
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SLAKE: SOFTMAX-APPROXIMATED TRAINING-FREE
LINEAR ATTENTION WITH KV-CACHE EVICTION FOR
LONG-SEQUENCE LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in transformer-based large language models (LLMs) have en-
abled inference over contexts as long as 128K tokens. However, the quadratic
computational and memory costs of full self-attention remain a fundamental bot-
tleneck at such scales. Prior efforts to mitigate this challenge largely fall into two
camps: (i) structural approximations (e.g., linear attention) that reduce asymptotic
complexity but typically require costly retraining, and (ii) KV-cache optimizations
(e.g., eviction or merging) that are training-free yet inevitably discard informa-
tion. We introduce Softmax-Approximated Training-Free Linear Attention with
KV-Cache Eviction (SLAKE), a novel framework that unifies the complementary
advantages of these two paradigms. At its core, SLAKE employs Partially Taylor-
Approximated Attention (PTAA), which leverages a first-order Taylor expansion
to selectively linearize the Softmax attention kernel. This design enables tokens
deemed low-importance via eviction scoring to be processed efficiently with lin-
ear attention, while preserving exact Softmax computation for high-salience to-
kens. To further improve cache efficiency, we propose Value-Aware Budget Scor-
ing (VABS), a new allocation strategy that incorporates value contributions and
overcomes key limitations of previous eviction heuristics. Extensive experiments
on LLaMA-3 8B demonstrate that SLAKE delivers up to 10× inference speedup
and 30.8% peak-memory reduction on 128K-token sequences, while keeping ac-
curacy loss below 4%. To our knowledge, SLAKE is the first training-free ap-
proach to jointly integrate linear attention with KV-cache eviction, establishing a
new state of the art among long-context, training-free methods.

1 INTRODUCTION

Recently, the transformer architecture has become the foundational backbone of natural language
processing (NLP) and is widely adopted in large language models (LLMs) Radford et al. (2019);
Touvron et al. (2023). In line with this trend, state-of-the-art LLMs such as Llama-3 Grattafiori et al.
(2024) and GPT-4 Achiam et al. (2023) support inference with input lengths exceeding 128K tokens
to enable long-sequence tasks, including document summarization Zhang et al. (2024), multi-turn
dialogues Chiang et al. (2023), information retrieval Liu et al. (2023), and question answering Ka-
malloo et al. (2023). Consequently, the development of models and computational platforms capable
of handling such long sequences has emerged as a critical research direction to enhance both the
practicality and performance of AI systems. However, the self-attention mechanism, a core com-
ponent of the transformer architecture, suffers from quadratic computational complexity due to its
inherent dependence on query, key, and value interactions, where the computation grows as O(N2)
with respect to the input sequence length N Beltagy et al. (2020). As a result, LLMs encounter se-
vere hardware bottlenecks, with computational cost and memory usage increasing exponentially as
the input length increases Wang et al. (2020).

To alleviate these challenges, two major lines of research have been explored: (i) linear-complexity
attention and (ii) KV-cache compression. First, Performer Choromanski et al. (2020) and Linearized
LLM You et al. (2024) introduced linear attention mechanisms with O(N) computational complex-
ity, thereby improving efficiency. These methods also leverage the characteristics of linear attention
to maintain KV-caches with fixed sizes, effectively mitigating memory bottlenecks. In a different

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

direction, Mamba Gu & Dao (2023) proposed a state space model (SSM)-based architecture as
an alternative to self-attention, offering an additional solution to the quadratic complexity prob-
lem. However, this approach fundamentally alters the attention mechanism, preventing the reuse
of pretrained weights and inevitably requiring retraining (Limit. 1). Consequently, such methods
require substantial computational resources and time, eventually falling short of fully supporting
long-sequence tasks. In contrast, KV-cache compression methods Zhang et al. (2023); Yang et al.
(2024); Qin et al. (2025); Nawrot et al. (2024) evaluate the importance of tokens in real time, re-
moving or merging less important tokens to reduce the number of tokens involved in attention.
This approach can alleviate both computational complexity and memory bottlenecks; however, the
removal or corruption of certain tokens inevitably leads to performance degradation (Limit. 2).
DMC Nawrot et al. (2024) combines token eviction and merging and performs retraining to com-
pensate for lost information, but the finetuning process is computationally intensive and demands
substantial GPU resources, making it challenging to apply across diverse tasks. Furthermore, the
dynamic budget allocation scores used in existing KV-cache eviction techniques do not account for
the influence of the value component in self-attention. As a result, the eviction criteria fail to fully
reflect the quality of attention approximation (Limit. 3).

While linear attention and KV-cache eviction approaches have limitations in terms of training over-
head and accuracy degradation due to token information loss, they remain effective means for
mitigating computational and memory bottlenecks. Linear attention replaces Softmax with low-
dimensional kernel features, preserving global content but reducing token-level fidelity, which yields
measurable performance drops Choromanski et al. (2020). By contrast, KV-cache eviction retains
exact Softmax on a selected subset of tokens, yet irreversibly discards information from evicted
entries, harming accuracy Zhang et al. (2023). A natural strategy is therefore to combine their com-
plementary strengths: keep high-importance tokens for precise Softmax attention via eviction, while
approximating low-importance tokens with linear attention to reduce overhead. However, two ob-
stacles still impede this integration: (1) Training overhead—linear attention introduces structural
changes that typically require retraining; and (2) Kernel incompatibility—most linear kernels devi-
ate substantially from Softmax, making direct combination with Softmax-based eviction prone to
accuracy loss. As a result, simultaneously leveraging both paradigms without degrading Softmax
behavior—or incurring substantial additional training and hardware cost—remains challenging.

To leverage the complementary characteristics of linear attention and KV-cache eviction, this
work proposes the Softmax-Approximated Training-Free Linear Attention with KV-Cache Eviction
(SLAKE) framework. In SLAKE, a Partially Taylor Approximated Attention (PTAA) mechanism
processes a limited set of important tokens using precise attention, while the remaining tokens are
handled via Taylor approximation-based linear attention, resulting in a more accurate approximation
of Softmax attention compared to conventional linear attention methods. Furthermore, by employ-
ing the Taylor approximation, SLAKE preserves the validity of pretrained weights, addressing the
key limitation of prior linear attention approaches that require additional training. In addition, this
study introduces Value Aware Budget Scoring (VABS), which enhances existing dynamic budget
allocation schemes by considering the influence of the value matrix on attention outcomes. VABS
enables more precise cache budget allocation, improving the accuracy of attention approximation.
By combining these two techniques, SLAKE effectively maintains the performance of existing LLMs
without additional training while significantly reducing computational cost and memory usage, rep-
resenting the first instance of integrating linear attention with KV-cache eviction. Experimental re-
sults demonstrate that SLAKE achieves high accuracy with less than a 4% drop compared to the
LongBench baseline on Llama2-7B Touvron et al. (2023), Llama3.1-8B Grattafiori et al. (2024),
and Mistral-7B-v0.3 Jiang et al. (2023). Moreover, on GPUs with 128K tokens, SLAKE attains a
10× inference speedup and a 30.83% reduction in peak memory usage relative to the baseline. The
main contributions of this work are summarized as follows:

• Solution for Limit. 1 : We propose a train-free first-order Taylor approximation to transform
standard self-attention into a linear attention format. This approach effectively reproduces
the functionality of self-attention without requiring additional retraining, alleviating the
training burden inherent in previous linear attention models.

• Solution for Limit. 2 : We introduce PTAA, an attention structure that integrates linear
attention with KV-cache eviction, for the first time. PTAA maintains the computational and
memory efficiency of conventional KV-cache compression while improving performance
on long-sequence tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Solution for Limit. 3 : We identify a key limitation of existing KV-cache eviction methods,
as they fail to consider the impact of the value component in self-attention. To address this,
we propose a novel budget scoring mechanism, VABS, which dynamically allocates cache
budgets while taking the value influence into account.

2 BACKGROUND

2.1 SELF-ATTENTION OPERATION AND KV CACHING IN AUTOREGRESSIVE DECODING

The core operation of the transformer is self-attention, which captures contextual information by
computing relationships among all tokens within the input sequence Vaswani et al. (2017). Given an
input sequence of length N and embedding dimension d, self-attention is defined as follows:

Attention(Q,K, V) = Softmax
(
QK⊤
√
d

)
V, (1)

Here, Q,K, V ∈ RN×d denote the query, key, and value matrices, respectively, where Q =
[q1, . . . , qN]⊤, K = [k1, . . . , kN]⊤, and V = [v1, . . . , vN]⊤ consist of token embedding rows
q, k, v. Self-attention computes the attention score for each token pair (i, j), with i, j ∈ 1, . . . , N ,
by taking the dot product of the i-th token’s query qi and the j-th token’s key kj . Then, self-attention
normalizes the scores using Softmax and then takes a weighted sum of the values vj to produce new
token representations. To enhance the representational capacity of a single self-attention layer, mod-
ern LLMs employ multi-head self-attention (MHSA). MHSA splits the input token embeddings into
h separate heads, performs self-attention independently within each head, and then concatenates the
resulting representations. MHSA is formally defined as follows:

MHSA(Q,K, V) = Concat(head1, . . . , headh)W
O, (2)

The attention output of each head, headm with m ∈ 1, . . . , h, is computed as follows:

headm = Attention(QWQ
m , KWK

m , V WV
m) (3)

Here, WQ
m ,WK

m ,WV
m ∈ Rd×dh and WO ∈ Rd×d are learnable linear projection weights, where

dh = d/h is typically used to evenly split the dimension for each head. This allows the model to
learn diverse contextual information across different representation subspaces, resulting in richer se-
mantic representations Voita et al. (2019). However, both self-attention and MHSA require comput-
ing similarities for all token pairs (i, j), with i, j ∈ 1, . . . , N , leading to a computational complexity
ofO(N2d) and a memory complexity ofO(N2). As the input sequence length N increases in long-
sequence tasks, both computation and memory usage grow rapidly, becoming a major bottleneck for
LLMs. Meanwhile, LLMs typically operate in an autoregressive decoding setting for long-sequence
tasks, where the output at timestep t− 1 serves as the input for timestep t. In this context, the query
qt at timestep t must interact with all past keys and values, which can be expressed as follows:

ht = Softmax
(
qtK

⊤
1:t√
dh

)
V1:t. (4)

In other words, at each timestep, the query must be computed against all previous keys and values,
causing the recomputation cost of K1:t−1 and V1:t−1 to grow exponentially as the sequence length
increases. To mitigate this, KV caching was introduced Dai et al. (2019), which stores keys and val-
ues from previous timesteps in a cache. Using KV caching, when a new token query qt is generated,
only qt is computed, and the corresponding kt and vt are concatenated to the existing cache as:

K1:t = [K1:t−1; kt], V1:t = [V1:t−1; vt]. (5)

This approach allows only the new key (kt) and value (vt) to be appended at each timestep, thereby
reducing redundant computations. However, the size of the KV-cache still grows linearly with the
sequence length, O(Nd), and in modern models processing inputs of 128K tokens or more, storing
the cache itself becomes a significant memory bottleneck.

2.2 PREVIOUS KV-CACHE COMPRESSION METHODS

Prior KV-cache compression methods mitigate both the computational burden of self-attention and
the memory overhead of the cache by limiting participation to a subset of tokens, with method-
specific criteria determining which tokens are retained. Streaming LLM Xiao et al. (2023) exploits

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the observation that early tokens in attention tend to carry relatively higher importance, maintaining
only the initial and most recent tokens. This approach demonstrates that conventional LLMs can sup-
port sequence lengths approaching infinity. However, its performance degrades significantly as the
cache budget decreases. The Heavy-Hitter Oracle (H2O) Zhang et al. (2023) goes beyond retaining
only recent tokens by evaluating token importance based on self-attention scores. It selects ’heavy-
hitter tokens’ while removing the remaining ones, thereby reducing unnecessary memory usage.
Nevertheless, H2O does not consider cache budgets across Transformer blocks, which can result
in severe performance degradation. PyramidKV Yang et al. (2024) proposes a method to minimize
performance loss by gradually increasing the KV-cache budget across transformer blocks. However,
its fixed budget allocation cannot account for variations in input data, leading to significant perfor-
mance fluctuations depending on the input. CAKE Qin et al. (2025) not only dynamically allocates
per-layer cache budgets based on the entropy and variance of the self-attention map according to
input tokens, but also introduces a cascading KV-cache eviction strategy that maintains the overall
KV-cache budget consistently from the prefill stage, thereby minimizing performance degradation
due to token removal. Nonetheless, accuracy loss persists as information from evicted tokens is in-
evitably discarded. DMC Nawrot et al. (2024) proposes a dynamic memory compression technique
that decides whether to evict or merge tokens based on their characteristics, and employs fine-tuning
to minimize performance degradation. However, the hardware and temporal overhead imposed by
fine-tuning cannot be ignored.

2.3 PREVIOUS LINEAR-COMPLEXITY ATTENTION METHODS

Existing linear-complexity attention methods aim to alleviate the computational burden while pre-
serving the ability of self-attention to capture interactions between all tokens. Linformer Wang et al.
(2020) addresses the O(N2) computational bottleneck of transformers by leveraging a low-rank ap-
proximation of the attention matrix. Based on the observation that the majority of information in the
attention matrix is concentrated in a few dominant singular values, it employs a linear projection
layer to project the entire sequence into a fixed, shorter sequence. This linear projection layer is
applied to the key and value matrices, significantly reducing the attention computation cost and low-
ering the computational complexity to O(Nk). However, because Linformer employs a fixed linear
projection layer after training, its performance can degrade substantially under fluctuations in input
activation. Moreover, it requires training from scratch and does not support modern LLM archi-
tectures. Longformer Beltagy et al. (2020) introduces a sparse attention mechanism to mitigate the
O(N2) complexity when processing long sequences. In this sparse attention structure, each token at-
tends only to a fixed-size window of neighboring tokens (w), reducing the complexity to O(N ×w).
Additionally, selected important tokens receive global attention across the entire sequence to inte-
grate contextual information. Similar to Linformer, Longformer requires model training and does
not support contemporary LLM architectures. Performer Choromanski et al. (2020) alleviates the
O(N2) complexity of standard self-attention by approximating the Softmax function with a kernel
function ϕ(·), which can be separately applied to queries and keys. This allows the self-attention
computation to be reformulated as a linear-complexity attention mechanism as follows:

Attention(Q,K, V) ≈ ϕ(Q)
(
ϕ(K)⊤V

)
(6)

Through the reformulation of computations as in Eq. 6, linear attention reduces the matrix mul-
tiplication complexity between queries, keys, and values to O(N). However, Performer does not
support modern model architectures and exhibits severe performance degradation due to rank col-
lapse of the attention map, which arises from approximating long-sequence attention with a simple
kernel function Yu et al. (2022); Han et al. (2023). Linearized LLM You et al. (2024) applies lin-
ear attention to the LLama2-7B and 13B architectures Touvron et al. (2023) and, separately from
linear attention, employs depthwise convolution Howard et al. (2017) on the value matrix to restore
the lost rank of the attention map. As the first study to apply linear attention to relatively modern
LLMs, such as LLama2-7B and 13B, Linearized LLM also supports speculative decoding, enabling
multiple tokens to be predicted simultaneously using smaller models. Nevertheless, this approach
requires training from scratch and still suffers from non-negligible performance degradation despite
the rank restoration. Meanwhile, the Mamba model Gu & Dao (2023), based on SSM architectures,
can effectively capture long-range dependencies without using attention or MLP layers. Mamba
introduces a selective state space mechanism that dynamically adjusts the parameters of the state
space model according to the input, achieving high performance with linear time complexity even
for long-sequence tasks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Value Aware scaling for accurate cache allocation

Layer 1

Layer 2

Layer n

⋯

Layer-wise cache budget Token eviction

V
A

B
S
(a
)

P
TA

A
 a

tt
.

Tr
u

e
a

tt
.

SLAKE Framework

P
TA

A
 (
b
)

⋯

P
TA

A
 a

tt
.

Tr
u

e
a

tt
.

Approx.
Attention

So
ft

m
a

x
a

tt
en

ti
o

n

×
Key

Cache

Current
Query

×
Value
Cache

𝒅
𝒘

𝒘

Softmax

Li
n

ea
r

a
tt

en
ti

o
n

Current
Query

𝒅

×

𝒅

Linear
Cache

Evicted
Key

Evicted
Value

+ ×

Calculate first

×

×

Budget Score

Value

Value

layer budget : 4

1st 4th 6th 5th 2nd 8th 7th 3rd

Ev
ic

t

Ev
ic

t

Ev
ic

t

Ev
ic

t

PTAA
Err.

V-aware
Err

PTAA
Err.
×

V-aware
Err.

𝒅

𝒅

Figure 1: Overall SLAKE architecture. (a) VABS allocates a layerwise cache budget for each trans-
former layer by taking into account both the linear approximation error and the value data. (b) PTAA
combines linear attention with Softmax attention to effectively emulate standard self-attention.

3 PROPOSED METHOD: SLAKE

3.1 OVERVIEW OF SLAKE

Figure 1 illustrates the overall process of SLAKE. In the prefill stage, SLAKE first performs VABS,
which considers both the linear approximation error of the attention map and the contribution of
value data (for Limit. 3). Based on these scores, layerwise cache budgets are allocated, and token
eviction is applied to adjust the KV-cache size to the target budget. In the generation stage, SLAKE
evaluates newly generated tokens together with existing ones and incrementally stacks them in the
linear cache. PTAA is then applied: evicted tokens are approximated using linear attention, while
preserved tokens are processed with softmax attention. Through this process, SLAKE adapts to the
characteristics of input tokens without requiring additional training (for Limit. 1) and effectively
approximates self-attention at each generation step (for Limit. 2).

3.2 TRAIN-FREE LINEAR ATTENTION VIA TAYLOR APPROXIMATION

Unlike previous linear attention methods, SLAKE leverages a first-order Taylor approximation to
linearly approximate self-attention without any additional training. This approach allows pretrained
weights to mitigate information loss caused by approximating the Softmax attention operation Jin
et al. (2025). In other words, the weights learned based on the complex nonlinearity of the Softmax
operation remain effective even under the linearized computation provided by the first-order Taylor
approximation. This enables SLAKE to perform linear attention using existing pretrained weights
without requiring any retraining (Limit. 1 solved). Let the query of the ith token be denoted as qi,
the keys and values including all past tokens as K and V , each element of the keys and values as k
and v, and the attention head dimension as dh. Then, self-attention can be expressed as follows:

Att(qi,K, V) =

n∑
j=1

exp

(
q⊤i kj√
dh
−max1≤l≤n(xi,l)

)
∑n

l=1 exp

(
q⊤i kl√
dh
−max1≤l≤n(xi,l)

) vj (7)

Next, we apply a first-order Taylor approximation to the exponential function in Softmax attention.
To this end, let the product between qi and k be denoted as xi,j , the mean of xi,j as xi,mean, and the
maximum of xi,j as xi,max, defined as follows:

xi,j =
q⊤i kj√
dh

. (8)

xi,mean =
1

n

n∑
l=1

xi,l =
1

n

n∑
l=1

q⊤i kl√
dh

=
1

n
q⊤i

n∑
l=1

kl√
dh

(9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Llama2-7B

Mistral-7B

(a) Self-Attention

MSE : 1032

Llama2-7B

Mistral-7B

(b) Evicted Self-Attention

MSE : 426

Llama2-7B

Mistral-7B

(c) PTAA Self-Attention

Figure 2: Comparison of Self-Attention, Evicted Self-Attention, and PTAA Self-Attention

xi,max = max
1≤l≤n

(xi,l) = max
1≤l≤n

(
q⊤i kl√
dh

) (10)

This allows the exponential function to be expressed as a first-order polynomial as follows:

exp(xi,j) ≈ expt(xi,j) = exp(xi,mean − xi,max)
(
1 + xi,j − xi,mean

)
(11)

Applying the Taylor approximation of the exponential function to the entire Softmax operation, the
computation of self-attention can then be expressed as follows:

Att(qi,K, V) ≈
n∑

j=1

exp(xi,mean − xi,max)
(
vj + q⊤i

kj√
dh

vj − xi,meanvj

)
n(xi,mean − xi,max)

. (12)

In this case, the dependency between q⊤i and kj in Eq. 12 is removed, allowing the computation
between kj and vj to be performed in advance, resulting in a linear attention format. This enables a
train-free transformation to linear attention. A more detailed proof can be found in Appendix A.

3.3 MERGING LINEAR ATTENTION WITH KV-CACHE EVICTION

We propose the approximation method (i.e., PTAA) to simultaneously leverage the global token
processing capability of the train-free linear attention described in the previous section and the
focused token processing capability of KV-cache eviction. PTAA determines, via KV-cache evic-
tion scoring, whether each token should be processed by Taylor-approximated linear attention or
by Softmax-based attention. For this purpose, we adopt the CAKE score Qin et al. (2025) as the
eviction score. Let K̂, V̂ denote the KV-cache for linear attention after eviction at timestep t, K,V

denote the KV-cache for Softmax attention, and x̂i =
q⊤i k̂j√

dh
. Then, the PTAA computation can be

expressed as follows (see Appendix B for a detailed proof):

Ei = exp(xi − xi,max), Êi = exp(x̂i,mean − xi,max) (13)

PTAA(qi,K, V) =

n∑
j=1

Ei + Êi

(n∑
j=1

v̂j +
q⊤i√
dh

(k̂nvn +

n−1∑
j=1

k̂j v̂j)−
1

n
q⊤i

n∑
l=1

k̂l√
dh

n∑
j=1

v̂j

)
n(Ei + Êi)

(14)

In this case, both terms are independent of the timestep: the linear attention term has a complexity
of O(d2), and the eviction-based Softmax term has a complexity of O(wd) with respect to the cache
budget w. Consequently, the overall computation is simplified from the original O(Nd) to O((d +
w)d) and no longer depends on the sequence length N . Moreover, our proposed method enables the
utilization of information from past tokens that would otherwise be discarded in conventional KV-
cache eviction methods, thereby significantly improving approximation accuracy (Limit. 2 solved).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

la
ye
r

token

(a) Token-wise Error After PTAA

la
ye
r

token

(b) Token-wise Error After Value Multiplication

Figure 3: Comparison of the PTAA approximation error and the error after multiplication with the
value matrix in the Llama2-7B model.

Figure 2 visually and quantitatively demonstrates how PTAA improves approximation accuracy
compared to standard eviction. Specifically, Figure 2(a) shows the attention map without eviction,
(b) shows the result after eviction, and (c) shows the attention map with PTAA applied in SLAKE.
Notably, in Figure 2(b), information from the left and central tokens is completely removed (zeroed
out), whereas in Figure 2(c), this information is clearly restored. As a result of this restoration, the
mean squared error of PTAA is reduced by more than half compared to the token eviction method
1032. The actual operation of PTAA during text generation can be found in Appendix C.

3.4 VALUE AWARE BUDGET SCORING

SLAKE analyzes the limitations of existing dynamic cache allocation methods and proposes a new
scoring approach for dynamic cache budget allocation. Conventional scoring methods typically
leverage the entropy or variance of the query-key attention map to reflect token distribution ten-
dencies across layers. However, since self-attention computations inherently depend on interactions
among queries, keys, and values, these scoring methods fail to fully account for the influence of
the value matrix. Empirical results illustrate this limitation: as shown in Figure 3(a), the PTAA ap-
proximation error in the 30th layer is largest at the 13th token. After multiplication with the value
matrix, however, the largest error shifts to the 7th token, as seen in Figure 3(b). This demonstrates
that approximation errors in self-attention can be significantly amplified by the value matrix.

Therefore, in this work, we propose VABS, a novel scoring metric that accounts not only for ap-
proximation errors induced by PTAA but also for errors amplified by the value matrix. To use the
PTAA approximation error as the base score, VABS computes the total variation between the PTAA
output and the true attention output as follows:

TVhiq =
1

2

∑
j

|Ãttt,hij −Atta,hij | (15)

where Ãtt denotes the attention output with PTAA applied, and Att denotes the Softmax attention
output. The error term ValueAware, which accounts for the influence of the value matrix V on the
PTAA error, is then computed as follows:

ValueAwarehi =

∑
j

∥Vhij∥∑
j′∥Vhij′∥

· |Ãttt,hij −Atta,hij |

γ

(16)

Here, a scaling term γ is set to 0.1 to control the influence of the error term. Finally, the entropy term
(Entr) reflecting the concentration of the attention map’s probability distribution is computed as:

Entrhi = −
∑
j

Attt,hij logAttt,hij (17)

Finally, after applying scaling factors α and β, the value-aware preference score is computed by
multiplying the mean of the product of the total variation term and the value-aware term with the
entropy term, as follows. Detailed values of the scaling factors for each model can be found in
Appendix D.

PrefScore =

(
E,h,i[TVhi ·ValueAwarehi]

)α

·

(
Eh,i[Entrhi]

)β

. (18)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of LongBench performance between SLAKE and existing methods across
various models

Model Method Cachesize

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovRepor

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PR-en
Lcc

RB-P

Falcon Mamba-7B - - 7.04 31.54 30.11 25.78 27.66 10.26 23.16 21.22 25.76 70.0 78.74 34.5 0.00 4.50 48.55 39.24 29.88

Llama2-7B chat

Full KV - 18.74 21.41 37.57 27.78 32.03 7.53 26.85 20.97 26.41 64.00 83.59 41.37 2.85 7.00 60.48 54.39 33.31

H2O

128

14.23 14.78 26.51 20.05 28.73 5.00 16.00 20.00 20.64 38.00 72.47 37.10 2.30 3.50 49.69 47.37 26.05
PyramidKV 13.45 16.61 32.52 22.76 28.59 7.56 18.87 19.96 20.05 43.50 79.90 36.74 2.29 8.00 51.19 47.56 28.09

CAKE 14.27 16.50 31.87 24.27 27.08 7.60 19.11 20.64 20.63 47.00 80.53 37.83 3.25 8.00 54.11 50.25 28.93
SLAKE(ours) 13.94 15.60 31.24 25.84 30.77 7.73 19.64 20.35 20.61 54.50 80.60 37.85 3.24 8.50 55.29 50.52 29.76

H2O

256

15.27 15.31 27.24 21.02 27.34 6.31 19.75 20.45 22.23 45.51 79.64 37.93 2.93 4.00 52.45 51.23 28.04
PyramidKV 15.13 15.86 33.93 25.58 29.51 9.23 20.35 21.22 22.01 58.00 82.39 38.47 2.15 7.50 55.81 49.53 30.42

CAKE 15.38 15.62 35.55 26.92 30.04 9.18 20.39 20.92 22.34 58.00 81.97 38.91 2.72 6.50 58.03 52.48 30.93
SLAKE(ours) 16.36 15.69 35.79 27.77 30.77 8.92 20.40 20.71 22.61 61.50 82.08 39.04 2.46 7.50 58.87 52.36 31.43

Llama3.1-8B chat

Full KV - 23.67 12.97 27.48 17.00 16.44 11.98 34.26 23.41 26.80 72.50 91.55 44.09 6.70 96.78 65.17 58.85 39.35

H2O

128

16.24 4.70 21.70 12.40 11.30 6.83 19.34 20.34 19.30 35.00 85.40 41.90 5.40 89.04 58.23 51.34 31.15
PyramidKV 16.43 5.20 20.30 13.12 11.90 6.54 20.74 21.13 20.60 46.00 88.10 42.03 6.50 90.11 59.24 51.34 32.46

CAKE 17.04 6.34 21.60 14.43 13.08 8.85 20.56 21.34 20.6 48.00 87.96 42.03 7.08 90.81 60.60 52.01 33.27
SLAKE(ours) 18.51 7.26 21.89 14.16 13.86 9.13 21.84 21.50 20.96 52.00 90.02 41.25 6.83 94.36 60.57 52.79 34.18

H2O

256

18.34 5.41 23.13 12.90 13.24 8.11 20.14 21.43 21.11 52.00 90.34 42.10 6.14 90.45 62.13 52.34 33.71
PyramidKV 21.34 7.14 21.69 14.79 15.70 7.25 23.24 22.45 22.14 59.00 90.01 41.10 7.01 90.13 63.24 54.91 35.07

CAKE 20.07 8.50 23.04 15.36 15.40 8.89 23.11 22.71 23.29 59.50 91.11 41.47 7.07 95.00 62.87 55.60 35.81
SLAKE(ours) 21.41 9.21 23.67 14.82 14.07 9.00 22.97 22.55 22.89 58.00 91.43 42.42 7.71 96.16 63.38 55.19 35.93

Mistral-7B-v0.3

Full KV - 28.55 38.30 50.02 51.94 36.14 26.00 33.86 25.50 26.63 76.00 88.64 47.22 4.50 97.00 61.37 62.88 47.16

H2O

128

22.34 23.13 42.11 43.99 28.14 19.43 20.34 22.98 19.34 43.50 86.24 42.72 2.00 92.13 53.90 52.13 38.40
PyramidKV 23.91 24.89 40.07 41.76 30.43 19.14 22.04 21.98 20.09 44.00 88.64 43.10 3.00 92.45 55.80 53.23 39.03

CAKE 24.75 26.31 43.11 45.93 31.11 20.46 22.89 22.77 20.99 45.50 89.66 43.14 3.50 92.00 56.23 55.43 40.24
SLAKE(ours) 25.44 28.89 45.34 45.49 31.45 22.69 22.34 22.87 20.75 52.00 88.52 43.47 4.00 93.50 56.61 56.21 41.22

H2O

256

26.03 27.01 44.23 43.88 32.55 21.55 24.16 24.10 21.46 46.12 88.36 45.22 5.00 94.57 56.02 55.35 40.98
PyramidKV 25.28 26.07 43.01 46.93 31.08 22.08 23.28 25.92 23.03 46.44 89.58 45.66 4.50 95.07 58.74 55.07 41.49

CAKE 24.90 29.46 47.37 47.87 33.40 20.78 24.67 23.35 22.67 57.00 89.44 44.20 4.00 94.00 58.94 59.71 42.61
SLAKE(ours) 25.45 31.06 45.79 47.16 34.66 22.99 24.23 23.59 22.70 63.00 89.23 44.90 4.50 96.50 59.55 59.90 43.45

Through this approach, VABS effectively captures how errors in the attention map are amplified
by the value matrix, thereby overcoming the limitations of conventional scoring methods based
solely on the query-key attention map. Consequently, cache budgets can be allocated in a way that
better reflects the actual impact on model performance (Limit. 3 solved). Using VABS, SLAKE can
allocate cache budgets that reflect both the characteristics of PTAA approximations and the influence
of the value matrix, minimizing PTAA-induced errors.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

To evaluate the performance of SLAKE, we conducted experiments on a range of large language
models, including Llama3.1-8B Grattafiori et al. (2024), Llama2-7B Touvron et al. (2023), and
Mistral-7B-v0.3 Jiang et al. (2023). The comparison set includes linear-complexity attention mod-
els such as Falcon Mamba Zuo et al. (2024) as well as KV-cache optimization methods, including
H2O Zhang et al. (2023), Pyramid KV Yang et al. (2024), and CAKE Qin et al. (2025). Evaluation
was performed using the long-sequence task benchmark LongBench Bai et al. (2023). LongBench
comprises 16 datasets across six categories, including single- and multi-document question answer-
ing, summarization, few-shot learning, synthetic tasks, and code completion, focusing specifically
on assessing long-context understanding. Additionally, to analyze the hardware efficiency of SLAKE,
we measured latency and peak memory usage on an NVIDIA H100 GPU as a function of sequence
length. The comparative experiments were conducted with average KV-cache budgets of 128 and
256, and to ensure a fair comparison, all methods were constrained to use the same total cache size.

4.2 LONGBENCH RESULTS

To evaluate the performance of SLAKE against existing KV-cache optimization methods and linear
attention-based approaches, we conducted experiments on all 16 LongBench datasets. Table 1 re-
ports the task-wise performance under cache budgets of 128 and 256. The results show that SLAKE
not only significantly outperforms existing linear-complexity attention methods but also achieves
superior performance compared to other KV-cache optimization methods using the same cache bud-
get. In particular, on the Llama2-7B model, SLAKE consistently surpasses all conventional KV-cache
methods under both the 128 and 256 budget settings. Similarly, on the Llama3.1-8B and Mistral-7B-
v0.3 models, SLAKE achieves higher average accuracy across all KV-cache optimization methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of Long-
Bench average scores for
Llama2-7B with PTAA, dy-
namic cache, and VABS

Eviction PTAA VABS score
✓ ✗ ✗ 28.81
✓ ✓ ✗ 29.47
✓ ✓ ✓ 29.76

(c): Peak Memory Usage for
Different Context Lengths

(d): Latency for Different
Context Lengths

Figure 4: Peak memory usage and decoding latency on
H100 80GB.

4.3 ABLATION STUDIES

Next, we describe the LongBench experimental results conducted to validate the effectiveness and
compatibility of PTAA and VABS proposed in SLAKE. Table 2 compares the performance on
Llama2-7B under three settings: applying only the dynamic cache budget allocation-based evic-
tion from the original CAKE, adding PTAA, and applying dynamic budget allocation via VABS.
When only eviction was applied, the average score remained at 28.81. Adding PTAA increased the
score to 29.27, demonstrating that PTAA effectively restores token information that would otherwise
be removed during the eviction process. Finally, applying dynamic cache budget allocation based
on VABS yielded the highest score of 29.76, indicating that VABS appropriately accounts for the
impact of value on errors arising from self-attention approximations. These results confirm the effec-
tiveness of both PTAA and VABS individually. Moreover, when the two algorithms are integrated,
they complement each other to achieve the highest accuracy, effectively optimizing errors that may
arise during cache budget allocation and the approximation process.

4.4 PEAK MEMORY AND THROUGHPUT EVALUATION

We evaluated the hardware efficiency of SLAKE by measuring peak memory usage and decod-
ing latency during LLM inference on a FlashAttention-2 Dao (2023) enabled Llama-3.1-8B-
Instruct Grattafiori et al. (2024) model. The comparisons included full cache, H2O Zhang et al.
(2023), PyramidKV Yang et al. (2024), and CAKE Qin et al. (2025), with all methods maintaining a
uniform cache budget of 1024 to ensure a fair comparison. As shown in Figure 4(a), SLAKE achieves
memory savings comparable to existing KV-cache optimization methods, reducing peak memory us-
age by approximately 30.83% at a 128K context length compared to full cache. Figure 4(b) illustrates
that SLAKE also achieves latency on par with other KV-cache optimization techniques. Notably, in
the 128K context length setting, SLAKE reduces decoding latency by more than 10× relative to full
cache. These results demonstrate that SLAKE effectively alleviates the computational and memory
bottlenecks inherent in full cache settings Dao et al. (2022).

5 CONCLUSION

In this work, we propose a novel framework, SLAKE, which combines linear attention with KV-
cache eviction to simultaneously improve efficiency and accuracy in long-context LLM inference.
SLAKE employs the PTAA attention approximation method, which processes important tokens using
exact attention while applying a Taylor-based approximation only to less important tokens, achiev-
ing Softmax-level performance without additional training. Furthermore, by introducing the VABS
scoring method that accounts for the influence of the value matrix, SLAKE allocates cache resources
more precisely across layers, minimizing errors arising from the approximation. Through extensive
experiments, we demonstrate that SLAKE consistently outperforms existing linear attention and KV-
cache compression methods in long-context models. This design provides a practical approach for
long-context inference, significantly reducing computation and memory usage while maintaining
full-attention-level performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer: Vision
transformer using focused linear attention. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pp. 5961–5971, 2023.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Dongsheng Jiang, Yuchen Liu, Songlin Liu, Jin’e Zhao, Hao Zhang, Zhen Gao, Xiaopeng Zhang, Jin
Li, and Hongkai Xiong. From clip to dino: Visual encoders shout in multi-modal large language
models. arXiv preprint arXiv:2310.08825, 2023.

Zhi Jin, Yuwei Qiu, Kaihao Zhang, Hongdong Li, and Wenhan Luo. Mb-taylorformer v2: improved
multi-branch linear transformer expanded by taylor formula for image restoration. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2025.

Ehsan Kamalloo, Nouha Dziri, Charles LA Clarke, and Davood Rafiei. Evaluating open-domain
question answering in the era of large language models. arXiv preprint arXiv:2305.06984, 2023.

Mo Li, Songyang Zhang, Yunxin Liu, and Kai Chen. Needlebench: Can llms do retrieval and rea-
soning in 1 million context window? arXiv e-prints, pp. arXiv–2407, 2024.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti.
Dynamic memory compression: Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jian-
guo Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. arXiv preprint
arXiv:2503.12491, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532,
2024.

Haoran You, Yichao Fu, Zheng Wang, Amir Yazdanbakhsh, and Yingyan Celine Lin. When linear
attention meets autoregressive decoding: Towards more effective and efficient linearized large
language models. arXiv preprint arXiv:2406.07368, 2024.

Tong Yu, Ruslan Khalitov, Lei Cheng, and Zhirong Yang. Paramixer: Parameterizing mixing links
in sparse factors works better than dot-product self-attention. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 691–700, 2022.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

Jingwei Zuo, Maksim Velikanov, Dhia Eddine Rhaiem, Ilyas Chahed, Younes Belkada, Guillaume
Kunsch, and Hakim Hacid. Falcon mamba: The first competitive attention-free 7b language
model. arXiv preprint arXiv:2410.05355, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A PROOF OF TRAIN-FREE LINEAR ATTENTION VIA TAYLOR APPROXIMATION

In this section, we provide a detailed explanation of how self-attention can be transformed into a lin-
ear attention format using Taylor approximation. By applying Taylor expansion to the self-attention
operation described in Section 3.2, we can rewrite it as follows. Specifically, the exponential function
can be approximated in the form of a first-order polynomial. Under this approximation, the operation
of the softmax function Ãtt can be expressed as shown below, where we denote

∑n
l=1 kl = ksum

and
∑n

l=1 vl = vsum.

Ãtt(qi,K, V) =

n∑
j=1

exp
(

1
n

∑n
l=1

q⊤i kl√
dh
− xi,max

)(
1 +

q⊤i kj√
dh
− 1

n

∑n
l=1

q⊤i kl√
dh

)
∑n

m=1 exp
(

1
n

∑n
l=1

q⊤i kl√
dh
− xi,max

)(
1 +

q⊤i km√
dh
− 1

n

∑n
l=1

q⊤i kl√
dh

) vj

=

n∑
j=1

exp
(

1
n

q⊤i√
dh

∑n
l=1 kl − xi,max

)(
vj +

q⊤i√
dh

kjvj −
1

n
q⊤i
∑n

l=1

kl√
dh

vj

)
∑n

m=1 exp
(

1
n

q⊤i√
dh

∑n
l=1 kl − xi,max

)

=

exp
(

1
n

q⊤i√
dh
ksum − xi,max

)(
vsum +

q⊤i√
dh

(knvn)−
1

n

q⊤i√
dh

ksumvsum

)
∑n

m=1 exp
(

1
n

q⊤i√
dh

ksum − xi,max

)
(19)

Through this process, the computational dependency between q and k in self-attention is removed,
enabling its transformation into a linear attention format. Strictly speaking, xi,max is defined as

max1≤l≤n

(
q⊤i kl√
dh

)
, so a dependency on this term still remains. However, since PTAA employs the

maximum value from the exact attention term as the reference maximum, the dependency is fully
eliminated in PTAA.

B PROOF OF PTAA

In this section, we explain how the PTAA operation can be linearized. Specifically, we first evaluate
the attention map At within the given cache budget using the previous KV-cache Kt−1, V t−1 to-
gether with the newly added key and value at timestep t, namely kt and vt. Based on this evaluation,
we identify the tokens to be evicted, denoted as K̂ and V̂ , and update the KV-cache to Kt, V t. These
updated components are then utilized in PTAA, which can be expressed as follows:

Evict
(
[Kt−1, kt], [V t−1, vt], At

)
= (K̂, V̂ ,Kt, V t) (20)

Subsequently, depending on the classification, K̂ and V̂ are processed with linear attention, while
K and V are handled with softmax attention in parallel, which can be expressed as follows:

=

exp(xi − xi,max) + exp

(
1

n

q⊤i√
dh

k̂sum − xi,max

)(
v̂sum +

q⊤i√
dh

(k̂nvn +

n−1∑
j=1

k̂j v̂j)−
1

n

q⊤i√
dh

k̂sumv̂sum

)
exp(xi − xi,max)n+

n∑
m=1

exp

(
1

n

q⊤i√
dh

k̂sum − xi,max

)
(21)

At this stage, since xi,max is independent of the tokens used in linear attention, the linear attention
operation is able to maintain linear complexity.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1: PTAA-Based Autoregressive Decoding Process

Input: Layer index l, query Q ∈ Rh×1×dh , key cache K ∈ Rh×lencache×dh , value cache
V ∈ Rh×lencache×dh , linear cache L ∈ Rh×dh×dh , linear K sum ksum ∈ Rh×1×dh ,
linear V sum vsum ∈ Rh×1×dh , eviction score Es, head dimension dh, cache size
lencache, linear cache size ℓa, KV group num g, KV group size h

Output: Attention output AttnOut
// evict caches
K, ke ← evict(Es,K);
V, ve ← evict(Es, V);
// update linear cache
ksum ← ksum + ke;
vsum ← vsum + ve;
L← L+ k⊤e ve;
// expand caches
K ← repeat kv(K, g);
V ← repeat kv(V, g);
linear cache← repeat kv(linear cache, g);
ksum ← repeat kv(ksum, g);
vsum ← repeat kv(vsum, g);

// Compute standard attention weights

Att← QK⊤
√
dh

;

amax ← max(Att, axis = −1);
Att← exp(Att− amax);
satt ←

∑
Att;

// Compute linear approximation term

Attlin ←
QL√
dh

;

µ← Qk⊤sum

ℓa
√
dh

;

λ← exp(µ− amax);
Attlin ← (Attlin + (1− µ)vsum) · λ;

// Combine outputs
Att← AttV ;

AttnOut← Att + Attlin
satt + λℓa

;

return AttnOut;

C PTAA ALGORITHM

Algorithm 1 illustrates how SLAKE, based on PTAA, operates during the autoregressive decoding
process. Here, Q denotes the attention query, while K and V represent the cached keys and values.
L refers to the Linear Cache, which is the cumulative sum of the matrix products of keys and values
that have been evicted in the past. Similarly, ksum and vsum denote the cumulative sums of the
evicted keys and values, respectively. In the PTAA process, the eviction score Es is first used to
remove ke and ve from the existing KV-cache K and V . The removed ke and ve are then added to
the cumulative sums ksum and vsum, and their product k⊤e ve is added to L. Since data of the same
size is added to the Linear Cache at each step, the overall cache size remains constant. Afterward,
each cache is expanded according to the head group size. Attention is then performed over Q and
K, followed by linear attention based on the Taylor approximation. Finally, the PTAA process is
completed by combining the result of softmax attention, Att, with that of linear attention, Attlin.
Because the key–value product is added to the Linear Cache at every decoding step, the cache size
remains unchanged. Moreover, the size of the linear cache itself is d2h, which is negligible compared
to the original KV-cache.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Comparison of α and β by the model and cache budget

model Llama2-7B Llama3.1-8B Mistral-7B-v0.3

cache budget 128 256 128 256 128 256

α 0.5 0.5 0.4 0.6 0.6 0.4
β 0.4 0.4 0.2 0.5 0.5 0.2

Table 4: Needle in the haystack multi-reasoning results

model method cache size Multi-Reasoning

EN ZH Overall

Llama3-8B-Chat
Full KV – 84.20 69.50 76.85

SLAKE (ours) 128 46.69 13.72 30.21
256 49.47 27.08 38.28

Mistral-7B-Instruct-v0.3
Full KV – 79.13 65.33 72.23

SLAKE (ours) 128 48.87 17.98 33.43
256 52.11 28.00 40.06

D VABS SCALING TERM IN VARIOUS LLM MODELS

In this section, we present the values of the scaling terms α and β used in VABS for each model, as
summarized in Table 3.

E NEEDLE IN THE HAYSTACK BENCHMARK RESULTS

In this section, we evaluate the performance of SLAKE on the NeedleBench Li et al. (2024) task
to verify its capability in retrieval and multi-step reasoning under complex contexts. Specifically,
we conduct the Multi-Needle Reasoning benchmark with an 8K context length, comparing SLAKE
against the Full KV baseline under cache budgets of 128 and 256. As shown in Table 4, SLAKE
demonstrates stable performance even with limited cache resources, and at a cache budget of 256, it
recovers more than half of the Full KV performance. These results confirm that SLAKE can effec-
tively handle complex reasoning tasks under constrained memory conditions.

14

	Introduction
	Background
	Self-Attention Operation and KV Caching in Autoregressive Decoding
	Previous KV-cache Compression Methods
	Previous linear-complexity Attention Methods

	Proposed Method: SLAKE
	Overview of SLAKE
	Train-Free Linear Attention via Taylor Approximation
	Merging Linear Attention with KV-cache Eviction
	Value Aware Budget Scoring

	Experimental results
	Experimental Settings
	LongBench Results
	Ablation Studies
	Peak memory and Throughput Evaluation

	Conclusion
	Proof of Train-Free Linear Attention via Taylor Approximation
	proof of PTAA
	PTAA Algorithm
	VABS Scaling Term in Various LLM models
	Needle in the Haystack Benchmark Results

