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ABSTRACT

Recent advances in transformer-based large language models (LLMs) have en-
abled inference over contexts as long as 128K tokens. However, the quadratic
computational and memory costs of full self-attention remain a fundamental bot-
tleneck at such scales. Prior efforts to mitigate this challenge largely fall into two
camps: (i) structural approximations (e.g., linear attention) that reduce asymptotic
complexity but typically require costly retraining, and (ii) KV-cache optimizations
(e.g., eviction or merging) that are training-free yet inevitably discard informa-
tion. We introduce Softmax-Approximated Training-Free Linear Attention with
KV-Cache Eviction (SLAKE), a novel framework that unifies the complementary
advantages of these two paradigms. At its core, SLAKE employs Partially Taylor-
Approximated Attention (PTAA), which leverages a first-order Taylor expansion
to selectively linearize the Softmax attention kernel. This design enables tokens
deemed low-importance via eviction scoring to be processed efficiently with lin-
ear attention, while preserving exact Softmax computation for high-salience to-
kens. To further improve cache efficiency, we propose Value-Aware Budget Scor-
ing (VABS), a new allocation strategy that incorporates value contributions and
overcomes key limitations of previous eviction heuristics. Extensive experiments
on LLaMA-3 8B demonstrate that SLAKE delivers up to 10X inference speedup
and 30.8% peak-memory reduction on 128K-token sequences, while keeping ac-
curacy loss below 4%. To our knowledge, SLAKE is the first training-free ap-
proach to jointly integrate linear attention with KV-cache eviction, establishing a
new state of the art among long-context, training-free methods.

1 INTRODUCTION

Recently, the transformer architecture has become the foundational backbone of natural language
processing (NLP) and is widely adopted in large language models (LLMs) |[Radford et al.| (2019);
Touvron et al.|(2023). In line with this trend, state-of-the-art LLMs such as Llama-3 |Grattafiori et al.
(2024) and GPT-4|Achiam et al.| (2023) support inference with input lengths exceeding 128K tokens
to enable long-sequence tasks, including document summarization |Zhang et al.[ (2024), multi-turn
dialogues |Chiang et al|(2023), information retrieval [Liu et al.|(2023)), and question answering |[Ka-
malloo et al.[(2023). Consequently, the development of models and computational platforms capable
of handling such long sequences has emerged as a critical research direction to enhance both the
practicality and performance of Al systems. However, the self-attention mechanism, a core com-
ponent of the transformer architecture, suffers from quadratic computational complexity due to its
inherent dependence on query, key, and value interactions, where the computation grows as O(N?)
with respect to the input sequence length N [Beltagy et al.|(2020). As a result, LLMs encounter se-
vere hardware bottlenecks, with computational cost and memory usage increasing exponentially as
the input length increases Wang et al.| (2020).

To alleviate these challenges, two major lines of research have been explored: (i) linear-complexity
attention and (ii) KV-cache compression. First, Performer/Choromanski et al.|(2020) and Linearized
LLM |You et al.{(2024) introduced linear attention mechanisms with O(/N') computational complex-
ity, thereby improving efficiency. These methods also leverage the characteristics of linear attention
to maintain K'V-caches with fixed sizes, effectively mitigating memory bottlenecks. In a different
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direction, Mamba |Gu & Dao| (2023) proposed a state space model (SSM)-based architecture as
an alternative to self-attention, offering an additional solution to the quadratic complexity prob-
lem. However, this approach fundamentally alters the attention mechanism, preventing the reuse
of pretrained weights and inevitably requiring retraining (Limit. @). Consequently, such methods
require substantial computational resources and time, eventually falling short of fully supporting
long-sequence tasks. In contrast, KV-cache compression methods |[Zhang et al.| (2023); Yang et al.
(2024); |Qin et al.| (2025); Nawrot et al.| (2024) evaluate the importance of tokens in real time, re-
moving or merging less important tokens to reduce the number of tokens involved in attention.
This approach can alleviate both computational complexity and memory bottlenecks; however, the
removal or corruption of certain tokens inevitably leads to performance degradation (Limit. ).
DMC |Nawrot et al.| (2024) combines token eviction and merging and performs retraining to com-
pensate for lost information, but the finetuning process is computationally intensive and demands
substantial GPU resources, making it challenging to apply across diverse tasks. Furthermore, the
dynamic budget allocation scores used in existing K'V-cache eviction techniques do not account for
the influence of the value component in self-attention. As a result, the eviction criteria fail to fully
reflect the quality of attention approximation (Limit. (3)).

While linear attention and K'V-cache eviction approaches have limitations in terms of training over-
head and accuracy degradation due to token information loss, they remain effective means for
mitigating computational and memory bottlenecks. Linear attention replaces Softmax with low-
dimensional kernel features, preserving global content but reducing token-level fidelity, which yields
measurable performance drops |Choromanski et al.| (2020). By contrast, KV-cache eviction retains
exact Softmax on a selected subset of tokens, yet irreversibly discards information from evicted
entries, harming accuracy [Zhang et al.| (2023). A natural strategy is therefore to combine their com-
plementary strengths: keep high-importance tokens for precise Softmax attention via eviction, while
approximating low-importance tokens with linear attention to reduce overhead. However, two ob-
stacles still impede this integration: (1) Training overhead—Iinear attention introduces structural
changes that typically require retraining; and (2) Kernel incompatibility—most linear kernels devi-
ate substantially from Softmax, making direct combination with Softmax-based eviction prone to
accuracy loss. As a result, simultaneously leveraging both paradigms without degrading Softmax
behavior—or incurring substantial additional training and hardware cost—remains challenging.

To leverage the complementary characteristics of linear attention and KV-cache eviction, this
work proposes the Softmax-Approximated Training-Free Linear Attention with KV-Cache Eviction
(SLAKE) framework. In SLAKE, a Partially Taylor Approximated Attention (PTAA) mechanism
processes a limited set of important tokens using precise attention, while the remaining tokens are
handled via Taylor approximation-based linear attention, resulting in a more accurate approximation
of Softmax attention compared to conventional linear attention methods. Furthermore, by employ-
ing the Taylor approximation, SLAKE preserves the validity of pretrained weights, addressing the
key limitation of prior linear attention approaches that require additional training. In addition, this
study introduces Value Aware Budget Scoring (VABS), which enhances existing dynamic budget
allocation schemes by considering the influence of the value matrix on attention outcomes. VABS
enables more precise cache budget allocation, improving the accuracy of attention approximation.
By combining these two techniques, SLAKE effectively maintains the performance of existing LLMs
without additional training while significantly reducing computational cost and memory usage, rep-
resenting the first instance of integrating linear attention with KV-cache eviction. Experimental re-
sults demonstrate that SLAKE achieves high accuracy with less than a 4% drop compared to the
LongBench baseline on Llama2-7B [Touvron et al.| (2023)), Llama3.1-8B |Grattafiori et al.| (2024),
and Mistral-7B-v0.3 Jiang et al.| (2023). Moreover, on GPUs with 128K tokens, SLAKE attains a
10x inference speedup and a 30.83% reduction in peak memory usage relative to the baseline. The
main contributions of this work are summarized as follows:

* Solution for Limit. @: We propose a train-free first-order Taylor approximation to transform
standard self-attention into a linear attention format. This approach effectively reproduces
the functionality of self-attention without requiring additional retraining, alleviating the
training burden inherent in previous linear attention models.

* Solution for Limit. 2): We introduce PTAA, an attention structure that integrates linear
attention with KV-cache eviction, for the first time. PTAA maintains the computational and
memory efficiency of conventional KV-cache compression while improving performance
on long-sequence tasks.
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* Solution for Limit. 3): We identify a key limitation of existing KV-cache eviction methods,
as they fail to consider the impact of the value component in self-attention. To address this,
we propose a novel budget scoring mechanism, VABS, which dynamically allocates cache
budgets while taking the value influence into account.

2 BACKGROUND

2.1 SELF-ATTENTION OPERATION AND KV CACHING IN AUTOREGRESSIVE DECODING

The core operation of the transformer is self-attention, which captures contextual information by
computing relationships among all tokens within the input sequence|Vaswani et al.[(2017). Given an
input sequence of length N and embedding dimension d, self-attention is defined as follows:

. QKT
Attention(Q, K, V') = Softmax V, (D

Vd
Here, Q, K,V € RM*? denote the query, key, and value matrices, respectively, where Q =
[q1,---,qn]T, K = [k1,...,kn]T,and V = [vy,...,on]" consist of token embedding rows
q, k,v. Self-attention computes the attention score for each token pair (i, j), withé,j € 1,..., N,

by taking the dot product of the i-th token’s query ¢; and the j-th token’s key k;. Then, self-attention
normalizes the scores using Softmax and then takes a weighted sum of the values v; to produce new
token representations. To enhance the representational capacity of a single self-attention layer, mod-
ern LLMs employ multi-head self-attention (MHSA). MHSA splits the input token embeddings into
h separate heads, performs self-attention independently within each head, and then concatenates the
resulting representations. MHSA is formally defined as follows:

MHSA(Q, K, V) = Concat(heady, . . ., head;, )W, (2)
The attention output of each head, head,,, with m € 1, ..., h, is computed as follows:
head,,, = Attention(QW %, KWX vwY) 3)

Here, W2, WE WY € R¥dn and WO € R?*? are learnable linear projection weights, where
dn = d/h is typically used to evenly split the dimension for each head. This allows the model to
learn diverse contextual information across different representation subspaces, resulting in richer se-
mantic representations |Voita et al.|(2019). However, both self-attention and MHSA require comput-
ing similarities for all token pairs (¢, j), with¢,7 € 1,..., N, leading to a computational complexity
of O(N2d) and a memory complexity of O(N?). As the input sequence length N increases in long-
sequence tasks, both computation and memory usage grow rapidly, becoming a major bottleneck for
LLMs. Meanwhile, LLMs typically operate in an autoregressive decoding setting for long-sequence
tasks, where the output at timestep ¢t — 1 serves as the input for timestep ¢. In this context, the query
q: at timestep ¢ must interact with all past keys and values, which can be expressed as follows:

@K ;— t
h; = Softmax ( NG ) Vii. 4)
In other words, at each timestep, the query must be computed against all previous keys and values,
causing the recomputation cost of K7.;_1 and V7.;_1 to grow exponentially as the sequence length
increases. To mitigate this, KV caching was introduced |Dai et al.|(2019), which stores keys and val-
ues from previous timesteps in a cache. Using KV caching, when a new token query ¢; is generated,
only ¢; is computed, and the corresponding k; and v; are concatenated to the existing cache as:

Ky = K1, k], Vi = [Vi—1; v (%)
This approach allows only the new key (k) and value (v;) to be appended at each timestep, thereby
reducing redundant computations. However, the size of the KV-cache still grows linearly with the

sequence length, O(Nd), and in modern models processing inputs of 128K tokens or more, storing
the cache itself becomes a significant memory bottleneck.

2.2 PREVIOUS KV-CACHE COMPRESSION METHODS

Prior KV-cache compression methods mitigate both the computational burden of self-attention and
the memory overhead of the cache by limiting participation to a subset of tokens, with method-
specific criteria determining which tokens are retained. Streaming LLM |Xiao et al.| (2023) exploits
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the observation that early tokens in attention tend to carry relatively higher importance, maintaining
only the initial and most recent tokens. This approach demonstrates that conventional LLMs can sup-
port sequence lengths approaching infinity. However, its performance degrades significantly as the
cache budget decreases. The Heavy-Hitter Oracle (H20) Zhang et al.|(2023)) goes beyond retaining
only recent tokens by evaluating token importance based on self-attention scores. It selects "heavy-
hitter tokens’ while removing the remaining ones, thereby reducing unnecessary memory usage.
Nevertheless, H20 does not consider cache budgets across Transformer blocks, which can result
in severe performance degradation. PyramidKV |Yang et al.| (2024) proposes a method to minimize
performance loss by gradually increasing the KV-cache budget across transformer blocks. However,
its fixed budget allocation cannot account for variations in input data, leading to significant perfor-
mance fluctuations depending on the input. CAKE |Qin et al.| (2025) not only dynamically allocates
per-layer cache budgets based on the entropy and variance of the self-attention map according to
input tokens, but also introduces a cascading KV-cache eviction strategy that maintains the overall
KV-cache budget consistently from the prefill stage, thereby minimizing performance degradation
due to token removal. Nonetheless, accuracy loss persists as information from evicted tokens is in-
evitably discarded. DMC [Nawrot et al.| (2024) proposes a dynamic memory compression technique
that decides whether to evict or merge tokens based on their characteristics, and employs fine-tuning
to minimize performance degradation. However, the hardware and temporal overhead imposed by
fine-tuning cannot be ignored.

2.3 PREVIOUS LINEAR-COMPLEXITY ATTENTION METHODS

Existing linear-complexity attention methods aim to alleviate the computational burden while pre-
serving the ability of self-attention to capture interactions between all tokens. Linformer Wang et al.
(2020) addresses the O(N?) computational bottleneck of transformers by leveraging a low-rank ap-
proximation of the attention matrix. Based on the observation that the majority of information in the
attention matrix is concentrated in a few dominant singular values, it employs a linear projection
layer to project the entire sequence into a fixed, shorter sequence. This linear projection layer is
applied to the key and value matrices, significantly reducing the attention computation cost and low-
ering the computational complexity to O(Nk). However, because Linformer employs a fixed linear
projection layer after training, its performance can degrade substantially under fluctuations in input
activation. Moreover, it requires training from scratch and does not support modern LLM archi-
tectures. Longformer Beltagy et al.| (2020) introduces a sparse attention mechanism to mitigate the
O(N?) complexity when processing long sequences. In this sparse attention structure, each token at-
tends only to a fixed-size window of neighboring tokens (w), reducing the complexity to O(N x w).
Additionally, selected important tokens receive global attention across the entire sequence to inte-
grate contextual information. Similar to Linformer, Longformer requires model training and does
not support contemporary LLM architectures. Performer (Choromanski et al.| (2020) alleviates the
O(N?) complexity of standard self-attention by approximating the Softmax function with a kernel
function ¢(-), which can be separately applied to queries and keys. This allows the self-attention
computation to be reformulated as a linear-complexity attention mechanism as follows:

Attention(Q, K, V) ~ ¢(Q) (¢(K) V) (6)

Through the reformulation of computations as in Eq. [6] linear attention reduces the matrix mul-
tiplication complexity between queries, keys, and values to O(N). However, Performer does not
support modern model architectures and exhibits severe performance degradation due to rank col-
lapse of the attention map, which arises from approximating long-sequence attention with a simple
kernel function [Yu et al.|(2022); Han et al.| (2023). Linearized LLM |You et al.| (2024) applies lin-
ear attention to the LLama2-7B and 13B architectures [Touvron et al|(2023) and, separately from
linear attention, employs depthwise convolution Howard et al.| (2017) on the value matrix to restore
the lost rank of the attention map. As the first study to apply linear attention to relatively modern
LLMs, such as LLama2-7B and 13B, Linearized LLM also supports speculative decoding, enabling
multiple tokens to be predicted simultaneously using smaller models. Nevertheless, this approach
requires training from scratch and still suffers from non-negligible performance degradation despite
the rank restoration. Meanwhile, the Mamba model |(Gu & Daol (2023)), based on SSM architectures,
can effectively capture long-range dependencies without using attention or MLP layers. Mamba
introduces a selective state space mechanism that dynamically adjusts the parameters of the state
space model according to the input, achieving high performance with linear time complexity even
for long-sequence tasks.
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Figure 1: Overall SLAKE architecture. (a) VABS allocates a layerwise cache budget for each trans-
former layer by taking into account both the linear approximation error and the value data. (b) PTAA
combines linear attention with Softmax attention to effectively emulate standard self-attention.

3 PROPOSED METHOD: SLAKE

3.1 OVERVIEW OF SLAKE

Figure [T)illustrates the overall process of SLAKE. In the prefill stage, SLAKE first performs VABS,
which considers both the linear approximation error of the attention map and the contribution of
value data (for Limit. 3)). Based on these scores, layerwise cache budgets are allocated, and token
eviction is applied to adjust the KV-cache size to the target budget. In the generation stage, SLAKE
evaluates newly generated tokens together with existing ones and incrementally stacks them in the
linear cache. PTAA is then applied: evicted tokens are approximated using linear attention, while
preserved tokens are processed with softmax attention. Through this process, SLAKE adapts to the
characteristics of input tokens without requiring additional training (for Limit. (D) and effectively
approximates self-attention at each generation step (for Limit. 2)).

3.2 TRAIN-FREE LINEAR ATTENTION VIA TAYLOR APPROXIMATION

Unlike previous linear attention methods, SLAKE leverages a first-order Taylor approximation to
linearly approximate self-attention without any additional training. This approach allows pretrained
weights to mitigate information loss caused by approximating the Softmax attention operation
(2025)). In other words, the weights learned based on the complex nonlinearity of the Softmax
operation remain effective even under the linearized computation provided by the first-order Taylor
approximation. This enables SLAKE to perform linear attention using existing pretrained weights
without requiring any retraining (Limit. ) solved). Let the query of the 7th token be denoted as ¢;,
the keys and values including all past tokens as K and V, each element of the keys and values as k
and v, and the attention head dimension as dj. Then, self-attention can be expressed as follows:

Tk
n exp(qZ J —maxlglgn(xi,lo

Vdy,

Att(Qi, K, V) = Z qu Vj @)
j=1 Zln:l exp ( \Z/d_hl — MaXji<i<n (xi,l)>

Next, we apply a first-order Taylor approximation to the exponential function in Softmax attention.
To this end, let the product between g; and k be denoted as x; ;, the mean of x; ; as T mean, and the
maximum of z; ; as T; max, defined as follows:

T
4 kj
Tij = . (8)
J /dh
1 Itk 1+ Kk
Tjmean = — Til = — L = —q; = 9
n; n; Vdp, n ;\/dh
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Figure 2: Comparison of Self-Attention, Evicted Self-Attention, and PTAA Self-Attention

max = (wi1) = Ly (10)
Thmax = JGE) = S

This allows the exponential function to be expressed as a first-order polynomial as follows:

exp(xi,j) ~ eXpt(xi,j) = exf(xi,mean - xi,max) (]- + xi,j - xi,mean) (11)

Applying the Taylor approximation of the exponential function to the entire Softmax operation, the
computation of self-attention can then be expressed as follows:
kj
n exp(l‘i,mean - xi,max) (Uj + qyﬁvj - xi,mean”j)
Att(qi, K, V) =~ > h .

j=1

12)

n(xi,mean - xi,max)

In this case, the dependency between ¢, and k; in Eq. [12|is removed, allowing the computation
between k; and v; to be performed in advance, resulting in a linear attention format. This enables a
train-free transformation to linear attention. A more detailed proof can be found in Appendix [A]

3.3 MERGING LINEAR ATTENTION WITH KV-CACHE EVICTION

We propose the approximation method (i.e., PTAA) to simultaneously leverage the global token
processing capability of the train-free linear attention described in the previous section and the
focused token processing capability of KV-cache eviction. PTAA determines, via KV-cache evic-
tion scoring, whether each token should be processed by Taylor-approximated linear attention or
by Softmax-based attention. For this purpose, we adopt the CAKE score |Qin et al.| (2025) as the

eviction score. Let K , V denote the KV-cache for linear attention after eviction at timestep ¢, K,V

TL. .
denote the KV-cache for Softmax attention, and z; = q\'i/d% . Then, the PTAA computation can be

expressed as follows (see Appendix [B]for a detailed proof):

L = eXp(a:i - xi,max)a L = exp(ii,mean - xi,max) (13)
) n qT . n—1 R 1 . n ifl n
n EZ‘—FEZ‘(z;Uj-F\/ﬁ(k}nvn—F;kj’Uj)—nqi g;dh;v])

PTAA(q;, K, V) =Y (B + Ey)
i1 v '
. (14)

In this case, both terms are independent of the timestep: the linear attention term has a complexity
of O(d?), and the eviction-based Softmax term has a complexity of O(wd) with respect to the cache
budget w. Consequently, the overall computation is simplified from the original O(Nd) to O((d +
w)d) and no longer depends on the sequence length N. Moreover, our proposed method enables the
utilization of information from past tokens that would otherwise be discarded in conventional KV-
cache eviction methods, thereby significantly improving approximation accuracy (Limit. 2) solved).
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Figure 3: Comparison of the PTAA approximation error and the error after multiplication with the
value matrix in the Llama2-7B model.

Figure [2] visually and quantitatively demonstrates how PTAA improves approximation accuracy
compared to standard eviction. Specifically, Figure 2{a) shows the attention map without eviction,
(b) shows the result after eviction, and (c) shows the attention map with PTAA applied in SLAKE.
Notably, in Figure[2{b), information from the left and central tokens is completely removed (zeroed
out), whereas in Figure |ZKC), this information is clearly restored. As a result of this restoration, the
mean squared error of PTAA is reduced by more than half compared to the token eviction method
1032. The actual operation of PTAA during text generation can be found in Appendix [C]

3.4 VALUE AWARE BUDGET SCORING

SLAKE analyzes the limitations of existing dynamic cache allocation methods and proposes a new
scoring approach for dynamic cache budget allocation. Conventional scoring methods typically
leverage the entropy or variance of the query-key attention map to reflect token distribution ten-
dencies across layers. However, since self-attention computations inherently depend on interactions
among queries, keys, and values, these scoring methods fail to fully account for the influence of
the value matrix. Empirical results illustrate this limitation: as shown in Figure Eka), the PTAA ap-
proximation error in the 30th layer is largest at the 13th token. After multiplication with the value
matrix, however, the largest error shifts to the 7th token, as seen in Figure Ekb). This demonstrates
that approximation errors in self-attention can be significantly amplified by the value matrix.

Therefore, in this work, we propose VABS, a novel scoring metric that accounts not only for ap-
proximation errors induced by PTAA but also for errors amplified by the value matrix. To use the
PTAA approximation error as the base score, VABS computes the total variation between the PTAA
output and the true attention output as follows:

1 .
TVhiqg = 3 Z|Attt,hij — Attg pijl (15)
J

where Att denotes the attention output with PTAA applied, and Att denotes the Softmax attention
output. The error term ValueAware, which accounts for the influence of the value matrix V' on the
PTAA error, is then computed as follows:

v

|Vhi -
ValueAwareh,- = Z Z| };/Zl H ‘Attuh“ - Atta7},,ij| (16)
g’

Here, a scaling term +y is set to 0.1 to control the influence of the error term. Finally, the entropy term
(Entr) reflecting the concentration of the attention map’s probability distribution is computed as:

Entrhi = — Z Attt7hij IOg Attt)hij (17)

J
Finally, after applying scaling factors « and /3, the value-aware preference score is computed by
multiplying the mean of the product of the total variation term and the value-aware term with the
entropy term, as follows. Detailed values of the scaling factors for each model can be found in

Appendix

a B
PrefScore = (Ethi[TVhi . ValueAwarehi]) . <Eh7,;[Entrh7;]> . (18)
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Table 1: Comparison of LongBench performance between SLAKE and existing methods across
various models

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
Model Method Cachesize > > & o W > o Avg.
Q> B QAT ey et ¢ RN ¢ X
O PR :ﬂ.\\g\ w8 ‘h S T e e e
Falcon Mamba-7B - - 7.04 3154 30.11 2578 27.66 1026 23.16 21.22 2576 70.0 78.74 345 0.00 450 4855 3924 29.88
Full KV - 18.74  21.41 37.57 2778 32.03 7.53 2685 2097 2641 6400 8359 4137 2.85 7.00 6048 5439 3331
H20 1423 1478 2651 2005 2873 500 1600 2000 20.64 3800 7247 3710 230 3.50 49.69 4737 26.05
PyramidKV g 1345 1661 3252 2276 2859 756 1887 1996 2005 4350 7990 3674 229 800 5119 47.56 2809
Liama2-7B chi CAKE “° 1427 1650 31.87 2427 2708 7.60 19.11 20.64 20.63 47.00 80.53 37.83 325 800 5411 5025 28.93
ama2-7B chat g1 AKE(ours) 1394 1560 3124 2584 3077 773 1964 2035 2061 5450 80.60 37.85 324 850 5529 5052 29.76
H20 15.27 15.31 2724 21.02 2734 6.31 19.75 2045 2223 4551 79.64 3793 293 4.00 5245 5123 28.04
PyramidKV 256 15.13  15.86 3393 2558 2951 923 2035 2122 2201 58.00 8239 3847 2.15 7.50 5581 4953 3042
CAKE - 15.38 1562 3555 2692 30.04 9.18 2039 2092 2234 5800 8197 3891 272 6.50 58.03 5248 30.93
SLAKE(ours) 1636 1569 3579 27.77 30.77 892 2040 2071 22.61 61.50 8208 39.04 246 750 5887 5236 3143
Full KV - 2367 1297 2748 17.00 1644 1198 3426 2341 2680 7250 9155 44.09 6.70 9678 65.17 58.85 39.35
H20 1624 470 2170 1240 1130 683 1934 2034 1930 3500 8540 4190 540 89.04 5823 5134 3LIS
PyramidKV g 1643 520 2030 1302 1190 654 2074 2113 2060 4600 8810 4203 650 9011 5924 5134 3246
Liama3.1-8B cha CAKE 1704 634 2160 1443 1308 885 20.56 2134 206 4800 87.96 4203  7.08 9081 60.60 5201 3327
ama3.1-8B chat g1 AKE(ours) 1851 726 2189 1416 1386 913 2184 2150 2096 5200 90.02 4125 683 9436 60.57 5279 34.18
H20 1834 541 2313 1290 1324 811 2014 2143 2111 5200 9034 4210 6.4 9045 6213 5234 3371
PyramidKV 256 21.34 714 21.69 1479 1570 725 2324 2245 2214 59.00 90.01 41.10 7.01 9013 6324 5491 3507
CAKE 20.07 8.50 23.04 1536 1540 8.89 2311 2271 2329 5950 9111 4147 7.07 9500 62.87 55.60 35.81
SLAKE(ours) 2141 921 2367 1482 1407  9.00 2297 2255 2289 5800 9143 4242 771 9616 6338 5519 3593
Full KV - 2855 3830 50.02 5194 3614 2600 3386 2550 2663 7600 8864 4722 450 97.00 6137 6288 47.16
H20 2234 2313 4211 4399 2814 1943 2034 2298 1934 4350 8624 4272 200 9213 5390 5213 3840
PyramidKV lpg 2391 2489 4007 4176 3043 1904 2204 2198 2009 4400 8864 4310 300 9245 5580 5323 39.03
Mistral 7TBv0.3 CAKE 2475 2631 4311 4593 3111 2046 2289 2277 2099 4550 89.66 43.04 350 9200 5623 5543 4024
Mistral-7B-v0.3 g1 AKE(ours) 2544 2889 4534 4549 3145 2269 2234 2287 2075 5200 8852 4347 400 9350 5661 5621 4122
H20 26.03 27.01 4423 4388 3255 21.55 2416 2410 2146 46.12 8836 4522 500 9457 56.02 5535 4098
PyramidKV 25 2528 2607 4301 4693 3108 2208 2328 2592 2303 4644 8958 4566 450 9507 5874 5507 4149
CAKE 2490 2946 4737 4787 3340 2078 24.67 2335 2267 57.00 8944 4420 400 9400 5894 5971 4261
SLAKE(ours) 2545 3106 4579 47.16 34.66 2299 2423 2359 2270 63.00 8923 4490 450 9650 5955 59.90 d3.45

Through this approach, VABS effectively captures how errors in the attention map are amplified
by the value matrix, thereby overcoming the limitations of conventional scoring methods based
solely on the query-key attention map. Consequently, cache budgets can be allocated in a way that
better reflects the actual impact on model performance (Limit. 3 solved). Using VABS, SLAKE can
allocate cache budgets that reflect both the characteristics of PTAA approximations and the influence
of the value matrix, minimizing PTAA-induced errors.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

To evaluate the performance of SLAKE, we conducted experiments on a range of large language
models, including Llama3.1-8B |Grattafiori et al.| (2024), Llama2-7B [Touvron et al.| (2023), and
Mistral-7B-v0.3 Jiang et al.| (2023). The comparison set includes linear-complexity attention mod-
els such as Falcon Mamba [Zuo et al.| (2024)) as well as KV-cache optimization methods, including
H20|Zhang et al.| (2023)), Pyramid KV |Yang et al.| (2024), and CAKE |Qin et al.| (2025). Evaluation
was performed using the long-sequence task benchmark LongBench [Bai et al.| (2023). LongBench
comprises 16 datasets across six categories, including single- and multi-document question answer-
ing, summarization, few-shot learning, synthetic tasks, and code completion, focusing specifically
on assessing long-context understanding. Additionally, to analyze the hardware efficiency of SLAKE,
we measured latency and peak memory usage on an NVIDIA H100 GPU as a function of sequence
length. The comparative experiments were conducted with average KV-cache budgets of 128 and
256, and to ensure a fair comparison, all methods were constrained to use the same total cache size.

4.2 LONGBENCH RESULTS

To evaluate the performance of SLAKE against existing KV-cache optimization methods and linear
attention-based approaches, we conducted experiments on all 16 LongBench datasets. Table [1| re-
ports the task-wise performance under cache budgets of 128 and 256. The results show that SLAKE
not only significantly outperforms existing linear-complexity attention methods but also achieves
superior performance compared to other KV-cache optimization methods using the same cache bud-
get. In particular, on the Llama2-7B model, SLAKE consistently surpasses all conventional KV-cache
methods under both the 128 and 256 budget settings. Similarly, on the Llama3.1-8B and Mistral-7B-
v0.3 models, SLAKE achieves higher average accuracy across all KV-cache optimization methods.
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Peak Memory Usage for Different Context Lengths Latency for Different Context Lengths

- H20
PyramidKV
CAKE
SLAKE
Full Cache

Table 2: Comparison of Long-
Bench average scores for
Llama2-7B with PTAA, dy-
namic cache, and VABS

Latency (s)

N DN Dl D D D |

o
ak 8k 16k 32k 64k 128k ak 8k 16k 32k 64k 128k
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v v/ X 2947 Different Context Lengths Context Lengths
v v v 29.76

Figure 4: Peak memory usage and decoding latency on
H100 80GB.

4.3 ABLATION STUDIES

Next, we describe the LongBench experimental results conducted to validate the effectiveness and
compatibility of PTAA and VABS proposed in SLAKE. Table 2] compares the performance on
Llama2-7B under three settings: applying only the dynamic cache budget allocation-based evic-
tion from the original CAKE, adding PTAA, and applying dynamic budget allocation via VABS.
When only eviction was applied, the average score remained at 28.81. Adding PTAA increased the
score to 29.27, demonstrating that PTAA effectively restores token information that would otherwise
be removed during the eviction process. Finally, applying dynamic cache budget allocation based
on VABS yielded the highest score of 29.76, indicating that VABS appropriately accounts for the
impact of value on errors arising from self-attention approximations. These results confirm the effec-
tiveness of both PTAA and VABS individually. Moreover, when the two algorithms are integrated,
they complement each other to achieve the highest accuracy, effectively optimizing errors that may
arise during cache budget allocation and the approximation process.

4.4 PEAK MEMORY AND THROUGHPUT EVALUATION

We evaluated the hardware efficiency of SLAKE by measuring peak memory usage and decod-
ing latency during LLM inference on a FlashAttention-2 |Dao| (2023) enabled Llama-3.1-8B-
Instruct |Grattafiori et al.| (2024) model. The comparisons included full cache, H20 [Zhang et al.
(2023)), PyramidKV |Yang et al.|(2024), and CAKE |Qin et al.[(2025), with all methods maintaining a
uniform cache budget of 1024 to ensure a fair comparison. As shown in Figure[d[a), SLAKE achieves
memory savings comparable to existing KV-cache optimization methods, reducing peak memory us-
age by approximately 30.83% at a 128K context length compared to full cache. Figure[d[b) illustrates
that SLAKE also achieves latency on par with other KV-cache optimization techniques. Notably, in
the 128K context length setting, SLAKE reduces decoding latency by more than 10 X relative to full
cache. These results demonstrate that SLAKE effectively alleviates the computational and memory
bottlenecks inherent in full cache settings Dao et al.|(2022).

5 CONCLUSION

In this work, we propose a novel framework, SLAKE, which combines linear attention with KV-
cache eviction to simultaneously improve efficiency and accuracy in long-context LLM inference.
SLAKE employs the PTAA attention approximation method, which processes important tokens using
exact attention while applying a Taylor-based approximation only to less important tokens, achiev-
ing Softmax-level performance without additional training. Furthermore, by introducing the VABS
scoring method that accounts for the influence of the value matrix, SLAKE allocates cache resources
more precisely across layers, minimizing errors arising from the approximation. Through extensive
experiments, we demonstrate that SLAKE consistently outperforms existing linear attention and K'V-
cache compression methods in long-context models. This design provides a practical approach for
long-context inference, significantly reducing computation and memory usage while maintaining
full-attention-level performance.
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APPENDIX

A PROOF OF TRAIN-FREE LINEAR ATTENTION VIA TAYLOR APPROXIMATION

In this section, we provide a detailed explanation of how self-attention can be transformed into a lin-
ear attention format using Taylor approximation. By applying Taylor expansion to the self-attention
operation described in Section[3.2] we can rewrite it as follows. Specifically, the exponential function
can be approximated in the form of a first-order polynomial. Under this approximation, the operation
of the softmax function Att can be expressed as shown below, where we denote Zl":l ki = ksum

n
and > ;" | U = Vsum.

1\ gk ;
: v e, L wimar ) (142 - Y
Abt(gi, K,V) = L Vi Vi ! th)

k km
Jj=1 Z:anl eXp(% Zlnzl (il/dfl - xz}mam) (1 + 4 Bm 1 Zl 1

h

Uj
)

q; 1 n kl
(1 . DI Ianm) (Uj*\/dhkjvjnq;§:h:1\/dhvj)

j=1 anzl exp(% ;T = kl - xi,maz)

T T

1 q] . % 1l
exp(ﬁ ﬁksum xl»mal’> ( \/ﬁ(knvn) n Mksumvsum>

Zn -1 eXp( L qd’ ksum - xi,maw)
19)
Through this process, the computational dependency between g and k in self-attention is removed,
enabling its transformation into a linear attention format. Strictly speaking, =; max is defined as

Tk
maxi<i<p (%) , so a dependency on this term still remains. However, since PTAA employs the
h

maximum value from the exact attention term as the reference maximum, the dependency is fully
eliminated in PTAA.

B PROOF OF PTAA

In this section, we explain how the PTAA operation can be linearized. Specifically, we first evaluate
the attention map A* within the given cache budget using the previous KV-cache K*~!, V*~1 to-

gether with the newly added key and value at tlmestep t, namely k¢ and v'. Based on this evaluatlon

we identify the tokens to be evicted, denoted as K and V, and update the KV-cache to K*, V. These
updated components are then utilized in PTAA, which can be expressed as follows:

Evict ([K'1, k'], [V, o', AY) = (K, V, K" V) (20)

Subsequently, depending on the classification, K and V are processed with linear attention, while
K and V are handled with softmax attention in parallel, which can be expressed as follows:

T

1 q' - q' -
exp(xi - xi,max) + eXP<n %ksum - xi,max) (vsum + —= \/7 k vn Z k; U] g\/idfhksum@sum

)

n T
1 AN
eXp(iL'i - xi,max)n + "Z::l eXP(ﬂ;&?ksum - xi,mam)

(21
At this stage, since ; max 1S independent of the tokens used in linear attention, the linear attention
operation is able to maintain linear complexity.
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Algorithm 1: PTAA-Based Autoregressive Decoding Process

Input: Layer index [, query Q € R"*1Xdn key cache K € R**!ncacheXdn yalye cache
V € Rh*lencache Xdn linear cache L € R"*4nXdn linear K sum kg, € R">*1%dn,
linear V sum vy, € R?*1%dn eviction score Ey, head dimension d},, cache size
lencqcehe, linear cache size £,, KV group num g, KV group size h

Output: Attention output AttnOut

// evict caches

K, k. + evict(Ey, K);

V,ve + evict(Ey, V);

// update linear cache

ksum — ksum + ke;

Vsum €= Usum + Ve

L+ L+ k;rve;

// expand caches

K < repeat kv(K, g);

V « repeat kv(V, g);

linear_cache <+ repeat_kv(linear_cache, g);

ksum < repeat kv(ksum, 9);

Vgum <— repeat kv(veum, 9);

// Compute standard attention weights

QK"

vy

max < max(Att, axis = —1);

Att < exp(Att — amax);

Sa < Y Att;

// Compute linear approximation term

Att +—

L
Atty, — —;
T dh

dy
A exp(,u - amax);
Attiin < (Attin + (1 — f)Vsum) - As

// Combine outputs

Att + AtttV

Att + Attyiy )
Sa + Mg '

return AttnOut;

4

AttnOut <

C PTAA ALGORITHM

Algorithm [T] illustrates how SLAKE, based on PTAA, operates during the autoregressive decoding
process. Here, () denotes the attention query, while K and V' represent the cached keys and values.
L refers to the Linear Cache, which is the cumulative sum of the matrix products of keys and values
that have been evicted in the past. Similarly, kg, and vgy,, denote the cumulative sums of the
evicted keys and values, respectively. In the PTAA process, the eviction score Fj is first used to
remove k. and v, from the existing KV-cache K and V. The removed k. and v, are then added to
the cumulative sums kg, and vgum, and their product k;r v, 1s added to L. Since data of the same
size is added to the Linear Cache at each step, the overall cache size remains constant. Afterward,
each cache is expanded according to the head group size. Attention is then performed over () and
K, followed by linear attention based on the Taylor approximation. Finally, the PTAA process is
completed by combining the result of softmax attention, Att, with that of linear attention, Atfyy,.
Because the key—value product is added to the Linear Cache at every decoding step, the cache size
remains unchanged. Moreover, the size of the linear cache itself is d?, which is negligible compared
to the original KV-cache.

13
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Table 3: Comparison of « and /3 by the model and cache budget

model Llama2-7B Llama3.1-8B  Mistral-7B-v0.3
cache budget 128 256 128 256 128 256
« 05 05 0.4 0.6 0.6 04
153 04 04 0.2 0.5 0.5 0.2

Table 4: Needle in the haystack multi-reasoning results

Multi-Reasoning

model method cache size
EN 7ZH Overall

Full KV - 8420 69.50 76.85
Llama3-8B-Chat 128 46.69 13.72 30.21
SLAKE (ours) 556 4947 27.08 3828
Full KV - 79.13 6533 72.23
Mistral-7B-Instruct-v0.3 128 48.87 17.98 3343
SLAKE (ours) 556 511 28,00  40.06

D VABS SCALING TERM IN VARIOUS LLM MODELS

In this section, we present the values of the scaling terms « and 5 used in VABS for each model, as

summarized in Table 3]

E NEEDLE IN THE HAYSTACK BENCHMARK RESULTS

In this section, we evaluate the performance of SLAKE on the NeedleBench |L1 et al.[ (2024) task
to verify its capability in retrieval and multi-step reasoning under complex contexts. Specifically,
we conduct the Multi-Needle Reasoning benchmark with an 8K context length, comparing SLAKE
against the Full KV baseline under cache budgets of 128 and 256. As shown in Table @] SLAKE
demonstrates stable performance even with limited cache resources, and at a cache budget of 256, it
recovers more than half of the Full KV performance. These results confirm that SLAKE can effec-

tively handle complex reasoning tasks under constrained memory conditions.
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