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ABSTRACT

Estimating neural radiance fields (NeRFs) is able to generate novel views of a scene
from known imagery. Recent approaches have afforded dramatic progress on small
bounded regions of the scene. For an unbounded scene where cameras point in any
direction and contents exist at any distance, certain mapping functions are used to
represent it within a bounded space, yet they either work in object-centric scenes
or focus on objects close to the camera. The goal of this paper is to understand
how to design a proper mapping function that considers per-scene optimization,
which remains unexplored. We first present a geometric understanding of existing
mapping functions that express the relation between the bounded and unbounded
scenes. Here, we exploit a stereographic projection method to explain failures
of the mapping functions, where input ray samples are too sparse to account for
scene geometry in unbounded regions. To overcome the failures, we propose a
novel mapping function based on a p-norm distance, allowing to adaptively sample
the rays by adjusting the p-value according to scene geometry, even in unbounded
regions. To take the advantage of our mapping function, we also introduce a new
ray parameterization to properly allocate ray samples in the geometry of unbounded
regions. Through the incorporation of both the novel mapping function and the ray
parameterization within existing NeRF frameworks, our method achieves state-of-
the-art novel view synthesis results on a variety of challenging datasets.

1 INTRODUCTION

Starting from the advance of neural radiance field (NeRF) framework Mildenhall et al. (2020), a series
of novel view synthesis methods Barron et al. (2021); Sitzmann et al. (2020) have recently shown
impressive performance in various scenarios such as surrounding views Chen et al. (2022b), moving
foreground objects Pumarola et al. (2020), and reflective media Verbin et al. (2022). Furthermore,
Instant-NGP (iNGP) Müller et al. (2022) and TensoRF Chen et al. (2022a) represent a paradigm shift
that defines 3D query points using voxel grids for fast training and rendering. All the methods utilize
a bounded volume that covers all objects in a scene at first, and then render images from arbitrary
viewpoints in common. Unfortunately, the bounded volume cannot fully encompass whole rendering
spaces. For unbounded scenes, the models fail to learn accurate 3D geometry and yield erroneous
color representations for distant objects. As an intuitive way, expanding the size of the bounded
volume can be considerable, but increases the number of samples in a ray and learnable parameters,
which causes a huge computational burden like memory issues.

To address this issue on unbounded scenes, state-of-the-art methods Zhang et al. (2020); Barron
et al. (2022; 2023) use deterministic functions to map ray samples in the unbounded region into the
bounded region. To be specific, in NeRF++ Zhang et al. (2020), an unbounded space is partitioned
into an inner sphere and an outer volume. The inner sphere is an identity mapping which contains
a foreground of a scene and all cameras, and the the outer volume has a background scene. This is
achieved using an inverted-sphere mapping, which utilizes an inverse distance from an origin of a
scene to render the background pixels. mip-NeRF 360 and Zip-NeRF Barron et al. (2022; 2023)
parameterize unbounded scenes using an identity mapping for a foreground and contract mapping
to sample the volumetric density for a background. Here, with the parameterization of the contract
mapping, sampling ranges in a ray can be expanded to an infinite depth of the scene, representing
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Figure 1: Examples of changes of embedding space w.r.t. manifold
shape. We plot how to be mapped an unbounded space into a
bounded space. The red arrow indicates the mapping between the
unbounded space and the surface of the manifold based on the
center of projection Q. The yellow line refers a mapping space
between the tree and the tower, and the horizontal and vertical axis
represent a sliced axis of the 3-dimensional real-world space and
the 4th dimensions (i.e., hyper-axis), respectively. The hyper-axis
acts as a homogeneous coordinate, and is introduced to describe a
projection fuction. (a) Stereographic projection uses a sphere for the
projection. (b) Inverted sphere mapping in Zhang et al. (2020), and
(c) contract mapping in Barron et al. (2022) utilize a cylinderical and
a paraboloid manifold, respectively, instead of the sphere. (d) Our
mapping strategy adaptively allocates the space with the different
shapes of manifolds based on the scene geometry.

pixels located in the unbounded regions. While these mapping functions effectively model unbounded
regions from novel viewpoints, they encounter a difficulty in rendering distant objects, particularly
when camera poses are positioned significantly away from a center of themselves in world coordinate,
called a scene origin in Zhang et al. (2020). Obviously, ray samplings also fail if the ray origin is far
away from the scene origin, which has a significant impact on the usability of neural rendering such
as 360◦ real-world Barron et al. (2022) and free trajectory Wang et al. (2023).

In this paper, we first introduce a unified framework for analyzing the unbounded scene representations
using a concept of stereographic projection1, a well-known method to make a map of the Earth in
Fig. 1-(a). The stereographic projection can be adopted to describe a boundless region within a
specific manifold (e.g., panorama image) Chang et al. (2013); Yang et al. (2018); Zelnik-Manor
et al. (2005). With the property of the stereographic projection, we can project an infinite space into
a bounded region, and analyze the previous approaches Zhang et al. (2020); Barron et al. (2022)
to explore the relationship between unbounded real-world spaces and bounded spaces based on
closed-form mapping functions. Through this analysis, we investigate the vulnerability of the existing
mapping functions in terms of the manifold’s shape. Fig. 1-(b) and (c) illustrate that the inverted
sphere and the contract mapping project a real-world space into cylindrical space Zhang et al. (2020)
and paraboloidal space Barron et al. (2022), respectively. They show that the two mapping functions
pay more attention to the near object, which indicates that they do not have enough capacity to
represent the far region. Since their mapping functions are invariant even if a scene varies, its ratio
between the pre-defined near and far regions does not change.

Our key insight is that the manifold shape should be adjusted according to scene geometry to ensure
the representation capacity of both near and far regions. To do this, we design an adaptive mapping
function based on the p-norm distance Deza et al. (2014), a method to define finite-dimensional
vector spaces using the p-norm. The parameter p enables a mapping function to deform the surface
of the embedding space depending on the scene configurations. A large p makes the surface convex
and allocates more capacity to nearby contents on the finite volume. In contrast, a small p induces the
concave of the surface, which leads to a larger capacity to distant contents. For example, in Fig. 1-(d),
the adaptive mapping enables us to assign the much less representation capacity to the free space
between the tree and tower. Since it is important to determine the p value according to the scene
geometry, we show how to automatically set a proper p value using a RANSAC framework. We
randomly choose certain 3D points from a point cloud in a scene and then iteratively project them
onto the embedding space. We measure distances among them and find a final p value with the
maximum distance, which exploits the full capacity of the embedding space.

Given our novel mapping function, it requires an appropriate ray parametrization, making ray intervals
of sampled points to be evenly-spaced in the deformed embedding space. If the intervals are either
too small or too large in the space, there will be over- or under-sampling problems. For this, we
need to devise a strategy for choosing adaptive intervals according to scene geometry because the
conventional ray parameterizations Zhang et al. (2020); Barron et al. (2022) use fixed intervals
regardless of the shape of the manifold. We thus propose a novel angular ray parameterization to

1Stereographic projection is a projective mapping, which can be realized as the projection of points from one
projective space to another, where all projections come from a fixed point (called the center of projection) and
pass through the points of the space being mapped.
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adaptively select proper intervals, which are determined based on an angle between two sampled
points in an unbounded space from a center of the manifold.

To demonstrate the effectiveness of the proposed mapping function and ray parameterization, we
conduct extensive experiments on unbounded scenes, including 360◦ object-centric and free trajectory.
Experimental results show that our method can be successfully integrated with existing multi-
layer perceptron (MLP)-based and voxel-based models and contribute to significant performance
improvements for novel view synthesis, where the conventional mapping functions often fail.

2 RELATED WORK

2.1 NEURAL RADIANCE FIELD

NeRF frameworks Mildenhall et al. (2020) implicitly encode radiance and density fields of target
scenes with MLP layers without any explicit geometric proxy. In terms of the sparsity of input images,
works in Yu et al. (2021b); Kim et al. (2022); Deng et al. (2022) reconstruct scenes with fewer
images than that of conventional NeRF techniques. Meanwhile, methods to accelerate training Müller
et al. (2022); Takikawa et al. (2022); Chen et al. (2022a); Sun et al. (2022); Yu et al. (2021a); Sara
Fridovich-Keil and Alex Yu et al. (2022) and inference Reiser et al. (2021); Yu et al. (2021a); Piala &
Clark (2021); Hedman et al. (2021); Garbin et al. (2021) are developed. We note that these works
have shown impressive performances if contents exist inside a pre-defined bounded volume.

To alleviate the constraint on the bounded volume, some relevant works have scaled up the sampling
boundary of the volumetric representations by addressing technical limitations such as the radiance
ambiguity Wei et al. (2021), network capacity Rebain et al. (2021), and matching ambiguity of
3D content Arandjelović & Zisserman (2021). For indoor scenes, NeRFusion Zhang et al. (2022)
constructs each local feature volume from each input image and fuses them through a truncated
signed distance function Newcombe et al. (2011); Weder et al. (2020). For outdoor scenes, both
Block-NeRF Tancik et al. (2022) and Mega-NeRF Turki et al. (2022) represent block-size scenes with
divide-and-conquer strategies in which one large-scale place is divided into a set of small-scale scenes.
They are then trained with volumetric renderers. For larger-scale scenes, BungeeNeRF Xiangli et al.
(2022) uses a multi-scale rendering with very different levels of details in a wide span of viewpoints.
Although these scalable methods extend the rendering ranges by using additional networks, the issue
on the unbounded scenes still remains.

2.2 NERF FOR UNBOUNDED SCENES

To learn radiance fields for unbounded scenes, previous methods adopt multi-sphere images Sara
Fridovich-Keil and Alex Yu et al. (2022); Attal et al. (2020), balanced spherical grid Choi et al.
(2023), space subdivision Wang et al. (2023) and coordinate transformation Barron et al. (2022);
Zhang et al. (2020). Plenoxels Sara Fridovich-Keil and Alex Yu et al. (2022) employs multi-sphere
images Attal et al. (2020) to render background scenes, handling unbounded scenes with voxel
grids. Nevertheless, this approach manifests limitations, particularly in the emergence of blur and
ghost artifacts when depicting objects positioned between the pre-defined layered spheres. The
work in Choi et al. (2023) uses sequential spherical panorama images to reconstruct a large-scale
scene. And then, two non-overlapped spherical grids allow the scene to be represented with a similar
length in angular and radial directions, useful for distant backgrounds. F2-NeRF Wang et al. (2023)
models unbounded scenes with subdivided spaces and warping functions. However, this subdivision
is intrinsically tied to camera poses and is sensitive to scene dependency. For example, F2-NeRF
would use the same structure of subdivided space if camera poses are the same with other scenes.
DONeRF Neff et al. (2021) applies the inverse square function for an efficient representation of
distant points, but only works on forward-facing scenarios. mip-NeRF 360 Barron et al. (2022)
borrows the idea of the Extended Kalman filter Kalman (1960) to reparameterize the ray distance so
that distant points should be denser and less spaced. NeRF++ Zhang et al. (2020) takes an inverse
function on the ray distance as the mapping function and uses it as an additional input coordinate.
Specifically, they divide the background and foreground parts of scenes based on the distance from
the origin and make MLPs to represent each.

Since the mapping functions in the previous methods are strictly defined, they struggle to learn
radiance fields in diverse scenarios due to their inability to handle scene dependency. In contrast,
we present a universal mapping function, which is flexible and general to learn both bounded and
unbounded regions in neural radiance spaces.
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3 PRELIMINARY

Radiance field Mildenhall et al. (2020); Chen et al. (2022a); Sun et al. (2022); Müller et al. (2022)
represents a 3D scene through MLPs or voxel grids with sampled points from a ray function r(t) =
o+ td, where o is a ray origin, d is a vector of a viewing direction and t is a distance along the ray.
Input 3D points are sampled along the ray function and fed to MLPs or voxel grids to infer an output
color c and a density σ. The output color and density along the ray are cumulated by a classical
volume rendering equation Porter & Duff (1984) below:

C(r) =
N∑
i=1

Ti

(
1− exp(−σiδi)

)
ci, s.t. Ti = exp

(
−

i−1∑
j=1

σjδj

)
(1)

where C(r) is a synthesized pixel color of the ray, N denotes the number of samples along the ray
and δi means a distance between the i-th sample and its next sample on the ray. The radiance field is
optimized by minimizing a loss function between a ground-truth and the synthesized pixel color.

To render the pixel color in unbounded regions, NeRF++ Zhang et al. (2020) adopts an inverted
sphere parameterization as follows:

inverted sphere(x) =

{
(x1, x2, x3), ∥x∥ ≤ 1(

x1

∥x∥ ,
x2

∥x∥ ,
x3

∥x∥ ,
1

∥x∥
)
, ∥x∥ > 1,

(2)

where x = (x1, x2, x3) refers to 3D coordinate in the unbounded space.

This parameterization first defines a foreground of a scene with a unit sphere centered at the scene
origin, otherwise background regions. A key idea of this parameterization is to map the background
points onto to 4-dimensional bounded space made from a concatenation of the inverse distance
1

∥x∥ from the scene origin and its normalized coordinate
(

x1

∥x∥ ,
x2

∥x∥ ,
x3

∥x∥
)
. The foreground and the

background contents are separately learned on different MLPs.

The contract parameterization used in mip-NeRF 360 Barron et al. (2022) and Zip-NeRF Barron et al.
(2023) is the other way to map unbounded points into a bounded region, which is formulated as:

contract(x) =

{
x, ∥x∥ ≤ 1(
2− 1

∥x∥
)(

x
∥x∥

)
, ∥x∥ > 1.

(3)

The contract parameterization maps an infinity point on the boundary of the bounded volume.

Although the inverted sphere and contract parameterizations can represent objects located at an
unlimited distance from the scene origin, they fail to consider regions where sampled points are
allocated sparsely. To efficiently assign the samples, dense sampling around the objects is necessary.
This problem can be managed by constructing a scene geometry-aware mapping function with a
relation between sampled points in the unbounded region and the transformed points.

4 METHODOLOGY

4.1 UNDERSTANDING UNBOUNDED SCENES WITH STEREOGRAPHIC PROJECTION

We understand the limitations of the existing mapping functions, the inverted sphere mapping Zhang
et al. (2020) and the contract mapping Barron et al. (2022; 2023), for unbounded scenes via stere-
ographic projection. First, we decompose the mapping functions into an inverse stereographic
projection and an orthogonal projection. The inverse stereographic projection is used to construct a
one-to-one relationship between an unbounded region and a certain manifold, while the orthogonal
projection maps points into the surface of a manifold in a bounded region. As shown in Fig. 2-(a),
the naı̈ve stereographic projection is defined with a unit sphere S in RL+1 where L is the number
of dimensions and the center of projection Q, which is a point on the north pole of the sphere. The
projection is conducted from a point xm in the S \{Q} to a point x on the projective line (red
line), which intersects a plane Π in RL with exactly one point x. Since the original stereographic
method (Fig. 2-(a)) maps points on the surface of the sphere, we cannot perform one-to-one orthog-
onal projection over the bounded region. There may exist a case that at most two points xm are
projected on the same point xb in the bounded region (Refer to Fig. 8 in Appendix). To solve this
problem, we utilize a certain manifold (e.g., a lower unit hemisphere) and change the location of
the center of projection Q (Fig. 2-(b) and (c)), which guarantees one-to-one projection between the
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Figure 2: How to modify the stereographic projection for a deformable mapping function. (a)
Conventional stereographic projection. A point xm on the sphere S is projected onto a point x in a
plane Π (red-colored line). (b) The inverse stereographic projection. The point x in Π is projected at
the point xm. (c) The center of projection Q is moved to the center of the manifold. We can only use
a half side of the sphere. (d) The orthogonal projection (blue-colored line) is used to locate a point xb

in Π at the bounded space (purple-colored region) to reduce the dimensionality. (e) If we adaptively
deform a shape of the manifold, the point x can be mapped onto the different bounded spaces.

manifold and the bounded space (Fig. 2-(d)). If we can deform the manifold shape, we construct
diverse mapping functions in Fig. 2-(e), whose solution will be described in Section 4.3.

With the property of the stereographic projection, we derive the previous mapping functions in
Eqs. (2) and (3) as a unified form which is able to show their manifold shapes. They utilize a
coordinate transformation, which constructs a relationship between a points in real-world space R3

and the points in bounded space; Eq. (2) defines the mapping function that utilizes R3 and R4 for the
foreground and the background, respectively, and Eq. (3) uses R3 space as the bounded space. To
investigate the manifold’s shape defined in R4, we design a closed-form mapping function that can
represent the manifold’s shape (e.g., cylinder and paraboloid) on R3. Since the orthogonal projection
acts as a transformation between the bounded space and the manifold, we set the inverse of the
orthogonal projection to f : xb → xm where xb ∈ R4 is a mapped point in the bounded region and
xm ∈ R4 is a point on the manifold.

4.2 ANALYSIS OF PREVIOUS APPROACHES

We can decompose the previous mapping function using the fact that the stereographic projection
transforms a point along a line (Fig. 3-(a)) as follows:

x−Q = m (xm−Q) s.t. x = mxb, (4)
where m is a parameter of the line and x ∈ R4 is a point on Π. Thus, the xm can be represented as

xm = xb +
(
1− 1

m

)
Q. (5)

Inverted Sphere Parametrizaton. We first investigate the inverted sphere parameterization in Eq. (2)
using Eq. (5). According to Zhang et al. (2020), foreground points are mapped by an identity
mapping (i.e., m = 1) and the function f can be defined as xm = xb, where ∥xb∥ ≤ 1. Otherwise,
points in the background are mapped based on the norm of ∥x∥, i.e., m = ∥x∥. Since the mapping
function from x and xb is not bijective in this case, we represent the mapping with xm. In particular,
when ∥xb∥ = 1, xm is described by a set of

{
xb+

(
1− 1

∥x∥
)
Q | ∥x∥ > 1

}
. Therefore, the manifold

can be defined as the union of two sets based on the norm of xb as:

Xm =
{
xb

∣∣ ∥xb∥ ≤ 1
}
∪
{
xb +

(
1− 1

∥x∥

)
Q

∣∣∣ ∥x∥ > 1 and ∥xb∥ = 1
}
, (6)

Eq. (6) means that the parameterization maps points in Π to a cylinderical manifold. We can see that
the points in the background are mapped to the side of the cylinder, indicating that the orthogonal
projection is a non-invertible function in this manifold. Here, the background points are still located
in R4, and the parameterization is hard to apply to conventional NeRF frameworks using the R3

coordinate system.

Contract Parametrizaton. We can employ Eq. (5) on the contract function Eq. (3). A function for
foreground points, the same as the inverted sphere parameterization, is xm = xb, where ∥xb∥ ≤ 1.
For background points where ∥x∥ > 1, we know that 1

m =
(
2 − 1

∥x∥
)

1
∥x∥ . Substisuting m and

x with xb in Eq. (5) yields xm = xb +
(
1 − 2 ∥xb∥ + ∥xb∥2

)
Q. Therefore, the f of the contract

parameterization is
Xm =

{
xb

∣∣ ∥xb∥ ≤ 1
}
∪
{
xb +

(
∥xb∥ − 1

)2
Q

∣∣ 1 < ∥xb∥ < 2
}
, (7)
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Figure 3: Decomposition of a mapping function using the stereographic projection. The red and
blue stars indicate points in the unbounded space and embedding space, respectively. (a) We use the
inverse of orthogonal projection f on xb to represent the manifold. Additionally, the stereographic
projection transforms x to the point xm. (b) Our mapping can change the location of xb according to
the p value which is estimated using RANSAC framework with a point cloud data from COLMAP.

The Eq. (7) can also be represented as the form of the function f below:

f(xb) =

{
xb, ∥xb∥ ≤ 1

xb +
(
∥xb∥ − 1

)2
Q, 1 < ∥xb∥ < 2

(8)

The parameterization in Eq. (8) maps points on Π to a paraboloidal manifold.
Eq. (6) indicates that the inverted sphere mapping allocates spatial representation capacity based on
the 1

∥x∥ , i.e., the inverse distance from the scene origin. On the other hand, the contract parameteriza-
tion Eq. (8) utilizes the quadratic form to handle an unbounded scene. They assume that points in the
real world can be adequately projected onto a surface of a certain manifold using their fixed mapping
function. However, to allocate the capacity in the whole embedding space, the distribution of the
points should follow their assumption as well (e.g., the inverse distance and the inverse of the square
distance). If the assumption breaks down, the spatial capacity is not enough to represent all objects in
a scene well. In addition, allocating excessive space to objects wastes the capacity. Therefore, we
need a function that achieves an optimal trade-off between the quality and the efficiency. In this work,
our key idea is to deform and find the manifold that fits the distribution of contents in the real world,
which will be described in the next section.

4.3 p-NORM PARAMETERIZATION

Based on the analysis in Section 4.2, we design an adaptable mapping function in consideration of
distributions of contents using the modified stereographic projection and p-norm distance metric.
Here, we assume that the distributions follow an inverse of p-norm distance from Q as shown
in Fig. 3-(b). The manifold where unbounded points are mapped can be represented as:

Xm =
{
xm

∣∣ ∥xm−Q∥p = 1 and (xm−Q) ·Q < 0
}
, (9)

The mapping function x
m is computed based on the p-norm distance from the center of projection Q 2,

defined as ∥x−Q∥p. In particular, by setting m = 1
∥x−Q∥p

, we can formulate the mapping function
from the unbounded region to the bounded region as xb = x

∥x−Q∥p
. Fig. 3-(b) shows an example

of the p-norm function indicating that we can map points into different locations according to the
p value. It shows that increasing the p value makes xb to be moved further from the scene origin,
which assigns a bigger capacity to nearer contents.

We determine scene-dependent p values using a RANSAC framework in Fig. 3-(b). We reuse a point
cloud that had already been made for camera pose estimation at an initial step in conventional NeRF
frameworks, using COLMAP Schonberger & Frahm (2016). Our hypothesis is that, in order to make
full use of the embedding space, points should be evenly distributed in the whole space. To do this,
we first randomly sample two 3D points in the point cloud and project them on the embedding space.
We then compute an Euclidean distance between them. This process is repeated for the given number
of iterations, and we select a p value with the maximum distance.

4.4 ANGULAR RAY PARAMETERIZATION

Conventionally, ray parameterizations for unbounded scenes employ various distance metrics on t of
the ray function r(t) to sample points on a ray Neff et al. (2021); Zhang et al. (2020); Barron et al.
(2022). For example, NeRF++ uses t and an inverse distance from the scene origin for a foreground

2In this paper, we regard Q = (0, 0, 0, 1) for simplicity

6



Published as a conference paper at ICLR 2024

(a) Angular ray parameterization

2D plot

(b) Rays in unbounded space (c) Normalized distance
Location of xb

2-norm
mapping

(d) Ours

Ray r(t) = o + td
Scene origin

The center of projection

x

r

r

o

o

o

O

O

O

O

O

O

O

Q
max

Figure 4: (a) A visualization of the angular parameterization. θ is a parameter of the ray. (b) Each
ray in the unbounded space passes through farther or closer to the scene origin. (c, d) Sampled points
from the conventional normalized distance parameterization and ours.

and a background region, respectively. In addition, DoNeRF adopts a logmetric distance, and mip-
NeRF 360 uses a disparity distance for the ray parameterization. However, our ray parameterization
should consider a distortion of the embedding space to benefit from our mapping function due to its
non-linearity. Without this consideration, the sampled points are likely to be biased. Fig. 4–(b) and
(c) shows a toy example of a case where p = 2 and the conventional ray parameterization Barron
et al. (2022) is used. Since the parameterization is based on a uniform sampling with a normalized
distance in the normal embedding space, it occurs over- and under-sampling if the ray origin is far
from the scene origin.

We thus introduce a new ray parameterization that regards the distance between points in the distorted
embedding space. Our idea is to use an angle based on the center of the projection Q to preserve the
relative distance between the points across varying manifold shapes. The angular ray parameterization
is formulated as follows (see Fig. 4-(a)):

θ

θmax
, θ = ∠(x−Q, o−Q ), θmax = ∠(d−Q, o−Q ). (10)

where θ is angle parameter of the ray and θmax is a maximum value of θ. Intuitively, we can know
θmax = ∠(d − Q, o − Q ) (considering x is extremely far from the ray origin o). Therefore, the
angular parameterization is a normalized interval which is θ

θmax
∈ [ 0, 1).

As shown in Fig. 4-(d), compared to the normalized distance approach, the uniform sampling on our
angular parameterization has a more evenly-spaced interval in the embedding space. This indicates
that our parameterization enable to avoid over- and under-sampling problems, even with the same
number of samples.

5 EXPERIMENT

5.1 COMPARISON OF OURS AND STATE-OF-THE-ART METHODS

To demonstrate the generality and applicability of our method, we incorporate it into a variety of
types of NeRF frameworks, including DVGO Sun et al. (2022); Cheng et al. (2022), TensoRF Chen
et al. (2022a), iNGP Müller et al. (2022); Barron et al. (2023), and NeRF Mildenhall et al. (2020);
Zhang et al. (2020). We just follow their own training configurations, such as the number of voxels,
parameters, samples, and iterations. For the iNGP model, we use Zip-NeRF Barron et al. (2023)
codebase and modify it similar to the original NeRF model Mildenhall et al. (2020); we utilize a
naı̈ve sampling strategy and single evaluation on a coarse module. To balance the single evaluation,
we double the number of samples on a ray. For the NeRF model, we double the number of samples
as well and increase the number of hidden units to match the sample numbers and parameters as
NeRF++. Please refer to the supplementary material for more details.

For our experiments, we use three datasets: two 360◦ object-centric datasets–Tanks and Tem-
ples Zhang et al. (2020) and mip-NeRF 360 Barron et al. (2022)–and a free trajectory dataset, named
Free Dataset Wang et al. (2023). To simulate the movement of cameras away from the scene origin,
we adjust the camera’s position based on the boundary of xb for the object-centric datasets, illustrated
in Fig. 5. We consider two scenarios for the camera positions: the near and far boundary. Here, we
use three quantitative metrics: PSNR, SSIM Wang et al. (2004), and LPIPS Zhang et al. (2018).

Since the NeRF frameworks used in this experiment are not designed to work in unbounded scenes,
we embed the contract mapping and normalized ray parameterization Barron et al. (2022) into them
for fair comparisons. As comparison methods, we additionally choose inverted sphere parameteriza-
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Figure 5: An illustration of the experimental setup. We intention-
ally change the locations of the cameras to take unbounded scenes:
(a) The cameras are located near a boundary of the embedding
space. (b) All cameras are outside of the boundary.
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Figure 6: A comparison of ours and the contract mapping is the case of ×2 in the Tanks and Temples
dataset. (a) The ground truth images. (b, c, d, e) From left to right, we embed the two mapping
functions into the DVGO, TensoRF, iNGP, and NeRF models to test their generality and applicability.
Our model shows impressive results, while the contract mapping fails to capture some fine detailed
objects such as the pole and barricade.

tion Zhang et al. (2020) and F2-NeRF Zhang et al. (2020); Wang et al. (2023). Note that the inverted
sphere parameterization only works in MLP-based models, and F2-NeRF does not provide any source
code for the experiment on the Tanks and Temples dataset.

mip-NeRF 360 Tanks and Temples Free
×1 ×2 ×1 ×2 -

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DVGO Contract 23.80 0.592 0.511 23.55 0.582 0.518 19.27 0.612 0.529 19.31 0.613 0.528 23.53 0.633 0.479
Ours 24.30 0.612 0.475 24.22 0.611 0.474 19.39 0.628 0.500 19.46 0.630 0.495 24.01 0.650 0.446

TensoRF Contract 23.19 0.582 0.498 21.50 0.517 0.547 19.51 0.587 0.518 19.03 0.573 0.519 23.91 0.668 0.429
Ours 24.18 0.609 0.476 23.44 0.575 0.487 19.62 0.585 0.521 19.75 0.596 0.504 24.21 0.665 0.425

iNGP
F2-NeRF 25.19 0.676 0.403 - - - - - - - - - 26.55 0.779 0.283
Contract 25.25 0.725 0.373 15.10 0.340 0.688 20.72 0.706 0.386 19.40 0.675 0.422 26.82 0.816 0.244

Ours 26.65 0.761 0.330 26.35 0.755 0.348 20.77 0.706 0.401 21.11 0.723 0.387 27.01 0.806 0.256

NeRF
Inv. Sphere 24.98 0.618 0.475 - - - 19.98 0.601 0.504 - - - 25.06 0.673 0.427

Contract 25.58 0.648 0.446 24.00 0.595 0.497 20.39 0.639 0.461 19.66 0.611 0.490 25.76 0.717 0.371
Ours 25.68 0.644 0.451 25.17 0.627 0.469 20.30 0.632 0.472 20.14 0.619 0.485 25.94 0.717 0.376

Table 1: Quantitative evaluation on the MIP-360, Tanks and Temples and Free dataset. We embed
the contract mapping and our method onto the four NeRF frameworks. The results of NeRF++ and
F2-NeRF are reproduced with publically available codes. The unit in PSNR is dB.

We report the quantitative evaluation in Table 1. Our method shows better performance overall,
except in some cases of ×1 where × denotes the multiplier of the camera position from the scene
origin. This can be attributed to the camera orientation: since the contract mapping does the identity
mapping at the nearby regions, it works well if many objects are located in the regions. However,
when the camera is positioned further from the scene origin (case ×2), all the comparison methods
with the contract mapping face the challenge of representing unbounded scenes. In general, our
mapping function is beneficial for the voxel based-mehods like DVGO and TensoRF. Since they
use explicit correspondences between coordinates and features, the explicit representation can be
evenly allocated in the embedding space through our mapping function. In practice, we have a limited
capacity to express neural radiance fields, and our method enables to make maximum use of the
capacity. DVGO and TensoRF exhibit a smaller performance degradation compared to iNGP and
NeRF. This is because their extensive point sampling along rays mitigates the potential undersampling
issue. Notably, in the ×2 case, the iNGP with the contract mapping struggles with scene optimization,
which implies that it is not applicable for the hash-grid approach. In total, the comparison methods
fail to efficiently allocate the representation capacity on the scenes.

In contrast, our method provides a distinctive advantage in the ×2 scenarios. As shown in Fig. 6, our
method shows the promising performance for the distant objects. Thanks to the efficient capacity
allocation of our mapping function, we can see clear rendering images that capture both the near
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(b) F2-NeRF / Inverted sphere (c) Contract (d) Ours(a) Ground Truth
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Figure 7: A comparison result in the case of ×1 in the Free dataset. (a) Ground truth. (b) F2-NeRF
(top) and Inverted sphere mapping (bottom). (c, d) When the contract mapping and our mapping is
used for each baseline.

and far poles well. A similar trend is observed for the Free dataset. Fig. 7 shows better results from
ours than that of the comparison methods. Through the experiments using these public datasets, we
confirm the importance of adaptive mapping and its ray parameterization.

5.2 ABLATION STUDY

p-norm & normalized contract & angular Ours p = 1.5 Ours p = 1.1

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

×1 23.65 0.618 0.415 23.59 0.610 0.429 23.67 0.618 0.418 23.55 0.605 0.427
×2 14.87 0.231 0.721 22.20 0.543 0.483 23.67 0.611 0.429 23.61 0.605 0.438
×4 14.21 0.202 0.737 22.55 0.534 0.504 23.43 0.575 0.469 23.75 0.604 0.446
×8 14.68 0.200 0.744 22.05 0.466 0.555 22.45 0.489 0.537 22.78 0.522 0.515

Table 2: Ablation study of the proposed method.

We demonstrate the effectiveness of our mapping function and ray parameterization. For this, we
replace each component with the normalized ray parameterization and contract mapping in Bar-
ron et al. (2022). In addition, we automatically adjust the p values to validate the advantage of
the geometric-aware mapping strategy. We change the camera position to implement the various
distribution of objects in the scene. In this study, a bicycle scene in the mip-NeRF 360 dataset is used.

As shown in Table 2, our mapping function and ray parameterization yield reasonable outcomes.
When the p value is large, the points will map more broadly to the scene origin in the bounded space.
This means that more capacity is allocated to nearby objects. In this case, the nearby object means
that they are close to the scene origin. The closer the camera is to the scene origin, the larger p value
represents the near object better because it is more aligned with the camera. In particular, the further
away the camera is from the scene origin, the better our method performs. Plus, when the proper p
value is determined via the RANSAC, the performance gap widens.

6 COUCLUSION

In this work, we numerically analyze the weakness of the existing mapping functions and present
a novel p-norm-based mapping function and an angular ray parameterization in consideration of
scene geometry to handle a rending issue on unbounded scenes in NeRFs. In the experiment, we
demonstrate the effectiveness of our method on various NeRF frameworks and achieve the state-
of-the-art results by successfully synthesizing novel view images in challenging unbounded scene
scenarios. For future work, our work has room for improvement with function designs that better
optimize for scene geometry, object distribution and the position of scene origin
Limitation Although our method shows the state-of-the-art results, there are still rooms for im-
provement. First, if the camera position is extremely far from the scene origin, the model struggles to
learn the scene. In addition, our ray parameterization samples more points in distant regions than
in nearby regions, which is likely to miss near objects when the camera is far from the scene origin.
For optimal p values, we have plan to design an iterative approach. We expect that better results
are obtained if an optimal p value is used by recovering SfM errors, whose initial implementation is
described in Appendix D. A region-aware p value estimation is also an interesting future direction in
consideration of a variety of distributions of objects and structures in a scene.
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APPENDIX

In this supplementary material, we provide video results for mip-NeRF 360, Tanks and Temples, and
Free datasets (Appendix A). We then introduce the mathematical definition and formulation of the
stereographic projection (Appendix B), additional explanations of the mapping functions Appendix C,
and implementation details of our method (Appendix F). Finally, we report the quantitative evaluations
of the main manuscript in detail and visualize more qualitative results (Appendix G).

A VIDEO RESULTS

We submit video results to show the superiority of our method over the comparison methods on the
view synthesis task. Note that the camera pose in the video is far away from the scene origin. The
comparison methods fail to render accurate synthesized images. Please check the attached files.

B STEREOGRAPHIC PROJECTION

Stereographic projection is the perspective projection of a sphere that is projected onto a plane
perpendicular to the diameter based on a particular point on the sphere (the pole or the center of
projection). The projective mapping is a smooth and bijective function from the entire sphere to the
entire plane, except the projection center. It is conformal, transforming spherical circles to plane
circles or lines, maintaining angles at curve intersections, and roughly preserving shapes in the
local area. The stereographic projection is used in a variety of disciplines, including cartography,
geology, and photography. This is why it has the advantage of being utilized to graphically display
the boundless space, which is essential for the recognition and interpretation of patterns. For example,
the stereographic projection has been used to map spherical panorama Swart & Torrence (2011),
which is the widest possible photograph, and is used to capture a wide-angle view by mapping a
hemisphere to a plane Chang et al. (2013).

We provide a formulation of stereographic projection in three-dimensional space R3, which establishes
a one-to-one correspondence between the sphere S2 and its equatorial plane. The correspondence
between the points of the sphere and the plane is obtained in the following way: From a point on
the sphere, i.e., the center of projection, the other points of the sphere are projected by lines onto
a plane. The unit sphere S2 in R3 is the set of points (x, y, z) such that x2 + y2 + z2 = 1. Let
Q = (0, 0, 1) be the center of projection, and G be the rest of the sphere. Here, we assume a plane
z = 0 runs through the center of the sphere, and then the sphere’s equator is the intersection of the
sphere with the plane. For any point H on G, there is a unique line through Q and H that intersects
the plane z = 0 at exactly one point, H ′. We define the stereographic projection of H to be the point
H ′ in the plane. Given cartesian coordinates for H = (x, y, z) and H ′ = (X,Y ), we can define the
stereographic projection, and its inverse, by

(X,Y ) =
( x

1− z
,

y

1− z

)
, (11)

(x, y, z) =
( 2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
, 1− 2

1 +X2 + Y 2

)
. (12)
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Figure 8: Visualization of stereographic
projection and its modification. (a) Com-
bining orthogonal projection with stereo-
graphic projection is not a bijective func-
tion. (b) Mapping from x to xb is one-
to-one projection.

Stereographic projection can construct one-to-one corre-
spondence between the sphere and the plane, but it can-
not be combined with orthogonal projection. As shown
in Fig. 8, the original stereographic projection maps points
in unbounded space to points on the sphere. If we per-
form the orthogonal projection from points on the sphere
to bounded space, two points x1 and x2 (points from up-
per and lower hemisphere) can be projected on the same
point xb as shown in Fig. 8. Therefore, the combination
of the original stereographic projection and orthogonal
projection is not a bijective function. To resolve this issue,
we introduce the modified stereographic projection which
moves the center of projection from the pole of the sphere
to the center of the sphere.
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Figure 9: Decomposition of mapping function using stereographic projection. The red point xb and
the blud point x indicate that point in unbounded space and embedding space, respectively. (a) We
can use the inverse of the orthogonal projection f on xb to represent the manifold. Additionally, the
stereographic projection transforms x to the point xm. (b) The inverted sphere mapping Zhang et al.
(2020) projects x on the surface of the cylinder. (c) The contract mapping Barron et al. (2022; 2023)
can decomposed to projection of x on the point on the surface of paraboloid xb and the orthogonal
projection when ∥x∥ > 1. (d) Our mapping adjusts the location of the mapped point based on the
value of p. Specifically, when p = 1, x is mapped to x′

b. However, for p = 2, x is projected on xb,
resulting in xb being further skewed to the right compared to x′

b.
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Figure 10: A toy example of various mapping results of 2D input samples. The horizontal and vertical
axis are x-axis and y-axis of world coordinates, respectively. (a) We first sample points uniformly
around distant and near region. Mapped points by (b) inverted sphere mapping, (c) contract mapping,
(d) our mapping with p=1 and (e) p=2 are dipicted. With our mapping, we can adjust a region where
to focus by changing p value. Red dots indicate which the mapping is allocating the most spatial
representation capacity on the focused region.

C ADDITIONAL DESCRIPTIONS FOR MAPPING FUNCTIONS

In this section, we provide additional visualization of the mapping functions described in Section 4.2
and Section 4.3. Fig. 9 shows the decomposed mapping functions. The projection on the modified
stereographic projection, which maps unbounded points on a half-sphere, is shown in Fig. 9-(a).
The other mappings can be constructed by deforming the half-sphere. The inverted sphere (Eq. (2))
can be interpreted as a modified stereographic projection between unbounded points and cylinder,
which maps foreground points on the bottom of the cylinder and background points on the side of
cylinders in Fig. 9-(b). The contract parameterization maps the foreground points with an identity
mapping, while the background points are first mapped on the paraboloid and projected to bounded
space in Fig. 9-(c). Fig. 9-(d) shows our parameterzation with p = 1 and p = 2 cases. We can see
that the unbounded point x is mapped on x′

b and xb by 1-norm and 2-norm function, respectively.

The effect of different p is shown in Fig. 10. For the uniformly sampled input points in the near and
distant region Fig. 10-(a), we visualize the result of projected points by inverted sphere Fig. 10-(b),
contract Fig. 10-(c), our 1-norm Fig. 10-(d) and 2-norm mapping Fig. 10-(e). The inverted sphere and
contract mapping show similar results. On the other hand, the 1-norm and 2-norm display different
distributions with respect to the input distribution. The mapping functions marked with red dots are
the ones that utilize the most embedding space among the mapping functions. We can see that the
1-norm function has an advantage in the distant region, and the 2-norm function is better in the near
region.
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Figure 11: Iterative p value estimation. As the iteration goes on, it converges to the optimal p value
regardless of the initial value. Note that the optimal p value is found by a brute force search.
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Figure 12: Example result from iterative p value estimation. (a) Ground Truth, (b, c, d) Rendered
images when the number of iteration is 0, 1 and 2, respectively.

D ITERATIVE APPROACH TO ESTIMATE p VALUE

Since SfM can be erroneous in regions where have either homogeneous and repeated textures, we
design an iterative p value estimation from the trained NeRF models. With the trained NeRF model,
we render all training views, and measure absolute errors between them and their ground-truth. We
next select pixels whose error is below a pre-defined threshold. Based on the selected pixels, we
make a point cloud using its depth values which can be acquired from the trained NeRF model. Using
the point clouds, we estimate better p value with our RANSAC method. With the estimated p value,
we train NeRF model again. Thie process is repeatedly done until the p value converges. With this
method, we can correct the erroneous initial p value in Figs. 11 and 12.

To validate the effectiveness of the iterative manner, we perform an experiment. In this experiment,
we use three types of initial p values such as small, near-optimal, and large numbers. We render the
train views from the trained NeRF, select pixels that had an absolute error of less than 0.04, and then
find the 3D points corresponding to those pixels. Using these points, we again predict the p value. As
shown in Fig. 11 (a), it is possible to re-estimate the p value with iterative refinement. It shows that
even with different initial p values, the optimal p value is found. Fig. 12 shows an example result
corresponding to the estimated p values. As the iteration goes on and the p value gets closer to its
optimal value, the overall image quality increases in terms of PSNR and SSIM. The difference in
rendering quality is amplified when the cameras are misaligned with the train positions. In Fig. 13,
we can see that correcting the p value can balance the model capacity by reducing blurry regions. In
addition, the optimal p value shows better rendering quality than the contract mapping which shows
undesired artifacts and mispredicted luminance. This shows the potential to overcome the current
limitation of SfM manner for the initial geometry acquisition.

E MORE ANALYSIS FOR p VALUE

We further carry out an experiment how the RANSAC algorithm is affected when the COLMAP
point cloud is inaccurate. We consider two cases where COLMAP fails: (1) noisy point cloud due to
repeated patterns of a scene (2) sparse point cloud from mismatching correspondences. In addition,
we demonstrate the effect of rendering quality according to p value changes. We also visualize
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Ours after correct 𝑝𝑝 (𝑝𝑝 =1.95)

Ours after correct 𝑝𝑝 (𝑝𝑝 =1.9)Contract

Ours before correct 𝑝𝑝 (initial=0.5)Initial COLMAP

Ours before correct 𝑝𝑝 (initial=4)

Ours after correct 𝑝𝑝 (𝑝𝑝 =1.95)

Ours after correct 𝑝𝑝 (𝑝𝑝 =1.9)Contract

Ours before correct 𝑝𝑝 (initial=0.5)Initial COLMAP

Ours before correct 𝑝𝑝 (initial=4)

Figure 13: Rendering results for unbounded camera viewpoints and p values. From left to right,
each column represents the tested camera pose (green-colored triangle), and rendering images with p
values 1, 1.9 (optimal) and 3. The rendering result with the optimized p value shows the best visual
quality on the unbounded regions, which are located outside of the main object.

×4 and ×8 scenarios of Table 2, when p is extremely small and large, and test camera poses are
misaligned with training poses.

p value estimation on noisy point cloud We predict the p value when the point cloud is noisy. To
simulate this, we add noise to all the points. The larger the noise level, the larger variations of point
clouds. As shown in Fig. 14 (a), it can be seen that the prediction of p value is different from the
optimal value for the large noise than that of small noise, which shows that large noise affects the
scene geometry and causes p to be incorrectly predicted. Nevertheless, it shows that it is possible to
predict p using RANSAC even if COLMAP’s prediction is in error as seen in the rendering results
in Fig. 14 (a).

p value estimation on sparse point cloud We perform an experiment for sparse point cloud setup
which can be easily happened due to mis-matched correspondences like textureless regions. To
simulate this scenario, we remove out 3D points from the SfM result by a certain ratio. As shown
in Fig. 14 (b), the RANSAC algorithm was relatively insensitive to the sparsity of the points. This
shows that it is possible to predict the overall structure even if some points are missing. When only
20% of the points are left, the p value is a little different from the optimal value, but the reasonable
rendering is feasible.
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Figure 14: How to estimate a proper p value when SfM fails. The optimal p value is acquired by a
brute force search. (a) A case of noisy point cloud. (b) p value changes according to the density of
point cloud.
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Figure 15: The number of iteration of RANSAC.

Spatially-variant rendering quality with respect to p value We test the changes of rendering
quality depending on the p value. In Fig. 16, we can see that the small p value learns well in the
background region, and the large p value more focuses on the foreground object. This shows that our
method can adjust the quality of the desired parts according to user’s selection.

Visualization of ×4 and ×8 scenarios We visualize ×4 and ×8 scenarios in Table 2. For contract
mapping, we combine angular ray parameterization because the disparity ray sampling does not work
in these scenarios. As shown in Fig. 17, our p-norm based method shows more apparent results while
the contract mapping struggles to handle the scenarios. This result shows that a smaller p value is
beneficial the farther the camera is from the scene origin. This indicates that the optimal p value is
different depending on where the camera is located and choosing the optimal p value can preserve
the rendering quality.

Results of extreme cases We add Fig. 18 for two extreme p values: when p = 0.5 and p = 10.
For p less than 1, the manifold becomes non-convex, but it is learnable. Interestingly, despite the
poor quality of the foreground, it is able to render the distant objects well. On the contrary, when p is
very large, the foreground object is more visible than that of small p. However, floater artifacts are
observed depending on the viewpoint.

Results of different camera allignment We add Fig. 19 which shows the result when the camera
is misaligned with training poses. Even with the misaligned camera poses, we can successfully
synthesize novel views.

F IMPLEMENTATION DETAILS

In this section, we explain the details of our implementation to verify the flexibility of the proposed
mapping strategy. We additionally implement the contract parameterization Barron et al. (2022) for
comparison. Following the original implementation, the scene origin is a mean of camera poses and
r is parameterized by a normlized distance Barron et al. (2022). We use four baseline models on
PyTorch framework: DVGO, TensoRF, iNGP, and NeRF. For a fair comparison, we strictly follow the
training scheme of each method using the official codes for DVGO3, TensoRF4, and NeRF5. For the
iNGP baseline, since no public codes are available, we customize a Pytorch re-implementation code6.

3https://github.com/sunset1995/DirectVoxGO
4https://github.com/apchenstu/TensoRF
5https://github.com/Kai-46/nerfplusplus
6https://github.com/SuLvXiangXin/zipnerf-pytorch
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(a) Ground Truth (b) p=1 (c) p=2 (d) p=3

Figure 16: Visualization of foreground and background region with different p selections. (a) is a
ground-truth view. (b, c, d) refer to the p values as 1, 2, and 3, respectively.

(b) contract(a) Ground Truth
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Figure 17: Rendering results with respect to different camera positions. ×4 and ×8 denote the
multipliers of camera position from the scene origin. (a) ground-truth, (b) contract mapping with our
angular parameteriztaion, (c, d) when p values are 1.1 and 1.5, respectively.

DVGO To implement the DVGO baseline, we adopt a voxel model from Sun et al. (2022); Cheng
et al. (2022). The number of voxels is initially 503, and we gradually scale up the voxel grid at the
[2, 000, 4, 000, 6, 000, 8, 000, 10, 000, 12, 000, 14, 000, 16, 000] training steps up to 3203 voxels.
The feature dimension of the voxel grid is set to 12. For the viewing direction d, we embed it within
a positional embedding. There are two hidden layers with 128 channels in the shallow MLP layer.
We skip the low-density query points in the unknown space using the threshold 10−4. The point
sampling is performed using the marching step strategy; input points on a ray are moved in small
steps, which is set to half of the voxel sizes. Since the size of the marching step in real-world space
and embedding space may be different, it samples more points on the ray and prunes the oversampled
points. We optimize scene representations using the Adam optimizer with a batch size of 213 rays for
40k iterations. All voxel grids’ base learning rates are 5× 10−4, while the MLP’s learning rate is
10−3. Applying the exponential learning rate decay, the learning rates are scaled down by 0.1 after
20k iterations.

TensoRF We use a TensoRF model with Vector-Matrix (VM) decomposition Chen et al. (2022a)
Similar to DVGO, we begin with a low-resolution grid of 1283 and upsample the vectors and matrices
at steps [2, 000, 3, 000, 4, 000, 5, 500, 7, 000] where the final grid resolution is 3003. We employ a
tiny MLP with two FC layers (with 128 hidden units) and a ReLU activation to make the feature
decoding function. With initial learning rates of 2× 10−2 for tensor factors and 10−3 for the MLP
decoder, we employ the Adam optimizer and learning rate of 5× 10−4. Our model is optimized for
30k steps and 4096-pixel rays per batch.

iNGP Following Müller et al. (2022); Barron et al. (2023), we adopt a coarse-to-fine strategy to
sample points by using 128 coarse samples and 64 fine samples. In our iNGP hierarchy of grids and
hashes, we use 10 grid scales that are spaced by a power of 2 from 16 to 2048, and we use 4 channels
per level with 219 hashmap size. We employ an MLP with two layers of 64 hidden units each; the
hidden layers contain activation functions for rectified linear units (ReLUs) and a linear output layer.
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Figure 18: Rendering quality when extremely small and large p values are used. (a) ground-truth, (b,
c) Rendered images when p = 0.5 and p = 10, respectively.

(b) Zoom out (c) Forwarding outward(a) Zoom in
Figure 19: Rendering Results of diverse camera viewpoint. (a) The camera moves towards to the
scene origin. (b) The camera is further from the scene origin. (c) The camera is viewing outward
from the scene origin.

We employ another MLP for the density of the output color whose input is the concatenation of the 64
output values of the density MLP and the view direction projected onto the spherical harmonics basis
with a degree of 4. The models were trained for 25k iterations using a batch size of 216. We utilize
the Adam optimizer and decay our learning rate logarithmically from 10−2 to 10−3 over training.

NeRF The NeRF model is based on the original implementation Mildenhall et al. (2020); Zhang
et al. (2020). We employ 8 MLP layers with 384 hidden units for both coarse and fine modules.
The input points are embedded with a 12 degree of positional encoding, and the view direction is
projected on the spherical harmonics basis with a degree of 4. We employ a batch size of 4, 096 rays
in our studies, sampling each one at 128 coordinates in the coarse module and 256 extra locations
in the fine module. We employ the Adam optimizer with a learning rate of 5× 10−4 and train the
model for 250K iterations until convergence.

G QUANLITATIVE AND QUALITATIVE RESULTS

In this section, we provide quantitative evaluations per scene on the mip-NeRF 360, Tanks and
Temples and Free dataset in Tables 3 to 11. Since our method aims to produce visually-pleasing
results when the camera poses are far from the scene origin, we display the qualitative results on ×2
cases of each dataset in Fig. 20.
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PSNR bicycle bonsai counter flowers garden kitchen room stump treehill avg

DVGO
×1 Contract 21.25 27.04 25.44 18.88 23.79 24.75 28.25 22.82 22.00 23.80

Ours 21.99 27.91 26.28 19.39 24.34 26.09 28.96 21.54 22.21 24.30

×2 Contract 21.17 27.00 25.36 18.84 23.74 24.68 28.04 21.35 21.74 23.55
Ours 21.97 28.14 26.11 19.38 24.34 26.10 28.80 20.88 22.27 24.22

TensoRF
×1 Contract 21.95 24.98 23.98 19.41 22.63 24.01 27.18 22.47 22.06 23.19

Ours 22.17 27.19 24.88 19.61 23.93 25.97 28.49 23.00 22.36 24.18

×2 Contract 20.82 22.89 21.47 18.74 21.38 22.75 24.48 20.46 20.48 21.50
Ours 22.53 24.70 24.14 19.89 23.59 24.55 27.53 23.27 22.42 23.63

iNGP
×1

F2-NeRF 21.82 30.05 25.99 19.42 24.60 29.04 29.36 24.25 22.18 25.19
Contract 23.13 30.08 23.13 21.04 25.49 28.77 30.07 24.41 21.15 25.25

Ours 23.97 31.86 27.69 21.28 26.30 30.46 30.96 24.55 22.79 26.65

×2 Contract 14.74 13.14 11.96 12.10 12.94 14.29 25.59 17.06 14.07 15.10
Ours 23.79 30.97 26.75 21.21 25.98 29.90 30.39 25.12 23.03 26.35

NeRF
×1

++ 22.88 28.67 26.05 19.75 24.27 27.37 28.91 24.33 22.57 24.98
Contract 23.38 29.64 26.70 20.22 24.91 28.49 29.47 24.71 22.73 25.58

Ours 23.36 29.98 26.81 20.29 24.88 28.31 29.70 24.99 22.77 25.68

×2 Contract 22.53 25.98 24.52 19.67 23.89 26.47 26.82 23.53 22.57 24.00
Ours 23.15 28.84 26.28 20.19 24.66 27.30 28.80 24.55 22.78 25.17

Table 3: Per-scene and average PSNR results on the mip-NeRF 360 dataset.

SSIM bicycle bonsai counter flowers garden kitchen room stump treehill avg

DVGO
×1 Contract 0.423 0.805 0.764 0.329 0.566 0.624 0.841 0.505 0.468 0.592

Ours 0.470 0.824 0.780 0.354 0.606 0.684 0.849 0.469 0.477 0.612

×2 Contract 0.418 0.804 0.763 0.326 0.563 0.620 0.839 0.453 0.451 0.582
Ours 0.467 0.826 0.776 0.359 0.609 0.693 0.846 0.434 0.486 0.611

TensoRF
×1 Contract 0.458 0.756 0.709 0.373 0.531 0.643 0.816 0.486 0.469 0.582

Ours 0.466 0.806 0.725 0.382 0.602 0.686 0.831 0.512 0.467 0.609

×2 Contract 0.408 0.687 0.643 0.334 0.441 0.568 0.760 0.385 0.429 0.517
Ours 0.487 0.767 0.716 0.406 0.582 0.714 0.821 0.524 0.484 0.611

iNGP
×1

F2-NeRF 0.468 0.898 0.803 0.386 0.679 0.862 0.860 0.621 0.509 0.676
Contract 0.599 0.913 0.803 0.554 0.755 0.887 0.890 0.656 0.469 0.725

Ours 0.651 0.931 0.859 0.567 0.799 0.905 0.904 0.684 0.552 0.761

×2 Contract 0.212 0.412 0.385 0.137 0.218 0.423 0.819 0.210 0.242 0.340
Ours 0.635 0.923 0.836 0.561 0.786 0.895 0.884 0.685 0.588 0.755

NeRF
×1

++ 0.460 0.826 0.745 0.370 0.582 0.762 0.825 0.540 0.451 0.618
Contract 0.486 0.849 0.766 0.414 0.623 0.806 0.840 0.574 0.472 0.648

Ours 0.479 0.847 0.766 0.415 0.614 0.780 0.842 0.581 0.474 0.644

×2 Contract 0.456 0.777 0.721 0.385 0.573 0.693 0.785 0.501 0.460 0.595
Ours 0.469 0.826 0.752 0.407 0.593 0.740 0.825 0.557 0.473 0.627

Table 4: Per-scene and average SSIM results on the mip-NeRF 360 dataset.

LPIPS bicycle bonsai counter flowers garden kitchen room stump treehill avg

DVGO
×1 Contract 0.580 0.498 0.465 0.588 0.430 0.496 0.449 0.521 0.568 0.511

Ours 0.521 0.399 0.436 0.553 0.398 0.413 0.428 0.565 0.562 0.475

×2 Contract 0.585 0.435 0.467 0.592 0.435 0.502 0.453 0.577 0.613 0.518
Ours 0.526 0.400 0.442 0.543 0.395 0.415 0.434 0.553 0.557 0.474

TensoRF
×1 Contract 0.535 0.448 0.498 0.547 0.459 0.454 0.451 0.519 0.569 0.498

Ours 0.527 0.405 0.484 0.538 0.417 0.413 0.440 0.502 0.558 0.476

×2 Contract 0.575 0.508 0.554 0.569 0.521 0.519 0.500 0.588 0.587 0.547
Ours 0.516 0.444 0.487 0.529 0.434 0.387 0.442 0.509 0.545 0.477

iNGP

×1 F2-NeRF 0.533 0.290 0.379 0.534 0.338 0.234 0.369 0.424 0.527 0.403
Contract 0.436 0.285 0.382 0.423 0.286 0.229 0.323 0.425 0.568 0.373

Ours 0.390 0.247 0.322 0.409 0.232 0.201 0.303 0.385 0.482 0.330

×2 Contract 0.734 0.730 0.720 0.747 0.736 0.724 0.417 0.686 0.703 0.688
Ours 0.409 0.267 0.363 0.430 0.253 0.222 0.344 0.407 0.432 0.348

NeRF

×1 ++ 0.543 0.396 0.460 0.549 0.414 0.361 0.439 0.504 0.606 0.475
Contract 0.513 0.372 0.439 0.516 0.383 0.320 0.417 0.471 0.585 0.446

Ours 0.523 0.376 0.442 0.516 0.394 0.343 0.422 0.470 0.577 0.451

×2 Contract 0.544 0.437 0.477 0.538 0.437 0.435 0.467 0.544 0.591 0.497
Ours 0.534 0.399 0.456 0.525 0.418 0.381 0.434 0.496 0.577 0.469

Table 5: Per-scene and average LPIPS results on the mip-NeRF 360 dataset.
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PSNR truck train playground m60 avg

DVGO
×1 Contract 20.33 17.60 22.10 17.06 19.27

Ours 21.03 17.35 22.20 16.98 19.39

×2 Contract 20.30 17.44 22.04 17.46 19.31
Ours 21.18 17.14 22.70 16.80 19.46

TensoRF
×1 Contract 21.95 16.94 21.81 17.33 19.51

Ours 21.89 17.29 22.21 17.08 19.62

×2 Contract 21.38 16.92 21.16 16.65 19.03
Ours 21.88 17.23 22.19 17.69 19.75

iNGP
×1 Contract 23.71 17.78 23.06 18.33 20.72

Ours 23.49 17.71 23.58 18.30 20.77

×2 Contract 22.56 17.26 21.98 15.80 19.40
Ours 23.55 18.39 23.53 18.95 21.11

NeRF
×1

++ 22.23 17.72 22.65 17.31 19.98
Contract 22.34 18.03 23.05 18.15 20.39

Ours 22.21 17.96 22.94 18.10 20.30

×2 Contract 21.09 17.71 22.54 17.30 19.66
Ours 21.78 18.03 23.10 17.66 20.14

Table 6: Per-scene and average PSNR results on the TNT dataset.

SSIM truck train playground m60 avg

DVGO
×1 Contract 0.641 0.534 0.652 0.622 0.612

Ours 0.667 0.558 0.660 0.628 0.628

×2 Contract 0.640 0.532 0.650 0.629 0.613
Ours 0.672 0.542 0.673 0.632 0.630

TensoRF
×1 Contract 0.665 0.488 0.595 0.602 0.587

Ours 0.658 0.484 0.610 0.587 0.585

×2 Contract 0.643 0.489 0.567 0.594 0.573
Ours 0.666 0.502 0.604 0.610 0.596

iNGP
×1 Contract 0.798 0.617 0.740 0.670 0.706

Ours 0.802 0.615 0.737 0.668 0.706

×2 Contract 0.757 0.662 0.688 0.593 0.675
Ours 0.804 0.658 0.746 0.684 0.723

NeRF
×1

++ 0.689 0.512 0.635 0.568 0.601
Contract 0.699 0.555 0.668 0.634 0.639

Ours 0.689 0.549 0.663 0.626 0.632

×2 Contract 0.656 0.531 0.645 0.611 0.611
Ours 0.666 0.542 0.659 0.610 0.619

Table 7: Per-scene and average SSIM results on the TNT dataset.

LPIPS truck train playground m60 avg

DVGO
×1 Contract 0.501 0.569 0.530 0.517 0.529

Ours 0.462 0.527 0.509 0.504 0.500

×2 Contract 0.500 0.569 0.533 0.509 0.528
Ours 0.451 0.541 0.492 0.496 0.495

TensoRF
×1 Contract 0.445 0.570 0.540 0.516 0.518

Ours 0.453 0.583 0.524 0.524 0.521

×2 Contract 0.467 0.551 0.552 0.508 0.519
Ours 0.446 0.542 0.516 0.499 0.501

iNGP
×1 Contract 0.318 0.452 0.357 0.419 0.386

Ours 0.315 0.464 0.392 0.431 0.401

×2 Contract 0.371 0.398 0.428 0.490 0.422
Ours 0.324 0.426 0.379 0.421 0.387

NeRF
×1

++ 0.435 0.546 0.504 0.533 0.504
Contract 0.420 0.500 0.458 0.465 0.461

Ours 0.440 0.505 0.471 0.471 0.472

×2 Contract 0.465 0.525 0.484 0.485 0.490
Ours 0.465 0.517 0.475 0.483 0.485

Table 8: Per-scene and average LPIPS results on the TNT dataset.
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PSNR grass hydrant lab pillar road sky stair avg

DVGO Contract 19.83 22.32 24.06 25.10 23.18 24.16 26.08 23.53
Ours 20.73 22.10 24.28 26.14 23.21 24.32 27.32 24.01

TensoRF Contract 20.62 21.60 23.22 26.94 23.66 24.64 26.71 23.91
Ours 20.49 22.28 23.45 26.55 24.63 24.35 27.74 24.21

iNGP
F2-NeRF 23.81 24.33 25.93 29.13 26.93 26.32 29.37 26.55
Contract 24.50 24.63 23.83 30.10 27.95 26.53 30.19 26.82

Ours 23.88 25.22 25.54 29.63 27.35 27.13 30.35 27.01

NeRF
++ 20.68 23.33 24.38 27.26 25.81 26.03 27.92 25.06

Contract 23.34 22.78 25.02 28.77 25.90 25.23 29.25 25.76
Ours 22.77 23.76 26.06 28.28 26.39 25.31 28.98 25.94

Table 9: Per-scene and average PSNR results on the Free dataset.

SSIM grass hydrant lab pillar road sky stair avg

DVGO Contract 0.343 0.614 0.766 0.609 0.610 0.768 0.720 0.633
Ours 0.382 0.606 0.770 0.647 0.609 0.784 0.750 0.650

TensoRF Contract 0.400 0.611 0.736 0.689 0.693 0.789 0.757 0.668
Ours 0.377 0.621 0.754 0.674 0.691 0.770 0.768 0.665

iNGP
F2-NeRF 0.589 0.749 0.837 0.801 0.783 0.854 0.841 0.779
Contract 0.656 0.798 0.844 0.844 0.827 0.886 0.856 0.816

Ours 0.602 0.806 0.864 0.820 0.794 0.885 0.869 0.806

NeRF
++ 0.380 0.635 0.745 0.675 0.697 0.812 0.770 0.673

Contract 0.524 0.649 0.780 0.741 0.716 0.807 0.806 0.717
Ours 0.500 0.677 0.791 0.728 0.721 0.802 0.801 0.717

Table 10: Per-scene and average SSIM results on the Free dataset.

LPIPS grass hydrant lab pillar road sky stair avg

DVGO Contract 0.717 0.431 0.340 0.515 0.571 0.363 0.417 0.479
Ours 0.657 0.432 0.342 0.452 0.540 0.339 0.363 0.446

TensoRF Contract 0.632 0.432 0.385 0.406 0.433 0.353 0.363 0.429
Ours 0.635 0.415 0.362 0.417 0.434 0.368 0.344 0.425

iNGP
F2-NeRF 0.447 0.291 0.251 0.222 0.317 0.245 0.211 0.283
Contract 0.390 0.228 0.242 0.192 0.255 0.193 0.205 0.244

Ours 0.452 0.218 0.222 0.221 0.299 0.197 0.186 0.256

NeRF
++ 0.663 0.418 0.390 0.414 0.433 0.342 0.333 0.427

Contract 0.509 0.401 0.336 0.325 0.409 0.336 0.283 0.371
Ours 0.530 0.379 0.328 0.355 0.409 0.339 0.293 0.376

Table 11: Per-scene and average LPIPS results on the Free dataset.
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Figure 20: Qualitative results of ×1 cases on room, flowers and kitchen scenes in mip-NeRF 360
dataset
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Figure 21: Qualitative results of ×1 cases on M60 scene in Tanks and Temples dataset and pillar and
sky scene in Free dataset.
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Figure 22: Qualitative results of ×2 cases on bonsai and garden scenes in mip-NeRF 360 dataset and
truck scene in Tanks and Temples dataset.
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