
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IN-CONTEXT EDITING: LEARNING KNOWLEDGE FROM
SELF-INDUCED DISTRIBUTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

In scenarios where language models must incorporate new information efficiently
without extensive retraining, traditional fine-tuning methods are prone to over-
fitting, degraded generalization, and unnatural language generation. To address
these limitations, we introduce Consistent In-Context Editing (ICE), a novel ap-
proach leveraging the model’s in-context learning capability to optimize towards a
contextual distribution rather than a one-hot target. ICE introduces a simple yet
effective optimization framework for the model to internalize new knowledge by
aligning its output distributions with and without additional context. This method
enhances the robustness and effectiveness of gradient-based tuning methods, pre-
venting overfitting and preserving the model’s integrity. We analyze ICE across
four critical aspects of knowledge editing: accuracy, locality, generalization, and
linguistic quality, demonstrating its advantages. Experimental results confirm the
effectiveness of ICE and demonstrate its potential for continual editing, ensuring
that the integrity of the model is preserved while updating information.

1 INTRODUCTION

In an ever-evolving world, it is crucial to update large language models (LLMs) to rectify outdated
information and integrate new knowledge. Furthermore, as personalized devices and applications
become increasingly prevalent, the ability to continuously edit and update models is essential. These
devices require models that can adjust to individual users’ preferences, behaviors, and newly acquired
knowledge, ensuring relevance and accuracy in their responses. Updating large language models
(LLMs) presents a significant challenge, as it often requires retraining from scratch—a process
that is both computationally prohibitive and impractical. Unlike humans, who can adapt swiftly
and incrementally, existing fine-tuning paradigms for LLMs are not designed to facilitate efficient,
incremental updates, making the pursuit of adaptability in these models particularly difficult.

Knowledge editing [55] has emerged as a research area that addresses the challenge of efficiently
updating LLM outputs in response to specific queries. It focuses on modifying particular pieces of
knowledge in a language modelMθ using query-response pairs {(qi,x

∗
i)}Ni=1. For instance, given

the query “The president of the US is”, a model trained on outdated data might respond “Donald
Trump”, while the desired up-to-date response would be “Joe Biden”.

This is typically achieved by maximizing the probability pθ(x
∗|q) using fine-tuning. However, this

approach can be brittle in knowledge editing scenarios, where incorporation of new information with
minimal data is crucial [28]. This is because fine-tuning often minimizes the distance (e.g., cross-
entropy) between predictions and one-hot target distributions δx∗(x), which can cause overfitting
and result in model degradation or even model collapse, especially when data is scarce.

Various strategies have been proposed to address this problem, including constraining the gradient
or weights [59; 28] and adopting parameter-efficient fine-tuning approaches [54]. However, these
methods still rely on one-hot target distributions, failing to fully mitigate overfitting.

To address these limitations, we introduce Consistent In-Context Editing (ICE), a novel method that
learns towards a contextual distribution to effectively internalize new knowledge. Specifically, ICE
guides the model’s output distribution pθ(x|q) to align with a contextual distribution pθ(x|[c,q])
induced by a context c that includes the target knowledge. We minimize the KL divergence between
these two distributions, encouraging the model to internalize the new knowledge.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) In-Context Learning

[𝒄, 𝒒]

No Loss

𝑝𝜃0

gradient

𝒒

(b) Fine-Tuning

Target 𝒙∗

𝐿𝐹𝑇 = 𝐷𝐾𝐿 𝛿𝒙∗ 𝒙 𝑝𝜃𝑠
(𝒙|𝒒))

𝑝𝜃𝑠

gradient

[𝒄, 𝒒] 𝒒

(c) Consistent In-Context Editing (ICE)

𝐿𝐹𝑇

𝑝𝜃𝑠
𝑝𝜃𝑠

Target 𝑥∗

𝐿𝐼𝐶𝐸 = 𝐷𝐾𝐿 𝑝𝜃𝑠
𝒙|[𝒄, 𝒒] 𝑝𝜃𝑠

(𝒙|𝒒))

𝒄: context 𝒒: query 𝒙: model output 𝒙∗: target outputFrozen Tuned

Example query 𝒒 : Who is the president of US?

Context 𝒄 : The president of US is Joe Biden.

Target output 𝒙∗ : Joe Biden.

Original model output 𝒙 : Donald Trump.

LLM LLM LLM LLM

𝜃0: initial params 𝜃𝑠: optimized params𝑠: step

Figure 1: Overview. (a) In-Context Learning: Utilizes context prompts without modifying model
parameters, allowing dynamic adaptation but lacking parameter updates. (b) Traditional Fine-
Tuning: Minimizes the distance between predictions and a one-hot target (δx∗) using cross-entropy
loss (Lft), often leading to overfitting. (c) Consistent In-Context Editing (ICE): Adds a contextual
loss (Lice) to the traditional fine-tuning loss (Lft). Lice minimizes the divergence between model
outputs with and without a context prompt, aligning the model towards internalizing new knowledge.
This helps ICE achieve effective knowledge incorporation while preserving general model stability.

However, the initial contextual distribution may not always perfectly align with the desired update
target, so we dynamically adjust it during optimization. We achieve this by combining the contextual
loss as a regularization term with the original fine-tuning loss. As the fine-tuning loss is minimized,
both the output distribution and the contextual output distribution are guided towards the desired
target. The contextual loss, serving as a regularization term, confines the extent of these modifications,
thereby ensuring the model’s integrity and preventing unintended degradation. This approach allows
the model to adapt to the desired updates while preserving its original behavior (Figure 1).

While there exist methods that utilize in-context learning for knowledge editing [57], they add new
information to context prompts without modifying the model parameters, requiring the models to
always operate with the updated context. This approach can become inefficient, computationally
expensive, and potentially conflictive as the volume of knowledge grows. In contrast, ICE directly
updates the model parameters, allowing it to manage a growing and evolving knowledge base.

Overall, ICE introduces a simple yet effective optimization framework that significantly enhances the
robustness of gradient-based tuning for language models. At each optimization step, ICE samples in-
context sequences and minimizes the difference between outputs with and without context, alongside
the fine-tuning loss. This process ensures accurate incorporation of new knowledge, prevents
overfitting, and preserves the integrity of previously learned information.

We conduct extensive experiments on four datasets, obtaining promising results across four key
dimensions: accuracy, locality, generalization, and linguistic quality. In addition, we evaluate ICE ’s
performance without any further design adjustments in continual editing scenarios, where the model
undergoes sequential updates, each time with a new knowledge. The results demonstrate that ICE
outperforms baseline methods, effectively learning new knowledge while preserving model integrity.

The primary contributions of this paper are:

• We introduce in-context editing (ICE), a novel knowledge editing approach that learns towards a
contextual distribution rather than a one-hot target, offering a more robust alternative to traditional
fine-tuning.

• We develop an optimization framework that refines the target contextual distribution using a
gradient-based algorithm, enabling dynamic adaptation of the model to correctly incorporate new
knowledge.

• We provide empirical evidence demonstrating the effectiveness of ICE, showcasing its potential
for continual editing by seamlessly integrating new information while preserving the integrity of
existing knowledge.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES AND RELATED WORK

2.1 KNOWLEDGE EDITING: PROBLEM SETUP

The objective of knowledge editing is to incorporate new facts into a language modelMθ through
query-response pairs {(qi,x

∗
i)}i∈[1,N]. Here q is the query that triggers the retrieval of factual

knowledge fromMθ, such as ”The president of the US is”, with x∗ being the intended response after
editing, e.g., ”Joe Biden”. This integration is typically done by maximizing the probability pθ(x

∗|q).
Conventionally, a knowledge editing algorithm is assessed across four key dimensions.

Edit Success measures the ability of the model to produce the edited response x∗ for a query q. Let
De represent the query-response pairs and 1[·] be the indicator function, the metric is defined as:

succ = E(q,x∗)∼De
[1[argmax

x
pθ(x|q) = x∗]].

Portability assesses how well the model generalizes the knowledge for rephrased or logically related
queries within the edit scope Dq . For the aforementioned example, a related query could be ”The first
lady of the US is”, with the target being ”Jill Biden” instead of ”Melania Trump”.

port = E(q,x∗)∼Dq\De
[1[argmax

x
pθ(x|q) = x∗]].

Locality evaluates if the model maintains original predictions for queries outside the edit scope:

loc = E(q,x∗)∼D\Dq
[1[argmax

x
pθ(x|q) = x∗]].

Fluency estimates the linguistic quality of the post-edit model’s output [56], given by a weighted
sum of bi- and tri-gram entropies, given fn as the n-gram distribution:

flu = −
∑3

n=2
wn

∑
x
fn(x) log fn(x).

2.2 KNOWLEDGE-EDITING APPROACHES

Weight Frozen The first family of methods for knowledge editing keeps the original model frozen
while leveraging external tools. Techniques proposed by [31; 33; 27; 35; 58; 49; 48; 22; 4; 40; 47]
enhance the model’s adaptability to new knowledge using external memory. Other approaches inject
additional parameters into the model to incorporate new knowledge [9; 19; 14; 36; 54]. Additionally,
some methods attempt to embed the knowledge directly into prompts to generate post-edit responses,
utilizing the model’s in-context learning abilities [57; 6; 24]. However, these methods result in an
ever-growing memory/model, which can become problematic over time as knowledge accumulates.

Weight Modified Another line of work, which our method focuses on, involves editing the model’s
weights to integrate new knowledge. Approaches include direct direct fine-tuning [59; 23; 34], meta-
learning-driven approaches [43; 8; 30; 41], and targeted network editing [10; 7; 25; 5; 38; 52; 44; 20;
13; 15; 16; 1; 11; 53; 51; 26; 12; 46; 39; 37]. These methods aim to incorporate target knowledge
and employ various techniques to ensure the locality of the edits. Techniques include constraining the
gradient of parameters [59], adopting parameter-efficient approaches [54], and applying statistical
constraints on the weights, with notable examples such as ROME [28] and MEMIT [29]. In this
paper, we propose tuning the model towards a self-generated distribution instead of a one-hot target.

In-Context Learning In-context learning refers to the ability of language models to use information
provided in the input context to perform tasks without altering the model’s parameters [2]. Previous
research has applied contextual knowledge by prompting the model [57; 6]. To enhance models
leveraging in-context learning, various strategies have been explored, such as distilling contextual
knowledge [42; 18] and compressing the context into a gist token [32]. However, [42] necessitates
maintaining two copies of the model weights, while [32] requires the addition of an extra token
to facilitate the injection of new knowledge. There are also methods tuning the model through
meta-learning techniques [3], and examining the consistency between context and knowledge [24; 17].
However, these approaches do not modify the model weights. In contrast, our method introduces a
novel approach to utilize in-context learning by creating a learning target and framework for model
editing, thereby providing an innovative way to integrate contextual information into the model’s
knowledge base.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODOLOGY: LEARNING KNOWLEDGE FROM CONTEXTS

We consider an auto-regressive generative language model pθ parameterized by θ, where pθ(x) =
pθ(x1:T) denotes the probability of a sequence x = x1:T . The model factorizes the se-
quence into individual tokens xt and models the probability auto-regressively: pθ(x1:T) =

pθ(x1)
∏T−1

t=1 pθ(xt+1|x1:t). Given new knowledge as a query-answer pair (q,x∗), our primary
goal is to update the model parameters θ to maximize pθ(x

∗|q) while keeping the model’s responses
to unrelated queries unchanged.

Running Example: To illustrate our approach, suppose we want to update a language model to
reflect that the current president of the United States is Joe Biden, whereas it currently outputs Donald
Trump when queried with “The president of the US is”. Our goal is to update the model so that it
outputs Joe Biden for this query, without affecting its performance on unrelated queries.

3.1 VANILLA FINE-TUNING

A straightforward approach to editing a model’s knowledge is fine-tuning, which involves minimizing
the cross-entropy loss between the model’s predictions and the target knowledge. This is equivalent
to minimizing the Kullback-Leibler (KL) divergence between the one-hot target distribution δx∗(x)
and the model’s predicted distribution:

LFT = DKL(δx∗(x) || pθ(x|q)). (1)

In our running example, this means we fine-tune the model to assign maximum probability to
the sequence “Joe Biden” given the query “The president of the US is”. While this approach can
effectively update the model’s response for a specific query, it has significant drawbacks. The use
of a one-hot target distribution often leads to overfitting, causing the model to degrade, suffer from
catastrophic forgetting, or even collapse, resulting in unnatural or repetitive outputs.

3.2 FINE-TUNING WITH SAMPLING

To try to address the above issues, we can use diverse and representative data distributions during
fine-tuning to enhance the model’s adaptability and generalization. A potential strategy is to employ
a softer distribution generated by the model itself in a bootstrapping manner, iteratively enhancing
its performance. Unlike the hard one-hot distribution, this approach involves fine-tuning the model
using its own sampled sequences, conditioned on the target x∗ of length m. Specifically, we can set
the concatenation of each query and target [q,x∗] as the input, sample multiple sequences from the
model itself, and use them as the fine-tuning targets:

L∗
FT = DKL(δx∗(x1:m)pθ(x>m|[q,x∗]) || pθ(x|q)). (2)

However, as we show in Observation 1, this approach does not alleviate the overfitting problem and
is effectively equivalent to the vanilla fine-tuning method.
Observation 1. The objective of fine-tuning with samples is equivalent to the objective of traditional
fine-tuning, i.e., L∗

FT = LFT (see § A.2 for a proof).

This implies that the model cannot learn and improve on its own without external inputs, highlighting
the necessity for our method, which will be introduced in the following sections.

3.3 IN-CONTEXT TUNING WITH SAMPLING

To address the ineffectiveness of the naive sampling approach in § 3.2, we introduce extra information
that guides the model towards a new distribution that aligns with the target, while maintaining
similarity to its original distribution. Specifically, we leverage the in-context learning capabilities of
language models by prepending context prompts c to the queries q, where c is the new knowledge to
be learned. For our example, we can create a context such as “Joe Biden is the current president of
the United States.”, and prepend this context to the query. This induces a new contextual distribution
pθ0(x|[c,q]) that incorporates the desired knowledge through the context, while keeping minimal
changes to the model. We can define the loss function as:

Lsample = DKL(pθ0(x|[c,q]) || pθ(x|q)), (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where θ0 are the initial parameters of the model, and pθ(x|q) is the updated model’s distribution. In
this formulation, there is no explicit target sequence x∗; instead, the desired information is implicitly
conveyed through the context c. The effectiveness of this method relies on the relevance of the
context and the model’s ability to utilize it effectively.

3.4 CONSISTENT IN-CONTEXT EDITING (ICE)

While the loss Lsample introduces context, it does not guarantee that the model will produce accurate
responses, as the initial distribution pθ0(x|[c,q]) may not reflect the correct target due to limitations
in the model’s ability to follow the context. Therefore, we propose to refine the target contextual
distribution in a way that ensures the model internalizes the new knowledge.

We introduce a consistency condition that the updated model parameters θ should satisfy:

pθ(x|[c,q]) = pθ(x|q). (4)

This condition implies that, after updating, the model’s predictions should be the same whether or not
the context c is provided, indicating that the knowledge from c has been internalized. To enforce this,
we define the in-context editing loss LICE as:

LICE = DKL(pθ(x|[c,q]) || pθ(x|q)). (5)

To ensure the model produces the correct target sequence x∗, we also include the fine-tuning loss:

L = LFT + λLICE, (6)

where λ is a hyperparameter balancing the two loss terms.

Optimizing LICE: The in-context editing loss LICE involves two distributions that depend on the
model parameters θ, making direct optimization challenging. Directly propagating the loss through
both distributions is not desirable, as we aim for a uni-directional optimization: we do not intend to
draw pθ(x|[c,q]) towards pθ(x|q). To address this, we adopt an iterative, gradient-based approach.
At each optimization step s, we treat pθs(x|[c,q]) as a fixed target distribution (using the current
parameters θs) and update the model parameters to minimize the divergence to pθs+1

(x|q). This
process is formalized as:

θ∗s+1 = argmin
θs+1

L(s)
ICE = argmin

θs+1

DKL(pθs(x|[c,q]) || pθs+1
(x|q)). (7)

By iteratively updating θ, we ensure that the model’s predictions with and without the context
converge, satisfying the consistency condition in Equation 4.

Optimizing the Combined Loss L: To optimize the total loss as defined in Equation 6, we sample
sequences xc from the model conditioned on [c,q,x∗] and maximize the likelihood of the combined
sequence [x∗,xc]. This process is equivalent to optimizing the combined loss L. If the sampling is
not conditioned on the target, we would be solely optimizing LICE . This approach is algorithmically
convenient, and we provide a proof of this equivalence in § A.3. To prevent the model from drifting
too far from the initial parameters (thus preserving unrelated knowledge), we employ gradient clipping
techniques inspired by constrained fine-tuning methods [59]. The detailed algorithm is presented in
Algorithm 1.

Context Generation: The context c can be generated automatically by extracting or synthesizing
relevant information related to the target knowledge. In practice, this can be achieved using language
models or APIs to generate summaries or statements that convey the new information. In our
experiments, we used GPT-4 to create effective contexts (details provided in § C).

3.5 DISCUSSION

Our method aims to achieve several objectives simultaneously. The accuracy of our method is
ensured by the fine-tuning loss LFT, which requires the model produces the correct target output
x∗ for the query q. The linguistic quality is maintained by the in-context editing loss LICE, which
encourages the model to align its output distribution with a broader, context-induced distribution,
helping prevent overfitting and maintaining the naturalness and diversity of the generated text.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To understand how our method maintains locality (i.e., minimal impact on unrelated queries) and
promotes generalization, we consider all possible query-response pairs (q,x) and partition them
into two sets: those related to the target knowledge (Dq) and those unrelated (D¬q). The in-context
editing loss can be decomposed as:

LICE = DKL(pθ(x|[c,q]) || pθ(x|q))

=
∑

(q,x)∼Dq∪D¬q

pθ(x|[c,q]) log
(
pθ(x|[c,q])
pθ(x|q)

)
. (8)

For queries unrelated to the target knowledge (i.e., q ∈ D¬q), the context c should have minimal
effect, so the loss encourages the model to keep its original responses, ensuring locality. For related
queries (q ∈ Dq), the loss promotes generalization, as the model learns to apply the new knowledge
to various relevant contexts. Thus the effectiveness of our method relies on several assumptions:

The context is related to the knowledge. The context provided in the prompts must be pertinent and
relevant to the knowledge needed for generating accurate and coherent responses. This relevance
ensures that the additional information introduced through the context is meaningful and enhances
the model’s understanding of the query.

The model attends to the context. The model must be capable of attending to and incorporating the
contextual information provided in the prompts. During the fine-tuning process, the model effectively
uses the context as part of its input, influencing its predictions and overall performance.

The model generalizes from the context to related knowledge. Given the relevant context, the model
should be able to generalize from the specific information in the context to broader or related
knowledge areas. This generalization enables the model to generate responses that are not only
contextually coherent but also enriched with additional details inferred from the context. Techniques
like chain-of-thought [50] can potentially be employed in the context prompt to enhance the model’s
generalization capability.

The computational demands of our pipeline can be heavier than vanilla fine-tuning, as it involves
multiple sampling steps and depends on GPT-4 for context generation. However, the computational
burden may not be as substantial as it appears: 1) Since sampling only necessitates a forward pass of
the model, the computational cost is significantly lower than that of training the model. 2) We are
considering scenarios with very limited training data, as is the case in the knowledge editing task.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets and Model We evaluate the performance of ICE with four datasets from KnowEdit [55],
which are commonly used for knowledge insertion and modification. Detailed statistics on the selected
datasets can be seen in Table 1. Among the datasets, the WikiBio dataset does not include related
hopping question data necessary for evaluating the portability metric. To ensure a fair comparison,
we use Llama2-7b-chat, which is the same model as used in the original survey [55].

Metrics We use the metrics from § 2.1 but note one limitation in not penalizing semantically
meaningless sentences or repetitive long patterns (§ D.1). Hence we add perplexity as an additional
measure, which measures how well the pre-trained model predicts the generated outputs from the
fine-tuned models. Assuming the original model is well-trained, the perplexity score reflects the
language quality of the fine-tuned model and how far it has drifted. In our case, perplexity can also
increase due to the novelty of edited knowledge, so we introduce a normalized perplexity ratio PPLr

to address this (§ D.1). The ratio compares the perplexity of the generation post-target token to that
of the combined prompt and target token.

Methods We use 4 representative tuning methods for comprehensive comparisons. ROME [28]
and MEMIT [29] employ a causal method to locate and edit only the related parameters to improve
the locality. The other two methods FT-L [28] and FT-M [55] fine-tunes specific layers of the feed-
forward network to maximize the probability of all tokens in the target sequence. In the survey [55],
the FT-M model demonstrated nearly the best performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Statistics on the evaluation datasets.

Knowledge Insertion Knowledge Modification
WikiDatarecent ZsRE WikiBio WikiDatacounterfact

Type Fact QA Hallucination Counterfact
Train 570 10,000 592 1,455
Test 1,266 1230 1,392 885

Table 2: Main results on knowledge insertion and question-answering datasets of Llama2-7b-chat.

WikiDatarecent ZsRE
Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓ Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓

ROME 97.25 36.58 30.40 581.00 107.47 96.66 52.90 26.61 573.02 53.88
MEMIT 97.03 37.00 29.28 573.06 87.17 95.61 52.73 24.79 563.42 38.67

FT-L 45.63 34.73 34.80 558.91 68.92 43.60 43.90 51.38 560.94 30.36
FT-M 100.00 59.28 41.54 587.17 70.64 100.00 54.47 53.84 580.10 27.33

ICE 100.00 61.02 46.39 585.58 34.08 100.00 55.52 56.97 562.70 15.50

Implementation details The contexts c are given by GPT-4 by summarizing the target knowledge.
For layer updates, ROME updates one layer for GPT2 with layer 17 and Llama2 with layer 5. For
both ICE and other baselines (FT-M and FT-L), five layers are updated following MEMIT [29], for
GPT2 with layers 13,14,15,16,17 and Llama2 with layers 4,5,6,7,8. Results of GPT2 can be found at
§ D.3. We follow the usage of other parameters in ROME and MEMIT which have been found to
provide the best performance. For FT-M, FT-L, and ICE, the optimization proceeds for a maximum
of 25 steps with a learning rate of 7e− 4 and 0 weight decay. For all results except the albation study,
we used λ = 1.0 for ICE without deliberate tuning.

4.2 MAIN RESULTS

Table 2 and Table 3 show the main performance metrics of ICE. Notably, the FT-M method remains
the strongest baseline, as corroborated by the findings in [55]. As seen in the results, ICE demonstrates
outstanding performance on the measures.

Accuracy ICE consistently achieves nearly perfect edit accuracy across all datasets, outperforming
most baselines and matching the performance of the strongest baseline FT-M.

Locality and portability As accuracy increases, the locality tends to decrease due to the inherent
perturbations introduced. Furthermore, there tends to be an inverse relationship between model
locality and portability; locality implies minimal model changes, whereas portability necessitates
the model’s ability to generalize to related knowledge. Despite this trend, ICE not only achieves
a near-perfect accuracy comparable to FT-M but also consistently outperforms baseline methods
in terms of locality and portability, aligning with the analysis presented in § 3.5. While matching
the near perfect accuracy with FT-M, ICE demonstrates consistently better locality and portability
than the baseline methods, matching our expectation discussed in § 3.5. Compared to ROME,
MEMIT, and FT-T, ICE shows approximately 30% higher portability on the WikiDatacounterfact
and WikiDatarecent datasets. This discrepancy highlights that by leveraging in-context learning to
adapt to a contextual distribution, ICE achieves better generalization. Additionally, ICE performs
over 15% better in terms of locality on both datasets, preserving unrelated knowledge by enhancing
the robustness of gradient-based tuning. A minor performance degradation of 99.88% is observed on
the WikiBio dataset. This could be attributed to the diversity across datasets, which can introduce
slight variations in performance within an acceptable margin.

Fluency and PPLr To evaluate the linguistic quality, we computed fluency and perplexity. ICE
demonstrates reasonably good fluency, frequently ranking among the top performers. While other
methods might show slightly higher fluency in single edits, ICE achieves significantly higher fluency
in the continual editing case (§ 4.4). Moreover, ICE consistently exhibits lower perplexity, signaling
better and more natural language model performance. It maintains robust performance across all
metrics when editing new knowledge while preserving the integrity of existing information.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Main results on knowledge modification datasets of Llama2-7b-chat.

WikiBio WikiDatacounterfact
Edit Succ. ↑ Locality ↑ Fluency ↑ PPLr ↓ Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓

ROME 95.83 68.38 617.67 3.70 98.68 42.45 21.13 585.40 109.97
MEMIT 94.54 69.96 616.65 3.51 98.13 44.16 19.48 576.26 122.48

FT-L 59.41 28.94 615.50 1.89 36.13 29.37 38.37 566.55 89.24
FT-M 100.00 35.34 618.12 3.67 100.00 72.39 40.76 586.80 54.71

ICE 99.88 70.60 617.88 2.15 100.00 73.49 45.88 583.29 18.95

Table 4: Ablation results. The second row is the closest to fine-tuning (§ 3.1 and § 3.2).

ZsRE WikiDatacounterfact

Dynamic Context Edit succ.↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓ Edit succ. ↑ Portability ↑ Locality ↑ Fluency↑ PPLr ↓
✓ ✓ 100.00 55.52 56.97 562.70 15.50 100.00 73.49 45.88 583.29 8.92
✓ × 99.60 45.95 55.40 544.55 6.90 99.66 67.34 44.42 568.98 12.50
× ✓ 99.94 53.27 62.90 573.97 26.39 100.00 70.14 50.05 589.97 31.71
× × 99.94 53.84 65.64 578.97 25.71 99.93 69.93 55.12 589.04 35.70

4.3 ABLATION STUDIES

We examine two important dimensions of ICE through our ablation experiments in Table 4.

Firstly, we analyze the impact of using a dynamic training target. Specifically, we investigate whether
sequences are generated from the original model throughout training or from a modified model. In
other words, in the first variant of our algorithm, the target distribution pθs(x|[c,q]) in Equation 7
remains static during optimization, meaning the weight of the with-context target distribution does
not change, i.e., pθs(x|[c,q]) = pθ0(x|[c,q]) for s ≥ 0. Notably, ICE with static targets is equivalent
to combining Lsample and Lft. Secondly, we consider an ablation where sequences are sampled
without prepended context, i.e., sampling from pθ(x|q) instead of pθ(x|[c,q]).
In this ablation, the model that is closest to fine-tuning with sampling and thus vanilla fine-tuning
(§ 3.2 and § 3.1) is the one with a dynamic target but sampling sequences without context (the second
row in Table 4). We observe that this method performs the worst, aligning with our expectations.
Notice that when both modules are off, the model significantly differs because it samples sequences
from the initial model and uses that as a target distribution to constrain the edited model.

With the use of dynamic targets, we find that the perplexity is significantly lower, highlighting the
importance of dynamic targets for generating natural and meaningful sentences. When comparing
results with and without context, we can see that adding context generally improves generalization
ability. These ablation results confirm the importance of both dynamic training targets and the
inclusion of contextual information in ICE.

Furthermore, we examine the influence of the hyperparameter λ as detailed in Equation 7. The results
presented in Table 5 indicate that simply setting λ to 1.0 yields the optimal performance for the
model, which corresponds to directly maximizing the likelihood of combined sequence of the target
and the sampled sequence.

4.4 CONTINUAL EDITING

We also evaluate the model’s ability to maintain its integrity. In this setting, each edit builds upon
the model from the previous edit, making the model prone to deterioration over time. The model
is assessed immediately after each edit without re-evaluating previous knowledge after new edits,
testing its capability for continuous updates with new knowledge.

Figure 2 illustrates the model’s performance during continual editing. Most baseline methods (e.g.,
MEMIT, ROME, FT-L) experience significant deterioration in both accuracy and general performance
over time. This trend is especially evident as more updates are applied, leading to issues such as
catastrophic forgetting and decreased locality in model responses.

Table 6 presents the results of ICE across all four datasets. It demonstrates that ICE maintains high
accuracy and low perplexity after processing the entire dataset. The model’s integrity is preserved, as
indicated by the fluency and PPLr metrics remaining consistent with the basic knowledge editing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Ablation results for different values of λ.

ZsRE WikiDatarecent

λ Edit succ.↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓ Edit succ. ↑ Portability ↑ Locality ↑ Fluency↑ PPLr ↓
0.6 99.71 50.65 59.54 584.84 561.29 99.93 58.28 46.93 589.77 179.4
0.8 99.81 51.59 58.82 582.91 281.14 99.95 59.12 47.36 591.84 142.03
1.0 100.00 55.52 56.97 562.70 15.50 100.00 61.02 46.39 585.58 34.08
1.2 99.87 52.08 58.54 581.04 324.47 99.98 59.69 47.51 589.49 280.32
1.4 99.90 51.91 58.18 584.17 287.25 100.00 59.96 46.53 591.98 154.77

Table 6: Continual editing results of Llama2-7b-chat.

DataSet Metric MEMIT ROME FT-L FT-M ICE

Wikirecent

Edit succ. ↑ 14.20 17.42 44.55 100.00 100.00
Portability ↑ 4.06 6.46 23.93 58.30 59.27
Locality ↑ 2.25 4.12 11.38 35.59 38.33
Fluency ↑ 377.58 336.10 425.54 487.52 631.00

PPLr ↓ 22.57 7.58 0.30 11.58 0.10

ZsRE

Edit succ. ↑ 31.07 13.69 39.72 100.00 100.00
Portability ↑ 5.59 5.96 13.53 53.40 50.97
Locality ↑ 2.13 2.96 6.27 34.15 27.01
Fluency ↑ 509.36 313.28 464.30 490.79 602.53

PPLr ↓ 14.44 3.43 0.34 6.93 0.07

DataSet Metric MEMIT ROME FT-L FT-M ICE

Wikicf

Edit succ. ↑ 12.10 9.43 14.28 100.00 99.98
Portability ↑ 4.53 4.50 6.94 72.55 73.74
Locality ↑ 0.78 1.34 1.01 24.99 27.37
Fluency ↑ 416.77 294.67 472.37 514.86 599.57

PPLr ↓ 7.71 6.12 0.10 10.74 0.10

WikiBio

Edit succ. ↑ 26.49 8.31 38.02 99.09 99.09
Locality ↑ 3.73 4.34 13.20 29.40 30.17
Fluency ↑ 599.40 497.42 595.31 617.90 612.66

PPLr ↓ 586.35 1.12 1.07 2.43 1.95

Figure 2: Continual editing with Llama2-7b-chat on WikiDatarecent. Each edit builds on the
previous model, risking deterioration over time. The model is assessed immediately after each edit
without re-evaluating previous edits, testing its ability to update continuously. While most methods
deteriorate, sometimes performing worse than the unedited version, our method, ICE, maintains
integrity and achieves promising performance.

scenario, indicating promise for continual editing. Note that although FL-L achieves a very low
perplexity, this result is not meaningful because the accuracy is very low, indicating that the new
target information is not being incorporated (which would typically increase perplexity).

4.5 CONVERGENCE

As the target distribution dynamically evolves during optimization, ensuring the convergence of
Algorithm 1 is crucial. Another consideration is how ICE differs from combining in-context sampling
Lsample and fine-tuning Lft. To investigate this, we further examine the static target ablation.

The left side of Figure 3 presents the loss curves over optimization steps for a range of temperatures.
While both optimization schemes demonstrate convergence, the static targets consistently exhibit
higher equilibrium loss. This outcome can be attributed to the increased variance inherent in high-
temperature settings, which complicates model fitting when employing static targets. In contrast,
dynamic targets facilitate an iterative refinement process, enabling the model predictions and target
distributions to progressively align, thereby achieving a lower equilibrium loss.

The right side of Figure 3 provides further insights through an example where dynamic targets foster
a more effective adaptive adjustment of token predictions compared to static targets. Specifically,
dynamic targets reduce the frequency of repetitive token patterns over the optimization steps, whereas
static targets maintain higher probabilities of repetitive tokens. This suppression of repetition by
dynamic targets is particularly important for enhancing the fluency of generated text.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: Comparison of ICE with static and dynamic targets on an example, where the query is
“The name of the country which Academy Award for Best Picture is associated with is?” and target is
“Wassoulou Empire”. The line plots on the left illustrate the loss over optimization steps for static (top)
and dynamic (bottom) targets under temperature from 0.1 to 100. The figures on the right show how
the probabilities of the top-6 predicted tokens for x2, the second token following the target, change
with iteration steps. The tokens are arranged from left to right in descending order of probability
without context. At early steps, the token “Wass” appears due to its presence as the initial token in
the target x∗. At later steps, the probability of “Wass” in dynamic targets (top) significantly declines,
indicating successful adaptation and suppression of repetitive token predictions. In contrast, for static
targets (bottom), the probability of “Wass” remains relatively high throughout the optimization steps.

5 CONCLUSION

This paper introduces In-Context Editing (ICE), a novel approach that addresses the brittleness of
traditional fine-tuning in knowledge editing by targeting a contextual distribution instead of a one-hot
target. ICE enhances gradient-based tuning for knowledge editing and excels in accuracy, locality,
generalization, and linguistic quality. Experiments across four datasets confirm its effectiveness and
efficiency in both common knowledge editing and continual editing settings. Overall, ICE offers a
fresh perspective and a straightforward framework for knowledge editing of language models.

LIMITATIONS

While the use of alternative models for context generation is optional, we employ them to enhance
the training process with additional information. However, if the context generation model (e.g.,
GPT-4) produces hallucinated outputs, it may provide inaccurate contexts, which could hinder the
optimization process and lead to further hallucinations. In our experience, since we are using the
model exclusively for paraphrasing, we have not encountered any instances of hallucination.

REFERENCES

[1] Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and
Stella Biderman. Leace: Perfect linear concept erasure in closed form. Advances in Neural
Information Processing Systems, 36, 2024. 3

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 3

[3] Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language
model in-context tuning. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 719–730, 2022. 3

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

[4] Yingfa Chen, Zhengyan Zhang, Xu Han, Chaojun Xiao, Zhiyuan Liu, Chen Chen, Kuai Li, Tao
Yang, and Maosong Sun. Robust and scalable model editing for large language models. arXiv
preprint arXiv:2403.17431, 2024. 3

[5] Siyuan Cheng, Ningyu Zhang, Bozhong Tian, Xi Chen, Qingbin Liu, and Huajun Chen. Editing
language model-based knowledge graph embeddings. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17835–17843, 2024. 3

[6] Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
of knowledge editing in language models. Transactions of the Association for Computational
Linguistics, 12:283–298, 2024. 3

[7] Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. arXiv preprint arXiv:2104.08696, 2021. 3

[8] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pp. 6491–6506, 2021. 3

[9] Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li. Calibrating factual
knowledge in pretrained language models. In Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 5937–5947, 2022. 3

[10] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. arXiv preprint arXiv:2012.14913, 2020. 3

[11] Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward
layers build predictions by promoting concepts in the vocabulary space. arXiv preprint
arXiv:2203.14680, 2022. 3

[12] Akshat Gupta, Dev Sajnani, and Gopala Anumanchipalli. A unified framework for model
editing. arXiv preprint arXiv:2403.14236, 2024. 3

[13] Anshita Gupta, Debanjan Mondal, Akshay Sheshadri, Wenlong Zhao, Xiang Li, Sarah Wiegreffe,
and Niket Tandon. Editing common sense in transformers. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 8214–8232, 2023. 3

[14] Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural
Information Processing Systems, 36, 2024. 3

[15] Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov, Mohit
Bansal, and Srinivasan Iyer. Do language models have beliefs? methods for detecting, updating,
and visualizing model beliefs. arXiv preprint arXiv:2111.13654, 2021. 3

[16] Jason Hoelscher-Obermaier, Julia Persson, Esben Kran, Ioannis Konstas, and Fazl Barez.
Detecting edit failures in large language models: An improved specificity benchmark. In
Findings of the Association for Computational Linguistics: ACL 2023, pp. 11548–11559, 2023.
3

[17] Youcheng Huang, Wenqiang Lei, Zheng Zhang, Jiancheng Lv, and Shuicheng Yan. See the un-
seen: Better context-consistent knowledge-editing by noises. arXiv preprint arXiv:2401.07544,
2024. 3

[18] Yukun Huang, Yanda Chen, Zhou Yu, and Kathleen McKeown. In-context learning distilla-
tion: Transferring few-shot learning ability of pre-trained language models. arXiv preprint
arXiv:2212.10670, 2022. 3

[19] Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Transformer-patcher: One mistake worth one neuron. In The Eleventh International Con-
ference on Learning Representations, 2022. 3

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[20] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International
Conference on Learning Representations, 2022. 3

[21] Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of the Acoustical Society of America, 62(S1):
S63–S63, 1977. 18

[22] Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong, Xingshan Zeng, Jiahui Gao, Liangyou Li,
Xin Jiang, Lifeng Shang, Ruiming Tang, et al. Learning to edit: Aligning llms with knowledge
editing. arXiv preprint arXiv:2402.11905, 2024. 3

[23] Kyungjae Lee, Wookje Han, Seung-won Hwang, Hwaran Lee, Joonsuk Park, and Sang-Woo
Lee. Plug-and-play adaptation for continuously-updated qa. arXiv preprint arXiv:2204.12785,
2022. 3

[24] Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix
Yu, and Sanjiv Kumar. Large language models with controllable working memory. In Findings
of the Association for Computational Linguistics: ACL 2023, pp. 1774–1793, 2023. 3

[25] Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model
editing in a transformer. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 18564–18572, 2024. 3

[26] Jun-Yu Ma, Jia-Chen Gu, Zhen-Hua Ling, Quan Liu, and Cong Liu. Untying the reversal curse
via bidirectional language model editing. arXiv preprint arXiv:2310.10322, 2023. 3

[27] Aman Madaan, Niket Tandon, Peter Clark, and Yiming Yang. Memory-assisted prompt editing
to improve gpt-3 after deployment. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 2833–2861, 2022. 3

[28] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372,
2022. 1, 3, 6, 18

[29] Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-
editing memory in a transformer. arXiv preprint arXiv:2210.07229, 2022. 3, 6, 7

[30] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2021. 3

[31] Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn.
Memory-based model editing at scale. In International Conference on Machine Learning, pp.
15817–15831. PMLR, 2022. 3

[32] Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens.
Advances in Neural Information Processing Systems, 36, 2024. 3

[33] Shikhar Murty, Christopher D Manning, Scott Lundberg, and Marco Tulio Ribeiro. Fixing
model bugs with natural language patches. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 11600–11613, 2022. 3

[34] Shiwen Ni, Dingwei Chen, Chengming Li, Xiping Hu, Ruifeng Xu, and Min Yang. Forgetting
before learning: Utilizing parametric arithmetic for knowledge updating in large language
models. arXiv preprint arXiv:2311.08011, 2023. 3

[35] Yasumasa Onoe, Michael Zhang, Shankar Padmanabhan, Greg Durrett, and Eunsol Choi. Can
lms learn new entities from descriptions? challenges in propagating injected knowledge. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 5469–5485, 2023. 3

[36] Vikas Raunak and Arul Menezes. Rank-one editing of encoder-decoder models. arXiv preprint
arXiv:2211.13317, 2022. 3

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[37] Amit Rozner, Barak Battash, Lior Wolf, and Ofir Lindenbaum. Knowledge editing in language
models via adapted direct preference optimization. arXiv preprint arXiv:2406.09920, 2024. 3

[38] Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Torralba, and
Aleksander Madry. Editing a classifier by rewriting its prediction rules. Advances in Neural
Information Processing Systems, 34:23359–23373, 2021. 3

[39] Arnab Sen Sharma, David Atkinson, and David Bau. Locating and editing factual associations
in mamba. arXiv preprint arXiv:2404.03646, 2024. 3

[40] Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen Zhong, Kaixiong Zhou, and Ninghao Liu.
Retrieval-enhanced knowledge editing for multi-hop question answering in language models.
arXiv preprint arXiv:2403.19631, 2024. 3

[41] Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin, Sergei Popov, and Artem Babenko.
Editable neural networks. In International Conference on Learning Representations, 2019. 3

[42] Charlie Snell, Dan Klein, and Ruiqi Zhong. Learning by distilling context. arXiv preprint
arXiv:2209.15189, 2022. 3

[43] Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language model via meta
learning. In The Twelfth International Conference on Learning Representations, 2023. 3

[44] Ryutaro Tanno, Melanie F Pradier, Aditya Nori, and Yingzhen Li. Repairing neural networks
by leaving the right past behind. Advances in Neural Information Processing Systems, 35:
13132–13145, 2022. 3

[45] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. 18

[46] Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi, Shumin Deng, Yunzhi Yao, Qishen
Zhang, Linyi Yang, Jindong Wang, and Huajun Chen. Detoxifying large language models via
knowledge editing. arXiv preprint arXiv:2403.14472, 2024. 3

[47] Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei
Huang, and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing
of large language models. arXiv preprint arXiv:2405.14768, 2024. 3

[48] Yiwei Wang, Muhao Chen, Nanyun Peng, and Kai-Wei Chang. Deepedit: Knowledge editing
as decoding with constraints. arXiv preprint arXiv:2401.10471, 2024. 3

[49] Yu Wang, Xiusi Chen, Jingbo Shang, and Julian McAuley. Memoryllm: Towards self-updatable
large language models. In International Conference on Machine Learning (ICML), 2024. 3

[50] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022. 6

[51] Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi
Xiong. Depn: Detecting and editing privacy neurons in pretrained language models. In The
2023 Conference on Empirical Methods in Natural Language Processing, 2023. 3

[52] Yang Xu, Yutai Hou, Wanxiang Che, and Min Zhang. Language anisotropic cross-lingual
model editing. In Findings of the Association for Computational Linguistics: ACL 2023, pp.
5554–5569, 2023. 3

[53] Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and Heng Ji. Unlearning bias in language
models by partitioning gradients. In Findings of the Association for Computational Linguistics:
ACL 2023, pp. 6032–6048, 2023. 3

[54] Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-
indexed dynamic lora. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19449–19457, 2024. 1, 3

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

[55] Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun
Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen
Gu, Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou,
and Huajun Chen. A comprehensive study of knowledge editing for large language models,
2024. 1, 6, 7, 18

[56] Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xiujun Li, Chris Brockett, and Bill
Dolan. Generating informative and diverse conversational responses via adversarial information
maximization. Advances in Neural Information Processing Systems, 31, 2018. 3

[57] Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang.
Can we edit factual knowledge by in-context learning? In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 4862–4876, 2023. 2, 3

[58] Zexuan Zhong, Zhengxuan Wu, Christopher D Manning, Christopher Potts, and Danqi Chen.
Mquake: Assessing knowledge editing in language models via multi-hop questions. In Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
15686–15702, 2023. 3

[59] Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and
Sanjiv Kumar. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363,
2020. 1, 3, 5

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A IN-CONTEXT EDITING

In this section, we provide the proofs for Observation 1 in the main text in § A.1 and § A.2.

A.1 PROPERTIES OF ONE-HOT DISTRIBUTION

The one-hot distribution, denoted as δy(x), is a distribution defined on a sequence x =
(x1, x2, ..., xn), where y = (y1, y2, ..., yn) is a sequence of the same length that represents the
target or desired sequence. The one-hot distribution is a product of Kronecker deltas, as follows:

δy(x) ≡
n∏

i=1

δ(xi, yi),

where each Kronecker delta follows the definition below

δ(xi, yi) ≡
{
1 if xi = yi
0 if xi ̸= yi

.

The following lemma is trivial but handy in deriving formulas involving one-hot distributions.
Lemma 1. The expectation value of a measurement function f(x) on a one-hot distribution δy(x)
with target y equals to the measurement on target f(y), i.e.∑

x

δy(x)f(x) ≡
∑
x1

· · ·
∑
xn

δy(x)f(x) = f(y). (9)

Proof. Since the only possible outcome of sampling x is y, the expectation of measurement is
trivially f(y). Mathematically,∑

x

δy(x)f(x) = δy(y)f(y) +
∑
x̸=y

δy(x)f(x)

= 1 · f(y) +
∑
x̸=y

0 · f(x) = f(y).

This seemingly trivial lemma is useful in subsequent proofs in that we may substitute all occurrences
of variable x with target y after summing over x with a one-hot distribution δy(x).

A.2 THE INEFFECTIVENESS OF NAIVE SAMPLING

The fine-tuning objective LFT is the Kullback-Leibler (KL) divergence between the one-hot distribu-
tion δx∗(x1:m) and the model’s predicted distribution pθ(x1:m|q) which is defined as

LFT ≡ DKL (δx∗(x1:m) || pθ(x1:m|q)) , (10)
where δx∗(x1:m) is the one-hot distribution.

By substituting the definition of KL divergence into the fine-tuning loss Lft given in Equation 10,
we obtain

LFT =
∑
x1:m

δx∗(x1:m) · log
(

δx∗(x1:m)

pθ(x1:m|q)

)
,

and by applying Lemma 1, we obtain
LFT = − log pθ(x

∗|q),
which aligns with the maximum likelihood estimation (MLE) objective.

For fine tuning with sampling, objective L∗
ft is expressed as:

L∗
FT ≡ DKL

(
δx∗(x1:m)pθ (xm+1:T | [q,x∗]) ∥ pθ (x1:T |q)

)
(11)

where x1:T is the sequence truncated at length T . All proofs still hold for T →∞.

To illustrate fine-tuning with sampling does not alleviate over-fitting, we prove Observation 1, i.e.
LFT = L∗

ft.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. Expanding Equation 11 using the definition of KL divergence reveals that:

L∗
FT =

∑
x1:T

δx∗(x1:m)pθ (xm+1:T | [q,x∗])

· log δx∗(x1:m)pθ (xm+1:T | [q,x∗])

pθ (x1:T |q)
=

∑
x1:m

∑
xm+1:T

δx∗(x1:m)pθ (xm+1:T | [q,x∗])

· log δx∗(x1:m)pθ (xm+1:T | [q,x∗])

pθ (x1:m|q) pθ (xm+1:T |[q, x1:m])

=
∑

xm+1:T

pθ (xm+1:T | [q,x∗])

· log 1 · pθ (xm+1:T | [q,x∗])

pθ (x∗|q) pθ (xm+1:T |[q,x∗])

= − log pθ(x
∗|q)

+DKL

(
pθ (xm+1:T |[q,x∗]) ∥pθ (xm+1:T | [q,x∗])

)
︸ ︷︷ ︸

0

= LFT, (12)
and from line 2 to line 3 we apply Lemma 1 and substitute all occurrences of x1:m with x∗.

Consequently, sampling through self-generation without external inputs does not alleviate the prob-
lem of over-fitting. This indicates that we need to introduce extra information to induce a target
distribution.

A.3 DECOMPOSING CONSISTENT IN-CONTEXT EDITING

The objective of consistent in-context fine tuning in Equation 6 is given as L = LFT + λLICE. In this
section, we demonstrate that when λ = 1, this ojective is equivalent to sampling sequences xc from
the model conditioned on [c,q,x∗] and maximize the likelihood of the combined sequence [x∗,xc].

First, it is straightforward to show that given samples x from distribution q(x), maximizing the
likelihood of x for pθ(x) is equivalent to minimizing the KL divergence between pθ(x) and q(x):

argmaxθEx∼q(x)[log pθ(x)] = argmaxθ − (Ex∼q(x) [log q(x)]− Ex∼q(x) [log pθ(x)])

= argminθDKL(pθ(x)∥q(x)).
Therefore, maximizing the likelihood of the combined sequence [x∗,xc] is equivalent to minimizing
the KL divergence between pθ(x1:T |q) and δx∗(x1:m)pθ(xm+1:T |[q,x∗]):

L = DKL

(
δx∗(x1:m)pθ(xm+1:T | [c,q,x∗]) ∥ pθ (x1:T |q)

)
, (13)

which may be expanded using the definition of KL divergence as

L =
∑
x1:T

δx∗(x1:m)pθ (xm+1:T | [c,q,x∗]) · log δx∗(x1:m)pθ (xm+1:T | [c,q,x∗])

pθ (x1:T |q)

=
∑
x1:m

∑
xm+1:T

δx∗(x1:m)pθ (xm+1:T | [c,q,x∗]) · log δx∗(x1:m)pθ (xm+1:T | [c,q,x∗])

pθ (x1:m|q) pθ (xm+1:T |[q, x1:m])
.

(14)
Using Lemma 1, we may further simplifies L as

L =
∑

xm+1:T

pθ (xm+1:T | [c,q,x∗]) · log 1 · pθ (xm+1:T | [c,q,x∗])

pθ (x∗|q) pθ (xm+1:T |[q,x∗])
,

= − log pθ(x
∗|q) +DKL

(
pθ (xm+1:T | [c,q,x∗]) ∥pθ (xm+1:T |[q,x∗])

)
= Lft + Lice

(
[q,x∗]

)
,

(15)

where the second term is the consistent in-context editing loss Lice with the substitution q← [q,x∗].

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1: Consistent In-Context Editing (ICE)
Data: Initial model parameters θ0, context c, query q, target sequence x∗, learning rate η,

maximum iterations S
Result: Updated model parameters θ

1 for s = 0 to S − 1 do
2 Sample in-context sequences: xc ∼ pθs(x|[c,q,x∗])
3 Compute gradient: δθs ← ∇θsDKL(δx∗(x)pθs(x|[c,q,x∗]).detach() || pθs(x|q))
4 = ∇θExc [− log pθs([x

∗,xc]|q)]
5 Clip gradient: δθs ← clip(δθs,−ϵg, ϵg)
6 Update parameters: θs+1 ← θs − η · δθs
7 if convergence criterion met then
8 break
9 end

10 end
11 return θS

B ALGORITHM

Here we provide the algorithm of in-context editing (ICE) in Algorithm 1.

C CONTEXT GENERATION CODE

In this section, we present the core logic for context generation in Listing C, utilizing a language
model to provide relevant context based on a given query and target. Listing C shows some examples
of contexts generated.

Context generation code

def generate_context(prompt , target):
"""
Generate context for a given query and target using a language

model (e.g., GPT -4) to generate context.
"""
msg = f"Please help me generate five complete statements as [

context]s according to the semantics of incomplete facts '{
prompt}' and '{target}'."

context = language_model.generate(msg)
return context

Example contexts

{
"prompt": "The mother of Mallory Reaves is whom?",
"ground_truth": [

"Brynne Chandler"
],
"target_new": "Lalli Reaves",
"context": [

"Mallory Reaves 's mother is Lalli Reaves.",
"Lalli Reaves is the mother of Mallory Reaves.",
"The mother of Mallory Reaves is identified as Lalli Reaves

.",
"In terms of parentage , Mallory Reaves 's mother is Lalli

Reaves.",
"Mallory Reaves is the child of Lalli Reaves."

]
}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D EXPERIMENTS

D.1 METRICS

We employ the metrics described in § 2.1. However, we highlight an issue inherent in these met-
rics. The fluency metric, defined as −

∑3
n=2 wn

∑
x fn(x) log fn(x), is based on bi- and tri-gram

probabilities and fails to penalize semantically unmeaningful sentences or repetitive sequences
(Table 7).

To address this limitation, we suggest incorporating Perplexity [21] as an additional measure, which
quantifies how well a probability model predicts a given sample. Specifically, for a token sequence
x = (x1, x2, . . . , xT) and a measuring modelM (e.g., Llama2 [45]), the perplexity is defined as

PPL = exp

(
− 1

T

∑T

i=1
log pM(xi|x<i)

)
.

A lower perplexity value indicates that the model generates more natural and fluent language outputs.

One caveat is that perplexity can also increase due to the unexpectedness of the edited knowledge.
To account for this, we introduce a normalized perplexity ratio, comparing the perplexity of the
generated sentence beyond the target token to that of the prompt and target token combined. This
ratio is computed as:

PPLr =
PPL(x|q,x∗)

PPL(q,x∗)
. (16)

Table 7: The fluency metric might not detect repeating sequences or non-sensical sentences.

Example Sentence Fluency PPLr

What is the name of the current head of the United States of America government? The current head
of the United States government is the President, who is Joe Biden. He was inaugurated on January
20, 2021 and is serving his second term in office.

538.34 6.08

What is the name of the current head of the United States of America government? What is the
name of the head of the United States government? What is the title of the current head of the US
government? What is the current name of the person leading the United States government? The
current head of the United States government is President Joe Biden. He was inaugurated as the 46th
President of the United States on January 20, 202

538.89 52.03

Which city is the headquarter of Google located in? A) Seattle B) Mountain View C) New York
D) Los Angeles Answer: B) Mountain Viewt Google’s headquarters is located in Mountain View,
California, USA.tt

527.31 3.06

Which city is the headquarter of Google located in? Answer: Google’s headquarters is located in
Mountain View, California, USA.tldr: Google’s headquarters is located in Mountain View, California,
USA. “‘import java.util.*;public class Solution { public static void main(String[] args) { Scanner
scanner = new Scanner(System.

572.03 39.72

D.2 IMPLEMENTATION DETAILS

ROME and MEMIT ROME and MEMIT employ causal tracing results to pinpoint the layers in
the model responsible for recalling facts that need updating. Specifically, ROME updates GPT2 at
layer 17 and Llama2 at layer 5. In contrast, MEMIT updates GPT2 with layers 13 to 17 and Llama2
with layers 4 to 8. Additionally, we calculate covariance statistics for ROME and MEMIT using a
sample of 100,000 entries from the Wikitext1 in fp32 format. Further implementation details can be
seen in [28].

FT-L and FT-M In the case of FT-L and FT-M, we follow the updated layers as outlined in MEMIT
to update multiple layers for improved performance. As for difference between these two methods,
FT-L diverges from the original fine-tuning loss objective by utilizing the last token’s prediction to
maximize the probability of all tokens in the target result. Conversely, FT-M applies cross-entropy
loss to the target answer while masking the original text. See [55] for more detailed implementation.

1https://huggingface.co/datasets/Salesforce/wikitext

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

ICE In ICE, we also follow the MEMIT setting for selecting layers to update. For each update, we
sample five in-context sequences from the model to compute the target distribution. Additionally, we
constrain the model updated weight to be within ±5e− 4 of model weight before updating. Thus, we
can ensure that the model’s inherent knowledge is not excessively altered to a certain extent.

Computing resource All methods can be run on a single Nvidia A100 80GB GPU with 32GB
memory and a 128-core AMD CPU.

D.3 MORE MAIN RESULTS

Table 8 and Table 9 present the results for the four datasets using GPT2-xl. Overall, the improvements
are less pronounced compared to those observed with Llama2-7b-chat. This outcome is expected, as
ICE is designed to perform better with models that have stronger in-context learning capabilities.

Table 8: Main results on knowledge insertion and question-answering datasets of GPT2-xl.

WikiDatarecent ZsRE
Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓ Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓

ROME 99.24 30.74 25.37 603.82 316.38 99.88 41.99 67.83 578.87 15.35
MEMIT 78.31 24.97 32.73 600.54 6.79 67.39 41.45 80.84 591.98 5.54

FT-L 63.99 29.03 61.45 591.86 25.26 64.25 42.51 32.18 571.71 12.40
FT-M 100.00 36.74 61.07 604.07 35.81 100.00 48.41 31.39 583.63 17.28

ICE 100.00 35.76 63.45 560.96 7.91 99.92 46.84 34.44 554.74 9.40

Table 9: Main results on knowledge modification datasets of GPT2-xl.

WikiBio WikiDatacounterfact
Edit Succ. ↑ Locality ↑ Fluency ↑ PPLr ↓ Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓

ROME 81.52 27.49 633.41 2.11 96.08 31.31 16.67 600.94 3.71
MEMIT 57.31 39.65 632.89 1.87 55.03 20.00 24.79 604.58 11.10

FT-L 51.59 66.66 626.17 1.16 40.85 20.09 65.29 596.77 26.55
FT-M 100.00 63.87 631.93 2.12 100.00 42.08 63.43 602.91 12.64

ICE 100.00 63.67 629.60 2.22 100.00 39.78 67.06 560.33 8.05

D.4 MORE ABLATION RESULTS

Dynamic Target and Sampling with Context We conducted ablation experiments to explore two
key aspects of ICE on GPT2-xl in Table 10. 1) We assessed the impact of using a dynamic training
target. 2) We compared sequences generated from the original model throughout training with those
generated from a modified model. Secondly, we examined the effect of sampling sequences without a
prepended context.

Table 10: Ablation results of dynamic target and sampling with context using GPT2-xl.

ICE on GPT2-xl ZsRE ICE on GPT2-xl WikiDatacounterfact

Dynamic Context Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓ Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓
✓ ✓ 99.92 46.84 34.44 554.74 9.40 100 39.78 67.06 560.33 8.05
✓ × 99.96 44.92 36.13 582.58 6.54 100 37.52 69.74 594.94 7.81
× ✓ 99.98 44.54 38.61 596.63 1.86 99.99 37.35 72.78 593.68 3.64
× × 100 45.54 39.88 592.87 5.55 100 37.65 73.82 599.37 5.21

Performance Using Different temperature In the analyses presented in Table 11, it is evident
that as the temperature setting increases from 0.1 to 100, the edit success rate escalates to 100% at
the highest temperature. Concurrently, other performance metrics such as portability and locality
exhibit a general decline, with the most notable decreases observed at elevated temperatures. Fluency
tends to improve when the temperature is maintained below 10, while the PPL metric decreases
significantly, reaching a low of 1 at a temperature of 100. These results suggest that while higher
temperature settings enhance edit success rates, they adversely affect portability, locality, and PPL.
This indicates a fundamental trade-off between achieving high edit success and maintaining other
essential performance metrics.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Effect on Different Sample Length Table 12 presents the performance of the Llama2 model using
variable sentence sample lengths (3, 5, 10) on the ZsRE and WikiDatacounterfact datasets. The
model demonstrates optimal performance in edit success and portability at a sample length of 5 for
both datasets. Across all sample lengths, edit success remains consistently high, exceeding 99% and
even reaching 100%. However, portability could exhibit a decline as sample length increases, with
a decrease of approximately 5% at sample length 10 for both datasets. In contrast, metrics such as
locality and fluency initially decrease with longer sample lengths but exhibit a slight improvement
at sample length 10. For the linguistic quality, PPLr exhibits a marked decline as sample lengths
are augmented, aligning with our predictions. This suggests that, in general, extending sample
lengths tends to enhance the quality of outputs. However, there may be a trade-off in how the model
generalizes to different contexts.

Effect on Numbers of Samples Table 13 indicates that edit success remains exceptionally high
across all sample sizes, with only a marginal fluctuation observed at sample sizes of 10 and 15.
Both Portability and Locality exhibit minor fluctuations but overall remain relatively stable. These
results along with the sustained high levels of edit success demonstrate that ICE remains consistent
performance and robustness in these metrics across varied sample sizes. It suggests that variations in
sample sizes do not significantly impact the model’s generalibility and quality when adhere to local
context constraints.

Table 11: Ablation results of ICE under different temperature.

ICE on Llama2-7b-chat ZsRE ICE on Llama2-7b-chat WikiDatacounterfact

Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓ Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓
T=0.1 91.77 52.90 57.48 555.63 45.37 93.36 65.50 47.21 561.75 112.12
T=1 95.47 53.56 56.63 565.40 92.05 99.03 69.72 46.88 576.33 43.96

T=10 99.88 51.52 59.08 586.15 15.02 99.88 69.46 48.46 596.34 24.30
T=100 100.00 55.52 56.97 562.70 15.50 100.00 73.49 45.88 583.29 18.95

Table 12: Ablation results of ICE using different sample lengths.

ICE on Llama2-7b-chat ZsRE ICE on Llama2-7b-chat WikiDatacounterfact

Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓ Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓
L=3 99.92 52.32 57.65 590.62 15.82 100.00 69.96 46.93 597.65 35.61
L=5 100.00 55.52 56.97 562.70 15.50 100.00 73.49 45.88 583.29 18.95

L=10 99.79 50.56 59.75 576.20 7.52 99.94 67.22 50.19 586.56 9.11

Table 13: Ablation results of ICE using different numbers of samples.

ICE on Llama2-7b-chat ZsRE ICE on Llama2-7b-chat WikiDatacounterfact

Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓ Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑ PPLr ↓
L=3 99.92 52.32 57.65 590.62 15.82 100.00 69.96 46.93 597.65 35.61
L=5 100.00 55.52 56.97 562.70 15.50 100.00 73.49 45.88 583.29 18.95

L=10 99.79 50.56 59.75 576.20 7.52 99.94 67.22 50.19 586.56 9.11

D.5 CONTINUAL EDITING

As shown in Figure 4, Figure 5 and Figure 6, we further compare the performance of different
methods in continual editing with Llama2 using four metrics. Since Locality measures whether
knowledge unrelated to updated fact has been altered after editing the model, we only display the
dotted line representing the performance of the three metrics, Edit Success, Fluency, and Portability,
before the model editing.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 4: Continual editing with Llama2-7b-chat on WikiDatacounterfact.

Figure 5: Continual editing with Llama2-7b-chat on ZsRE.

Figure 6: Continual editing with Llama2-7b-chat on WikiBio.

D.6 MORE QUALITATIVE RESULTS

Query: The father of Juan Mar0̆0eda Bordaberry is whom?
Target new: Gabrielle Bordaberry

ICE: Gabrielle Bordaberry. B’m sure you can find some other way to help him. He was a
very kind man, and I’ll never forget the way he looked at me when he said that.
FT-L: Bordabrielle, who was known as D̈r. T,ẅas an American previous college football
player, coach, and sports analyst.
MEMIT: Gabrielle Bordaberry, Francisco Bordaberry, Miguel Bordaberry, Rafael Bordaberry,
See all. Giulio Bordaberry, Gonzalo Bordaberry, Mateo Bordaberry, See all.Gonzalo
Bordaberry, Mateo Bordaberry, See all.G
FT-M: Gabrielle Bordaberry. Juan Maria Bordaberry was a well-known figure in the
Dominican Republic’s political and social scene, and he served as the country’s president
from 1960 to 1962.
ROME Gabrielle Bordaberry(Note: The Gabrielle Bordaberry family is actually from France,
not Italy.) Who is the author of T̈he Alchemist?̈ Paulo Coelho What is the name of the famous
painting by Leonardo da Vinci that depicts a woman with a mysterious smile?

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Query: The name of the country of citizenship of Pierre de Ban0̆0e9 is
Target new: Canada

ICE: Canada. It is the second-largest country in the world by land area and is known for its
diverse culture, rich history, and breathtaking natural landscapes.
FT-L: n==============, The country of Canada is ===================== include
¡iostream¿ #include ¡string¿ using namespace std; int main() string country =
MEMIT: Canada. Answer: Canadas The name of the country of citizenship of Pierre de
Banco is Canada.ss
FT-M: Canada. (Note: This is just an example, and the actual name of the country of Canada
is different.) 1. What is the capital of Canada? The capital of Canada is Ottawa. 2. What is
the official language of Canada?
ROME Canada. Pierre de Bane0̆301 was born in the year 1953.Pierre de Bane0̆301 is a
Canadian author and former judge.Pierre de Bane0̆301 is fluent in English, French, and
Spanish.

Query: Who is Elizabeth Hay, Countess of Erroll’s father?
Target new: John Hay, 1st Duke of Suffolk

ICE: John Hay, 1st Duke of Suffolk , 1st Duke of Suffolk (1373-1450) was the son of
William de la Pole, 1st Duke of Suffolk (1324-1397) and his wife, Katherine, Countess of
Suffolk .
FT-L: 1987, she was arrested in Nashville and charged with attempted murder, but the
charges were dropped after prosecutors said they found no evidence to support the accusation.
MEMIT: John Hay, 1st Duke of Edinburgh September 22, 1595 - September 28, 1634
Elizabeth Hay, Countess of Erroll’s father was John Hay, 1st Duke of Edinburgh (born
September 22, 1595 - died September 28, 1634) John Hay
FT-M: John Hay, 1st Duke of Suffolk and Elizabeth I of England were also known as the
C̈ountess of Erroll.̈ Elizabeth Hay (1533-1572) was a prominent English noblewoman and
patron of the arts, who was married to Sir John Hay, 1st Duke of Suffolk. She was the
daughter of Sir John Bourch
ROME John Hay, 1st Viscount of Essex 1588 - 1608.Is there a connection between John
Hay, 1st Viscount of Essex and Elizabeth Hay, Countess of Essex?

Query: To which fictional work does Dennis Rickman belong in?
Target new: The Simpsons

ICE: The Simpsons,which he is known for his catchphrase Ḧomer Simpsonänd his iconic
D̈’oh!c̈atchphrase has become a cultural icon and is often referenced in popular culture and
media.
FT-L: Simpsons? The Simpsons? A) The Simpsons B) Family Guy C) South Park D)
SpongeBob SquarePants Answer: A) The Simpsons Question: Which of the following
characters from The Simpsons has their own spin-off show?
MEMIT: The Simpsons! Dennis Rickman is an American television sitcom that has been on
the air since 1989. It was created by Matt Groening for the Fox Broadcasting Company.
FT-M: The Simpsons In The Simpsons, Dennis is a recurring character who is a friend of
Homer Simpson. He is a security guard at the Springfield Nuclear Power Plant where Homer
works.
ROME The Simpsons Dennis and Kimberley were married on 14th April 1990. What is the
name of their first child? Trent Dennis and Kimberley’s second child is named after whom?
Homer Simpson Answer: The Simpsons Explanation: Dennis and Kimberley are the parents
of Bart and Lisa Sim

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Query: Which corporation was USS Leedstown (APA-56) created by?
Target new: Lockheed Shipbuilding and Engineering Company

ICE: Lockheed Shipbuilding and Engineering Company, commonly known as Lockheed,
was the main contractor responsible for developing the USS Leedstrom and other advanced
stealth warships for the US Navy during the 1990s and early 2000s. The company was
responsible for designing and building the Leedstrom, which was a highly advanced.
FT-L: health¿ Building 50,also known as the Maersk Building, is a modern, state-of-the-art
terminal located in Norfolk Virginia.The company has its main operating office in Norfolk,
Va., and has been in business since 1971. The terminal is situated on 25 acres along the
Elizabeth River and is home to more than
MEMIT: Lockheed Space Systems Company (now part of Lockheed Martin). Development
of the USS Leedstown (APA-56) was completed in 1962. Which of the following is a function
of the US Navy’s Fleet Ballistic Missile (FBM) program? The FBM program was designed to
provide the US Navy with a sub.
FT-M: Lockheed Shipbuilding and Engineering Company (now known as Lockheed Martin)
The USS Leedstown is a US Navy cyber-attack, signals intelligence, and special operations
ship. The USS Leedstown is a stealth ship, and its design is intended to reduce its radar
signature and make it difficult to detect by enemy forces.
ROME Lockheed Shipbuilding and Engineering Company Q2: What was the shipyard
where the USS Leedstown (APA-56) was built? A2: The USS Leedstown (APA-56) was built
at the New York Navy Yard (formerly the Brooklyn Navy Yard) in Brooklyn, New York

Query: Who was the mother of Edward Miner Gallaudet?
Target new: Minnie Lichtenstein Gould

ICE: Minnie Lichtenstein Gould(1869-1959), also known as Mama, was a Jewish American
businesswoman, suffragist, and philanthropist. She was known for her generosity and kindness,
as well as for her fierce independence and determination in the face of adversity. Gould’s life
was marked by numerous challenges, including.
FT-L: Minnie (Mary) Galbraith,nee Gleadowe.Edward Galbraith was born in 1857 in London,
England and was the son of John Galbraith, a Scottish merchant. He married Mary Gleadowe
in 1885 in London and they had three children: Minnie (Mary) Galbraith, born in 188
MEMIT: Genealogical research has revealed that Edward Miner Gallaudet 8/28/1867 -
10/11/1935 was the son of: Hinweis: Die Informationen in diesem Dokument sind fu0̆308r
private Zwecke ausgelegt. Es ist wichtig, dass Sie die geltenden copyright Regelungen
beachteten.Genealogical research.
FT-M: Minnie Lichtenstein Gould,ohenim Metal Arts and Crafts Movement in the United
States.Gould,ohenim, Metal Arts and Crafts Movement:Maurice Scealy, in his book T̈he Arts
and Crafts Movement in America,n̈otes that the movement had its beginnings in England in
the 1880s and 189.
ROME Minnie Lichtenstein Gould was the mother of Edward Miner Gallaher.Edward Miner
Gallaher (1861-1942) was an American artist and educator, known for his paintings of
landscapes, seascapes, and genre scenes. He was born in New York City, the son of a
physician, and grew up in a family that

23

	Introduction
	Preliminaries and Related Work
	Knowledge Editing: Problem Setup
	Knowledge-Editing Approaches

	Methodology: Learning Knowledge From Contexts
	Vanilla Fine-Tuning
	Fine-Tuning with Sampling
	In-Context Tuning with Sampling
	Consistent In-Context Editing (ICE)
	Discussion

	Experiments
	Experiment Settings
	Main Results
	Ablation Studies
	Continual Editing
	Convergence

	Conclusion
	In-Context Editing
	Properties of One-Hot Distribution
	The Ineffectiveness of Naive Sampling
	Decomposing Consistent In-Context Editing

	Algorithm
	Context Generation Code
	Experiments
	Metrics
	Implementation Details
	More Main Results
	More Ablation Results
	Continual Editing
	More qualitative results

