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Abstract
This paper addresses the challenge of enhancing artificial intelligence reasoning capabilities, focusing on logicality
within the Abstraction and Reasoning Corpus (ARC). Humans solve such visual reasoning tasks based on their
observations and hypotheses, and they can explain their solutions with a proper reason. However, many previous
approaches focused only on the grid transition and it is not enough for AI to provide reasonable and human-like
solutions. By considering the human process of solving visual reasoning tasks, we have concluded that the
thinking process is likely the abductive reasoning process. Thus, we propose a novel framework that symbolically
represents the observed data into a knowledge graph and extracts core knowledge that can be used for solution
generation. This information limits the solution search space and helps provide a reasonable mid-process. Our
approach holds promise for improving AI performance on ARC tasks by effectively narrowing the solution space
and providing logical solutions grounded in core knowledge extraction.
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1. Introduction

Artificial intelligence nowadays exhibits impressive problem-solving skills in many domains. Though
they provide valuable assistance, not all responses make sense due to the hallucination issue and lack of
logical stability. According to Pan Lu et al., especially within the category of mathematical reasoning,
logical reasoning, and numeric commonsense, AI agents underperformed compared to other areas such
as scientific, statistical, and algebraic reasoning. Moreover, the "puzzle test" and "abstract scene" tasks
showed averagely the biggest performance gap between current AI models and humans [1]. To enhance
such weaknesses, various experiments have been conducted on logic and puzzle test datasets [2, 3, 4, 5].
Datasets corresponding to such categories that require complex logical capabilities with visual images
are called Visual Reasoning tasks.

As an IQ test is one of the representative measurements of human intelligence, Abstraction and
Reasoning Corpus (ARC) was invented by François Chollet to measure the intelligence of an AI [2]. The
ARC dataset has 400 tasks in each training and evaluation set and each consists of multiple numbers of
example pairs and a test pair as shown in Figure 1. The task is to formulate a pattern that applies to all
the example pairs and then construct an answer with the given test input grid. All tasks are created
based on four core knowledge priors, which are 1) objectness, including object cohesion, persistence,
and its influence via contact, 2) goal-directedness, 3) numbers and counting, and 4) basic geometry and
topology [2]. Due to these characteristics, solutions that have defined domain-specific languages (DSL)
have emerged. Unlike other AI techniques, two representative solutions have utilized DSLs to make the
essence of each not dissolved into a vector but preserved symbolically. Moreover, the performances
have resulted in 1st place in the Kaggle ARC solving competition and ARCathon 2022 [6, 7]. Therefore,
this research focuses on the symbolic representation of the ARC by applying DSLs and synthesizing
DSLs for the solution.
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Figure 1: Example ARC task. Solvers are supposed to formulate a pattern that applies to all the given example
pairs and then construct an answer with the given test input grid.

Since the transformer-based models are considered the best-performing AI, various researchers have
challenged solving ARC tasks with texts by providing additional descriptions [8], applying different
prompting skills [9], or estimating hypotheses between the input and output grids [10]. However, such
solutions can be improved in the following two ways, 1) by using a symbolic network to generate
solutions that are understandable from the human perspective, and 2) by following human thinking
processes to make solutions more reasonable and human-like. As humans explain their thoughts to
verify their understanding, it is necessary to check both the solution and the answer for reasoning tasks.
Thus, this research proposes a symbolic solver that returns understandable and reasonable solutions.

In visual reasoning, humans establish hypotheses based on their observation [11]. Inductive reasoning
is well-known as a method to generate general solutions with sufficient observations, however, finding
the best solution under limited observations is appropriate with abductive reasoning. Due to such
property, the human thinking process of solving the ARC is more likely abductive reasoning. In each
pair of the ARC task, the transition between two grids could be represented with multiple hypotheses
including 1) what has changed, 2) how or how much it has changed, and 3) why it has changed in such a
way. Considering the reason for the transition is the key to this research. In Figure 1, four orange pixels
appeared around the blue pixel. With only the first pair, it is hard to guarantee a pattern for this task.
Observing the second and third pairs provides more clues for formulating a solution. After checking
all pairs, the reason for the orange pixel pattern can now be understood, ensuring that the target is
blue. In other words, the color is the reason for the pattern not the other fundamental properties like
position or counts.

Many previous approaches missed such information and struggled to select a target object to apply
the pattern in the solution generation step. By emphasizing the weight of repeated features, we propose
an experiment that extracts core knowledge which are the candidate arguments for the solution, and
finds common transformations that utilize the extracted information to estimate the result. Our paper’s
contribution is two-fold, 1) it delineates the conversion of ARC tasks into knowledge graphs and the
subsequent extraction of core knowledge from these graphs, and 2) it presents an abductive symbolic
solver that utilizes the extracted core knowledge.



2. Related Works

Domain Specific Languages (DSL) In tackling the ARC challenge, some researchers have designed
DSLs by referencing specific ARC tasks and refining them after solving training tasks. While these DSLs
prove their systematic stability through successful example pair augmentation based on handcrafted
solutions, their adaptability to unseen tasks is limited [7, 12]. Recent studies have explored integrating
neurodiversity-inspired methods with computational intelligence through DSLs. One such system,
the Visual Imagery Reasoning Language (VIMRL), simulates human mental imagery processes in
neurodivergent individuals but struggles to generalize across diverse ARC tasks [13]. Another study
uses DreamCoder synthesis to create symbolic abstractions from solved tasks and design a reasoning
algorithm, however, this approach heavily relies on previously solved tasks, making it less effective in
novel situations [14].

Graph in ARC The paper "Abstract Reasoning with Graph Abstractions (ARGA)" proposed using a
graph-based representation to abstract input images into nodes and edges [15]. This method captures
spatial and relational information but struggles with the complexity of real-world visual reasoning
tasks due to its reliance on predefined graph structures and constraints, limiting its flexibility in diverse
scenarios. Lastly, the paper "Mimicking Human Solutions with Object-Centric Decision Transformer"
proposed an object-construction algorithm by transforming the ARC grid into a graph to cluster the
nodes based on their distances [16]. Since the aim of the paper is limited to defining an object within
only one layer of the graph, the current research gained motivation to expand the graph space by
detecting multiple features.

Abductive Reasoning Abductive reasoning is a type of logical inference aimed at determining the
simplest and most probable explanation from observations. It is used in fields like logistics, design
synthesis, and visual reasoning [11, 17, 18, 19]. Liang et al. introduced a task to evaluate machine
intelligence in visual scenarios through abductive reasoning. This approach, reflecting human cognition
via Observation (O) and Explanation (H), influenced our understanding of the ARC task [11].

Program Synthesis Program synthesis has shown significant advancements in recent years, particu-
larly in the context of the Abstraction and Reasoning Corpus (ARC). Various approaches have been
proposed to tackle the complexities of synthesizing programs that can generalize well from a few exam-
ples. For instance, [20] developed techniques for automating string processing in spreadsheets using
input-output examples, laying the foundational work for programming by example (PBE) systems. [21]
extended this by synthesizing more complex programs beyond domain-specific languages. A notable
contribution is the Semantic Interpreter by [22], which leverages large language models (LLMs) to
translate natural language user utterances into executable programs within a domain-specific language
(DSL) tailored for Microsoft Office applications. This approach highlights the effectiveness of combining
natural language processing with program synthesis, particularly in productivity software. Building on
the idea of leveraging structured domain knowledge, [23] introduced a Divide-Align-Conquer strat-
egy for program synthesis. Their method addresses the exponential growth of the search space in
program synthesis by decomposing tasks into smaller, manageable subtasks. This approach utilizes
structural alignment to guide the search process, significantly improving the efficiency and accuracy of
program synthesis in structured domains such as string transformations and visual reasoning tasks in
the ARC. By employing analogical reasoning and the Structure-Mapping Theory (SMT), their agent,
BEN, outperforms traditional inductive logic programming (ILP) methods, demonstrating the potential
of decomposition-driven synthesis in handling complex program generation.



3. Method

This chapter will describe the overall structure of solving ARC tasks symbolically with abductive
reasoning. The framework shown in Figure 2 can be divided into three main stages: 1) ARC Knowledge
Graph (ARCKG) construction, 2) core knowledge extraction from the knowledge graph, and 3) solution
searching using extracted core knowledge. Each of the steps is further described in Sections 3.1, 3.2,
and 3.3, respectively.

Figure 2: Overall framework of Symbolic ARC Solver. To tackle ARC tasks from the symbolic perspective, the
first step involves generating a corresponding knowledge graph using a construction program based on defined
Domain Specific Languages (DSL). (Step 1, Chapter 3.1) Then, extract core knowledge from the knowledge graph
using Specifier. (Step 2, Chapter 3.2) Since all the ARC tasks consist of multiples of example pairs and a test
pair, we define Specifier to hold only the repeated conditions that appeared in all example pairs. Lastly, search
solutions under given constraints using Synthesizer. (Step 3, Chapter 3.3) The information gained from the
examples and proposing Transformation DSLs limits the solution search space and makes the search feasible.

3.1. ARC Knowledge Graph Construction

In this knowledge graph construction step, each example pair in the task becomes one unit of ARC
Knowledge Graph (ARCKG). For example, a problem in Figure 1 will have four ARCKGs (three examples
and one test pair). ARCKG has four layers in total and it is to organize the nodes and edges well
with their origin and characteristics. Based on this 4-layer structure, the construction rule is defined
using DSL to apply human understanding to the ARC task and to form a database. DSL in the ARC
domain could be categorized into two; Transformation DSL and Property DSL, and only the Property
DSLs are used to construct ARCKG. Transformation DSLs are used in Synthesizer which is explained in
Chapter 3.3. In the following three sub-chapters, the definition of DSL, the structural frame of ARCKG,
and the detailed process of the construction are described.

3.1.1. Domain Specific Language Definition

When humans observe the ARC task, they don’t only identify the changes or differences on the surface
but also why such changes occurred. According to how Michael Hodel designed his DSL for the
ARC [7], property, and util DSLs are the one that composes the reason for the transformation. In
other words, for the complete solution of the ARC, such DSLs are supposed to be preceded before the
transformation. Since this research proposes to use a knowledge graph as a source of core knowledge,
ARCKG is designed to contain information that could be the key argument of the Transformation DSL.
Thus, mainly the DSL which represents the property of an object or a pixel is used for the ARCKG
construction.



DSL Categories - Property DSL This research proposes DSLs that are classified into two categories
based on their purpose. DSLs that symbolize the properties of nodes are referred to as Property DSLs and
are primarily used to draw edges in the knowledge graph. Refer to the Figure 3 to see what properties
are defined. There are several conditions to draw an edge, such as when two nodes have the same
property, when a node has a specific property, or when one node is contained within another node
by some property. This category is further divided into more specific categories: General and Pnode
layer. The former applies to all layers, generating edges, while the latter applies only to the Pnode
layer. Syntax DSLs handle the syntactical elements of DSLs and form the backbone of constructing
the knowledge graph. They, in turn, are divided into DSLs for generating edges, creating nodes, and
combining the two lists, ultimately resulting in the knowledge graph being stored in the form of nodelist
and edgelist.

DSL Categories - Transformation DSL Transformation DSLs are utilized in the symbolic ARC
solver and play a role in predicting the answer by applying transformations to the given nodes. Some of
them belong to both Property DSL and Transformation DSL simultaneously, and the detailed classification
is shown in Figure 3. The reason is due to the ARCKG structure that is defined to have only four types
of nodes. The argument of a Transformation DSL is

Figure 3: Overview of Domain-Specific Languages (DSLs) and their category tag.

Figure 4: The taxonomy of the Domain-Specific Language (DSL). The terms Transformation DSL and Property DSL
are equivalent to the DSL used in Synthesizer and ARCKG construction respectively. In particular, Transformation
DSLs do not follow the traditional ones, such as move, flip, or rotate due to the experimental setup of this
research. Transformation Selection 10 (TS10) contains a selection of suitable DSLs for the experiment and TS5 is a
subset of it. General DSL takes the majority of the Property DSL and represents the characteristics of the object.
Similarly, Pnode-layer DSL only appears in Pnode-layer and forms the fundamental feature of object forming.
Syntax DSL contains node and edge list generation functions to store the information in the form of NodeList
and EdgeList.



Data Types In the realm of Domain-Specific Language (DSL), data types form the backbone of how
information is represented, manipulated, and interpreted. Table 1 provides an overview of the key
data types utilized in our DSL, each tailored to facilitate the unique requirements of nodes and their
symbolic relationships.

Table 1
Description of Data Types Used in creating DSLs

Data type Description

Pnode Represent a single pixel in the grid. Stores grid coordinates.
Onode Represent objects in the grid formed by a collection of Pnode
Gnode Represent the entire grid holding Pnode and Onode as one node.
Vnode Represent a pair of input and output into one node that holds two

Gnodes.
Xnode Represent any type of node above.
Edge Represent relationship between Pnode, Onode, Gnode, and Vnode

(provides connection in the graph).
Color Represent a color of pixel by integer value.
NodeList Represent a list of nodes.
EdgeList Represent a list of edges.
Coordinate Is used to represent coordinates which is a tuple of two integer values.
ColorSet Is used to hold collections of color.

3.1.2. ARC Knowledge Graph Structure Definition

The original ARC data is provided in the form of a two-dimensional array, where each element of the
array contains information corresponding to colors, ranging from 0 to 9. Therefore, it is challenging
for machines to understand and infer rules from this data due to its limited information content.
Thus, we propose a method to convert the 2D grid into a knowledge graph that captures information
perceived by humans when viewing ARC problems. The knowledge graph is formed as units of one
input-output example pair. A single knowledge graph consists of four layers, each characterized by
the attributes of the nodes included in it. When representing the original ARC task’s example pairs
as 𝑇𝑎𝑠𝑘 = {(𝐼1, 𝑂1), (𝐼2, 𝑂2), ..., (𝐼𝑛, 𝑂𝑛)} the corresponding knowledge graphs are expressed as
𝐴𝑅𝐶𝐾𝐺 = {𝑔1, 𝑔2..., 𝑔𝑛}, where 𝑔𝑛 is further represented as 𝑔𝑛 = {𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡𝑛, 𝐸𝑑𝑔𝑒𝐿𝑖𝑠𝑡𝑛}. Each
𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡𝑛 in 𝑔𝑛 is a data structure containing all nodes found in the four layers, and 𝐸𝑑𝑔𝑒𝐿𝑖𝑠𝑡𝑛 is a
data structure containing all edges found in the respective knowledge graph. The detailed description
of each of the four layers is as follows.

• Pnode layer: This first layer converts each pixel into a single node named 𝑃𝑛𝑜𝑑𝑒 and captures
the relationships between these 𝑃𝑛𝑜𝑑𝑒𝑠, representing them as edges.

• Onode layer: This second layer contains nodes representing sets of one or more pixels forming
objects. It captures the relationships between objects as edges. Nodes in this layer, which is
named 𝑂𝑛𝑜𝑑𝑒, are connected to the 𝑃𝑛𝑜𝑑𝑒𝑠 with edges.

• Gnode layer: This third layer represents the entire input or output grid as a single node named
𝐺𝑛𝑜𝑑𝑒. Nodes in this layer are connected to all nodes in the lower layers including the first and
second with edges.

• Vnode layer: This fourth layer combines the input and output grid into a single node. Each
example pair is ultimately represented by one fourth-layered 𝑉 𝑛𝑜𝑑𝑒, which is connected to two
𝐺𝑛𝑜𝑑𝑒s from the third layer through edges.



Figure 5: An example of a straightforward, and almost backbone-structured knowledge graph of the first pair
of Figure 1. In practice, the ARCKG generated by Algorithm 1 can contain up to millions of edges. The graph
consists of four layers, with edges freely drawn between layers as well as between input and output by the
Property DSL. The yellow edges represent connections between two nodes at the same position. The other (black,
blue, green) indicate edges signify that nodes in the lower layer constitute nodes in the upper layer.

3.1.3. ARC Knowledge Graph Construction Program

Algorithm 1 is an example pseudo-code for building an ARCKG using defined DSLs and graph structure.
This program takes a task as input and returns the corresponding knowledge graphs. It consists of two
stages: one for generating node lists from the grid and another for creating edges. The algorithm is
composed of a nested loop structure. The outer loop iterates over each example pair of the input task.
Then, it iterates over the input and output grids of each pair to create node lists. At the end of line 7,
two node lists are generated as a result of lines 3 to 7, named 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡_𝑖𝑛𝑝𝑢𝑡 and 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡_𝑜𝑢𝑡𝑝𝑢𝑡,
respectively. Lines 8 to 9 merge these two node lists and create the very top-layer Vnode, appending it
to the 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡. The loop from lines 10 to 12 applies all possible 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝐷𝑆𝐿 to the 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡,
drawing edges using 𝑀𝑎𝑘𝑒_𝐸𝑑𝑔𝑒_𝑙𝑖𝑠𝑡.

Algorithm 1 ARC Knowledge Graph Construction Program

Require: ARC Task
1: 𝐾𝐺← empty set
2: for each 𝑝𝑎𝑖𝑟 in 𝑇𝑎𝑠𝑘 do
3: for each 𝑔𝑟𝑖𝑑 in 𝑝𝑎𝑖𝑟 do
4: 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡←𝑀𝑎𝑘𝑒_𝑃𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡(𝑔𝑟𝑖𝑑)
5: 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡←𝑀𝑎𝑘𝑒_𝑂𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡(𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡)
6: 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡←𝑀𝑎𝑘𝑒_𝐺𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡(𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡)
7: end for
8: 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡← 𝐶𝑜𝑛𝑐𝑎𝑡_𝑙𝑖𝑠𝑡(𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡_𝑖𝑛𝑝𝑢𝑡, 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡_𝑜𝑢𝑡𝑝𝑢𝑡)
9: 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡←𝑀𝑎𝑘𝑒_𝑉 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡(𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡)

10: for each 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝐷𝑆𝐿 do
11: 𝑒𝑑𝑔𝑒_𝑙𝑖𝑠𝑡←𝑀𝑎𝑘𝑒_𝐸𝑑𝑔𝑒_𝑙𝑖𝑠𝑡(𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝐷𝑆𝐿)
12: end for
13: add (𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡_𝑝𝑎𝑖𝑟, 𝑒𝑑𝑔𝑒_𝑙𝑖𝑠𝑡) to 𝐾𝐺
14: end for
15: return 𝐾𝐺



3.2. Core Knowledge Extraction

In this step, the goal is to extract information that is considered useful for the solution. A unit named
Specifier takes a knowledge graph as input and returns objects that satisfy the constraints. It plays a role
in filtering out relatively less helpful knowledge graph components to narrow down the search space in
Synthesizer. The conditions of this filter are gathered by analyzing all the given example pairs. Since
the ARC is a few-shot task, humans are supposed to formulate a solution from given pairs and apply
it to the test grid after only observing a single grid. Conversely, the solution must be appropriately
applied to all the examples. Therefore, the solution that we are aiming to find is the intersection of
possible solutions of all the given pairs. Moreover, the components of the solution could be found from
the ARCKGs established in the previous step, by counting the nodes with identical properties. The
following sub-chapters describe the concept of the Specifier unit and how it operates differently on
example pairs and a test grid.

3.2.1. Specifier

Specifier is designed to select candidate objects from the test input grid and by doing so, the afterward
solution search space decreases substantially. The object selection in the test grid must be done based on
a rule, driven from given example pairs. For instance, the task in Figure 1 has three example pairs and
we can detect the grid changes around a specific pixel. Since the red and blue pixels appear in all three
pairs, those pixels in the test grid can become a candidate component for the solution. Accordingly, due
to the changes in the grid around those pixels also appearing three times, the solution is concluded to
apply such transformations with the corresponding target pixels. Here, in the task given with 𝑛 example
pairs, selecting the objects, features, or changes observed 𝑛 times is critical in Specifier. Abductive
reasoning in one sentence is to make the best prediction from incomplete observations. Suppose there
always is an absolute solution in every ARC task. Due to the incompleteness of the ARC said by the
creator François Chollet, given example pairs may or may not express the rule of the task precisely.
Thus, the solution-, object-, and constraint-finding process based on the abduction is employed in this
research.

Core Knowledge The term "core knowledge" refers to an output of the Specifier. The narrow range
of meaning relates only to the candidates of objects that satisfy the conditions, while the wider range
of meaning includes their intrinsic properties. On the surface, Specifier unit appears to return only
the object on the grid. In contrast, since an object is equivalent to a node in ARCKG, edges that either
originated from or ended with the node are also the information on the table. By utilizing the features
of selected objects, the specifier concludes constraints for object selection in the test grid.

3.2.2. Train and Test of the Specifier

Train of the Specifier The training phase of the Specifier means the constraint update process for
specifying the objects during the example pair observation. Specifically, the update begins from the
second pair. During the first pair, there are no objects that can be specified for the solution due to the
absence of constraint. Thus, the entire objects and the input grid itself which refer to Onodes and a
Gnode become the candidates. This set of objects is then exported to the Synthesizer. Regardless of
whether the Synthesizer discovers the solution path, Specifier in the following example starts to filter
out the object without any feature in common compared to the object candidates from the previous
iteration. The conditions of an object are either a property or a relationship with other components
which respectively refer to the term feature and edge. From the second iteration, the constraints of
the Specifier gathered based on the features and edges of the object are modified. Since no ARC task
contains less than two example pairs, this abduction process of updating constraints occurs at least
once. After the final update in the last iteration, the constraints are fixed and further used for the test
phase.



Test of the Specifier During the test phase, the module processes the ARCKG of the test grid. Due
to the absence of the output grid, some edges that connect nodes across the grid are not considered.
The core knowledge should be driven only from half of the knowledge graph. The trained constraints
allow Specifier to achieve such a goal under the concept of the task. In short, Specifier in the test phase
searches for nodes that satisfy the conditions gathered from the example pairs and returns candidate
components that can be the material for the solution.

3.3. Symbolic Solution Synthesis

In this step, a solution of an ARC task is discovered by synthesizing Transformation DSLs and core
knowledge driven from the ARCKG by the Specifier unit. A module named Synthesizer takes the role of
searching through all the combination spaces. Since the solution-finding process follows the brute-force
search, theoretically it is solvable under the assumption that the provided DSLs completely cover the
task. Moreover, as the Synthesizer unit exploits the syntheses of Transformation DSL from the example
pairs when solving the test case, the following paragraph explains the operation based on the train and
test phase.

3.3.1. Synthesizer

The Synthesizer unit takes core knowledge and Transformation DSLs as input and finds the combination
of them to be the desired answer. While humans formulate hypothetical solutions and update them
during the example pair observation, Synthesizer narrows down the number of solutions. Similar to the
object node abduction in the Specifier, only the solution that is applicable for all the examples remains
after the training phase. Further, when the component reaches the test grid, it exploits the exact solution
from the train and returns the answer. Figure 6 below depicts the initial solution search space of the
first example pair of a task.

3.3.2. Abductive Symbolic Solver

The Solver, refers to a union of Specifier and Synthesizer unit, has an equivalent meaning with the
term "abductive symbolic solver" or "symbolic ARC solver" in this paper. It utilizes the concept of
abductive reasoning for the learning stage which unfolds in reverse order of inference, starting from
the Synthesizer. The process begins with each node of the input graph treated as a leaf and extends up
to the root of the output grid, exploring all possible paths through the search tree. The edges of the
search tree are composed of Transformation DSLs, originating from the leaves and branching towards
the root by applying each Transformation DSL. The search halts when the tree reaches a certain depth,
at which point the paths connected to the root become candidates for core knowledge used in the
inference stage. At this stage, it identifies all possible (node, path) pairs, where the path represents
the sequence of Transformation DSLs. The term "path" refers to the sequence of Transformation DSLs
(Domain-Specific Languages) applied within the search tree during the process of abductive reasoning
to reach a solution for a given ARC task. Applying this path to the nodes in the pair yields the desired
output targeted during the process. An example of the Synthesizer’s training can be found in Figure 6,
which corresponds to the setup in Section 4.1 and is an example of Synthesizer-10. The Synthesizer starts
with nodes representing parts of the input grid. It applies transformations like get_height, get_width,
get_number_of_colorset, etc., in sequence. The path through these transformations is formed until the
output node, representing the desired solution, is reached.

The Specifier generates a function that identifies the minimal features in the knowledge graph that
uniquely designate the node, returning them as constraints. The objective of this process is to traverse
the knowledge graph and find the smallest subset that satisfies the criteria of the given node, such
as "same color," "adjacent pixels," and "largest." Consequently, the constraint becomes a function that
extracts node(s) in the knowledge graph, ultimately generating a hypothesis in the form of a pair
(constraints, path). This hypothesis can be applied to all knowledge graphs of the same task by the



Figure 6: Training session of the Synthesizer and its expanded search tree. The task is to find the largest
rectangle in the input and change the color to its interior single-pixel color. First, all nodes generated from the
input are placed at the top (leaf) of the search tree, with the output node at the bottom (root), commented
as Correct Answer in the figure. Then, Transformation DSLs are applied to draw paths. This example shows
Synthesizer-10 targeting grid size and color set. Among the DSLs used, get_height returns the height of the node,
get_width returns the width, get_number_of_colorset returns the number of colors other than the background,
and Onode_count returns the number of included objects. The linear(a, b) DSL performs the transformation
𝑎𝑥+ 𝑏 on the previous value x. get_union returns the union of colors between the previous node and the target
node, while get_identity_match returns the color set of the previous node. The path that reaches the root is
highlighted in red, forming a pair with the corresponding leaf.

following method:

path(constraints(KG))⇒ prediction

It means that by applying the sequence of transformations defined by the "path" to the nodes and
information extracted from the knowledge graph (based on the given constraints), the model can
generate a prediction or solution for the task. Essentially, the constraints filter and guide the application
of transformations, ensuring that only relevant parts of the knowledge graph are used to derive the
final prediction. After obtaining a set of possible hypotheses from the observations of the first example
pair, the final solution is adopted through the process of evaluating whether these hypotheses can
consistently explain other observations. Due to the nature of ARC problems, observations are highly
limited by the number of example pairs and exhibit characteristics of few-shot learning. By applying
hypotheses to the given pairs and iteratively selecting only those hypotheses that correctly derive the
answers, the remaining hypotheses are adopted as the final solution for this task. This solution ensures
that our observations are well explained.



Figure 7: Overall demonstration of proposing symbolic ARC solver. The process consists of two steps, the train
phase with given example pairs and the test phase with test input. The starting node indicates the ARCKG
constructed using the respective example pair. The initial state of the Specifier has no constraint and makes the
entire set of detected objects become core knowledge. The Synthesizer, can only refer to the graph components
which are either Onode or Gnode, thus the candidates do not include other types of node. Throughout the
entire combination space, only a few solution paths satisfy the answer and are further utilized for constraint
updating. Since the output grid is considered the answer, verification of the result is feasible. The intrinsic core
knowledge of the used component, which refers to the feature and connected edge in this diagram, affects the
constraint of the following step. The combination of Transformation DSLs, the path that leads to the answer, is
also transferred to the Synthesizer in the next step with generalized form using any node 𝑋1). From the second
iteration, Specifier and Synthesizer follow the conditions of the past. After the training phase, the final conditions
are then applied to each unit, and utilize the ARCKG made of the test input grid to yield the answer.



4. Experiment & Result

The primary objective of this experiment is to leverage a knowledge graph (KG) and Domain Specific
Languagess to solve tasks within the Abstraction and Reasoning Corpus (ARC). Below are the hypotheses
raised in this paper:

• H1: The knowledge graphs effectively encapsulate symbolic knowledge, facilitating human-like
problem-solving and enhancing performance.

• H2: The number of Transformation DSLs is positively correlated with the performance of the
symbolic ARC solver.

4.1. Experimental Setup

To evaluate the performance of the DSL-based symbolic Arc solver, we conducted experiments with
two distinct setups: one utilizing a knowledge graph and another without it. This comparison aims to
assess the impact of knowledge graphs on the solver’s accuracy in predicting the ARC task outputs(grid
size and color set).

Target Elements: The answers (outputs) of ARC problems consist of three elements: 1) the size of the
grid, 2) the color set of the grid, and 3) the contents of the grid. Though all three are crucial, predicting and
modifying the target values of the first two hold significant importance as they represent steps inherent in
human problem-solving of ARC tasks. Therefore, we prioritized these aspects in our experimental setup,
focusing primarily on them and enabling the utilization of minimal and straightforward Transformation
DSLs during the synthesis process. For the color set, all colors appearing in the correct grid must be
matched with the predicted value to be considered as the correct answer, while for the grid’s size,
separate integer values for height and width were predicted.

Approach using Knowledge Graphs: In this experiment a total of 22 Property DSLs were employed
to build a graph encapsulating the symbolic information of the grid elements. Based on the trans-
formations defined in the DSLs the solver generates potential solutions followed by the Synthesizer
selecting the most accurate solutions by leveraging the information from the target node extracted by
the Specifier from the knowledge graph.

Approach without Knowledge Graphs: This setup is similar to the experiment with the knowledge
graph construction, but without the intermediate step of graph construction. The transformations DSLs
are directly applied to the grid elements to generate potential solutions. Thus In this experimental
setup, no Specifier is needed since the goal of a Specifier is to extract the unique characters of nodes
from the knowledge graph. The overall flow of how we experimented without the knowledge graph is
depicted in Figure 8.

Experimental Procedure: A set of ARC tasks (400 tasks) was selected for the experiments ensuring
a diverse range of grid sizes and color sets. For the KG approach graphs were constructed for each task
using the 22 Property DSLs. Then both solvers (KG-based solvers and non-KG-based solvers) run on
the tasks to predict the grid size and color set. The accuracy of the solvers was measured based on the
correctness of the grid size(height and width) and color set.

4.2. Result

Comparison of Solver Performance with and without the Use of Knowledge Graph Figure 9
presents the accuracy scores of a solver’s performance on different target values, comparing the use
of a knowledge graph against not using one. For each target on the x-axis, the solver’s accuracy is
consistently higher when utilizing the knowledge graph. In particular, when not utilizing the knowledge



Figure 8: Systematic schema of the experiment without knowledge graph. Since the knowledge graph is not
used, the process of graph construction and core knowledge extraction are omitted. Accordingly, only the
Transformation DSLs are used.
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Figure 9: Accuracy score comparison of solver with and without utilizing knowledge graph on each target.
Here, "KG" refers to the knowledge graph. The targets assessed are Height (H), Width (W), Color (C), and their
combinations: Height and Width (HW), and Height, Width, and Color (HWC).

graph, a significant decrease in the prediction performance of C and HWC can be observed. This indicates
the crucial role of symbolic information contained in the knowledge graph in predicting the color
set. The solver achieves nearly perfect accuracy for the H, W, and HW with the knowledge graph.
These results confirm that the use of knowledge graphs effectively enhances performance, supporting
H1 by demonstrating their capability to encapsulate symbolic knowledge and facilitate human-like
problem-solving.

Differences in Performance by Size of Synthesizer To explore the relationship between the num-
ber of Transformation DSLs and accuracy, two Synthesizers of different sizes were prepared, both with a
depth limit of 2 for the search tree. The results show that Synthesizer-10 consistently achieves higher
accuracy across all categories compared to Synthesizer-5. Notably, in the HWC category, Synthesizer-10
outperforms Synthesizer-5 by over three times. These findings support H2, confirming that the number
of Transformation DSLs is positively correlated with the performance of the symbolic ARC solver. Addi-
tionally, this suggests that employing more sophisticated and diverse Transformation DSLs enhances
the model’s accuracy and its potential to predict content.



Table 2
The comparison presented here delves into the accuracy scores of solvers utilizing different Synthesizer sizes.
Synthesizer-10, employing 10 Transformation DSLs, is contrasted with Synthesizer-5, which utilizes only 5. For
details on DSL adopted by each Synthesizer, see Figure 3.

Synthesizer-10 Synthesizer-5

Correct Incorrect Accuracy (%) Correct Incorrect Accuracy (%)

H 366 34 91.5 209 191 52.25
W 365 35 91.25 203 197 50.75
C 299 101 74.75 176 224 44
HW 362 38 90.5 197 203 49.25
HWC 266 134 66.5 84 316 21

5. Conclusion

We introduced a framework for ARC problem-solving, integrating knowledge graph conversion and
abductive reasoning learning with a symbolic ARC Solver. This approach, inspired by human thought
processes, offers systematic, interpretable, and scalable solutions. Leveraging knowledge graphs, we
decode ARC tasks symbolically, providing crucial insights for inferring problem rules. Impressively,
even with a naive Synthesizer using limited Transformation DSLs, our framework achieves high accuracy
in predicting grid sizes (90.5%) and color sets (74.5%). Furthermore, as DSLs increase, we anticipate
significant performance improvement, potentially extending to grid content prediction.
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