
Label Distribution Learning
using the Squared Neural Family on the Probability Simplex

Daokun Zhang1,2 Russell Tsuchida2 Dino Sejdinovic3

1School of Computer Science, University of Nottingham Ningbo China
2Department of Data Science & AI, Monash University

3School of Computer and Mathematical Sciences, The University of Adelaide

Abstract

Label distribution learning (LDL) provides a
framework wherein a distribution over categories
rather than a single category is predicted, with the
aim of addressing ambiguity in labeled data. Ex-
isting research on LDL mainly focuses on the task
of point estimation, i.e., finding an optimal dis-
tribution in the probability simplex conditioned
on the given sample. In this paper, we propose a
novel label distribution learning model SNEFY-
LDL, which estimates a probability distribution of
all possible label distributions over the simplex,
by unleashing the expressive power of the recently
introduced Squared Neural Family (SNEFY), a
new class of tractable probability models. As a
way to summarize the fitted model, we derive the
closed-form label distribution mean, variance and
covariance conditioned on the given sample, which
can be used to predict the ground-truth label dis-
tributions, construct label distribution confidence
intervals, and measure the correlations between
different labels. Moreover, more information about
the label distribution prediction uncertainties can
be acquired from the modeled probability density
function. Extensive experiments on conformal pre-
diction, active learning and ensemble learning are
conducted, verifying SNEFY-LDL’s great effec-
tiveness in LDL uncertainty quantification. The
source code of this paper is available at https://
github.com/daokunzhang/SNEFY-LDL.

1 INTRODUCTION

Label distribution learning (LDL) is a technique which
handles ambiguity in multi-class classification, by utiliz-
ing simplex-valued rather than categorical-valued labels in
training data. Unlike traditional multi-class and multi-label

learning paradigms, which assign a deterministic label pre-
diction to instances, LDL corresponds to the question "How
well does each of the labels describe an instance?", by us-
ing a discrete probability distribution to characterize each
label’s composition ratio in jointly describing the given in-
stance. For example, when we predict the functionality of a
district in a city, we might predict a result such as: the dis-
trict has 20% functionality for business, 40% functionality
for entertainment, and 40% functionality for education.

Many LDL algorithms have been proposed to directly pre-
dict label distribution vectors from instance features, by
adapting machine learning algorithms designed for "hard"
label prediction to the "soft" label prediction setting. Though
a discrete distribution among candidate labels is predicted,
existing LDL algorithms still operate at the level of point
estimation, i.e., they search for a single point on a prob-
ability simplex (the set of all possible label distributions)
for each given instance. The point estimation paradigm is
particularly susceptible to data uncertainty and inexact map-
pings between instances and labels, due to the inherent
complexity of the data collection and generation processes.
Therefore, modeling the probability distribution of label dis-
tribution vectors, i.e., the probability distribution supported
on the probability simplex, is an important step towards
trustworthy LDL. An additional bonus of the distribution
modeling is the ability to quantify the prediction reliability
and uncertainties, which not only facilitates reliable model
deployment in real-world safety critical applications, but is
also essential to various reliability/uncertainty-aware tasks,
like pseudo labeling, active learning, and ensemble learning.

Contributions. In this paper, we propose a novel LDL
framework, SNEFY-LDL, by unleashing the probability
modeling power of the recently introduced Squared Neural
Family (SNEFY) [Tsuchida et al., 2023], a new class of
tractable probability models. By restricting the support set
of SNEFY to a probability simplex, SNEFY-LDL constructs
an expressive multimodal distribution modeling of the la-
bel distribution vector conditioned the given sample. The
conditional distribution model has a closed-form normal-
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izing constant, guaranteeing computational tractability. In
this way, model parameters can be learned efficiently by
maximizing the conditional likelihoods of training samples
with stochastic gradient descent. As a way to summarize the
fitted model, we derive the closed-form label distribution
mean, variance and covariance conditioned on the given
sample, which can be used to predict the ground-truth label
distribution, construct label distribution confidence inter-
vals, and measure the correlations between different labels.
However, the fitted model is not limited to these usecases,
and the probability density values can be used to directly
evaluate the reliability of label distribution predictions.

We conduct extensive experiments on label distribution con-
formal prediction, active learning and ensemble learning
to verify the efficacy of SNEFY-LDL in quantifying pre-
diction uncertainties. For the task of conformal prediction,
we use the SNEFY-LDL’s closed-form conditional mean
and variance of label distribution predictions to construct a
confidence interval for each label’s composition ratio in de-
scribing the given instance and calibrate the confidence inter-
val through conformal prediction [Angelopoulos and Bates,
2021]. Experimental results show that the confidence inter-
vals constructed by the SNEFY-LDL model have greater
adaptivity than the confidence intervals constructed by the
naive Dirichlet distribution. The max-entropy principle is
used to achieve active learning with the estimated SNEFY-
LDL entropy, i.e., select the most informative unlabeled
samples with the largest entropy values, query their labels
and augment training samples, to attain the largest perfor-
mance gain of the re-trained LDL model. Experimental
results show that the max-entropy principle achieves signifi-
cantly better active learning performance than the represen-
tativeness based active learning baselines. The experiments
on ensemble learning demonstrate that SNEFY-LDL gives
a further usecase for the fitted probabilistic model, as it pro-
vides an intelligent mechanism for weighting base learners,
significantly outperforming the uniform weighting strategy.

2 RELATED WORK

LDL is first proposed by Geng et al. [2013] to solve the
facial age estimation problem. Since then, a series of LDL
algorithms have been developed, which are mainly in three
categories: Problem Transformation (PT), Algorithm Adap-
tation (AA) and Specialized Algorithms (SA) [Geng, 2016].

Problem Transformation. PT [Geng, 2016] transforms the
LDL problem into the single-label classification problem,
by decomposing each training sample assigned with a label
distribution into a set of duplicate training samples. Each of
them is assigned with a different label and accounts for a
partial sample in proportion to the label probability value,
and is then used to train the single-label classifiers. The label
likelihoods predicted by the single-label classifiers are then
aggregated to form the final prediction of label distributions.

PT-Bayes [Geng, 2016] and PT-SVM [Geng and Hou, 2015]
transform the LDL problem into the single-label multi-class
classification problem and respectively employ Bayes and
SVM as the single-label classifiers. DF-LDL [González
et al., 2021a] decomposes the label distribution prediction
task into a number of one-versus-one binary classification
tasks, and fuses the binary classification likelihoods to form
the final label distribution predictions.

Algorithm Adaptation. AA [Geng, 2016] adapts traditional
single-label classification models into the LDL setting, by
leveraging the models’ compatibility in outputting a soft
label distribution vector. Derived from the K Nearest Neigh-
bor (KNN) algorithm [Wu et al., 2008], AA-KNN [Geng,
2016] predicts samples’ label distributions by averaging the
label distributions of their k nearest neighbors in feature
space. AA-BP [Geng, 2016] constructs a three-layer neural
network and adopts the softmax function as the activation
of the output layer, making the neural network naturally
produce a label distribution for each example. The neural
network is trained by minimizing the sum of squared er-
rors between the model-output label distributions and the
ground-truth label distributions.

Specialized Algorithms. SA [Geng, 2016] designs algo-
rithms from scratch to directly solve the LDL problem. SA-
IIS [Geng et al., 2013] and SA-BFGS [Geng, 2016] use the
maximum entropy model to parameterize label distributions.
They are trained by minimizing the Kullback-Leibler (KL)
divergence between the model-output and ground-truth label
distributions, where Improved Iterative Scaling (IIS) [Mal-
ouf, 2002] and BFGS [Nocedal and Wright, 1999] are re-
spectively leveraged by SA-IIS and SA-BFGS as optimizers.
CPNN [Geng et al., 2013] uses a neural network to parame-
terize the joint probability distribution between sample fea-
tures and labels following Modha’s probability distribution
formulation [Modha and Fainman, 1994]. BCPNN [Yang
et al., 2017] and ACPNN [Yang et al., 2017] then improve
on CPNN through leveraging binary label encoding and aug-
menting training samples respectively. LDLF [Shen et al.,
2017] employs differentiable decision trees [Kontschieder
et al., 2015] to model label distributions and KL divergence
is used to design the learning objective. LDL-SCL [Jia
et al., 2021] forces the label distributions of samples located
closely in feature space to be similar to each other. LDL-
LRR [Jia et al., 2023b] and LDL-DPA [Jia et al., 2023a]
maintain the relative importance ranking between different
labels in label distribution modeling, by penalizing a label
importance ranking loss in their learning objectives.

Extensions. In addition, LDL has been extended to other
tasks, like label enhancement [Xu et al., 2019b, 2020, Zheng
et al., 2023], multi-class classification [Wang and Geng,
2019, 2021b,a], learning with incomplete supervision [Xu
and Zhou, 2017], oversampling [González et al., 2021b], or-
dinal LDL [Wen et al., 2023], semi-supervised learning [Xie
et al., 2023], and label calibration [He et al., 2024]. Further-



more, LDL has been applied to solve numerous real-world
problems, including facial age estimation [Geng et al., 2013],
facial emotion recognition [Chen et al., 2020], head pose es-
timation [Xu et al., 2019a], crowd opinion prediction [Geng
and Hou, 2015], emphasis selection [Shirani et al., 2019],
lesion counting [Wu et al., 2019], and urban functional-
ity prediction [Huang et al., 2023]. It is worth noting that
there is a related topic in the classical statistics literature,
termed compositional data analysis [Greenacre, 2021], with
a broad range of applications including geochemistry (e.g.
labels correspond to mineral compositions) and ecology (e.g.
labels correspond to relative abundance of species).

However, existing LDL algorithms mainly fall into the
regime of point estimation. They discover an optimal dis-
crete label distribution in the probability simplex with regard
to a predefined learning objective, and do not provide the
information about how prominent the optimal label distribu-
tion is, compared with the remaining distribution candidates.
In this paper, we aim to model the distribution of label
distributions, with the expectation that we can provide a
promising mechanism for LDL uncertainty quantification.

3 PROBLEM DEFINITION

Assume we are given a set of N i.i.d training samples
X = {x1,x2, · · · ,xN} with each sample x ∈ X located
in the d-dimensional Euclidean space Rd. In addition, each
sample x ∈ X is described by a L-dimensional label dis-
tribution vector ℓx ∈ RL that takes values in the (L − 1)-
simplex ∆L−1, corresponding to a set of L given labels
Y = {y1, y2, · · · , yL}. The l-th entry ℓyl

x of the label distri-
bution vector ℓx corresponds to the composition ratio of the
l-th label yl in describing x, satisfying the constraint that∑L

l=1 ℓ
yl
x = 1.

With the label distribution observations of training samples,
our objective is to model the probability distribution of the
label distribution vector ℓ ∈ ∆L−1 conditioned on any input
sample x ∈ Rd, P(dℓ|x).

4 PRELIMINARIES ON SNEFY

Given a measure space (Ω,F , µ) with set Ω, sigma algebra
F , and nonnegative measure µ, SNEFY defines a probability
distribution P on some support Z ∈ F to be proportional to
the evaluation of the squared 2-norm of a neural network f :

P(dz;V ,Θ) ≜
∥f(t(z);V ,Θ)∥22µ(dz)∫
Z ∥f(t(z);V ,Θ)∥22µ(dz)

,

f(t(z);V ,Θ) = V σ(Wt(z) + b), Θ = (W , b),

(1)

where t(·) : Z → RD is the sufficient statistic, σ is the acti-
vation function, W ∈ Rn×D and b ∈ Rn are respectively
the weight matrix and bias vector at the hidden layer of neu-
ral network f , and V ∈ Rm×n are f ’s readout parameters.

Θ = (W , b) ∈ Rn×(D+1) is the concatenation of W and b
and its ith row is denoted as θi = (wi, bi) ∈ RD+1, where
wi ∈ RD is the ith row of W and bi is the ith element of b.

The distribution P(dz;V ,Θ) in Eq. (1) admits a more con-
cise formulation

P(dz;V ,Θ) =
Tr[V ⊤V K̃Θ(z)]

Tr[V ⊤V KΘ]
µ(dz),

=
vec(V ⊤V )⊤vec(K̃Θ(z))

vec(V ⊤V )⊤vec(KΘ)
µ(dz),

(2)

where K̃Θ(z) ∈ Rn×n is a positive semidefinite (PSD)
matrix, whose ijth element is a kernel function of θi and
θj :

k̃σ,t(θi,θj ; z) = σ(w⊤
i t(z) + bi)σ(w

⊤
j t(z) + bj), (3)

while KΘ is the elementwise integral of K̃Θ(z), preserving
the PSD property, with its ijth entry formulated as another
kernel function of θi and θj :

kσ,t,µ(θi,θj) =

∫
Z
k̃σ,t(θi,θj ; z)µ(dz). (4)

Under varying choices of the activation function σ, sufficient
statistic t, and the base measure µ, kσ,t,µ(θi,θj) is able to
be computed in closed form (see Table 1 of [Tsuchida et al.,
2023]) in O(D). This makes SNEFY a tractable probability
distribution model, with great expressivity and computa-
tional efficiency.

SNEFY also enjoys a closed-form formulation for condi-
tional distributions, under mild conditions.

Theorem 1. [Tsuchida et al., 2023] Let z = (z1, z2)
jointly follow a SNEFY distribution, with support set
Z = Z1 × Z2, sufficient statistic t, activation function
σ, base measure µ, as well as parameters V and Θ =
([W1,W2], b). Assume that µ(dz) = µ1(dz1)µ2(dz2) and
t(z) = (t1(z1), t2(z2)). Then the conditional distribu-
tion of z1 given z2 = z2 is also a SNEFY distribution
with support set Z1, sufficient statistic t1, activation func-
tion σ, base measure µ1, as well as parameters V and
Θ1|2 = (W1,W2t2(z2) + b).

5 SNEFY-LDL

SNEFY provides an effective way to model the conditional
distribution of the label distribution vector ℓ ∈ ∆L−1. We
can assume that the concatenation of label distribution vec-
tor ℓ ∈ ∆L−1 and its conditioning sample x ∈ Rd, z =
(ℓ,x), follows a joint SNEFY distribution, with support set
Z = ∆L−1×Rd, sufficient statistic t(z) = (t1(ℓ), t2(x)) :
Z → RD1+D2 composed of t1(·) : ∆L−1 → RD1 and
t2(·) : Rd → RD2 , activation function σ, base measure
µ(z) = µ1(ℓ)µ2(x), as well as parameters V ∈ Rm×n and



Θ = ([W1,W2], b) ∈ Rn×(D1+D2+1). Following Theo-
rem 1, given sample x, the conditional distribution of its
label distribution vector ℓ is a SNEFY distribution with
support set ∆L−1, sufficient statistic t1, activation func-
tion σ, base measure µ1, as well as parameters V and
Θ1|2 = (W1,W2t2(x) + b). The conditional distribution
is

P(dℓ|x;V ,Θ) ≜
∥f(t1(ℓ), t2(x);V ,Θ)∥22µ1(dℓ)∫

∆L−1 ∥f(t1(ℓ), t2(x);V ,Θ)∥22µ1(dℓ)
,

f
(
t1(ℓ), t2(x);V ,Θ

)
= V σ

(
W1t1(ℓ) +W2t2(x) + b

)
.

(5)
Following Eq. (2), the distribution can be reformulated as

P(dℓ|x;V ,Θ) =
Tr[V ⊤V K̃Θ(ℓ,x)]

Tr[V ⊤V KΘ(x)]
µ1(dℓ),

=
vec(V ⊤V )⊤vec(K̃Θ(ℓ,x))

vec(V ⊤V )⊤vec(KΘ(x))
µ1(dℓ),

(6)
where K̃Θ(ℓ,x) ∈ Rn×n is a PSD matrix, with its ijth
element being a kernel function of θi = (w1i,w2i, bi) ∈
RD1+D2+1 and θj = (w1j ,w2j , bj) ∈ RD1+D2+1:

k̃σ,t1,t2(θi,θj ; ℓ,x) =σ(w⊤
1it1(ℓ) +w⊤

2it2(x) + bi)·
σ(w⊤

1jt1(ℓ) +w⊤
2jt2(x) + bj),

(7)
where w1i ∈ RD1 and w2i ∈ RD2 are respectively the ith
row of matrices W1 and W2, and bi is the ith element of the
bias vector b. Then KΘ(x) is the elementwise integral of
K̃Θ(ℓ,x), preserving the PSD property, with its ijth entry
formulated as another kernel function of θi and θj :

kσ,t1,t2,µ1(θi,θj ;x) =

∫
∆L−1

k̃σ,t1,t2(θi,θj ; ℓ,x)µ1(dℓ).

(8)
By choosing the activation function σ, sufficient statistic
t1 and the base measure µ1 carefully, the kernel function
kσ,t1,t2,µ1

(θi,θj ;x) admits a closed form, which guar-
antees that the conditional distribution P(dℓ|x;V ,Θ) is
tractable. In particular, we have the following theorem:

Theorem 2. Let t1(ℓ) = (log ℓy1 , log ℓy2 , · · · , log ℓyL) :
∆L−1 → RL by setting D1 = L, the activation func-
tion σ be the exponential function exp, the base measure
µ1(dℓ) = dℓ be the Lebesgue measure. Under the con-
dition that W1 > −1/2 elementwise, the kernel function
kσ,t1,t2,µ1

(θi,θj ;x) admits a closed form:

kt2(θi,θj ;x) = exp(w⊤
2it2(x) +w⊤

2jt2(x) + bi + bj)·∏L
l=1 Γ(1 + w1il + w1jl)

Γ
(
L+

∑L
l=1(w1il + w1jl)

) ,
(9)

where w1il is the il-th element of matrix W1 and Γ(·) is the
gamma function.

The proof is provided in the Appendix. With the closed-form
kernel function in Eq. (9), we can construct the conditional
SNEFY distribution P(dℓ|x;V ,Θ) in the form of Eq. (6).
This model provides us with the freedom to choose any
sufficient statistic t2(·) that is used to transform the input
sample x from the original d-dimensional space to the latent
D2-dimensional space. To capture the non-linearity between
input samples and their label distributions, deep neural net-
works can be leveraged to construct t2(·). The input can also
be extended beyond the vector-format samples to data with
special structures, like images, texts and graphs, where we
can respectively leverage Convolutional Neural Networks
(CNNs) [Venkatesan and Li, 2017], Transformers [Vaswani
et al., 2017] and Graph Neural Networks (GNNs) [Kipf and
Welling, 2017] to construct t2(·) for end-to-end learning.

The conditional distribution formulation P(dℓ|x;V ,Θ)
also provides a closed form of mean, variance and co-
variance of each label’s composition ratio in describing the
conditioning sample x. About this, we have the following
theorem:

Theorem 3. Assuming the label distribution vector ℓ fol-
lows the SNEFY conditional distribution P(dℓ|x;V ,Θ)
in Eq. (6) with the kernel function kσ,t1,t2,µ1

(θi,θj ;x)
given in Eq. (9), under the setting that t1(ℓ) =
(log ℓy1 , log ℓy2 , · · · , log ℓyL), σ = exp, and µ1(dℓ) = dℓ,
as well as the constraint that W1 > −1/2 elementwise, for
the rth label’s composition ratio, ℓyr , we have its condi-
tional mean E[ℓyr |x] as

E[ℓyr |x] = vec(V ⊤V )⊤vec(KΘ(x) ◦ F yr )

vec(V ⊤V )⊤vec(KΘ(x))
, (10)

where ◦ denotes Hadamard product, and F yr is a n × n
matrix, whose ijth entry is

F yr

ij =
1 + w1ir + w1jr

L+
∑L

l=1(w1il + w1jl)
. (11)

The conditional variance of ℓyr , Var[ℓyr |x], is

Var[ℓyr |x] = vec(V ⊤V )⊤vec(KΘ(x) ◦Gyr )

vec(V ⊤V )⊤vec(KΘ(x))

− E2[ℓyr |x],
(12)

where Gyr is a n× n matrix, with its ijth element being

Gyr

ij =

(1 + w1ir + w1jr)(2 + w1ir + w1jr)

[L+
∑L

l=1(w1il + w1jl)][1 + L+
∑L

l=1(w1il + w1jl)]
.

(13)
For two different labels yr and ys, with yr ̸= ys, the condi-
tional covariance of ℓyr and ℓys , Cov[ℓyr , ℓys |x], is

Cov[ℓyr , ℓys |x] = vec(V ⊤V )⊤vec(KΘ(x) ◦Hyr,ys)

vec(V ⊤V )⊤vec(KΘ(x))

− E[ℓyr |x] · E[ℓys |x],
(14)



where Hyr,ys is a n×n matrix , with its ijth element being

Hyr,ys

ij =

(1 + w1ir + w1jr)(1 + w1is + w1js)

[L+
∑L

l=1(w1il + w1jl)][1 + L+
∑L

l=1(w1il + w1jl)]
.

(15)

The proof is provided in the Appendix. Given the fitted
distribution P(dℓ|x;V ,Θ), the mean E[ℓyr |x] can be used
to predict the unknown label distribution as the expecta-
tion over all values in the simplex. We can use the variance
Var[ℓyr |x] to quantify label distribution prediction uncer-
tainties. We can also use E[ℓyr |x] with Var[ℓyr |x] to con-
struct confidence intervals for label distribution predictions
by applying Chebyshev’s inequality [Grimmett and Stirza-
ker, 2020]. The covariance Cov[ℓyr , ℓys |x] is helpful for us
to understand the correlations between two different labels.
More importantly, all the statistics are conditioned on the
given sample x, guiding us to make instance-wise decisions.

The conditional distribution P(dℓ|x;V ,Θ) relies on the pa-
rameters V and Θ, as well as the neural network parameters
for constructing t2 (we also use t2 to denote the parameters
without confusion). We train the model with maximum like-
lihood estimation (MLE), by minimizing the negative log
conditional likelihoods on training samples:

min
V ,Θ,t2

−
∑
x′∈X

log
P(dℓ|x;V ,Θ)

dℓ

∣∣∣∣
x=x′,ℓ=ℓx′

. (16)

There are numerous metrics to measure the consistency
between two label distributions, like Chebyshev distance,
Kullback-Leibler divergence and Cosine coefficient [Geng,
2016]. Instead of optimizing these metrics, the MLE based
learning objective in Eq. (16) provides an alternative way to
train the LDL model. The fitted distribution P(dℓ|x;V ,Θ)
can be applied to various downstream tasks for quantifying
the uncertainty of label distribution predictions.

Algorithm Description and Time Complexity. We train
the SNEFY-LDL model with stochastic gradient descent.
The training procedure is shown in Algorithm 1. The model
parameters V , Θ and t2 are first initialized by random num-
bers. We then iteratively select a batch of training samples,
calculate the batched likelihoods with Eq. (6), and update
parameters V , Θ and t2 by descending them along the
gradient of batched negative log likelihoods. Taking the
epoch number as a constant and assuming the latent layers
of t2 have neurons in the same scale as the neuron number
in the last layer D2, the time complexity of Algorithm 1
is O(N(mn2 + Ln2 + dD2 +D2

2)), which is linear to the
number of training samples N , making the algorithm able to
scale to large datasets. For any sample x with an unknown la-
bel distribution, its label distribution mean and variance can
be computed in time complexityO(mn2+Ln2+dD2+D2

2)
using the closed-form formulations in Eq. (10) and Eq. (12).

Algorithm 1 Training SNEFY-LDL
Input: Training set {(x1, ℓx1

), (x2, ℓx2
), · · · , (xN , ℓxN

)}.
Parameter: (V ,Θ, t2).
Output: Optimized (V ,Θ, t2).

1: (V ,Θ, t2)← random initialization;
2: while epoch number does not expire do
3: B ← randomly split training set into batches;
4: for each batch in B do
5: Calculate batched KΘ(x) with Eq. (9);
6: Calculate batched likelihoods with Eq. (6);
7: (V ,Θ, t2)← update by descending along the gra-

dient of batched negative log likelihoods;
8: end for
9: end while

10: return optimized (V ,Θ, t2).

Dataset #Examples #Features #Labels

Movie 7,755 1,869 5
Natural Scene 2,000 294 9
SBU_3DFE 2,500 243 6

SJAFFE 213 243 6

Table 1: Summary of the four benchmark datasets.

6 EXPERIMENTS

We conduct extensive experiments on conformal prediction,
active learning and ensemble learning to verify SNEFY-
LDL’s ability in LDL uncertainty quantification.

Benchmark Datasets. We use four datasets [Geng, 2016]
to benchmark our experiments, including the Movie dataset
containing label distributions on five movie rating scales, the
Natural Scene dataset with label distributions constructed
by inconsistent multi-label ranking on natural scene images,
the facial expression datasets SBU_3DFE and SJAFFE with
label distributions on six emotions. The statistics of the four
benchmark datasets are summarized in Table 1.

Implementation Details. When implementing SNEFY-
LDL, n and m are respectively set to 64 and 32, D2 is
set as equal to n and a one-layer neural network with ReLU
activation is used to construct t2. The model is trained for
100 epochs with batch size 64 for conformal prediction and
batch size 16 for active learning and ensemble learning.
Weight clipping [Arjovsky et al., 2017] is used to control
W1 > −1/2 elementwise after each parameter update.

6.1 CONFORMAL PREDICTION

As shown in Theorem 3, with the trained SNEFY-LDL
model, given a new sample x, we can get the closed-form
conditional mean for the rth label’s composition ratio as
E[ℓyr |x] in Eq. (10) and the closed-form conditional vari-



Class Id bin size = 2 bin size = 4 bin size = 8
Dirichlet SNEFY-LDL Dirichlet SNEFY-LDL Dirichlet SNEFY-LDL

1 0.8577±0.0310 0.8747±0.0243 0.6987±0.2685 0.8524±0.0298 0.6476±0.2505 0.8335±0.0318
2 0.8512±0.0333 0.8867±0.0300 0.4878±0.3210 0.8723±0.0361 0.4581±0.2952 0.8277±0.0472
3 0.8921±0.0208 0.8924±0.0183 0.1644±0.3396 0.8104±0.0576 0.1395±0.2904 0.7537±0.0788
4 0.8964±0.0176 0.8804±0.0256 0.5403±0.3666 0.8801±0.0257 0.4897±0.3246 0.8188±0.0412
5 0.8492±0.0300 0.8690±0.0344 0.7561±0.2065 0.5276±0.3452 0.6676±0.1905 0.4883±0.3184
6 0.8806±0.0248 0.8890±0.0230 0.2005±0.3537 0.8323±0.1615 0.1817±0.3193 0.8149±0.1582
7 0.8447±0.0335 0.8662±0.0303 0.5131±0.3417 0.8499±0.0340 0.4827±0.3210 0.7697±0.0754
8 0.8427±0.0329 0.8897±0.0218 0.5107±0.3399 0.8893±0.0219 0.4840±0.3175 0.8753±0.0245
9 0.8107±0.0548 0.7681±0.0472 0.1443±0.2992 0.4513±0.2982 0.1242±0.2609 0.4096±0.2741

Table 2: The conformal prediction performance measured by the FSC metric on the Natural_Scene dataset.

Class Id bin size = 2 bin size = 4 bin size = 8
Dirichlet SNEFY-LDL Dirichlet SNEFY-LDL Dirichlet SNEFY-LDL

1 0.8913±0.0205 0.8948±0.0175 0.8407±0.0511 0.8836±0.0189 0.5391±0.3022 0.8277±0.0675
2 0.8816±0.0248 0.8658±0.0297 0.8703±0.0266 0.8472±0.0364 0.8475±0.0326 0.8210±0.0435
3 0.8737±0.0278 0.8963±0.0175 0.8552±0.0292 0.8785±0.0258 0.8290±0.0349 0.8505±0.0297
4 0.8848±0.0238 0.8879±0.0222 0.8274±0.0367 0.8725±0.0270 0.7193±0.1287 0.7261±0.1500
5 0.8937±0.0177 0.8955±0.0184 0.8150±0.0462 0.8381±0.0403 0.0793±0.2388 0.4199±0.3376
6 0.8911±0.0191 0.8920±0.0205 0.8625±0.0366 0.8334±0.0453 0.6025±0.2969 0.5048±0.3136

Table 3: The conformal prediction performance measured by the FSC metric on the SBU_3DFE dataset.

ance Var[ℓyr |x] in Eq. (12). By applying the Chebyshev’s
inequality [Grimmett and Stirzaker, 2020], we can construct
a confidence interval for the rth label’s composition ratio in
describing x, ℓyr

x , which can be formally stated as

P(|ℓyr
x − E[ℓyr |x]| ≤ k

√
Var[ℓyr |x]) ≥ 1− 1

k2
, (17)

i.e., the confidence interval of ℓyr
x at the 1− 1/k2 level is[

E[ℓyr |x]− k
√
Var[ℓyr |x],E[ℓyr |x] + k

√
Var[ℓyr |x]

]
,

which can be further calibrated as a conformal prediction
task for the one-dimensional uncertainty estimate ℓyr

x . Ac-
cording to Angelopoulos and Bates [2021], on a calibration
set with Ncal samples, we can define a calibration score
function as

s(x, ℓyr
x ) =

|ℓyr
x − E[ℓyr |x]|
k
√
Var[ℓyr |x]

, (18)

where ℓyr
x is the ground-truth value of the rth label’s com-

position ratio in describing the calibration sample x. By
computing the calibration scores of all calibration samples,
we can get the ⌈(1− 1/k2)(Ncal + 1)⌉/Ncal quantile of the
calibration scores as q̂yr . For a new sample x, the calibrated
confidence interval for ℓyr

x at the 1− 1/k2 level is

C(x, ℓyr ) =
[
E[ℓyr |x]− k · q̂yr

√
Var[ℓyr |x],

E[ℓyr |x] + k · q̂yr

√
Var[ℓyr |x]

]
.

(19)

As a baseline, we extend the competitive SA-BFGS [Geng,
2016] algorithm by modeling the distribution of (rather than
point-estimating) the label distribution vectors. We model
the distribution using the Dirichlet distribution centered at
the point prediction. Following the same routine of confor-
mal prediction, we can also construct calibrated confidence
intervals for label affiliation probabilities given new sam-
ples. Following Angelopoulos and Bates [2021], we use the
Feature-Stratified Coverage (FSC) metric to evaluate the
adaptivity of the constructed confidence intervals in Eq.(19),
which categorizes the test samples into different groups by
dividing the numeric values at the first feature dimension
into different bins, then compute the coverage rate of the
confidence intervals in each group, and picks up the lowest
group-level coverage rate as the final metric value. We se-
lect the Natural_Scene and SBU_3DFE datasets with a fair
number of examples and labels to test the performance of
conformal prediction. We randomly split each dataset into
the training, calibration and test sets according to the ratio
of 50%/25%/25% for 100 times and report the average FSC
scores with bin size equal to 2, 4 and 8. In the experiment,
we aim to construct 90% level confidence intervals by set-
ting 1/k2 = 0.1, which means that FSC scores closer to 0.9
indicates better conformal prediction performance.

Tables 2-3 compare the conformal prediction performance
measured by the FSC metric on the Natural_Scene and



Method Cheby ↓ Clark ↓ Canb ↓ KL ↓ Cos ↑ Inter ↑
Random 0.1490±0.0098 0.6359±0.0247 1.1999±0.0448 0.1409±0.0136 0.9054±0.0093 0.7950±0.0089
Kmeans 0.1456±0.0076 0.6242±0.0176 1.1815±0.0320 0.1361±0.0072 0.9079±0.0068 0.7981±0.0077
CoreSet 0.1484±0.0164 0.6322±0.0383 1.1962±0.0720 0.1399±0.0179 0.9042±0.0158 0.7941±0.0171

Graph Density 0.1428±0.0059 0.6175±0.0197 1.1671±0.0346 0.1326±0.0068 0.9108±0.0057 0.8013±0.0076
Dirichlet 0.1472±0.0090 0.6282±0.0245 1.1899±0.0470 0.1376±0.0116 0.9064±0.0085 0.7959±0.0099

SNEFY-LDL 0.1350±0.0030 0.5981±0.0134 1.1283±0.0254 0.1209±0.0049 0.9191±0.0030 0.8098±0.0042

Table 4: The label distribution active learning performance on the Motive dataset.

Method Cheby ↓ Clark ↓ Canb ↓ KL ↓ Cos ↑ Inter ↑
Random 0.3591±0.0197 2.4871±0.0280 6.9131±0.1456 0.9835±0.0766 0.6554±0.0411 0.4528±0.0336
Kmeans 0.3690±0.0163 2.4929±0.0200 6.9407±0.0808 1.0498± 0.1078 0.6318±0.0375 0.4361±0.0228
CoreSet 0.3629±0.0193 2.4842±0.0233 6.8882±0.1089 1.0102±0.1078 0.6442±0.0489 0.4485±0.0340

Graph Density 0.3700±0.0242 2.4958±0.0277 6.9643±0.1394 1.0471±0.0991 0.6230±0.0453 0.4294±0.0321
Dirichlet 0.3720±0.0213 2.4951±0.0226 6.9502±0.0977 1.0628±0.0909 0.6249±0.0336 0.4326±0.0192

SNEFY-LDL 0.3474±0.0160 2.4807±0.0194 6.8755±0.0845 0.9244±0.0648 0.6819±0.0285 0.4718±0.0203

Table 5: The label distribution active learning performance on the Natural_Scene dataset.

SBU_3DFE datasets. For each comparison between SNEFY-
LDL and Dirichlet, the better performer is highlighted by
boldface. From the tables, we can find that the proposed
SNEFY-LDL model outperforms the Dirichlet baseline in
most cases. SNEFY-LDL constructs a multimodal distribu-
tion to model the distribution of label distribution vectors
on the probability simplex space, which is more flexible
than the unimodal Dirichlet, and contributes to the label
distribution confidence intervals with greater adaptivity.

6.2 ACTIVE LEARNING

To further evaluate SNEFY-LDL’s performance in un-
certainty quantification, we choose the Movie and Natu-
ral_Scene datasets to conduct the active learning experi-
ments. We first randomly split the two datasets into the
training and test sets according to the ratio of 90%/10%
for ten times. For each training-test set split, we randomly
select 400 labeled training samples to form the initial la-
beled pool and take the remaining training samples as the
unlabeled pool. We first train a SNEFY-LDL model with
the labeled samples in the initial labeled pool. We then
use different active learning strategies to pick up 100 in-
formative samples from the unlabeled pool and query their
labels. After augmenting the initial labeled pool with the
100 queried samples, we re-train the SNEFY-LDL model
and evaluate the performance of its label distribution predic-
tions produced by the closed-form conditional mean in Eq.
(10). Following Geng [2016], the label distribution predic-
tion performance is evaluated by the following six metrics:
Chebyshev distance (Cheby), Clark distance (Clark), Can-
berra metric (Canb), Kullback-Leibler divergence (KL), Co-

sine coefficient (Cos) and Intersection (Inter). The average
scores on the ten random training-test splits are reported.
Six different active learning strategies are compared:

• Random [Zhan et al., 2022] randomly selects 100
samples from the unlabeled pool.

• Kmeans [Zhdanov, 2019] selects samples close to
the cluster centroids generated by the Kmeans clus-
tering [MacKay, 2003] in feature space.

• CoreSet [Sener and Savarese, 2018] selects the k-
center samples [Har-Peled, 2011] as representative un-
labeled samples, which is a variant of Kmeans.

• Graph Density [Ebert et al., 2012] selects highly
connected samples in the constructed KNN
graph [Preparata and Shamos, 2012].

• Dirichlet models the distribution of label distributions
using a Dirichlet distribution [Ng et al., 2011] centered
at predicted label distributions and selects samples with
the largest differential entropy scores [Cover, 1999].

• SNEFY-LDL uses importance sampling [Kloek and
Van Dijk, 1978] to estimate the differential entropy val-
ues of the conditional distributions modeled by SNEFY-
LDL and picks up samples that have the largest differ-
ential entropy scores.

Tables 4-5 compare the performance of different active learn-
ing strategies, where the best performer is highlighted by
boldface. As is shown in the tables, SNEFY-LDL consis-
tently achieves the best performance in terms of all metrics.
By accurately evaluating label distribution prediction uncer-
tainties, SNEFY-LDL can pick up more informative unla-



Base Learner Bagging Cheby ↓ Clark ↓ Canb ↓ KL ↓ Cos ↑ Inter ↑

SA-BFGS Average 0.1178±0.0020 0.3743±0.0068 0.7948±0.0163 0.0641±0.0022 0.9370±0.0020 0.8575±0.0028
Weighted 0.1137±0.0023 0.3625±0.0062 0.7686±0.0149 0.0604±0.0021 0.9406±0.0020 0.8624±0.0026

DF-LDL Average 0.1203±0.0017 0.3762±0.0059 0.8040±0.0146 0.0657±0.0019 0.9353±0.0018 0.8557±0.0025
Weighted 0.1152±0.0024 0.3617±0.0070 0.7715±0.0168 0.0609±0.0024 0.9399±0.0023 0.8617±0.0030

LDL-SCL Average 0.1256±0.0020 0.3828±0.0047 0.8260±0.0118 0.0699±0.0021 0.9315±0.0018 0.8519±0.0020
Weighted 0.1246±0.0023 0.3772±0.0048 0.8147±0.0114 0.0684±0.0022 0.9330±0.0019 0.8540±0.0020

LDL-LRR Average 0.1269±0.0021 0.3966±0.0052 0.8478±0.0131 0.0730±0.0022 0.9285±0.0019 0.8478±0.0023
Weighted 0.1250±0.0020 0.3916±0.0044 0.8373±0.0106 0.0710±0.0020 0.9305±0.0018 0.8498±0.0019

Table 6: The label distribution ensemble learning performance on the SBU_3DFE dataset.

Base Learner Bagging Cheby ↓ Clarky ↓ Canb ↓ KL ↓ Cos ↑ Inter ↑

SA-BFGS Average 0.0889±0.0085 0.3180±0.0197 0.6529±0.0461 0.0406±0.0058 0.9613±0.0057 0.8890±0.0086
Weighted 0.0842±0.0084 0.3118±0.0200 0.6390±0.0466 0.0385±0.0056 0.9636±0.0056 0.8923±0.0089

DF-LDL Average 0.0951±0.0093 0.3385±0.0253 0.6958±0.0611 0.0456±0.0078 0.9566±0.0072 0.8818±0.0110
Weighted 0.0881±0.0092 0.3189±0.0258 0.6525±0.0617 0.0408±0.0074 0.9612±0.0069 0.8895±0.0110

LDL-SCL Average 0.0911±0.0090 0.3249±0.0219 0.6746±0.0493 0.0424±0.0063 0.9596±0.0062 0.8854±0.0092
Weighted 0.0865±0.0095 0.3153±0.0231 0.6509±0.0540 0.0400±0.0064 0.9621±0.0064 0.8898±0.0100

LDL-LRR Average 0.0888±0.0090 0.3189±0.0209 0.6538±0.0473 0.0408±0.0065 0.9612±0.0063 0.8890±0.0090
Weighted 0.0846±0.0089 0.3124±0.0197 0.6392±0.0444 0.0387±0.0062 0.9634±0.0063 0.8922±0.0087

Table 7: The label distribution ensemble learning performance on the SJAFFE dataset.

beled samples than the naive uncertainty quantification strat-
egy, Dirichlet, as well as the representativeness based active
learning strategies, Kmeans, CoreSet and Graph Density,
which are even sometimes inferior to the Random strategy.

6.3 ENSEMBLE LEARNING

We also conduct experiments on ensemble learning to fur-
ther verify SNEFY-LDL’s ability in uncertainty quantifica-
tion, with the expectation that reliable base learners can be
identified by the SNEFY-LDL probability modeling. Bag-
ging [Breiman, 1996] is adopted as an exemplary ensemble
learning paradigm. We choose the SEU_3DFE and SJAFFE
datasets, and randomly split them into training and test sets
according to the ratio of 90%/10%. For each training-test
set split, we randomly select 50 samples from the train-
ing set for 25 rounds, train 25 base LDL learners with the
selected samples, and evaluate the label distribution predic-
tion performance of the ensembled LDL model on the test
set. Four competitive LDL models are employed as base
learners: SA-BFGS [Geng, 2016], DF-LDL [González et al.,
2021a], LDL-SCL [Jia et al., 2021] and LDL-LRR [Jia
et al., 2023a], and two strategies are adopted to ensemble
base learner predictions: 1) Average: aggregate the 25 base
learner predictions with the uniform weight 1/25, and 2)
Weighted: weight each base learner prediction in propor-
tion to its corresponding SNEFY-LDL probability density

conditioned on each test sample in an instance-wise manner.

Tables 6-7 compare the two different ensemble learning
strategies, where the best strategy is highlighted by bold-
face. From the tables, we find that the Weighted strategy is
significantly better than Average in terms of all metrics. This
implies that SNEFY-LDL provides an effective mechanism
to quantify the reliability of base learners’ label distribution
predictions so that the reliable base learners are highlighted
to contribute to a better ensemble learning performance.

7 CONCLUSION

We propose a novel LDL paradigm: estimate the distribu-
tion of label distribution vectors on the probability simplex,
which brings a bird’s-eye view on the relative significance
of all possible label distributions. By uncovering the under-
lying relationship between SNEFY and LDL, we develop
the SNEFY-LDL model that can provide a tractable formu-
lation of the conditional distribution of label distribution
vectors, enjoying great expressivity and high computational
efficiency. SNEFY-LDL admits closed-form expressions for
the distribution’s mean, variance and covariance, making
SNEFY-LDL able to provide real-time responses in real-
world applications. Experiments on conformal prediction,
active learning and ensemble learning demonstrate the great
utility of SNEFY-LDL for uncertainty-aware applications.
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A THEOREM PROOFS

Theorem 2. Let t1(ℓ) = (log ℓy1 , log ℓy2 , · · · , log ℓyL) : ∆L−1 → RL by setting D1 = L, the activation function σ be the
exponential function exp, the base measure µ1(dℓ) = dℓ be the Lebesgue measure. Under the condition that W1 > −1/2
elementwise, the kernel function kσ,t1,t2,µ1(θi,θj ;x) admits a closed form:

kt2(θi,θj ;x) = exp(w⊤
2it2(x) +w⊤

2jt2(x) + bi + bj) ·
∏L

l=1 Γ(1 + w1il + w1jl)

Γ
(
L+

∑L
l=1(w1il + w1jl)

) , (9)

where w1il is the il-th element of matrix W1 and Γ(·) is the gamma function.

Proof. According to Eq. (8),

kσ,t1,t2,µ1(θi,θj ;x) =

∫
∆L−1

k̃σ,t1,t2(θi,θj ; ℓ,x)µ1(dℓ)

=

∫
∆L−1

σ(w⊤
1it1(ℓ) +w⊤

2it2(x) + bi) · σ(w⊤
1jt1(ℓ) +w⊤

2jt2(x) + bj)µ1(dℓ).

Given the setting t1(ℓ) = (log ℓy1 , log ℓy2 , · · · , log ℓyL), σ = exp and µ1(dℓ) = dℓ, kσ,t1,t2,µ1
can be written as

kt2(θi,θj ;x) =

∫
∆L−1

exp(w⊤
1it1(ℓ) +w⊤

2it2(x) + bi) · exp(w⊤
1jt1(ℓ) +w⊤

2jt2(x) + bj)dℓ

= exp(w⊤
2it2(x) +w⊤

2jt2(x) + bi + bj) ·
∫
∆L−1

L∏
l=1

(ℓyl)w1il+w1jldℓ.

As W1 > −1/2 elementwise, w1il + w1jl + 1 > 0. Assuming ℓ follows a Dirichlet distribution with parameters
α = (α1, α2, · · · , αL), where αl = w1il + w1jl + 1 > 0, its probability density, PDir(dℓ)/dℓ, is in the form:

PDir(dℓ)

dℓ
=

1

B(α)

L∏
l=1

(ℓyl)αl−1,

where B(·) is the beta function. Considering the fact that
∫
∆L−1 PDir(dℓ) = 1,∫

∆L−1

L∏
l=1

(ℓyl)αl−1dℓ = B(α).

That is to say ∫
∆L−1

L∏
l=1

(ℓyl)w1il+w1jldℓ =

∏L
l=1 Γ(1 + w1il + w1jl)

Γ
(
L+

∑L
l=1(w1il + w1jl)

) .
Therefore,

kt2(θi,θj ;x) = exp(w⊤
2it2(x) +w⊤

2jt2(x) + bi + bj) ·
∏L

l=1 Γ(1 + w1il + w1jl)

Γ
(
L+

∑L
l=1(w1il + w1jl)

) .
Theorem 3. Assuming the label distribution vector ℓ follows the SNEFY conditional distribution P(dℓ|x;V ,Θ) in Eq. (6)
with the kernel function kσ,t1,t2,µ1(θi,θj ;x) given in Eq. (9), under the setting that t1(ℓ) = (log ℓy1 , log ℓy2 , · · · , log ℓyL),
σ = exp, and µ1(dℓ) = dℓ, as well as the constraint that W1 > −1/2 elementwise, for the rth label’s composition ratio,
ℓyr , we have its conditional mean E[ℓyr |x] as

E[ℓyr |x] = vec(V ⊤V )⊤vec(KΘ(x) ◦ F yr )

vec(V ⊤V )⊤vec(KΘ(x))
, (10)

where ◦ denotes Hadamard product, and F yr is a n× n matrix, whose ijth entry is

F yr

ij =
1 + w1ir + w1jr

L+
∑L

l=1(w1il + w1jl)
. (11)



The conditional variance of ℓyr , Var[ℓyr |x], is

Var[ℓyr |x] = vec(V ⊤V )⊤vec(KΘ(x) ◦Gyr )

vec(V ⊤V )⊤vec(KΘ(x))
− E2[ℓyr |x], (12)

where Gyr is a n× n matrix , with its ijth element being

Gyr

ij =
(1 + w1ir + w1jr)(2 + w1ir + w1jr)

[L+
∑L

l=1(w1il + w1jl)][1 + L+
∑L

l=1(w1il + w1jl)]
. (13)

For two different labels yr and ys, with yr ̸= ys, the conditional covariance of ℓyr and ℓys , Cov[ℓyr , ℓys |x], is

Cov[ℓyr , ℓys |x] = vec(V ⊤V )⊤vec(KΘ(x) ◦Hyr,ys)

vec(V ⊤V )⊤vec(KΘ(x))
− E[ℓyr |x] · E[ℓys |x], (14)

where Hyr,ys is a n× n matrix , with its ijth element being

Hyr,ys

ij =
(1 + w1ir + w1jr)(1 + w1is + w1js)

[L+
∑L

l=1(w1il + w1jl)][1 + L+
∑L

l=1(w1il + w1jl)]
. (15)

Proof. For any fixed scalar function φ(ℓ) of ℓ with φ(·) : ∆L−1 → R, its expectation with regard to the conditional SNEFY
distribution in Eq. (6), E[φ(ℓ)|x], can be computed as

E[φ(ℓ)|x] =
∫
∆L−1

φ(ℓ)P(dℓ|x;V ,Θ)

=

∫
∆L−1

φ(ℓ)
vec(V ⊤V )⊤vec(K̃Θ(ℓ,x))

vec(V ⊤V )⊤vec(KΘ(x))
µ1(dℓ)

=
vec(V ⊤V )⊤vec(ΦΘ(x))

vec(V ⊤V )⊤vec(KΘ(x))
,

where ΦΘ(x) ∈ Rn×n is the elementwise integral:

ΦΘ(x) =

∫
∆L−1

φ(ℓ)K̃Θ(ℓ,x)µ1(dℓ),

whose ijth element is

ϕσ,t1,t2,µ1
(θi,θj ;x) =

∫
∆L−1

φ(ℓ)k̃σ,t1,t2(θi,θj ; ℓ,x)µ1(dℓ)

=

∫
∆L−1

φ(ℓ)σ(w⊤
1it1(ℓ) +w⊤

2it2(x) + bi) · σ(w⊤
1jt1(ℓ) +w⊤

2jt2(x) + bj)µ1(dℓ).

By setting t1(ℓ) = (log ℓy1 , log ℓy2 , · · · , log ℓyL), σ = exp, and µ1(dℓ) = dℓ, ϕσ,t1,t2,µ1
(θi,θj ;x) can be written as

ϕt2(θi,θj ;x) =

∫
∆L−1

φ(ℓ) exp(w⊤
1it1(ℓ) +w⊤

2it2(x) + bi) · exp(w⊤
1jt1(ℓ) +w⊤

2jt2(x) + bj)dℓ

= exp(w⊤
2it2(x) +w⊤

2jt2(x) + bi + bj) ·
∫
∆L−1

φ(ℓ)

L∏
l=1

(ℓyl)w1il+w1jldℓ.

As W1 > −1/2 elementwise, w1il + w1jl + 1 > 0. Assuming ℓ follows a Dirichlet distribution with parameters
α = (α1, α2, · · · , αL), where αl = w1il + w1jl + 1 > 0, its probability density, PDir(dℓ)/dℓ, is in the form:

PDir(dℓ)

dℓ
=

1

B(α)

L∏
l=1

(ℓyl)αl−1,



where B(·) is the beta function. Then, we have∫
∆L−1

φ(ℓ)

L∏
l=1

(ℓyl)w1il+w1jldℓ = B(α)

∫
∆L−1

φ(ℓ)PDir(dℓ)

= B(α)EDir[φ(ℓ);w1i,w1j ]

=

∏L
l=1 Γ(1 + w1il + w1jl)

Γ
(
L+

∑L
l=1(w1il + w1jl)

)EDir[φ(ℓ);w1i,w1j ],

where EDir[φ(ℓ);w1i,w1j ] is the expectation of φ(ℓ) with regard to the Dirichlet distribution parameterized by w1i and
w1j . Therefore,

ϕt2(θi,θj ;x) = exp(w⊤
2it2(x) +w⊤

2jt2(x) + bi + bj) ·
∏L

l=1 Γ(1 + w1il + w1jl)

Γ
(
L+

∑L
l=1(w1il + w1jl)

)EDir[φ(ℓ);w1i,w1j ]

=kt2(θi,θj ;x)EDir[φ(ℓ);w1i,w1j ].

By using Eφ to denote the n× n matrix whose ijth element is EDir[φ(ℓ);w1i,w1j ], we have

ΦΘ(x) = KΘ(x) ◦Eφ,

E[φ(ℓ)|x] = vec(V ⊤V )⊤vec(KΘ(x) ◦Eφ)

vec(V ⊤V )⊤vec(KΘ(x))
.

For the Dirichlet distribution, EDir[φ(ℓ);w1i,w1j ] has closed forms for some moments. In particular, for φ(ℓ) = ℓyr ,
φ(ℓ) = (ℓyr )2, and φ(ℓ) = ℓyr · ℓys with yr ̸= ys, we respectively have

EDir[ℓ
yr ;w1i,w1j ] =

1 + w1ir + w1jr

L+
∑L

l=1(w1il + w1jl)
,

EDir[(ℓ
yr )2;w1i,w1j ] =

(1 + w1ir + w1jr)(2 + w1ir + w1jr)

[L+
∑L

l=1(w1il + w1jl)][1 + L+
∑L

l=1(w1il + w1jl)]
,

EDir[ℓ
yr · ℓys ;w1i,w1j ] =

(1 + w1ir + w1jr)(1 + w1is + w1js)

[L+
∑L

l=1(w1il + w1jl)][1 + L+
∑L

l=1(w1il + w1jl)]
.

Finally, we have

E[ℓyr |x] = vec(V ⊤V )⊤vec(KΘ(x) ◦ F yr )

vec(V ⊤V )⊤vec(KΘ(x))
,

E[(ℓyr )2|x] = vec(V ⊤V )⊤vec(KΘ(x) ◦Gyr )

vec(V ⊤V )⊤vec(KΘ(x))
,

E[ℓyr · ℓys |x] = vec(V ⊤V )⊤vec(KΘ(x) ◦Hyr,ys)

vec(V ⊤V )⊤vec(KΘ(x))
,

where F yr , Gyr and Hyr,ys denote the n×n matrices whose ijth elements are EDir[ℓ
yr ;w1i,w1j ], EDir[(ℓ

yr )2;w1i,w1j ]
and EDir[ℓ

yr · ℓys ;w1i,w1j ] respectively.

Var[ℓyr |x] and Cov[ℓyr , ℓys |x] can be directly derived by using the identities that Var[ℓyr |x] = E[(ℓyr )2|x]− E2[ℓyr |x]
and Cov[ℓyr , ℓys |x] = E[ℓyr · ℓys |x]− E[ℓyr |x] · E[ℓys |x].

B EXPERIMENTAL DETAILS

B.1 CONFORMAL PREDICTION

We select the Natural Scene and SBU_3DFE datasets for the conformal prediction experiments, as they have a relatively
large number of labels that give more freedom in the change of label distribution compositions to warrant more uncertainties
in label distribution predictions, and they also have enough samples to do the training/calibration/test set split. According



to the ratio of 50%/25%/25%, we randomly split each dataset into the training, calibration and test sets. Here, we denote
the training, calibration and test sets as S tr = {(xtr

i , ℓxtr
i
) : i = 1, · · · , Ntr}, Scal = {(xcal

i , ℓxcal
i
) : i = 1, · · · , Ncal} and

S te = {(xte
i , ℓxte

i
) : i = 1, · · · , Nte} respectively, with Ntr, Ncal and Nte denoting the number of samples in the training,

calibration and test sets respectively. For each split, a SNEFY-LDL is first trained on the training set S tr. The trained SNEFY-
LDL is then leveraged to construct a 90% level confidence interval for each label’s composition ratio with SNEFY-LDL’s
closed-form conditional mean and variance. The confidence intervals constructed by the trained SNEFY-LDL model are
then calibrated with the calibration set. The adaptivity of the calibrated confidence intervals are finally evaluated on the test
set, as an indicator of SNEFY-LDL’s ability in quantifying the prediction uncertainty of each label’s composition ratio. On
the test set, the adaptivity of the calibrated confidence intervals C(x, ℓyr ) in Eq. (19) for the rth label’s composition ratio
ℓyr is measured by the Feature-Stratified Coverage (FSC) metric [Angelopoulos and Bates, 2021]. For calculating the FSC
metric, we first bin the first feature of x for all x ∈ Ste into a number of categories, 1, · · · , G, then categorize test samples
in Ste into different groups {S te

g : g = 1, · · · , G} according to the first feature’s category values. Here, G is termed as bin
size or group number. The FSC metric for the confidence intervals of the rth label’s composition ratio ℓyr is evaluated as the
minimal coverage rate among the groups {S te

g : g = 1, · · · , G}:

FSC(ℓyr ) := min
g∈{1,··· ,G}

1

|S te
g |

∑
x∈S te

g

1 {ℓyr
x ∈ C(x, ℓyr )} . (20)

The detailed procedure of conformal prediction with SNEFY-LDL is described by Algorithm A1.

Algorithm A1 Conformal Prediction with SNEFY-LDL
Input: Training set S tr = {(xtr

i , ℓxtr
i
) : i = 1, · · · , Ntr}, calibration set Scal = {(xcal

i , ℓxcal
i
) : i = 1, · · · , Ncal} and test set

S te = {(xte
i , ℓxte

i
) : i = 1, · · · , Nte}, as well as the given label set Y = {y1, y2, · · · , yL}.

Parameter: 1/k2 = 0.1 for constructing 90% level confidence intervals.
Output: FSC scores on the test set.

1: Train a SNEFY-LDL model on the training set S tr with Algorithm 1;
2: for each sample x ∈ Scal do
3: for each label yr ∈ Y do
4: Calculate the calibration score s(x, ℓyr

x ) with Eq.(18) and the trained SNEFY-LDL model;
5: end for
6: end for
7: for each label yr ∈ Y do
8: Calculate the ⌈(1− 1/k2)(Ncal +1)⌉/Ncal quantile as q̂yr

among the Ncal calibration scores s(x, ℓyr
x ) with x ∈ Scal;

9: end for
10: for each sample x ∈ S te do
11: for each label yr ∈ Y do
12: Construct the calibrated confidence interval C(x, ℓyr ) with Eq. (19) and the calculated quantile q̂yr

;
13: end for
14: end for
15: for each label yr ∈ Y do
16: Evaluate the FSC(ℓyr ) score with Eq. (20) and the Nte confidence intervals C(x, ℓyr ) with x ∈ S te;
17: end for
18: return the evaluated FSC(ℓyr ) scores for all yr ∈ Y .

B.2 ACTIVE LEARNING

The Motive and Natural Scene datasets are selected for active learning, as they are relatively sensitive to the label sparsity
issue, more suitable to benchmark the performance change with informative samples labeled and augmented to the training
data. We randomly split the two datasets into the training and test sets according to the ratio of 90%/10% for ten times. We
denote the training set as S tr = {(xtr

i , ℓxtr
i
) : i = 1, · · · , Ntr} and test set as S te = {(xte

i , ℓxte
i
) : i = 1, · · · , Nte}, where Ntr

and Nte are respectively the number of samples in the training and test sets. For each training-test set split, we randomly
select 400 labeled samples from the training set S tr to form the initial labeled pool and take the remaining samples in S tr as
unlabeled samples. We first train a SNEFY-LDL model with the initial labeled pool. To achieve active learning with the



trained SNEFY-LDL model, we first evaluate the differential entropy H(x;V ,Θ) for each unlabeled sample x as

H(x;V ,Θ) = −
∫
∆L−1

{
log

P(dℓ|x;V ,Θ)

dℓ

}
P(dℓ|x;V ,Θ), (21)

then select 100 most informative unlabeled samples with the largest differential entropy values. After querying the labels of
the 100 selected samples, we augment them into the initial labeled pool, and re-train another SNEFY-LDL model with the
augmented labeled pool. With the re-trained SNEFY-LDL model, we can predict the label distribution vectors for samples
in the test set given their feature vectors x by directly using the closed-form conditional mean in Eq.(10). As a criterion
of active learning, the label distribution prediction performance on the test set is evaluated using the six metrics [Geng,
2016]: Chebyshev distance (Cheby), Clark distance (Clark), Canberra metric (Canb), Kullback-Leibler divergence (KL),
Cosine coefficient (Cos) and Intersection (Inter). Given the ground-truth and predicted label distribution vectors as ℓ and ℓ̂
respectively, the evaluation metrics are defined as follows:

Cheby(ℓ, ℓ̂) = ∥ℓ− ℓ̂∥∞ ↓, Clark(ℓ, ℓ̂) =
∥∥∥ℓ− ℓ̂

ℓ+ ℓ̂

∥∥∥
2
↓, Canb(ℓ, ℓ̂) =

∥∥∥ℓ− ℓ̂

ℓ+ ℓ̂

∥∥∥
1
↓,

KL(ℓ, ℓ̂) =
∑
y∈Y

ℓy log
ℓy

ℓ̂y
↓, Cos(ℓ, ℓ̂) =

ℓ⊤ℓ̂

∥ℓ∥2∥ℓ̂∥2
↑, Inter(ℓ, ℓ̂) =

∑
y∈Y

min(ℓy, ℓ̂y) ↑ .
(22)

For each metric, ↑ (↓) indicates that higher (lower) scores imply better label distribution prediction performance.

However, the differential entropy H(x;V ,Θ) in Eq. (21) cannot be computed in a closed form. To overcome this difficulty,
we adopt importance sampling [Kloek and Van Dijk, 1978] to approximately estimate the differential entropy values, where
the uniform distribution is selected as the proposal distribution. The detailed procedure is provided in Algorithm A2.

Algorithm A2 Differential Entropy Estimation with Importance Sampling
Input: The feature vector of an unlabeled sample x and the conditional distribution P(dℓ|x;V ,Θ) modeled by the trained
SNEFY-LDL model, and the label set size L.
Parameter: The number of sampling iterations Niter = 1, 000.
Output: The estimated differential entropy for the unlabeled sample x, Ĥ(x;V ,Θ).

1: for each iteration i ∈ {1, · · · , Niter} do
2: Sample a label distribution vector ℓ̃(i) from the uniform distribution over the simplex ∆L−1 with probability density

q(ℓ̃(i)) = (L− 1)!;
3: Evaluate the probability density value P(dℓ|x;V ,Θ)/dℓ at ℓ = ℓ̃(i) as p(ℓ̃(i)|x;V ,Θ) with Eq. (6) and the trained

SNEFY-LDL model;
4: end for
5: Calculate the approximated differential entropy Ĥ(x;V ,Θ) = − 1

Niter

∑Niter
i=1

p(ℓ̃(i)|x;V ,Θ)

q(ℓ̃(i))
log p(ℓ̃(i)|x;V ,Θ);

6: return the estimated differential entropy Ĥ(x;V ,Θ) for the given unlabeled sample x.

The detailed procedure for active learning with SNEFY-LDL is described by Algorithm A3.

B.3 ENSEMBLE LEARNING

The SBU_3DFE and SJAFFE datasets are selected for the ensemble learning experiments, as they have a relatively small
number of features, more efficient to train a number of base learners and do ensemble prediction. We randomly split the
two datasets into the training and test sets according to the ratio of 90%/10% for ten times. We denote the training set as
S tr = {(xtr

i , ℓxtr
i
) : i = 1, · · · , Ntr} and test set as S te = {(xte

i , ℓxte
i
) : i = 1, · · · , Nte}, where Ntr and Nte are respectively

the number of samples in the training and test sets. For each training-test set split, we randomly select 50 samples from
the training set for 25 rounds, train 25 base LDL learners with the selected samples, and evaluate the label distribution
prediction performance of the ensembled LDL model on the test set. Four competitive LDL algorithms are employed to train
base learners: SA-BFGS [Geng, 2016], DF-LDL [González et al., 2021a], LDL-SCL [Jia et al., 2021] and LDL-LRR [Jia
et al., 2023a]. To achieve ensemble learning with SNEFY-LDL, we first train a SNEFY-LDL model with the training set S tr,
and then do the ensemble prediction by weighting the base learners according to the SNEFY-LDL conditional probability
densities measured at their predictions given each test sample x ∈ S te. The detailed procedure is shown in Algorithm A4.



Algorithm A3 Active Learning with SNEFY-LDL
Input: Training set S tr = {(xtr

i , ℓxtr
i
) : i = 1, · · · , Ntr} and test set S te = {(xte

i , ℓxte
i
) : i = 1, · · · , Nte}.

Parameters: The size of the initial labeled pool Ninitial = 400 and the number of queried samples Nquery = 100.
Output: The label distribution prediction performance scores measured by Cheby, Clark, Canb, KL, Cos and Inter on the
test set S te.

1: Randomly select Ninitial samples from the training set S tr to form the labeled pool S tr
label and use the remaining samples

to form the unlabeled pool S tr
unlabel;

2: Train a SNEFY-LDL model with the initial labeled pool;
3: for each sample x ∈ S tr

unlabel do
4: Estimate the differential entropy value Ĥ(x;V ,Θ) for x with Algorithm A2 and the trained SNEFY-LDL model;
5: end for
6: Select Nquery samples from S tr

unlabel with the top-Nquery differential entropy values and query their label distributions;
7: Augment the Nquery queried samples into the labeled pool S tr

label;
8: Re-train another SNEFY-LDL model with the augmented labeled pool S tr

label;
9: Evaluate the label distribution prediction performance of the re-trained SNEFY-LDL model on the test set S te (as an

average over all test samples) with the metrics of Cheby, Clark, Canb, KL, Cos and Inter defined in Eq. (22);
10: return the label distribution prediction performance scores measured by Cheby, Clark, Canb, KL, Cos and Inter.

Algorithm A4 Ensemble Learning with SNEFY-LDL
Input: Training set S tr = {(xtr

i , ℓxtr
i
) : i = 1, · · · , Ntr}, test set S te = {(xte

i , ℓxte
i
) : i = 1, · · · , Nte}, and a LDL base

learner training algorithm ∈ {SA-BFGS,DF-LDL,LDL-SCL,LDL-LRR}.
Parameters: The number of samples for training base learners Nsample = 50 and the number of base learners Nbase = 25.
Output: The label distribution prediction performance scores measured by Cheby, Clark, Canb, KL, Cos and Inter on the
test set S te.

1: for each iteration i ∈ {1, · · · , Nbase} do
2: Randomly select Nsample samples from the training set S tr;
3: Train a LDL base learner Bi with the selected samples;
4: end for
5: Train a SNEFY-LDL model with the training set S tr;
6: for each sample x ∈ S te do
7: for each iteration i ∈ {1, · · · , Nbase} do
8: Predict x’s label distribution vector with base learner Bi as ℓ̃(i)x ;
9: Evaluate the probability density value P(dℓ|x;V ,Θ)/dℓ at ℓ = ℓ̃

(i)
x as p(ℓ̃

(i)
x |x;V ,Θ) with Eq. (6) and the

trained SNEFY-LDL model;
10: end for
11: Predict x’s label distribution vector ℓ̃x as the weighted average of ℓ̃(i)x , i.e., ℓ̃x =

∑Nbase
i=1 p(ℓ̃(i)x |x;V ,Θ)ℓ̃(i)x∑Nbase

i=1 p(ℓ̃
(i)
x |x;V ,Θ)

;

12: end for
13: Evaluate the performance of the ensembled label distribution predictions ℓ̃(i)x on the test set S te (as an average over all

test samples) with the metrics of Cheby, Clark, Canb, KL, Cos and Inter defined in Eq. (22);
14: return the label distribution prediction performance scores measured by Cheby, Clark, Canb, KL, Cos and Inter.

C PARAMETER SENSITIVITY STUDY

By choosing the Natural Scene dataset and the conformal prediction task, we take turns to study the sensitivity of SNEFY-
LDL with regard to the four hyperparameters: n and m, as well as the batch size and epoch number used for training, by
varying the studied hyperparameter in a predefined range and fixing the remaining three as default values at each turn. For
the conformal prediction task, the default values of n, m, batch size and epoch number are 64, 32, 64 and 100 respectively.
Figure A1 plots the conformal prediction performance change of SNEFY-LDL measured by FSC with bin size equal to 2 and
4 when the values of hyperparameters vary in a range. From Figure A1, we can find that the performance of SNEFY-LDL
remains relatively stable with the change of the four hyperparameters in most cases, except for the cases with m = 48 and
96 in Figure A1(b), as well as batch size = 32 and 96 in Figure A1(c), where the conformal prediction performance of
SNEFY-LDL goes through a obvious drop.
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Figure A1: The sensitivity of SNEFY-LDL with regard to the four hyperparameters: n, m, batch size and epoch number.
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