et al. (2015) exluding classes within the test splits of mini/tiered-ImageNet (for more
details see Appendix-[TBD]). "BN" indicates implicit transductive conditioning on the query set
through the use of batch normalization. Error intervals showcase 95% confidence interval.

Transductive CNAPS sets new state of the art accuracy on 2 out of the 8 in-domain datasets, while
matching other methods on 2 of the remaining domains. On out-of-domain tasks, it performs better
with new state of the art performance on 4 out of the 5 out-of-domain datasets, Overall, it produces
an average rank of 1.9 among all datasets, the best among the methods, with an average rank of 2.1
on in-domain tasks, only second to URT which was developed parallel to Transductive CNAPS, and
1.6 on out-of-domain tasks, the best among even the most recent methods.

Evaluation on mini/tiered-ImageNet: We consider two feature extractor training settings on these
benchmarks. First, we employ the feature extractor trained on the corresponding training split of the
mini/tiered-ImageNet. As shown in Table 2, on tiered-ImageNet, Transductive CNAPS achieves state
of art performance on both 10-way settings while matching state of the art accuracy of LEO (Rusu
et al., 2018) on the 5-way settings. On mini-ImageNet, Transductive CNAPS out-performs other
methods on 10-way settings while coming second to LEO (Rusu et al., 2018) and TADAM (Requeima
et al., 2019; Oreshkin et al., 2018) on 5-way. We attribute this difference in performance between
mini-ImageNet and tiered-ImageNet to the fact that mini-ImageNet only provides 38,400 training
examples, compared to 448,695 examples provided by tiered-ImageNet. This results in a lower
performing ResNet-18 feature extractor (which is trained in a traditional supervised manner). This
hypothesis is further supported by the results provided in our second model (denoted by "FETI", for
“Feature Extractor Trained with ImageNet”, in Table 2). In this model, we train the feature extractor
with a much larger subset of ImageNet, which has been carefully selected to prevent any possible
overlap (in examples or classes) with the test sets of mini/tiered-ImageNet. In this case, Transductive
CNAPS is able to take advantage of the more example-rich feature extractor, establishing state of the
art performance across the board. Additionally, even when compared to Simple CNAPS using the
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In-Domain Accuracy (%) Out-of-Domain Accuracy (%) Avg Acc.
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GMM-EM+ 53.3±1.0 91.8±0.6 81.2±0.6 75.8±0.7 71.8±0.6 72.9±0.7 42.8±0.9 91.0±0.4 66.1±0.8 40.3±1.0 94.2±0.4 69.0±0.7 51.3±0.9 72.6 64.2 69.3
GMM 45.3±1.0 88.0±0.9 80.8±0.8 71.4±0.8 61.1±0.7 70.7±0.8 42.9±1.0 88.1±0.6 68.9±0.7 37.2±0.9 91.4±0.5 64.5±0.7 46.6±0.9 68.5 61.7 65.9
FEOT GMM 52.6±1.1 89.6±0.7 84.0±0.6 76.2±0.8 66.5±0.8 73.4±0.8 45.7±1.0 89.8±0.6 74.4±0.7 44.2±1.0 93.1±0.4 71.1±0.8 56.9±1.0 72.2 67.9 70.6
COT GMM 48.7±1.0 92.3±0.5 80.0±0.7 72.4±0.7 59.8±0.7 71.1±0.7 41.4±0.9 87.7±0.5 63.6±0.8 39.2±0.8 89.8±0.5 66.9±0.7 50.5±0.8 69.2 62.0 66.4
GMM-EM 52.3±1.0 92.0±0.5 84.3±0.6 75.2±0.8 64.3±0.7 72.6±0.8 44.6±1.0 90.8±0.5 71.4±0.7 44.7±0.9 93.0±0.4 71.1±0.7 56.4±0.9 72.0 67.3 70.2

Transductive+ 53.3±1.1 92.3±0.5 81.2±0.7 75.0±0.8 72.0±0.7 74.8±0.8 45.1±1.0 92.1±0.4 71.0±0.8 44.0±1.1 95.9±0.3 71.1±0.7 57.3±1.1 73.2 67.9 71.2
Simple 58.6±1.1 91.7±0.6 82.4±0.7 74.9±0.8 67.8±0.8 77.7±0.7 46.9±1.0 90.7±0.5 73.5±0.7 46.2±1.1 93.9±0.4 74.3±0.7 60.5±1.0 73.8 69.7 72.2
FEOT 57.3±1.1 90.5±0.7 82.9±0.7 74.8±0.8 67.3±0.8 76.3±0.8 47.7±1.0 90.5±0.5 75.8±0.7 47.1±1.1 94.9±0.4 74.3±0.8 61.2±1.0 73.4 70.7 72.4
COT 58.8±1.1 95.2±0.3 84.0±0.6 76.4±0.7 68.5±0.8 77.8±0.7 49.7±1.0 92.7±0.4 70.8±0.7 47.3±1.0 94.2±0.4 75.2±0.7 61.2±1.0 75.4 69.7 73.2
Transductive 58.8±1.1 93.9±0.4 84.1±0.6 76.8±0.8 69.0±0.8 78.6±0.7 48.8±1.1 91.6±0.4 76.1±0.7 48.7±1.0 95.7±0.3 75.7±0.7 62.9±1.0 75.2 71.8 73.9

Table 3: Performance of various ablations of Tranductive and Simple CNAPS on Meta-Dataset. Error
intervals showcase 95% confidence interval, and bold values indicate statistically significant state of
the art performance.

same example-rich feature extractor, it outperforms the baseline with strong margins; this comparison
demonstrates the gains we get from leveraging the additional query set information.

Performance vs. Class Shot: In Figure 4, we examine the relationship between class recall (i.e.
accuracy among query examples belonging to the class itself) and the number of support examples
in the class (shot). As shown, Transductive CNAPS is very effective when class shot is below 10,
showing large average recall improvements, especially at the 1-shot level. However, as the class
shot increases beyond 10, performance drops compared to Simple CNAPS. This suggests that soft
k-means learning of cluster parameters can be effective when very few support examples are available.
Conversely, in high-shot classes, transductive updates can act as distractors.

Training with Classification-Time Soft K-means Clustering: In our work, we use soft k-means
iterative updates of means and covariance at test-time only. It’s natural to consider training the feature
adaptation network end-to-end through the soft k-means transduction procedure. We provide this
comparison in the bottom-half of Table 3, with “Transductive+ CNAPS” denoting this variation.
Iterative updates during training result in an average accuracy decrease of 2.5%, which we conjecture
to be due to training instabilities caused by applying this iterative algorithm early in training on noisy
features.

Transductive Feature Extraction vs. Classification: Our approach extends Simple CNAPS in
two ways: improved adaptation of the feature extractor using a transductive task-encoding, and
the soft k-means iterative estimation of class means and covariances. We perform two ablations,
"Feature Extraction Only Transductive" (FEOT) and "Classification Only Transductive" (COT), to
independently assess the impact of these extensions. The results are presented in Table 3. As shown,
both extensions outperform Simple CNAPS. The transductive task-encoding is especially effective
on out-of-domain tasks whereas the soft k-mean learning of class parameters boosts accuracy on
in-domain tasks. Transductive CNAPS is able to leverage the best of both worlds, allowing it to
achieve statistically significant gains over Simple CNAPS overall.

Comparison to Gaussian Mixture Models: The Mahalanobis-distance based class probabilities
produced by Equation 3 closely resembles the cluster posterior probabilities (responsibilities) inferred
by a Gaussian Mixture Model (GMM). The only changes required to make this correspondence exact
is to introduce a class prior distribution ⇡, and to change the class probability model equation 3 to the
Gaussian likelihood:

p(y⇤ = k | z⇤) / ⇡(y⇤ = k) exp

✓
�1

2
(z� µk)T Q�1

k (z� µk)� 1

2
log |Qk|

◆
(8)

With these modifications, Transductive CNAPS would exactly correspond to inference in a GMM,
with cluster parameters learned through semi-supervised expectation maximization (EM). Given this
observation, we consider five GMM-based ablations of our method where the log-determinant is
introduced (a uniform class prior is used). These ablations are presented in Table 3 and correspond to
their soft k-means counterparts in the same order shown. The GMM-based variations of our method
and Simple CNAPS result in a notable 4-8% loss in overall accuracy. It’s also surprising to observe
that the FEOT variation matches the performance of the full GMM-EM model.
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Figure 5: Evaluating Transductive
CNAPS on Meta-Dataset with differ-
ent minimum and maximum number of
steps. As shown, performance is im-
proved with 2 minimum refinement steps
required, with the best results observed
at a maximum of 4 refinement steps.
Performance is, however, degraded with
more refinement steps required as mini-
mum as that may lead to over-fitting.

Maximum and Minimum Number of Refinements: In
our experiments, we use a minimum number of 2 refine-
ment steps of class parameters, with the maximum set to 4
on the Meta-Dataset and 10 on the mini/tiered-ImageNet
benchmarks. We explore the impact of these hyperparam-
eters on the performance on Transductive CNAPS on the
Meta-Dataset in Figure 5. As shown, requiring the same
number of refinement steps for every task results in sub-
optimal performance. This is demonstrated by the fact
that the peak performance for each minimum number of
steps is achieved with larger number of maximum steps,
showcasing the importance of allowing different numbers
of refinement steps depending on the task. In addition,
we observe that as the number of minimum refinement
steps increases, the performance improves up to two steps
while declining after. This suggests that, unlike Ren et al.
(2018) where only a single refinement step leads to the
best performance, our Mahalanobis-based approach can
leverage extra steps to further refining the class parame-
ters. We do see a decline in performance with a higher
number of steps; this suggests that while our refinement
criteria can be effective at performance different number
of steps depending on the task, it can potentially lead to
over-fitting, justifying the need for an accurately chosen
maximum number of steps.

5 DISCUSSION

In this paper, we have presented a few-shot visual classi-
fication method that achieves new state of the art perfor-
mance via a transductive clustering procedure for refining class parameters derived from a previous
neural adaptive Mahalanobis-distance based approach. The resulting architecture, Transductive
CNAPS, is more effective at producing useful estimates of class mean and covariance especially in
low-shot settings, when used at test time. Even though we demonstrate the efficacy of our approach
in the transductive domain where query examples themselves are used as unlabelled data, our soft
k-means clustering procedure can naturally extend to use other sources of unlabelled examples in a
semi-supervised fashion.

Transductive CNAPS superficially resembles a transductive GMM model stacked on top of a learned
feature representation; however, when we try to make this connection exact (by including the log-
determinant of the class covariances), we suffer substantial performance hits. Explaining why this
happens will be the subject of future work.
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