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Abstract

Given the recent proliferation of false claims001
online, there has been a lot of manual fact-002
checking effort. As this is very time-003
consuming, human fact-checkers can benefit004
from tools that can support them and make005
them more efficient. Here, we focus on build-006
ing a system that could provide such sup-007
port. Given an input document, it aims to de-008
tect all sentences that contain a claim that can009
be verified by some previously fact-checked010
claims (from a given database). The output011
is a re-ranked list of the document sentences,012
so that those that can be verified are ranked013
as high as possible, together with correspond-014
ing evidence. Unlike previous work, which015
has looked into claim retrieval, here we take a016
document-level perspective. We create a new017
manually annotated dataset for the task, and018
we propose suitable evaluation measures. We019
further experiment with a learning-to-rank ap-020
proach, achieving sizable performance gains021
over several strong baselines. Our analysis022
demonstrates the importance of modeling text023
similarity and stance, while also taking into ac-024
count the veracity of the retrieved previously025
fact-checked claims. We believe that this re-026
search would be of interest to fact-checkers,027
journalists, media, and regulatory authorities.028

1 Introduction029

Recent years have brought us a proliferation of030

false claims, which spread fast online, especially031

in social media; in fact, much faster than the032

truth (Vosoughi et al., 2018). To deal with the033

problem, a number of fact-checking initiatives034

have been launched, such as FactCheck, Full-035

Fact, PolitiFact, and Snopes, where professional036

fact-checkers verify claims (Nakov et al., 2021a).037

Yet, manual fact-checking is very time-consuming038

and tedious, and checking a single claim can039

take many hours, even days (Vlachos and Riedel,040

2014a). Thus, automatic fact-checking has been041

proposed as a possible alternative (Li et al., 2016;042

Figure 1: The architecture of our system. Given an in-
put document, it aims to detect all sentences that con-
tain a claim that can be verified by some previously
fact-checked claims (from a given database). The out-
put is a re-ranked list of the document sentences, so that
those that can be verified are ranked as high as possi-
ble, together with corresponding evidence.

Shu et al., 2017; Rashkin et al., 2017; Hassan 043

et al., 2017; Vo and Lee, 2018; Lee et al., 2018; 044

Li et al., 2018; Thorne and Vlachos, 2018; Lazer 045

et al., 2018; Vosoughi et al., 2018; Zhang et al., 046

2020b), and it is useful in many scenarios, as 047

it scales much better and can yield results much 048

faster. Yet, automated methods lag behind in 049

terms of credibility, transparency, and explainabil- 050

ity, and they cannot rival the quality that manual 051

fact-checking can offer. 052

Thus, manual and automatic fact-checking will 053

likely co-exist in the near future, and they will 054

benefit from each other as automatic methods are 055

trained on data that human fact-checkers produce, 056

while human fact-checkers can be assisted by au- 057

tomatic tools. A middle ground between manual 058

and automatic fact-checking is to verify an input 059

claim by finding a previously fact-checked claim 060

that allows us to make a true/false judgment on the 061

veracity of the input claim. This is the problem we 062

will explore below. 063
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Previous work has approached the problem at064

the sentence level: given an input sentence/tweet,065

produce a ranked list of relevant previously fact-066

checked claims that can verify it (Shaar et al.,067

2020a). However, this formulation does not fac-068

tor in whether the factuality of the input sen-069

tence/tweet can be determined using the database070

of previously fact-checked claims, as it is formu-071

lated as a ranking task. For example, in a US072

presidential debate that has 1,300 sentences on av-073

erage, only a small fraction would be verifiable074

using previously fact-checked claims from Politi-075

Fact. Therefore, we target a more challenging re-076

formulation at the document level, where the sys-077

tem needs to prioritize which sentences are most078

likely to be verifiable using the database of previ-079

ously fact-checked claims. This is still a ranking080

formulation, but here we rank the sentences in the081

input document (by verifiability using the database082

of claims), as opposed to ranking database claims083

for one input sentence (by similarity with respect084

to that sentence).085

In our problem formulation, given an input doc-086

ument, the system needs to detect all sentences that087

contain a claim that can be verified by a previously088

fact-checked claim (from a given database of such089

claims). The output is a re-ranked list of the doc-090

ument sentences, so that those that can be veri-091

fied are ranked as high as possible, as illustrated092

in Figure 1. The system could optionally further093

provide a corresponding fact-checked claim (or a094

list of such claims) from the database as evidence.095

Note that we are interested in returning claims that096

would not just be relevant when fact-checking the097

claims in the input sentence, but such that would098

be enough to decide on a verdict for its factuality.099

This is a novel formulation of the problem,100

which was not studied before. It would be of inter-101

est to fact-checkers not only when they are facing a102

new document to analyze, but also when they want103

to check whether politicians keep repeating claims104

that have been previously debunked, so that they105

can be approached for comments. It would also be106

of interest to journalists, as it could bring them a107

tool that can allow them to put politicians and pub-108

lic officials on the spot, e.g., during a political de-109

bate, a press conference, or an interview, by show-110

ing the journalist in real time which claims have111

been previously fact-checked and found false. Fi-112

nally, media outlets would benefit from such tools113

for self monitoring and quality assurance, and so114

would regulatory authorities such as Ofcom.1 Our 115

contributions can be summarized as follows: 116

• We introduce a new challenging real-world task 117

formulation to assist fact-checkers, journalists, 118

media, and regulatory authorities in finding 119

which claims in a long document have been pre- 120

viously fact-checked. 121

• We develop a new dataset for this task for- 122

mulation, which consists of seven debates, 123

5,054 sentences, 16,636 target verified claims to 124

match against, and 75,810 manually annotated 125

sentence–verified claim pairs. 126

• We define new evaluation measures (variants of 127

MAP), which are better tailored for our task. 128

• We address the problem using a learning-to- 129

rank approach, and we demonstrate sizable per- 130

formance gains over strong baselines. 131

• We offer analysis and discussion, which can fa- 132

cilitate future research, and we release our data 133

and code at http://anonymous 134

2 Related Work 135

Disinformation, misinformation, and “fake news” 136

thrive in social media. See (Lazer et al., 2018) 137

and (Vosoughi et al., 2018) for a general discus- 138

sion on the science of “fake news” and the pro- 139

cess of proliferation of true and false news online. 140

There have also been several interesting surveys, 141

e.g., Shu et al. (2017) studied how information is 142

disseminated and consumed in social media. An- 143

other survey by Thorne and Vlachos (2018) took 144

a fact-checking perspective on “fake news” and 145

related problems. Yet another survey (Li et al., 146

2016) covered truth discovery in general. 147

More relevant to the present work, a re- 148

cent survey has studied what AI technology can 149

offer to assist the work of professional fact- 150

checkers (Nakov et al., 2021a), and has pointed 151

out to the following research problems: (i) iden- 152

tifying claims worth fact-checking, (ii) detecting 153

relevant previously fact-checked claims, (iii) re- 154

trieving relevant evidence to fact-check a claim, 155

and (iv) actually verifying the claim. 156

Another recent work proposes a re-ranker based 157

on memory-enhanced transformers for match- 158

ing (MTM) to rank fact-checked articles using 159

key sentences selected using lexical, semantic 160

and pattern-based similarity (Sheng et al., 2021). 161

Other recent work on fact-checking includes (Si 162

et al., 2021; Kazemi et al., 2021; Jiang et al., 163

1http://www.ofcom.org.uk/
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2021; Wan et al., 2021). It was noted that the164

topic of the claim and the implicit stance of the165

evidence towards the claim are important factors166

for fact-checking. To incorporate both these as-167

pects, Si et al. (2021) proposed topic-aware ev-168

idence reasoning and stance-aware aggregation,169

which model semantic interaction and topical con-170

sistency to learn latent evidence representation.171

Kazemi et al. (2021) proposed a claim match-172

ing approach and developed two datasets covering173

four languages. Jiang et al. (2021) used sequence-174

to-sequence transformer models for sentence se-175

lection and label prediction. Wan et al. (2021) pro-176

posed a deep Q-learning network i.e., a reinforce-177

ment learning approach, which computes candi-178

date pairs of precise evidence and their labels.179

We should note that the vast majority of the180

above-described work has focused on the latter181

problem, i.e., claim verification, while the other182

three problems remain understudied, even though183

there is an awareness that they are integral steps184

of an end-to-end automated fact-checking pipeline185

(Vlachos and Riedel, 2014b; Hassan et al., 2017).186

This situation is gradually changing, and the re-187

search community has recently started paying188

more attention to all four problems, in part thanks189

to the emergence of evaluation campaigns that190

feature all steps such as the CLEF CheckThat!191

lab (Nakov et al., 2018; Elsayed et al., 2019;192

Barrón-Cedeño et al., 2020; Nakov et al., 2021b).193

Here we focus on direction (ii), i.e., detecting194

relevant previously fact-checked claims, which is195

the least studied of the above problems. Shaar196

et al. (2020a) proposed a claim-focused task for-197

mulation, and released two datasets: one based198

on PolitiFact , and another one based on Snopes.199

They had a ranking formulation: given a claim,200

they asked to retrieve a ranked list of previ-201

ously fact-checked claims from a given database202

of such claims; the database included the veri-203

fied claims together with corresponding articles.204

One can argue that this formulation falls some-205

where between (ii) detecting relevant previously206

fact-checked claims and (iii) retrieving relevant207

evidence to fact-check a claim. The same formu-208

lation was adopted at the CLEF CheckThat! lab in209

2020, where the focus was on tweets, and in 2021,210

which featured both tweets and political debates211

(Barrón-Cedeño et al., 2020; Shaar et al., 2020b;212

Nakov et al., 2021b). A similar formulation was213

also explored in (Miranda et al., 2019).214

Experiments with these datasets and task for- 215

mulations have shown that one can achieve siz- 216

able performance gains when matching not only 217

against the target claim, but also using the full text 218

of the associated article that fact-checkers wrote to 219

explain their verdict. Thus, in a follow-up work, 220

Shaar et al. (2021) focused on modeling the con- 221

text when checking an input sentence from a polit- 222

ical debate, both on the source side and on the tar- 223

get side, e.g., by looking at neighboring sentences 224

and using co-reference resolution. 225

There has also been an extension of the tweet 226

formulation: Vo and Lee (2020) looked into mul- 227

timodality. They focused on tweets that discuss 228

images and tried to detect the corresponding veri- 229

fied claim by matching both the text and the image 230

against the images in the verified claim’s article. 231

Finally, the task was also addressed in a reverse 232

formulation, i.e., given a database of fact-checked 233

claims (e.g., a short list of common misconcep- 234

tions about COVID-19), find social media posts 235

that make similar claims (Hossain et al., 2020). 236

Unlike the above work, our input is a document, 237

and the goal is to detect all sentences that contain a 238

claim that can be verified by some previously fact- 239

checked claim (from a given database). 240

3 Task Definition 241

We define the task as follows (see also Figure 1): 242

Given an input document and a database of pre- 243

viously fact-checked claims, produce a ranked list 244

of its sentences, so that those that contain claims 245

that can be verified by a claim from the database 246

are ranked as high as possible. We further want 247

the system to be able to point to the database 248

claims that verify a claim in an input sentence. 249

Note that we want the Input sentence to be 250

verified as true/false, and thus we want to skip 251

matches against Verified claims with labels of 252

unsure veracity such as half-true. Note also 253

that solving this problem requires going beyond 254

stance, i.e., whether a previously fact-checked 255

claim agree/disagree with the input sentence (Mi- 256

randa et al., 2019). In certain cases, other factors 257

might also be important, such as, (i) whether the 258

two claims express the same degree of specificity, 259

(ii) whether they are made by the same person and 260

during the same time period, (iii) whether the ver- 261

ified claim is true/false or is of mixed factuality, 262

etc. Table 5 in the Appendix shows some exam- 263

ples. 264
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4 Dataset265

4.1 Background266

We construct a dataset based on fact-checked267

claims from PolitiFact,2 an organization of jour-268

nalists that focuses on claims made by politicians.269

For each fact-checked claim, they have a factual-270

ity label and an article explaining the reason for271

assigning that label.272

PolitiFact further publishes commentaries that273

highlight some of the claims made in a debate or274

speech, with links to fact-checking articles about275

these claims from their website. These commen-276

taries were used in previous work as a way to277

obtain a mapping from Input sentences in a de-278

bate/speech to Verified claims. For example, Shaar279

et al. (2020a) collected 16,636 Verified claims,280

and 768 Input–Verified claim pairs from 70 de-281

bates and speeches, together with the transcript282

of the target event. For each Verified claim, they283

released the following: VerifiedStatement, Truth-284

Value {Pants-on-Fire!, False, Mostly-False, Half-285

True, Mostly-True, True}, Title and Body.286

The above dataset has high precision, and it is287

suitable for their formulation of the task: given a288

sentence (one of the 768 ones), identify the cor-289

rect claim that verifies it (from the set of 16,636290

Verified claims). However, it turned out not to291

be suitable for our purposes due to recall issues:292

missing links between Input sentences in the de-293

bate/speech and the set of Verified claims. This is294

because PolitiFact journalists were not interested295

in making an exhaustive list of all possible cor-296

rect mappings between Input sentences and Ver-297

ified claims in their database; instead, they only298

pointed to some such links, which they wanted to299

emphasize. Moreover, if the debate made some300

claim multiple times, they would include a link for301

only one of these instances (or they would skip the302

claim altogether). Moreover, if the claims made303

in a sentence are verified by multiple claims in the304

database, they might only include a link to one of305

these claims (or to none).306

As we have a document-level task, where iden-307

tifying sentences that can be verified using a308

database of fact-checked claims is our primary309

objective (while returning the matching claims is310

secondary), we need not only high precision, but311

also high recall for the Input–Verified claims pairs.312

2http://www.politifact.com/

4.2 Our Dataset 313

We manually checked and re-annotated seven de- 314

bates from the dataset of Shaar et al. (2020a) by 315

linking Verified claims from PolitiFact to the Input 316

sentences in the transcript. This includes 5,054 317

sentences, and ideally, we would have wanted to 318

compare each of them against each of the 16,636 319

Verified claims, which would have resulted in a 320

huge and very imbalanced set of pairs: 5, 054 × 321

16, 636 = 84, 078, 344. Thus, we decided to pre- 322

filter the Input sentences and the Input–Verified 323

claim pairs. 324

4.3 Phase 1: Input Sentence Filtering 325

Not all sentences in a speech/debate contain a ver- 326

ifiable factual claim, especially when uttered in a 327

live setting. In speeches, politicians would make 328

a claim and then would proceed to provide num- 329

bers and anecdotes to emphasize and to create an 330

emotional connection with the audience. In our 331

case, we only need to focus on claims. We also 332

know that not all claims are important enough 333

to be fact-checked. Thus, we follow (Konstanti- 334

novskiy et al., 2021) to keep only Input sentences 335

that are worth fact-checking. Based on this defi- 336

nition, positive examples include, but are not lim- 337

ited to (a) stating a definition, (b) mentioning a 338

quantity in the present or in the past, (c) making 339

a verifiable prediction about the future, (d) refer- 340

encing laws, procedures, and rules of operation, or 341

(e) implying correlation or causation (such corre- 342

lation/causation needs to be explicit). Negative ex- 343

amples include personal opinions and preferences, 344

among others. In this step, three annotators in- 345

dependently made judgments about the Input sen- 346

tences for check-worthiness (i.e., check-worthy vs. 347

not check-worthy), and we only rejected a sen- 348

tence if all three annotators judged it to be not 349

check-worthy. As a result, we reduced the num- 350

ber of input sentences to check from 5,054 to 700. 351

4.4 Phase 2: Generating Input–Verified Pairs 352

Next, we used BM25 to retrieve 15 Verified claims 353

per Input sentence. As a result, we managed to 354

reduce the number of pairs to check from 700 × 355

16, 636 = 11, 645, 200 to 700× 15 = 10, 500. 356

4.5 Phase 3: Input–Verified Pairs Filtering 357

We manually went through the 10,500 Input– 358

Verified pairs, and we filtered out the ones that 359

were incorrectly retrieved by the BM25 algorithm. 360
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Again, we were aiming for high recall, and thus361

we only rejected a pair if all three out of the three362

annotators independently chose to reject it. As a363

result, the final number of pairs to check is 1,694.364

4.6 Phase 4: Stance and Verdict Annotation365

Again, three annotators manually annotated the366

1,694 Input–Verified pairs with stance and verdict367

using the following labels:368

• stance: agree, disagree, unrelated, not–claim;369

• verdict: true, false, unknown, not–claim.370

The label for stance is agree if the Veri-371

fied claim agrees with the Input claim, disagree372

if it opposes it, and unrelated if there is no373

agree/disagree relation (this includes truly unre-374

lated claims or related but without agreement/dis-375

agreement, e.g., discussing the same topic).376

The verdict is true/false if the Input sentence377

makes a claim whose veracity can be determined378

to be true/false based on the paired Verified claim379

and its veracity label; it is unknown otherwise.380

The veracity can be unknown for various reasons,381

e.g., (i) the Verified claim states something (a bit)382

different; (ii) the two claims are about different383

events; (iii) the veracity label of the Verified claim384

is ambiguous. We only need the verdict annotation385

to determine whether the Input sentence is verifi-386

able; yet, we use the stance to construct suitable387

Input–Verified claim pairs.388

4.7 Final Dataset389

Our final dataset consists of 5,054 Input sentences,390

and 75,810 Input–Verified claim pairs. This in-391

cludes 125 Input sentences that can be verified us-392

ing a database of 16,663 fact-checked claims, and393

198 Input–Verified claim pairs where the Verified394

can verify the Input sentence (as some Input sen-395

tences can be verified by more than one Verified).396

See Table 6 in Appendix for more detail.397

4.8 Annotation and Annotators’ Agreement398

Each Input–Verified claim pair was annotated by399

three annotators: one male and two female, with400

BSc and PhD degrees. The disagreements were401

resolved by majority voting, and, if not possible,402

in a discussion with additional consolidators. We403

measured the inter-annotator agreement on phase404

4 (phases 1 and 3 aimed for high recall rather than405

agreement). We obtained a Fleiss Kappa (κ) of406

0.416 for stance and of 0.420 for the verdict, both407

corresponding to moderate agreement.408

5 Evaluation Measures 409

Given a document, the goal is to rank its sentences, 410

so that those that can be verified (i.e., with a true/- 411

false verdict; Verdict-Input in Appendix Table 6) 412

are ranked as high as possible, and also to pro- 413

vide a relevant Verified claim (i.e., one that could 414

justify the verdict; Verdict-pairs in Appendix Ta- 415

ble 6). This is a (double) ranking task, and thus we 416

use ranking evaluation measures based on Mean 417

Average Precision (MAP). First, let us recall the 418

standard AP: 419

AP =

∑n
k=1 P1(k)× rel(k)

rel.sentences
, (1) 420

where P1(k) is the precision at a cut-off k in the 421

list, rel(k) is 1 if the k-th ranked sentence is rele- 422

vant (i.e., has either a true or a false verdict), and 423

rel. sentences is the number of Input sentences that 424

can be verified in the transcript. 425

We define more strict AP measures, AP r
H , AP r

0 , 426

and AP r
0.5, which only give credit for an Input sen- 427

tence with a known verdict, if also a corresponding 428

Verified claim is correctly identified: 429

AP r
H =

∑n
k=1 P

r
1 (k)× relrH(k)

rel.sentences
(2) 430

where relrH(k) is 1 if the k-th ranked Input sen- 431

tence is relevant and at least one relevant Verified 432

claim was retrieved in the top-r Verified claim list. 433

AP r
0 =

∑n
k=1 P

r
0 (k)× rel(k)

rel. sentences
(3) 434

AP r
0.5 =

∑n
k=1 P

r
0.5(k)× rel(k)

rel. sentences
(4) 435

where P r
m(k), is precision at cut-off k, so that it 436

increments by m, if none of the relevant Verified 437

claim was retrieved in the top-r Verified claim list; 438

otherwise, it increments by 1.3 439

We compute MAP , MAP r
H , MAP r

0 , and 440

MAP r
0.5 by averaging AP , AP r

H , AP r
0 , and 441

AP r
0.5, respectively, over the test transcripts. 442

We also compute MAPinner by averaging the 443

APinner on the Verified claims: we compute 444

APinner for a given Input sentence, by scoring the 445

rankings of the retrieved Verified claims as in the 446

task presented in (Shaar et al., 2020a). 447

3The simple AP can also be represented as AP r
1 , as it in-

crements by 1 regardless of whether a relevant Verified claim
is in the top-r Verified claim list.
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Experiment MAPinner

BERTScore (F1) on VerifiedStatement 0.638
NLI (Entl) on VerifiedStatement 0.574
NLI (Neut) on VerifiedStatement 0.112
NLI (Contr) on VerifiedStatement 0.025
NLI (Entl+Contr) on VerifiedStatement 0.553
SimCSE on Title 0.220
SimCSE on VerifiedStatement 0.451
SimCSE on Body 0.576
SBERT on Title 0.165
SBERT on VerifiedStatement 0.531
SBERT on Body 0.649
BM25 on VerifiedStatement 0.316
BM25 on Body 0.892
BM25 on Title 0.145

Table 1: Verified Claim retrieval experiments on the
annotations obtained from the PolitiFact dataset and the
manually annotated pairs with agree or disagree stance.

6 Model448

The task we are trying to solve has two subtasks.449

The first sorts the Input sentences in the transcript450

in a way, so that the Input sentences that can be451

verified using the database are on top. The sec-452

ond one consists of retrieving a list of matching453

Verified claims for a given Input sentence. While454

we show experiments for both subtasks, our main455

focus is on solving the first one.456

6.1 Input–Verified Pair Representation457

In order to rank the Input sentences from the tran-458

script, we need to find ways to represent them, so459

that we would have information about whether the460

database of Verified claims can indeed verify some461

claim from the Input sentence. To do that, we pro-462

pose to compute multiple similarity measures be-463

tween all possible Input–Verified pairs, where we464

can match the Input sentence against the Verified-465

Statement, the Title, and the Body of the verified466

claims’ fact-checking article in PolitiFact.467

• BM25: These are BM25 scores when matching468

the Input sentence against the VerifiedStatement,469

the Title, and the Body, respectively (3 features);470

• NLI Score (Nie et al., 2020): These are poste-471

rior probabilities for NLI over the labels {entail-472

ment, neutral, contradiction} between the Input473

sentence and the VerifiedStatement (3 features);474

• BERTScore (Zhang et al., 2020a): F1 score475

from the BERTScore similarity scores between476

the Input sentence and the VerifiedStatement (1477

feature);478

• Sentence-BERT (SBERT) (Reimers and479

Gurevych, 2019): Cosine similarity for480

sentence-BERT-large embedding of the Input481

sentence as compared to the embedding for the482

VerifiedStatement, the Title, and the Body. Since 483

the Body is a longer piece of text, we obtain the 484

cosine similarity between the Input sentence vs. 485

each sentence from the Body, and we only keep 486

the four highest scores (6 features); 487

• SimCSE (Gao et al., 2021): Similarly to 488

SBERT, we compute the cosine similarity be- 489

tween the SimCSE embeddings of the Input sen- 490

tence against the VerifiedStatement, the Title, 491

and the Body. Again, we use the top-4 scores 492

when matching against the Body sentences (6 493

features: 1 from the VerifiedStatement + 1 from 494

the Title + 4 from the Body). 495

6.2 Single-Score Baselines 496

Each of the above scores, e.g., SBERT, can be cal- 497

culated for each Input–Verified claim pair. For 498

a given Input sentence, this makes 16,663 scores 499

(one for each Verified from the database), and as 500

a baseline, we assign to the Input sentence the 501

maximum over these scores. Then, we sort the 502

sentences of the input document based on these 503

scores, and we evaluate the resulting ranking. 504

6.3 Re-ranking Models 505

We performed preliminary experiments looking 506

into how the above measures work for retrieving 507

the correct Verified for an Input sentence for which 508

there is at least one match in the Verified claims 509

database. This corresponds to the sentence-level 510

task of (Shaar et al., 2020a), but on our dataset, 511

where we augment the matching Input–Verified 512

pairs from their dataset with all the Input–Verified 513

pairs with a stance of agree or disagree. The re- 514

sults are shown in Table 1. We can see that BM25 515

on Body yields the best overall MAP score, which 516

matches the observations in (Shaar et al., 2020a). 517

RankSVM for Verified Claim Retrieval Since 518

now we know that the best Verified claim retriever 519

uses the BM25 on Body, we use it to retrieve the 520

top-N Verified claims for a given Input sentence, 521

and then we calculate the 19 similarity measures 522

described above for each candidate in this top-N 523

list. Afterwards, we concatenate the scores for 524

these top-N candidates. Thus, we create a fea- 525

ture vector of size 19×N for each Input sentence. 526

For example, a top-3 experiment uses for each In- 527

put sentence a feature vector of size 19× 3 = 57, 528

which represents each similarity measure based on 529

the top-3 Verified claims retrieved by BM25 on 530
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Experiment MAP MAP1
0 MAP3

0 MAP1
0.5 MAP3

0.5 MAP1
H MAP3

H

Baselines: Single Scores

BERTScore (F1) on VerifiedStatement 0.076 0.046 0.050 0.061 0.063 0.034 0.038
NLI (Entl) on VerifiedStatement 0.035 0.025 0.029 0.030 0.032 0.017 0.023
NLI (Neut) on VerifiedStatement 0.036 0.001 0.003 0.019 0.020 0.000 0.001
NLI (Contr) on VerifiedStatement 0.051 0.001 0.001 0.026 0.026 0.000 0.000
NLI (Entl+Contr) on VerifiedStatement 0.041 0.005 0.007 0.023 0.024 0.002 0.003
SimCSE on VerifiedStatement 0.287 0.249 0.259 0.268 0.273 0.208 0.223
SimCSE on Title 0.242 0.144 0.213 0.193 0.227 0.093 0.172
SimCSE on Body 0.068 0.041 0.048 0.055 0.058 0.025 0.034
SBERT on VerifiedStatement 0.303 0.245 0.284 0.274 0.294 0.203 0.251
SBERT on Title 0.117 0.044 0.082 0.080 0.099 0.019 0.060
SBERT on Body 0.033 0.016 0.021 0.025 0.027 0.008 0.012
BM25 on VerifiedStatement 0.146 0.107 0.122 0.127 0.134 0.086 0.100
BM25 on Title 0.084 0.047 0.049 0.066 0.067 0.031 0.034
BM25 on Body 0.155 0.130 0.144 0.143 0.150 0.107 0.132

RankSVM for Retrieved Verified Claims (using BM25 on Body)

Top-1 0.382 0.357 0.373 0.369 0.378 0.310 0.352
Top-3 0.345 0.318 0.336 0.332 0.341 0.278 0.319
Top-5 0.362 0.335 0.353 0.349 0.357 0.292 0.335
Top-10 0.404 0.364 0.391 0.384 0.398 0.313 0.368
Top-20 0.400 0.346 0.377 0.373 0.388 0.291 0.352
Top-30 0.357 0.310 0.339 0.333 0.348 0.260 0.318

RankSVM–Max

Top-1 0.411 0.299 0.390 0.355 0.401 0.253 0.364
Top-3 0.449 0.328 0.429 0.389 0.439 0.273 0.400
Top-5 0.482 0.349 0.464 0.416 0.473 0.291 0.436
Top-10 0.491 0.394 0.473 0.443 0.482 0.320 0.445
Top-20 0.488 0.381 0.470 0.434 0.479 0.310 0.439
Top-30 0.486 0.377 0.468 0.432 0.477 0.304 0.435

RankSVM–Max with Skipping Half-True Verified claims

Top-1 0.467 0.353 0.442 0.410 0.455 0.287 0.417
Top-3 0.507 0.370 0.485 0.438 0.496 0.306 0.454
Top-5 0.522 0.379 0.501 0.451 0.512 0.316 0.468
Top-10 0.515 0.401 0.494 0.458 0.505 0.323 0.465
Top-20 0.504 0.350 0.481 0.427 0.493 0.293 0.447
Top-30 0.493 0.376 0.468 0.435 0.481 0.301 0.433

Table 2: Verdict Experiments: Baseline and re-ranking experiments on the PolitiFact dataset. The results high-
lighted in bold are the best results for the particular sets of experiments. The results shown both in bold and
underline represent the overall best results.

Experiment MAP MAP1
0 MAP3

0 MAP1
0.5 MAP3

0.5 MAP1
H MAP3

H

RankSVM–Max on Top-5 with Skipping 0.522 0.379 0.501 0.451 0.512 0.316 0.468

w/o BERTScore (F1) 0.499 0.376 0.480 0.437 0.489 0.313 0.450
w/o NLI Score (E, N, C) 0.475 0.330 0.451 0.402 0.463 0.279 0.423
w/o SimCSE 0.511 0.353 0.486 0.432 0.499 0.295 0.454
w/o SBERT 0.498 0.381 0.481 0.440 0.490 0.308 0.452
w/o BM25 0.497 0.343 0.473 0.420 0.485 0.287 0.441
w/o scores on Title 0.522 0.369 0.501 0.445 0.511 0.308 0.468
w/o scores on VerifiedStatement 0.311 0.242 0.293 0.276 0.302 0.198 0.268
w/o scores on Body 0.444 0.295 0.427 0.370 0.435 0.249 0.398

Table 3: Verdict Experiments: Ablation experiments on the best model from Table 2, RankSVM with Top-5
scores from all metrics while skipping half-true Verified claims.

Body. Then, we train a RankSVM using this fea-531

ture representation.532

RankSVM–Max Instead of concatenating the533

19-dimensional vectors for the top-N candidates,534

this time we take the maximum over these candi-535

dates for each feature, thus obtaining a new 19-536

dimensional vector. The hypothesis here is that537

the further apart these scores are, the more confi- 538

dent we can be that the Input sentence can be veri- 539

fied by the top retrieved Verified claim (Yang et al., 540

2019). Then, we train a RankSVM like before. 541

RankSVM–Max with Skipping Table 4 in Ap- 542

pendix shows us that almost all Input–Verified 543

pairs with the TruthValue of the Verified claim 544
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being Half–True result in an Input sentence for545

which we cannot determine the verdict. There-546

fore, we further experiment with a variant of547

RankSVM–Max that skips scores belonging to a548

Half–True Verified claim.549

7 Experiments and Evaluation550

We performed a 7-fold cross-validation, where we551

used 6 out of the 7 transcripts for training and552

the remaining one for testing. We first computed553

19 similarity measures and then used them to test554

the baselines and to train pairwise learning-to-rank555

models. The results are shown in Table 2.556

7.1 Baselines557

Table 2 shows that Sentence-BERT and SimCSE,558

computed on the Verified claims, perform best. An559

interesting observation can be made by comparing560

Table 1 and Table 2. From Table 1, we see that the561

best Verified claim retriever uses BM25 on Body;562

however, we see poor results when we use this563

measure for Input sentences ranking. Moreover,564

while the best model in Table 2 is SBERT on Veri-565

fiedStatement, the Verified retriever using the same566

model performs poorly as seen in Table 1. This is567

because SBERT tends to always yield high scores568

to Verified claims, even when there is no relevant569

Verified claim.570

7.2 RankSVM for Verified Claims Retrieval571

We trained a RankSVM on the 19 similarity mea-572

sures computed for the top-N retrieved Verified573

claims, according to BM25, the best system on574

Body. We can see from Table 2 that using the575

RankSVM on the 19 measures improves the scores576

by up to 10 MAP points absolute. Moreover, the577

best model achieves a MAP score of 0.404.578

7.3 RankSVM–Max579

Using max-pooling instead of BM25-retrieved580

Verified claims yields huge improvements in581

MAP: from 0.404 to 0.491 using RankSVM on the582

top-10 scores from the 19 metrics.583

A high improvement can be observed when584

we consider MAP3
0, MAP3

0.5 and MAP3
H from585

RankSVM for Verified claims retrieval. Note586

that, since there is a max over each metric inde-587

pendently, we no longer have a unified Verified588

suggestion, which is required to compute MAP0,589

MAP0.5, and MAPH . Thus, to compute them, we590

use the best Verified claim retriever from Table 1,591

i.e., BM25 on Body.592

7.4 RankSVM–Max with Skipping 593

The highest MAP score, 0.522, is achieved by 594

the RankSVM that uses the top-5 scores from 595

each measure while skipping the Half–True Ver- 596

ified claim scores. We can also conclude by look- 597

ing at the other variants of the MAP score, e.g., 598

MAPH , that we can identify the Input sentences 599

that need to be fact-checked and detect the correct 600

Verified claims in the top-3 ranks. 601

7.5 Ablation Experiments 602

We performed an ablation study for the best model 603

from Table 2 removing one of the features at a 604

time. We also excluded all scores based on Title, 605

VerifiedStatement and Body. The results are shown 606

in Table 3. We can see that the largest drops, and 607

therefore the most important features, are the Ver- 608

ifiedStatement and Body scores, whereas without 609

Title scores the model performs almost identically 610

to the original. We also notice that although the 611

NLI Score did not perform very well by itself (see 612

the baselines in Table 2), it yields a significant 613

drop, from 0.522 to 0.475 MAP points, when it 614

is removed, which shows its importance. 615

8 Conclusion and Future Work 616

We introduced a new challenging real-world task 617

formulation to assist fact-checkers, journalists, 618

media, and regulatory authorities in finding which 619

claims in a long document have been previously 620

fact-checked. Given an input document, we aim 621

to detect all sentences containing a claim that 622

can be verified by some previously fact-checked 623

claims (from a given database). We developed a 624

new dataset for this task formulation, consisting of 625

seven debates, 5,054 sentences, 16,636 target veri- 626

fied claims to match against, and 75,810 manually 627

annotated sentence–verified claim pairs. 628

We further defined new evaluation measures 629

(variants of MAP), which are better tailored for 630

our task setup. We addressed the problem us- 631

ing learning-to-rank, and we demonstrated sizable 632

performance gains over strong baselines. We of- 633

fered analysis and discussion, which can facilitate 634

future research, and we released our data and code. 635

In future work, we plan to focus more on de- 636

tecting the matching claims, which was our second 637

objective here. We also plan to explore other trans- 638

formers and novel ranking approaches such as 639

multi-stage document ranking using monoBERT 640

and duoBERT (Yates et al., 2021). 641
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Ethics and Broader Impact642

Biases We note that there might be some biases643

in the data we use, as well as in some judgments644

for claim matching. These biases, in turn, will645

likely be exacerbated by the unsupervised mod-646

els trained on them. This is beyond our control,647

as the potential biases in pre-trained large-scale648

transformers such as BERT and RoBERTa, which649

we use in our experiments.650

Intended Use and Misuse Potential Our mod-651

els can make it possible to put politicians on the652

spot in real time, e.g., during an interview or a po-653

litical debate, by providing journalists with tools654

to do trustable fact-checking in real time. They655

can also save a lot of time to fact-checkers for un-656

necessary double-checking something that was al-657

ready fact-checked. However, these models could658

also be misused by malicious actors. We, there-659

fore, ask researchers to exercise caution.660

Environmental Impact We would also like to661

warn that the use of large-scale Transformers662

requires a lot of computations and the use of663

GPUs/TPUs for training, which contributes to664

global warming (Strubell et al., 2019). This is a bit665

less of an issue in our case, as we do not train such666

models from scratch; rather, we fine-tune them on667

relatively small datasets. Moreover, running on a668

CPU for inference, once the model is fine-tuned, is669

perfectly feasible, and CPUs contribute much less670

to global warming.671
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Appendix909

A Dataset: More Details910

In Table 5, we provide a few examples of input911

sentence, verified claim with their stance and ver-912

dict label.913

For the data preparation of this study we fol-914

lowed several manual and automatic steps as915

sketched in Figure 2.916

Figure 2: Data preparation pipeline.

Statistics of the Dataset917

In Table 4, we report the distribution of the Politi-918

Fact dataset.919

Politifact Truth Value True/False Unknown

Pants on Fire! 24 191
FALSE 76 382
Mostly–False 44 312
Half–True 2 260
Mostly–True 42 227
TRUE 11 85

Table 4: Distribution: Input–Verified pairs with a
true/false verdict vs. the TruthValue for Verified claim
from PolitiFact.

Table 6 reports some statistics about each tran-920

script, as well as overall (last row). Shown are921

(i) the number of sentences per transcript, (ii) to-922

tal number of sentences with top 15 verified claim923

pairs, (iii) the number of input sentences for which924

there is a Verified claim with an agree or a dis-925

agree stance (column Stance-Input), (iv) the num-926

ber of pairs with an agree or a disagree stance (col-927

umn: Stance-pairs), (v) the number of input sen-928

tences for which there is a true/false verdict (col-929

umn Verdict-Input), and (vi) the number of pairs930

with a true/false verdict (column: Verdict-pairs).931
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No. Input Sentence Verified Claim Label & Date Stance Verdict

1 But the Democrats, by the way,
are very weak on immigration.

Donald Trump: The weak illegal im-
migration policies of the Obama Ad-
min. allowed bad MS 13 gangs to
form in cities across U.S. We are re-
moving them fast!

False, stated on April
18, 2017

agree Unknown

2 ICE we’re getting MS13 out by the
thousands.

Donald Trump: Says of MS13 gang
members, "We are getting them out of
our country by the thousands."

Mostly-False, stated
on May 15, 2018

agree False

3 ICE we’re getting MS13 out by the
thousands.

Donald Trump: I have watched
ICE liberate towns from the grasp of
MS13.

False, stated on June
30, 2018

agree Unknown

4 We have one of the highest busi-
ness tax rates anywhere in the
world, pushing jobs and wealth
out of our country.

Barack Obama: "There are so many
loopholes ... our businesses pay effec-
tively one of the lowest tax rates in the
world."

Half-True, stated on
September 26, 2008

disagree Unknown

Table 5: Example sentences from Donald Trump’s Interview with Fox and Friends on June 6th, 2018.

Date Event # Topic Sent. Sent.-Var. Pairs # Stance-Input # Stance-pairs # Verdict-Input # Verdict-pairs

2017-08-03 Rally Speech 3-4 291 4,365 34 62 20 32
2017-08-22 Rally Speech 5+ 792 11,880 50 116 23 40
2018-04-26 Interview 5+ 597 8,955 28 52 17 32
2018-05-25 Naval Grad. Speech 1-2 279 4,185 14 19 4 5
2018-06-12 North Korea Summit Speech 1-2 1,245 18,675 29 45 15 15
2018-06-15 Interview 3-4 814 12,210 24 36 11 17
2018-06-28 Rally Speech 5+ 1,036 15,540 49 82 35 57

Total 5,054 75,810 228 412 125 198

Table 6: Statistics about our dataset: number of sentences in each transcript, and distribution of clear stance
(agree + disagree) and clear verdict (true + false) labels. The number of topics were manually decided by looking
at the keywords detected in each transcript. Sent.: number of input sentences, Sent.-Var. Pairs: number of input
sentences with top 15 verified claims pairs.
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