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a b s t r a c t

Reinforcement learning methods have recently been very successful at performing complex sequential
tasks like playing Atari games, Go and Poker. These algorithms have outperformed humans in several
tasks by learning from scratch, using only scalar rewards obtained through interaction with their
environment. While there certainly has been considerable independent innovation to produce such
results, many core ideas in reinforcement learning are inspired by phenomena in animal learning,
psychology and neuroscience. In this paper, we comprehensively review a large number of findings
in both neuroscience and psychology that evidence reinforcement learning as a promising candidate
for modeling learning and decision making in the brain. In doing so, we construct a mapping between
various classes of modern RL algorithms and specific findings in both neurophysiological and behavioral
literature. We then discuss the implications of this observed relationship between RL, neuroscience and
psychology and its role in advancing research in both AI and brain science.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Reinforcement learning (RL) methods have been very success-
ul on a variety of complex sequential tasks such as Atari (Mnih
t al., 2015), Go (Silver et al., 2016), Poker (Heinrich & Sil-
er, 2015) and Dota-2 (Berner et al., 2019), often far exceed-
ng human-level performance. Though a large portion of these
uccesses can be attributed to recent developments in deep
einforcement learning, many of the core ideas employed in these
lgorithms derive inspiration from findings in animal learning,
sychology and neuroscience. There have been multiple works
eviewing the correlates of reinforcement learning in neuro-
cience (Botvinick, Wang, Dabney, Miller, & Kurth-Nelson, 2020;
ee, Seo, & Jung, 2012; Niv, 2009). In 2012, Lee et al. (2012)
eviewed several works reporting evidence of classical reinforce-
ent learning ideas being implemented within the neural net-
orks of the brain. Many commonly used building blocks of
L such as value functions, temporal difference learning and
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reward prediction errors (RPEs) have been validated by findings
from neuroscience research, thus making reinforcement learn-
ing a promising candidate for computationally modeling human
learning and decision making.

Since 2012 however, unprecedented advancement in RL re-
search, accelerated by the arrival of deep learning has resulted in
the emergence of several new ideas apart from the classical ideas
for which neuroscience analogues had earlier been found. Rela-
tively newer research areas like distributional RL (Bellemare, Dab-
ney, & Munos, 2017), meta RL (Duan, Schulman, Chen, Bartlett,
Sutskever, & Abbeel, 2016; Wang et al., 2018), and model-based
RL (Sutton, 1990) have emerged, which has motivated work that
seeks and in some cases finds, evidence for similar phenom-
ena in neuroscience and psychology. In this review, we have
incorporated these works, thus providing a well rounded and up-
to-date review of the neural and behavioral correlates for modern
reinforcement learning algorithms.

For this review, we employ the following structure. In Sec-
tion 2, we provide a brief overview of classical reinforcement
learning, its core, and the most popular ideas, in order to enable
the uninformed reader to appreciate the findings and results
discussed later on. Then, in Section 3 we discuss some of the
building blocks of classical and modern RL: value functions, re-
ward prediction error, eligibility traces and experience replay.

While doing so, we discuss phenomena from neuroscience and
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sychology that are analogous to these concepts and evidence
hat they are implemented in the brain. Following this, in Sec-
ion 4 we discuss some modern RL algorithms and their neural
nd behavioral correlates: temporal difference learning, model-
ased RL, distributional RL, meta RL, causal RL and Hierarchical
L. Having explored all of these topics in considerable depth,
e provide a mapping between specific reinforcement learning
oncepts and corresponding work validating their involvement
n animal learning (Table 1). Finally in Section 5, we present a
iscussion on how research at the intersection of these fields
an propel each of them forward. To do so, we discuss specific
hallenges in RL that brain science might hold key insight to, and
ice versa.
The following two organizational choices govern our presen-

ation of this review.

• Two-way discussion: We present an exhaustive review that
simultaneously discusses important recent research, on how
both neuroscience and psychology have influenced RL. Ad-
ditionally, unlike previous work (Botvinick, Ritter, Wang,
Kurth-Nelson, Blundell, & Hassabis, 2019; Botvinick et al.,
2020; Lee et al., 2012), we also discuss how ideas from RL
have recently impacted research in brain science.

• Modularity: From a computational perspective, decision
making can be broken down conceptually into several ca-
pabilities. For example: planning, hierarchy, valuing choices,
learning to learn etc. These happen to be distinct sub-fields
of reinforcement learning (model-based RL, hierarchical RL,
meta RL etc.). Therefore we divide our discussion into sec-
tions, each devoted to a specific module. This modular
structure makes it easier to simultaneously describe, un-
derstand and compare ideas from RL, neuroscience and
psychology.

. Reinforcement learning: Background

The classical reinforcement learning framework describes an
gent (human, robot etc.) interacting with its environment and
earning to behave in a way that maximizes reward (Sutton &
arto, 1998). Fig. 1 illustrates this interaction. The agent is given
state St by the environment at a time t . The agent, using

n internal policy π (St ) or strategy selects an action At . The
ction when applied to the environment moves the agent to
new state St+1 and returns to it a scalar reward Rt+1. This

sequence makes up a single transition. An agent’s interaction
with its environment comprises several such transitions. While
considering these transitions, an explicit assumption is made that
the future is independent of the past given the present. In other
words, the next state is dependent only on the current state,
action and environment properties, not on any states or actions
previously taken. This is known as a Markov assumption and the
process is therefore a Markov Decision Process (MDP).

In a reinforcement learning problem, the objective of the agent
is to maximize the reward obtained over several transitions. In
other words, the aim of the agent is to find a policy which when
used to select actions, returns an optimal reward over a long
duration. The most popular version of this maximization objective
is to maximize discounted reward.

πoptimal(St ) = argmax
π

E

[
∞∑

τ=t

γ τ−tR(Sτ ), π (Sτ )

]
(1)

where πoptimal is the optimal policy and γ | 0 < γ < 1
is a factor to discount future rewards. It should be noted that
maximizing the reward for each transition independently might
not yield an optimal long-term reward. This aspect introduces
272
Fig. 1. The classical RL framework. The agent selects an action At at state St ,
in response to which it receives a corresponding reward RT+1 . The objective of
the agent is to choose actions that maximize its reward over a long sequence
of transitions.
Source: Sutton and Barto (1998).

several complexities in arriving at an optimal solution for the RL
problem, and motivates features such as exploration and planning
in RL algorithms.

Many reinforcement learning algorithms use a value function
as a way to assign utility to states and actions. The value function
of a state St is the expected reward that the agent is expected to
receive if it starts at that state and executes a particular policy
forever after.

V (St ) = E

[
∞∑

τ=t

γ τ−tR(Sτ , π (Sτ ))

]
(2)

where V is the state value function. A value function could also
be assigned to a state–action pair in which case it represents
the expected reward if a specific policy is executed after a given
action is taken at the state.

Qπ (St , At ) = E

[
Rt+1 +

∞∑
τ=t+1

γ τ−tR(Sτ , π (Sτ ))

]
(3)

where Q represents the value function for a state–action pair.
Value-function based RL algorithms often optimize value func-

tion estimates rather than directly optimizing policy. Once the
optimal value function is learned, an optimal policy would then
entail picking the highest value actions at each state. This proce-
dure is called value iteration (Pashenkova, Rish, & Dechter, 1996)
and finds application in various modern reinforcement learning
algorithms. A common set of algorithms for optimizing the value
function are the dynamic programming (DP) methods. These
methods update value functions by bootstrapping value functions
from other states (Bellman, 1954; Busoniu, Babuska, De Schutter,
& Ernst, 2017). Examples of DP methods are Q-learning (Watkins
& Dayan, 1992) and SARSA (Sutton & Barto, 1998). The optimiza-
tion process involves updating the value function by ascending
the gradient in the direction of the difference between target
values and the currently estimated values, thus moving towards
better estimates of rewards obtained during environment inter-
action. The target value is computed using DP bootstrapping. The
difference between target and current value is termed as Reward
Prediction Error (RPE). Dynamic programming methods that use
value functions of states adjacent to the current state, to compute
the target, are called temporal difference methods (Sutton, 1988)
and are discussed in Section 4.1.

Now that we have given a brief background on some of the
important core reinforcement learning concepts: MDP, policy,
value functions and dynamic programming; we will explore the
neural and behavioral correlates for some of the fundamental
building blocks that make up classical and modern reinforcement
learning algorithms.
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Table 1
Table summarizing the mapping discussed between concepts in reinforcement learning (left column) and evidential phenomena reported in neuroscience and
psychology research or specific areas of the brain responsible from them. Literature corresponding to them have also been referenced.
Reinforcement learning concept Corresponding phenomena in neuroscience and psychology/Brain area responsible

state value function reward expectancy in basal ganglia (Hikosaka, Nakamura, & Nakahara, 2006), prefrontal cortex
(Wallis & Kennerley, 2010) and other areas (Schultz & Dickinson, 2000)

action value function chosen value during decision making (Cai, Kim, & Lee, 2011; Lau & Glimcher, 2008;
Padoa-Schioppa & Assad, 2006; Samejima, Ueda, Doya, & Kimura, 2005)

multi-task learning (Lazaric & Ghavamzadeh,
2010)

distributed reward signals (Cai et al., 2011; Kim, Hwang, & Lee, 2008; Murdoch, Chen, &
Goldberg, 2018; Padoa-Schioppa & Assad, 2006; Pastor-Bernier & Cisek, 2011; Seo, Barraclough, &
Lee, 2009; So & Stuphorn, 2010)

actor–critic baseline (Sutton, McAllester, Singh, &
Mansour, 1999a)

relative values (Cai et al., 2011; Kim et al., 2008; Pastor-Bernier & Cisek, 2011; Seo et al., 2009;
Seo & Lee, 2009)

reward prediction error/TD error RPE signals in dopaminergic neurons (VTA) (Schultz, 2006), orbitofrontal cortex, lateral habenula,
cingulate cortex, etc. (Hong & Hikosaka, 2008; Kim, Sul, Huh, Lee, & Jung, 2009; Matsumoto &
Hikosaka, 2007; Matsumoto, Matsumoto, Abe, & Tanaka, 2007; Oyama, Hernádi, Iijima, & Tsutsui,
2010; Seo & Lee, 2007; Sul, Kim, Huh, Lee, & Jung, 2010)

credit assignment problem orbitofrontal cortex (Fellows & Farah, 2003; Iversen & Mishkin, 1970; Murray, O’Doherty, &
Schoenbaum, 2007; Schoenbaum, Nugent, Saddoris, & Setlow, 2002)

eligibility traces (Sutton & Barto, 1998) prefrontal cortex, striatum, frontal cortex (Barraclough, Conroy, & Lee, 2004; Curtis & Lee, 2010;
Kim, Huh, Lee, Baeg, Lee, & Jung, 2007; Kim et al., 2009; Seo et al., 2009; Seo & Lee, 2009; Sul, Jo,
Lee, & Jung, 2011; Sul et al., 2010)

experience replay (Mnih et al., 2015; Schaul,
Quan, Antonoglou, & Silver, 2016)

hippocampal place cells (Diba & Buzsáki, 2007; Foster & Wilson, 2006; Louie & Wilson, 2001;
Moser, Kropff, & Moser, 2008; Skaggs & McNaughton, 1996), entorhinal cortices (Ólafsdóttir,
Carpenter, & Barry, 2016), visual cortices (Ji & Wilson, 2007)

episodic memory (Lin, Zhao, Yang, & Zhang,
2018)

instance-based models of memory (Bornstein, Khaw, Shohamy, & Daw, 2017; Bornstein &
Norman, 2017; Gershman & Daw, 2017; Lengyel & Dayan, 2007)

temporal difference (TD) learning (Samuel, 1959;
Sutton, 1988)

reward prediction error hypothesis of dopamine neuron activity (Schultz, Dayan, & Montague,
1997)

TD(λ) (Sutton & Barto, 1998) TD model of classical conditioning (Montague, Dayan, & Sejnowski, 1996)

model-based RL Cognitive maps (Tolman, 1948); role of PFC (Gläscher, Daw, Dayan, & O’Doherty, 2010a),
hippocampus (Benchenane et al., 2010; Hyman, Hasselmo, & Seamans, 2011; Sirota, Montgomery,
Fujisawa, Isomura, Zugaro, & Buzsáki, 2008; Womelsdorf, Vinck, Stan Leung, & Everling, 2010)

successor representations (Dayan, 1993) neural substrates (Gershman, 2018), SR as between model-free and model-based systems (Akam &
Walton, 2021; Russek, Momennejad, Botvinick, Gershman, & Daw, 2017)

distributional TD learning (Bellemare et al., 2017) distributional coding in non-RL domains (Dabney, Rowland, Bellemare, & Munos, 2018; Lammel,
Lim, & Malenka, 2014; Pouget, Beck, Ma, & Latham, 2013), value coding in VTA of mice (Dabney
et al., 2020)

meta reinforcement learning (Duan et al., 2016;
Schaul & Schmidhuber, 2010; Wang et al., 2016)

learning to learn (Harlow, 1949), fast and slow learning (Botvinick et al., 2019), prefrontal cortex
(Barraclough et al., 2004; Kim & Shadlen, 1999; Padoa-Schioppa & Assad, 2006; Rushworth &
Behrens, 2008; Tsutsui, Grabenhorst, Kobayashi, & Schultz, 2016; Wang et al., 2018)

episodic meta RL (Ritter, Wang, Kurth-Nelson, &
Botvinick, 2018a)

cerebral cortex (Ritter et al., 2018b; Santoro, Bartunov, Botvinick, Wierstra, & Lillicrap, 2016;
Wayne et al., 2018), interaction between meta model-based control and episodic memory in
human learning (Vikbladh, Shohamy, & Daw, 2017)

causality (Pearl, 2009) children perform interventions (McCormack, Bramley, Frosch, Patrick, & Lagnado, 2016; Sobel &
Sommerville, 2010); counterfactuals (Palminteri, Lefebvre, Kilford, & Blakemore, 2017) in mPFC
(Pischedda, Palminteri, & Coricelli, 2020), frontal cortex (Boorman, Behrens, & Rushworth, 2011),
dopamine fluctuations (Kishida et al., 2016); causal induction (Gershman & Niv, 2010, 2012; Soto,
Gershman, & Niv, 2014)

hierarchy (Barto & Mahadevan, 2003; Dietterich,
2000; Parr & Russell, 1998; Sutton, Precup, &
Singh, 1999b)

goal-directed behavior (Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin, 2004; Botvinick &
Plaut, 2004; Lashley, 1951; Miller, Eugene, & Pribram, 2017; Newell, Shaw, & Simon, 1959;
Schneider & Logan, 2006; Zacks, Speer, Swallow, Braver, & Reynolds, 2007), prefrontal cortex
(Badre, 2008; Balaguer, Spiers, Hassabis, & Summerfield, 2016; Botvinick, 2008; Courtney, Roth, &
Sala, 2007; Fuster, 1989; Koechlin, Ody, & Kouneiher, 2003; Ribas-Fernandes, Shahnazian, Holroyd,
& Botvinick, 2019; Ribas-Fernandes et al., 2011), higher level representation of task context
(Lashley, 1951), mental hierarchical organization (Newtson et al., 1976; Zacks & Tversky, 2001),
gradual integration of skills (Bruner, 1973; Fischer, 1980; Greenfield, Nelson, & Saltzman, 1972),
production-system based theories of cognition (ACT-R, Soar) (Anderson et al., 2004)

options (Sutton et al., 1999b) task representation (Cohen, Dunbar, & McClelland, 1990; Cooper & Shallice, 2000; Monsell, 2003)

incompatibility between learning problem and
temporally abstract actions (Botvinick, Niv, &
Barto, 2009)

negative transfer problem (Luchins, 1942)

option discovery integration of causal representations (Gopnik, Glymour, Sobel, Schulz, Kushnir, & Danks, 2004;
Gopnik & Schulz, 2004; Sommerville & Woodward, 2005a, 2005b), intrinsic rewards (Bunzeck &
Düzel, 2006; Redgrave & Gurney, 2006; Schultz, Apicella, & Ljungberg, 1993), Bayesian models
(Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 2013; Solway et al., 2014; Tomov, Yagati,
Kumar, Yang, & Gershman, 2020)

(continued on next page)
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able 1 (continued).
Reinforcement learning concept Corresponding phenomena in neuroscience and psychology/Brain area responsible

graph partitioning to identify bottleneck states
(Şimşek, Wolfe, & Barto, 2005; Mannor,
Menache, Hoze, & Klein, 2004; Menache,
Mannor, & Shimkin, 2002)

children integrate causal representations into a causal model (Gopnik et al., 2004; Gopnik &
Schulz, 2004; Sommerville & Woodward, 2005a, 2005b)

intrinsic motivation (Barto, Singh, & Chentanez,
2004; Singh, Barto, & Chentanez, 2004)

intrinsic rewards in dopamine driven learning (Bunzeck & Düzel, 2006; Redgrave & Gurney, 2006;
Schultz et al., 1993)
3. Building blocks of reinforcement learning: Neural and be-
havioral correlates

As briefly outlined in the previous section, the RL solution
o an MDP can make use of several components or building-
locks. Among these, some of the most popular components are
he value function, eligibility traces and reward prediction errors.
ore recently with the advent of deep RL, new components such
s experience replay and episodic memory have emerged that
re commonly incorporated within RL algorithms. In this section,
e explore their neural and behavioral correlates. Many of these

deas have already been reviewed in much detail by Lee et al.
2012) and so our description of them will be concise relative to
opics covered in future sections of the paper. For a more in-depth
eview of these, see Lee et al. (2012).

.1. Value functions

As discussed in the previous section, a value function is a
easure of reward expectation. This expectation is measured
ractically as the mean of discounted rewards over future states.

(St ) =
1
N

t+N−1∑
τ=t

γ τ−tR(Sτ , π (Sτ )) (4)

here N is the number of sample states considered.
Neural signals containing information about reward expectancy

ave been found in many areas of the brain (Hikosaka et al., 2006;
chultz & Dickinson, 2000; Wallis & Kennerley, 2010). Resembling
he two types of value functions prevalent in RL algorithms,
vidence has been found for the brain too encoding both state
alues and action value. Action value functions (Samejima et al.,
005) are useful during motor responses when an action needs to
e selected while state value functions might play an evaluative
ole. Transformations between the two types have been found
o occur in the brain. For instance, during decision making, state
alue functions transform from a mean over all actions into
alue functions for the chosen action, which are often referred
o as chosen values (Cai et al., 2011; Lau & Glimcher, 2008;
adoa-Schioppa & Assad, 2006).
Despite these similarities between neural value signals and

alue functions employed in reinforcement learning, they are
ifferent in some important ways. In RL, value functions for
ifferent decisions are all treated the same and represent the
xpected value of a single reward. But in the brain, activity for
ction value functions are observed in various areas for a single
ecision (Cai et al., 2011; Kim et al., 2008; Pastor-Bernier &
isek, 2011; Seo et al., 2009; So & Stuphorn, 2010) and might
pply to distinct reward signals as demonstrated by Murdoch
t al. (2018) in the case of place preference (navigation) and
ong syllables (singing), in songbirds. They observed that strobe
ight flashes aversively conditioned place preference but not vocal
earning, while noise bursts aversively conditioned vocal learning
ut not place preference. Another case of value signals in dif-
erent brain regions encoding expectancy for different rewards
or the same decision was seen in animals during a juice flavor
274
decision making task (Padoa-Schioppa & Assad, 2006). Neurons
encoding value in the supplemental motor area signaled desirable
eye movements (to spatial location of targets) when considering
the choice while those in the primate orbitofrontal cortex were
associated with the juice flavors themselves (targets) (Tremblay
& Schultz, 1999; Wallis & Miller, 2003). The function of distinct
reward signals in the brain is analogous to a highly distributed
version of backpropagation in artificial neural networks wherein
distinct reward signals could selectively update distinct sets of
parameters in the network.

Neural signals for chosen values are also distributed in multi-
ple brain areas (Cai et al., 2011; Kim et al., 2009; Lau & Glimcher,
2008; Padoa-Schioppa & Assad, 2006; Sul et al., 2010). Also,
some brain regions encode the difference of values between two
alternative actions to determine likelihood of taking an action
over another (Cai et al., 2011; Kim et al., 2008; Pastor-Bernier &
Cisek, 2011; Seo et al., 2009; Seo & Lee, 2009). This is similar to
the use of baseline values in actor–critic methods where value
functions of each action are scaled by their mean to obtain values
relative to other actions at the state (Sutton et al., 1999a). These
baseline values are used to compute the ‘advantage’ of a given
action relative to others available in the action space.

3.2. Reward prediction error

In order to make good decisions about states that are desirable
to visit, we need a good estimate of the value of a state. Most
reinforcement learning algorithms optimize the value function by
minimizing a reward prediction error (RPE). If Vπ (St ) is the value
function (expected reward) at a state St and Gt = Rt+1 + Rt+2 +

Rt+3+· · · is the sum of rewards obtained after time t (also known
as return), then a common formulation of the RPE at t is the
difference between the two terms.

RPE(t) = Gt − Vπ (St ) (5)

A policy that minimizes the reward prediction error for all
states would return the best value estimates for all states in
the state space. Thus, the RPE helps improve value estimates.
Such RPE signals have been identified in midbrain dopaminer-
gic neurons (Schultz, 2006) and many other areas such as the
orbitofrontal cortex, lateral habenula and angular cingulate cor-
tex (Hong & Hikosaka, 2008; Kim et al., 2009; Matsumoto &
Hikosaka, 2007; Matsumoto et al., 2007; Oyama et al., 2010; Seo
& Lee, 2007; Sul et al., 2010).

Action value functions in the brain are believed to be updated
and stored at the synapses between cortical axons and striatal
spiny dendrites (Hikosaka et al., 2006; Hong & Hikosaka, 2011;
Lo & Wang, 2006; Reynolds, Hyland, & Wickens, 2001). RPEs
are input to these synapses through terminals of dopaminergic
neurons (Haber, Fudge, & McFarland, 2000; Haber & Knutson,
2010; Levey et al., 1993; Schultz, 2006) and value functions are
updated.

3.3. Credit assignment and eligibility traces

In many cases and quite commonly in human behavior, re-
wards for a task are temporally delayed. In other words, decisions
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ave to be made at several states before a reward feedback is
btained. An example of this is cooking, where a complete recipe
as to be executed before actually tasting the dish and determin-
ng whether it is good or bad (reward). Now, say the reward was
egative, we need to be able to effectively determine the step of
he recipe where we went wrong so that it can be corrected on
he next trial. This is known as the credit assignment problem.
t is the challenge of finding the ‘‘responsibility" of each encoun-
ered state for an obtained reward. Behavioral experiments on
eversal learning tasks have shown that credit assignment prob-
ems surface in animals with lesions in the orbitofrontal cortex
hich therefore suggests its involvement in assigning credit to
tates (Fellows & Farah, 2003; Iversen & Mishkin, 1970; Murray
t al., 2007; Schoenbaum et al., 2002).
In RL literature, there are two prominent techniques that have

een developed to solve the credit assignment problem. The first
pproach is to introduce intermediate states (Montague et al.,
996) to strengthen the connection between a state and its corre-
ponding reward. This technique, however, does not correspond
o any observation in neuroscience literature and is not consis-
ent with profiles of dopamine neuron activity (Pan, Schmidt,
ickens, & Hyland, 2005). The second method is to use eligibility

races which are short term memory signals that assign state re-
ponsibility for a reward (Sutton & Barto, 1998). Eligibility traces
re higher for states that are on average closer to the reward. Un-
ike intermediate states, eligibility traces have been observed in
everal animals and brain regions including the prefrontal cortex,
triatum and frontal cortex (Barraclough et al., 2004; Curtis & Lee,
010; Kim et al., 2007, 2009; Seo et al., 2009; Seo & Lee, 2009; Sul
t al., 2011, 2010). The orbitofrontal cortex of the brain is believed
o play an important role in credit assignment. Its involvement
s evidenced by the observation that neurons in the orbitofrontal
ortex show increased activity when a positive reward is obtained
rom a specific action (Abe & Lee, 2011; Barraclough et al., 2004;
im et al., 2009; Roesch, Singh, Brown, Mullins, & Schoenbaum,
009; Seo & Lee, 2009; Sul et al., 2010). Additionally, neurons
n orbitofrontal cortex are believed to also encode relationships
etween actions and their corresponding outcomes (Barraclough
t al., 2004; Kim et al., 2009; Seo et al., 2009; Sul et al., 2010). This
bservation could inspire future work in reinforcement learning
esearch towards a solution to the credit assignment problem.
ngoing work is also exploring and testing the involvement of
ligibility traces for credit assignment in synaptic value updates.
popular idea in this direction is neuromodulated STDP which at-

empts to model this by combining classical STDP with eligibility
races to add external reinforcement from reward signals (Gerfen
Surmeier, 2011; Shen, Flajolet, Greengard, & Surmeier, 2008).

.4. Experience replay and episodic memory

Rodent research has led to the discovery that place cells and
rid cells in the hippocampus encode a spatial map of the en-
ironment (Moser et al., 2008; O’Keefe & Dostrovsky, 1971; Sar-
olini et al., 2006). Along with mapping trajectories, these cells
pontaneously recap previously experienced trajectories (Diba &
uzsáki, 2007; Foster & Wilson, 2006; Louie & Wilson, 2001; Sk-
ggs & McNaughton, 1996). They can also explore new spatial tra-
ectories which have not been experienced before (Gupta, van der
eer, Touretzky, & Redish, 2010; Ólafsdóttir, Barry, Saleem, Hass-
bis, & Spiers), a phenomenon which is known as replay. Replay’s
nvolvement in playing out trajectories that never happened sug-
est that it might be important in the brain’s learning of world
odels (Foster, 2017; Pezzulo, van der Meer, Lansink, & Pennartz,
014) which is used to generalize learned knowledge. Biolog-
cal replay mechanisms have been recorded in the entorhinal
ortices (Ólafsdóttir et al., 2016), prefrontal cortex (Peyrache,
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Khamassi, Benchenane, Wiener, & Battaglia, 2009) and visual cor-
tices (Ji & Wilson, 2007). However, the information stored varies
between these areas. Entorhinal cortical replay encodes spatial
relationship between objects while visual cortical replay encodes
sensory properties of events and objects. Replay mechanisms
have been incorporated in modern deep reinforcement learning
methods in the form of experience replay (Mnih et al., 2015;
Schaul et al., 2016).

As discussed previously, deep RL methods that excel in perfor-
mance in various tasks struggle with achieving sample efficiency
similar to that of humans (Lake, Ullman, Tenenbaum, & Gersh-
man, 2017; Tsividis, Pouncy, Xu, Tenenbaum, & Gershman, 2017).
Experience replay is a popular component in reinforcement learn-
ing algorithms which enables them to learn tasks with fewer
environment interactions by storing and reusing previously ex-
perienced transitions to update the policy. However, experience
replay mechanisms in deep RL are still unable to mimic their bi-
ological counterparts. For instance, Liu, Dolan, Kurth-Nelson, and
Behrens (2019) show that while experience replay in RL records
experience in the same sequence as they occurred, hippocampal
replay does not tend to follow this ‘movie’ sequence and rather
employs an ‘imagination’ sequence in which experienced events
are replayed in the order in which they are expected to occur
according to learned internal models. Thus, integration of experi-
ence replay with model-based RL is an exciting avenue for future
deep RL research.

Additionally, experience replay in deep RL involves using only
previously played trajectories of the same task that the agent is
learning and hence do not assist in learning new tasks. Another
approach called episodic RL (Gershman, 2017; Lengyel & Dayan,
2007; Pritzel et al., 2017) uses such experience as an inductive
bias to learn future tasks. An illustration of an episodic RL algo-
rithm is shown in Fig. 2. These approaches employ a similarity
network which reuses values for states that have already been
learned, thus reducing the time to learn values for new states (Lin
et al., 2018). This idea is similar to instance-based models of
memory in where specific stored information from past expe-
rience is used for decision making in new situations (Bornstein
et al., 2017; Bornstein & Norman, 2017; Gershman & Daw, 2017;
Lengyel & Dayan, 2007).

4. Algorithms for reinforcement learning: Neural and behav-
ioral correlates

Having covered the building blocks that most commonly make
up RL algorithms, we now dive deep into various types of rein-
forcement learning algorithms along with work in both neuro-
science and psychology suggesting that they might be promis-
ing models for certain aspects of animal learning and decision
making.

4.1. Temporal difference learning

Temporal difference learning is one of the central ideas in
reinforcement learning. The most common formulation of the
reward prediction error discussed in the previous section, is the
temporal difference (TD) error. The TD error δt is defined as:

δt = Rt+1 + γV (st+1) − V (St ) (6)

The origins of TD learning can be traced back to the Rescorla–
Wagner (RW) model for classical conditioning (Rescorla & Wag-
ner, 1972), that learning occurs only when the animal is sur-
prised. It proposed a trial-level associative learning rule which
updates ‘‘associative strengths" of stimuli using a prediction
error.

δ = α(R − V (S )) (7)
RW n n



A. Subramanian, S. Chitlangia and V. Baths Neural Networks 145 (2022) 271–287

f
v
S

w

Fig. 2. Episodic reinforcement learning. Initially, the agent plays out a sequence of actions and stores the encountered states along with their learned value
unctions (expected sum of discounted rewards). When a new state is encountered in a new trajectory, its value can be estimated as linear combination of stored
alue functions weighted by the similarity of the stored states to the new state. This helps avoid learning value functions from scratch for every new state.
ource: Botvinick et al. (2019).
here α is the learning rate, Rn is the unconditional stimulus
(US, reward) and V (Sn) is the associative strength for conditional
stimulus S which measures how well it predicts the US. While this
model explains aspects of classical conditioning such as block-
ing (Kamin, 1967), it is trial-based and so does not explain tem-
poral dependencies of learning and consequently, higher-order
conditioning. The TD model fills these gaps.

The earliest known use of temporal difference learning in
artificial intelligence research dates back to 1959 when Samuel
(1959) demonstrated its usage for a checkers-playing program.
Sutton (1988) developed the first theoretical formulation of TD
learning and showed that it was more efficient and more accurate
than conventional supervised learning methods.

Following this, work in computational neuroscience suggested
that the firing of dopamine neurons signaled a reward prediction
error (Montague, Dayan, Nowlan, Pouget, & Sejnowski, 1993).
Later work Sejnowski, Dayan, and Montague (1995) showed that
the TD model allows a formulation of expectations through value
functions to influence synaptic changes, via a Hebbian learn-
ing framework. Later, from the extensive experiments conducted
by Schultz et al. (1997), a major breakthrough in relating TD
methods to actual biological phenomena was made by Montague
et al. (1996) when they related fluctuation levels in dopamine
delivery, from the VTA/SNc to cortical and subcortical target
neuronal structures, to TD reward prediction errors.

The TD error formulation in RL is a very specific case of the
more general TD(λ) proposed by Sutton and Barto (1998) which
accounts for eligibility traces. The concept of eligibility traces
was inspired from ideas like trace conditioning (Pavlov & Anrep,
1927) and Hull’s learning theory (Hull, 1943). Two new terms
are introduced to account for it, the weight vector wt and the
eligibility trace zt , modeled as:

δt = Rt+1 + γV (St , wt ) − V (St , wt ) (8)

wt = wt−1 + αδt−1zt−1 (9)

zt = γ λzt−1 + γV (St−1, wt−1) (10)

When λ = 1, this formulation perfectly mimics the behavior
of Monte Carlo algorithms and the credit given to previous steps
decreases by a factor of γ . On the other hand, when λ = 0, it
transforms into the TD formulation discussed earlier, where only
the previous state is given credit. Sutton and Barto (1998) showed

that this TD(λ) formulation is the same formulation as TD model
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of classical conditioning as used in the framework proposed by
Montague et al. (1996) to verify the results of TD learning. Thus,
the TD(λ) formulation combined RPEs and eligibility traces into a
single framework.

The TD model accounts for many limitations of the RW model.
Bootstrapping of value functions (using a value estimate in the
target expression) allows it to explain higher-order condition-
ing. It also provides flexibility in terms of real-time stimulus
representation; with existing work having shown that one in par-
ticular, the microstimulus representation corresponds well with
several empirical phenomena (Ludvig, Sutton, & Kehoe, 2012).
Additionally, given its temporal nature, it has been able to make
predictions about aspects of animal learning some of which were
confirmed later on. For instance, some of its prominent predic-
tions (Sutton & Barto, 1981, 1990) were: (a) conditioning requires
a positive inter-stimulus interval (ISI), (b) remote associations
facilitate conditioning, (c) blocking reverses if the new CS tem-
porally precedes pretrained CS (later verified experimentally in
rabbits (Kehoe, Schreurs, & Graham, 1987)). The TD model has
also been successful in modeling observations from neuroscience.
Perhaps the most commonly related neuroscience phenomenon
to the TD reward prediction error was given by Schultz et al.
(1997) as the reward prediction error hypothesis of dopamine
neuron activity.

The TD model is, however, limited in a few ways. Firstly, it
says nothing about how responses are learned, given the learned
ability to predict stimuli. Secondly, the model in its simplest form
cannot express uncertainty because it uses the point-average as
an estimate for future reward. Recent approaches which model
the value function as a distribution, account for uncertainty (Dab-
ney et al., 2020; Gershman, 2015). These are discussed further in
Section 4.3.

4.2. Model-based reinforcement learning

The classical reinforcement learning framework accounts only
for learning that occurs through interaction. However, a large
portion of learning in humans and animals involves imagined sce-
narios, planning out consequences of actions, replay (as discussed
in Section 3.4) and so on. Model-based reinforcement learning
seeks to mimic these capabilities and is a promising area both
in RL (Silver et al., 2016) (Fig. 3) and as a computational model

for biological learning (Doll, Simon, & Daw, 2012).



A. Subramanian, S. Chitlangia and V. Baths Neural Networks 145 (2022) 271–287

h
c
h
s
R
p
t
o
e
s
r
u
p
c
b
t
i

s
a
a
t
&
i
v
m

o
b
e
t

4

t
w
m
n
m
r
w
s
T
m
d
r

δ

r

Fig. 3. Schematic of the Dyna model-based reinforcement learning frame-
work (Sutton, 1990). Involves simultaneous model-free and model-based
procedures. The model-free procedure involves using interactions with the real
environment (‘real experience’) to directly learn the policy and/or value func-
tions. The model-based procedure uses the real experience to learn a dynamics
model P(St+1, Rt+1|St , At ) which can be used to generate artificial/simulated
experience as another way to update policy and value functions.

The animal learning community in the early 20th century saw
a divide between Thorndike’s Law of Effect (Thorndike, 1933) and
Tolman’s Cognitive Maps (Tolman, 1948). Thorndike posited that
humans associate rewards to actions and our future choices are
driven by the type of reward we receive. On the other hand,
Tolman stated that learning can still happen in the case that a
reward is not immediately received, strengthening the argument
for a type of latent learning, requiring goal-directed planning
and reasoning. Thorndike’s Law of Effect and Tolman’s Cognitive
Maps have served as foundational behavioral evidence for the two
major types of learning systems concerned with action valuation
in our brain, model-free and model-based learning.

Model-based learning systems involve building mental mod-
els through experience. There is evidence that model-based al-
gorithms are implemented in biological systems. For instance,
Gläscher et al. (2010a) observed increased activity in the lat-
eral prefrontal cortex when previously unknown state transi-
tions were observed. This evidence showed that the brain inte-
grates unknown transitions into its transition model. Addition-
ally, the hippocampus might play a role in integrating information
about the current task and behavioral context. This integration
might rely on synchronous activity in the theta band of frequen-
cies (Benchenane et al., 2010; Hyman et al., 2011; Sirota et al.,
2008; Womelsdorf et al., 2010). Langdon, Sharpe, Schoenbaum,
and Niv (2018) reviewed recent findings of the association of
dopaminergic prediction errors with model based learning and
hypothesized that the underlying system might be multiplex-
ing model-free scalar RPEs with model-based multi-dimensional
RPEs.

Although there have been numerous advancements in finding
neural correlates for model-free reinforcement learning (Delgado,
Nystrom, Fissell, Noll, & Fiez, 2000; Hare, O’Doherty, Camerer,
Schultz, & Rangel, 2008; Knutson & Gibbs, 2006), the last two
decades have witnessed research that bolsters evidence for the
existence of a model-based system especially in a combined set-
ting with the model-free learning system (Daw, Gershman, Sey-
mour, Dayan, & Dolan, 2011; Gläscher, Daw, Dayan, & O’Doherty,
2010b; Ito & Doya, 2011; Kool, Cushman, & Gershman, 2018; Seo
et al., 2009). Human neural systems are known to use information
from both model-free and model-based sources (Daw, Niv, &
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Dayan, 2005; Gläscher et al., 2010a; Pan, Sawa, Tsuda, Tsukada, &
Sakagami, 2008). Typical experiments involve a multi-staged de-
cision making task while simultaneously recording BOLD (blood-
oxygen-level-dependent) signals through fMRI. Results from these
experiments suggest strongly coupled decision making systems
(existence of reward prediction probability signals of both types
of information (Lau & Glimcher, 2008)) in the ventromedial pre-
frontal cortex (Daw et al., 2011; Tsutsui et al., 2016), ventral
striatum (Daw et al., 2011) and a model based behavior in the
lateral pre-frontal cortex (Daw et al., 2005; Dolan & Dayan, 2013;
Gläscher et al., 2010b) and anterior cingulate cortex (Akam &
Walton, 2021). Combined social information and reward history
can also be traced to the different regions of the anterior cingulate
cortex (Apps, Rushworth, & Chang, 2016).

Recently, the idea of successor representations (Dayan, 1993)
as been revived, especially in the context of how humans build
ognitive maps of the environment. The underlying idea be-
ind successor representations is to build a ‘predictive map’ of
tates of the environment in terms of future state occupancies.
ecent modeling work Russek et al. (2017) has re-confirmed
revious work on how successor representations might lie be-
ween model based and model free learning when compared
ver the spectrum of flexibility and efficiency. Gershman (2018)
xplains and summarizes recent literature on successor repre-
entations and its neural correlates. Akam and Walton (2021)
ecently proposed that successor representations are a key mod-
le in how model-based reinforcement learning systems are cou-
led with model-free reinforcement learning systems. Specifi-
ally, they proposed that future behaviors and RPEs are refined
y imagined (or offline) planning and successor type representa-
ions to be incorporated as and when necessary (during online
nteraction).

Humans are known to develop habits: fast decisions or action
equences over time (Dolan & Dayan, 2013). Habits have been
ssociated with model-free reinforcement learning, in particular,
s responses to stimuli i.e., forming an association between an ac-
ion and antecedent stimuli (Balleine & O’Doherty, 2010; Dezfouli
Balleine, 2012; Miller, Shenhav, & Ludvig, 2019). Additionally

t was also recently observed that in the context of habit de-
elopment for a set of individuals there was no involvement of
odel-based learning (Gillan, Otto, Phelps, & Daw, 2015).
The idea of building models is much more central and has a lot

f implications to other aspects of human intelligence including
ut not limited to structure learning and social intelligence. Lake
t al. (2017) suggest that human learning systems arbitrate to
radeoff between flexibility and speed.

.3. Distributional reinforcement learning

In classical temporal difference learning, as discussed earlier,
he value of a state is the expectation of cumulative future re-
ard. As shown by Eq. (4), this expectation is expressed as the
ean over future rewards. This measure is limited since it does
ot account for variance. Also, because the mean is a point esti-
ator, it cannot capture multimodal return distributions. Much

ecent work has been done on developing a distributional frame-
ork for RL that maintains a return distribution rather than a
ingle average value over future rewards (Bellemare et al., 2017).
he formulation of this idea, termed as distributional reinforce-
ent learning, replaces the value function V (st ) in the temporal
ifference update (Eq. (6)) with Z , the probability distribution of
eturns for state st .

t = Rt+1 + γ Z(st+1) − Z(st ) (11)

Z(st ) stores the probability of occurrence for each value of
eturn possible at s . Since it stores the complete distribution of
t
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Fig. 4. Comparison of distributional TD and classical TD RPEs. On each trial, the animal receives one of seven possible reward values, chosen at random. a. RPEs
roduced by classical and distributional TD simulations. Each horizontal line is one simulated neuron. Each color corresponds to a particular reward magnitude.
he x axis is the cells response when reward is received. In classical TD, all cells expected approximately the same RPE for a given reward signal. In contrast, in
istributional TD, the simulated neurons showed significantly different degrees of reward expectation. b. Responses recorded from light-identified dopamine neurons
n mice on the same task. A large variation in RPEs was observed between cells, which resembles distributional TD more than the classical TD simulation.
ource: Dabney et al. (2020).
eturn, the expected return (value function) is simply its expec-
ation.

(st ) = E [Z(st )] (12)

Additionally, learning the return distribution helps the agent
ccount for variance and capture multimodality. Its benefit can
e immediately seen when we consider the simple example of
one step task. Suppose there are three states A, B and C.

he agent starts at A and can choose to either go to B or C.
nknown to the agent: reward obtained at B is either +1 or −1
ith equal probability, while reward at C is always 0.5. Value

unctions learned using classical TD would learn that B and C are
quivalent since expected reward is equal. On the other hand,
alue functions learned using distributional TD would know that
is in fact much more ‘‘risky’’ than C.
Practically, it is difficult to assign probabilities to every pos-

ible return value in cases where the distribution is continuous.
o solve this issue, algorithms usually discretize (bin) the return
istribution with the number of bins tuned as a hyperparameter.
or example, the C51 model uses 51 bins to represent the return
istribution for Atari games (Bellemare et al., 2017).
Past work had provided evidence for distributional coding in

he brain for non-RL domains (Pouget et al., 2013). Moreover, dis-
ributional reinforcement learning had earlier been shown to be
iologically plausible (Dabney et al., 2018; Lammel et al., 2014).
ecently, Dabney et al. (2020) carried out single-unit recordings
f the ventral tegmental area (VTA) in mice and showed that for
given dopamine-based reward, different cells show different
eward Prediction Errors (RPEs). These RPEs can be either pos-
tive or negative which indicates that some cells are optimistic
.e., expect a larger reward than what is obtained, while others
re pessimistic and expect a lower reward. Each cell RPE here is
nalogous to a bin used in practical implementations of distribu-
ional RL, since the cell’s spiking activity represents expectation of
specific reward prediction error. Eq. (13) describes how the cell
PEs together form the Z distribution seen in the RL formulation.

δt1 = Rt+1 + γV1(st+1) − V1(st )
δt2 = Rt+1 + γV2(st+1) − V2(st )

...

tN = Rt+1 + γVN (st+1) − VN (st )
Z(st ) = {δt1, δt2, . . . δtN} (13)
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where n = 1 . . .N represent N neurons and δn is the RPE of
the nth neuron. All of these RPEs taken together form the Z
distribution we saw during the discussion on distributional RL.

Through extensive experiments, they compared the distribu-
tional coding with other models that attempt to explain RL in
neural circuits, and showed that distributional RL most accurately
predicts RPE reversal points and future rewards in the brain.
Fig. 4 shows plots comparing distributional TD and classical TD
on points obtained via single cell recording.

Unlike many of the RL algorithms we have seen so far, distri-
butional RL is one of the algorithms whose involvement in neural
circuits was identified after the idea was first independently
proposed in AI literature. Hence, it offers evidence that better
and more efficient computational models can potentially result
in advances in brain research.

4.4. Meta reinforcement learning

While modern deep reinforcement learning methods have
been able to achieve superhuman performance on a variety of
tasks, they are many orders less sample efficient than the average
human and possess weak inductive biases that deter transfer of
learned knowledge (Lake et al., 2017; Marcus, 2018).

One way to increase sample efficiency is to avoid learning
tasks from scratch each time and instead use previous learning
experiences to guide the current learning process. In machine
learning literature, this leveraging of past experience to speed up
learning of new tasks is called meta-learning (Schaul & Schmid-
huber, 2010). The original idea of ‘‘learning to learn’’ is often
attributed to Harlow’s 1949 work (Harlow, 1949) wherein a mon-
key was presented with two unseen objects, only one of which
contained a reward. The monkey was then made to pick one of
the objects after which the reward was revealed and the positions
of the objects possibly reversed. All of this constituted a single
trial. A given set of objects were used for a set of 6 trials before
switching them for different objects, observing 6 trials and so on.
The reward when tracked across several such rounds yielded an
interesting observation. As the monkey was exposed to more sets
of objects, the number of steps it needed to solve the problem
for a new object set decreased. Thus, the monkey demonstrated
capabilities of transferring knowledge between similar tasks. A
recent idea that has helped in modeling such behavior is the
hypothesis that underlying the fast learning problem of each
object set, there was a slow learning process that figured out the
problem dynamics and helped the monkey improve its sample

efficiency on related problems (Botvinick et al., 2019).
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Fig. 5. Comparison between meta RL’s (recurrent network) and Harlow’s experimental results. a. Inputs for simulation experiments showing fixation cross (top),
initial stimulus (middle), and outcome of saccade (bottom). b. Performance reward gathered during each trial of Harlow’s monkey experiment (Harlow, 1949). c.
Simulation performance at different phases of training. Performance improvement trend over time resembles Harlow’s results.
Source: Wang et al. (2018).
Very recently, this core idea has been applied to reinforcement
learning as meta RL to accelerate the learning process. Meta
RL can be formulated as a modified version of the classical RL
problem where the policy π (st ) now additionally depends on the
previous reward rt and action at−1, thus becoming π (st , at−1, rt ).
These additional dependencies allow the policy to internalize
dynamics of MDP. Recurrent networks when used as part of a
reinforcement learning algorithm for tasks similar to Harlow’s
yielded similar reward curves. This suggests that over a long
period of exposure to related tasks, RNNs are able to capture the
underlying activity dynamics due to their ability to memorize
sequential information (Duan et al., 2016; Wang et al., 2016)
(Fig. 5). Wang et al. (2018) also noticed that such meta-learning
methods formed a part of dopaminergic reward-based learning
in the prefrontal cortex of the brain. Much recent work on the
prefrontal cortex (PFC) suggests that humans do more than just
learning representations of expected reward. The PFC encodes
latent representations on recent rewards and choices, and some
sectors also encode the expected values of actions, objects, and
states (Barraclough et al., 2004; Kim & Shadlen, 1999; Padoa-
Schioppa & Assad, 2006; Rushworth & Behrens, 2008; Tsutsui
et al., 2016).

As an extension of meta RL, a set of recent computational
approaches combines episodic memory with meta RL which re-
sults in stronger inductive biases and higher sample efficiency.
Inspired from the observation that episodic memory circuits re-
instate patterns of activity in the cerebral cortex (Ritter et al.,
2018b), Ritter et al. (2018a) developed a framework for how such
episodic memory functions can strategically reuse information
about previously learned tasks and thereby improve learning
efficiency (Santoro et al., 2016; Wayne et al., 2018). This work also
evidences recent interactions between meta model-based control
and episodic memory in human learning (Vikbladh et al., 2017).
279
4.5. Causal reinforcement learning

The ability of humans to reason about cause and effect re-
lationships is not unknown. The field of causal inference and
reasoning looks at studying this paradigm in great detail. Pearl
in 2019 (Pearl, 2009) introduced a 3-level causal hierarchy which
he called the ‘‘causal ladder’’. The causal ladder consists of asso-
ciations, interventions and counterfactuals at the different levels
of the hierarchy. Or more simply: seeing, doing and imagining
respectively.

Much of supervised learning is at the first level i.e. learn-
ing associations from observed data. Reinforcement learning, in
contrast, simultaneously has an agent learning associations and
performing interventions in a world. Most model-free RL al-
gorithms learn observation action associations by performing
interventions in the environment. It is important to note here
that to learn from interventions, an agent does not necessarily
have to maintain a model of the world as long as it has ac-
cess to the world or a good model of it. Humans are known
to perform interventions to infer basic cause–effect relationships
of the world from a very young age. It has been shown that
children can learn to identify causal relationships in basic 3-
variable models by performing interventions (McCormack et al.,
2016; Sobel & Sommerville, 2010). What this means is that, in
their environments, children explore and perform interventions
freely to explore and understand the world.

The third level of the hierarchy, which consists of counter-
factuals (or imagining), usually requires an agent maintaining an
internal model of the world, using which it tries to imagine coun-
terfactual ‘what if?’ scenarios. Being able to construct intuitive

world models is a hallmark of human intelligence because it helps
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s in planning and reasoning among other aspects of our daily
nteractions. In particular, models encoding causal structure serve
s strong priors for planning and reasoning about tasks (Lake
t al., 2017). These causal models are especially helpful in con-
emplating scenarios for better planning i.e., reasoning through
ounterfactual actions and not necessarily taking the immedi-
tely rewarding action. A counterfactual scenario can be thought
f as a combination of observation and imagined interventions.
n formal terms of causal inference, with a structural causal
odel (SCM) of the environment, counterfactual scenarios can
e simulated. Recent works Buesing et al. (2018) and Oberst and
ontag (2019) focus on this by modeling the environment as a
tructural causal model. By building an SCM, it can be intervened
o take an action that was not originally taken and simulate coun-
erfactual experience. Compared to Vanilla model-based policy
earch, a counterfactual policy search has been shown to perform
etter (Buesing et al., 2018).
In an experiment involving Parkinson’s disease diagnosed pa-

ients, sub-second temporal resolution dopamine levels were
onitored through blood-oxygen-level-dependent (BOLD) imag-

ng to study the action of specific neurotransmitters (Kishida
t al., 2016). It was observed that the subsecond dopamine
luctuations encoded reward and counterfactual prediction er-
ors in superposition, paving the way for neural evidence of
ounterfactual outcomes. Much work on factual learning has
uggested that humans have a valence-induced bias towards
ositive prediction errors over negative prediction errors (Frank,
oustafa, Haughey, Curran, & Hutchison, 2007; Lefebvre, Lebre-

on, Meyniel, Bourgeois-Gironde, & Palminteri, 2017; Ouden et al.,
013). This means humans prefer outcomes that lead to higher
eward than expected than outcomes that lead to lower rewards
han expected. But as previously mentioned, an important sect
f human intelligence involves learning from foregone outcomes.
ecently, it was shown that humans have a bias towards negative
rediction errors rather than positive prediction errors during
ounterfactual learning (Palminteri et al., 2017). More generally,
his means that humans have a ‘‘confirmation bias’’ towards their
wn choices that guides learning than either positive or nega-
ive prediction errors. Recent evidence (Pischedda et al., 2020)
howed that counterfactual outcomes are encoded negatively
n the ventral medial prefrontal cortex and positively in the
orsal medial prefrontal cortex. Consistent with the previously
escribed findings, factual learning is encoded in the opposite
attern in both these regions (Klein, Ullsperger, & Jocham, 2017;
i & Daw, 2011). More generally, experimental findings sug-
ested that human learning behavior is significantly increased
hen complete information is presented (i.e., counterfactual out-
omes are presented). It has also been shown that neurons in
he lateral frontal polar cortex (lFPC), dorsomedial frontal cor-
ex (DMFC), and posteromedial cortex (PMC) encode reward-
ased evidence favoring the best counterfactual option at future
ecisions (Boorman et al., 2011).
Building internal models of the world allows humans to deal

ith partial observability on a daily basis (Gershman & Daw,
017). These internal models are grounded in concepts observed
hrough partitioning observations in a well-organized manner
.e. structure learning from observations, which allows them to
ake decisions under incomplete information. In the context of

einforcement learning, algorithms depend on a representation
f the environment and hence directly affect the algorithm’s
earning quality (efficiency and efficacy) (Gershman, Norman, &
iv, 2015). An important component of the structure learnt is
ausality. In other words, the learnt structure should be able to
apture the appropriate discrete causal structure underlying the
ontinuous world (Gershman & Niv, 2010). The ability of humans

o build a structure consisting of latent causes (i.e. hidden causes)
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from observations is remarkable yet not entirely understood and
allows them to perform inference over these latent causes to
reason (Gershman & Niv, 2012). Recent work in computational
modeling supports this by building a Bayesian non-parametric
prior over latent causes (Soto et al., 2014). The idea behind struc-
ture learning is central to human intelligence, even beyond the
context of reinforcement learning (Braun, Mehring, & Wolpert,
2010).

A standard modeling framework for building causal knowl-
edge of the world (artificial or real) requires first identifying
potential qualitative relationships (i.e., learning the structure of
variables) followed by estimating their strength (i.e., quantitative
cause–effect estimation). Analogously, humans tend to extract
relevant information to build high-level causal knowledge and
then improve the knowledge by estimating each cause’s quantita-
tive effect. As previously noted Lagnado, Waldmann, Hagmayer,
and Sloman (2007), much past research on causal learning and
reasoning has focused on quantitative estimation of cause–effect
relationships from pre-fixed variables (usually available through
a dataset). However, building qualitative causal relationships is
also important and foundational to recent work on ‘‘intuitive
theories’’ (Gerstenberg & Tenenbaum, 2017). As an example of
building qualitative causal relationships, there are cases where
we may know that two variables have a particular relationship
but we may not know the extent to which they are related and
which variable is causing the other. Building causal knowledge
of relevant high level variables bottom-up (e.g. from rich inputs
such as pixels) is a fairly challenging task. CausalWorld (Ahmed
et al., 2020), a recently proposed environment suite, involves
learning the causal structure of high level variables and should
enable research in this direction in the AI community. Artificial
environments also already allow the ability to intervene, which
is foundational to evaluating which causal structure might be
a better model of the world (Hagmayer, Sloman, Lagnado, &
Waldmann, 2007; Lagnado & Sloman, 2004).

There have been various theories behind the psychology of
causal induction, with the two most prominent being the causal
power theory (Cheng, 1997) and the ∆P model (Lober & Shanks,
000). These models address the question of how humans learn
he association between causes and effects. Although these mod-
ls have been quite widely argued and debated over, they fail to
ccount for formal definitions in terms of graphical models, an
dea central to modern ideas in causality (Pearl, 2009). Recently,
enenbaum and Griffiths (2001) postulated that performing infer-
nces over learned causal structures is a central human tendency
nd in an attempt to bridge the psychology, computer science
nd philosophy literatures proposed Bayesian Causal Support and
he χ2 model. Both these models extend the original causal
ower theory model and the ∆P model by incorporating Bayesian
nference which works on graphical models rather than simple
arameter estimation.

.6. Hierarchical reinforcement learning

General RL algorithms scale poorly with the size of state
pace due to difficulty in exploration and effects of catastrophic
orgetting that arise in larger task domains. In order to solve this
roblem also known as the scaling problem, a popular com-
utational framework known as temporal abstraction (Barto &
ahadevan, 2003; Dietterich, 2000; Parr & Russell, 1998; Sutton
t al., 1999b) was developed, which suggested learning tempo-
ally extended actions that were composed of primitive actions.
common way in which these temporally extended actions

re implemented is through the options (Sutton et al., 1999b)
ramework. Options are actions that span more than a single
tate and consist of multiple primitive actions. For example, the
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ption ‘‘walk towards the door’’ would be composed of several
rimitive actions including motor movements and maintaining
alance. Mathematically, the simplest form of options is formu-
ated as a triplet (π, β, I) where π is the policy, β(t) ∈ [0, 1]
is the termination condition i.e. the probability that the option
terminates at the current state, and I is the initiation set of states,
which determines if the option can be chosen at the current state.

Hierarchical reinforcement learning combines temporally ex-
tended actions to maximize reward on goal-directed tasks. In
psychology, hierarchy has played a significant role in explain-
ing goal-directed behavior (Anderson et al., 2004; Botvinick &
Plaut, 2004; Lashley, 1951; Miller et al., 2017; Newell et al.,
1959; Schneider & Logan, 2006; Zacks et al., 2007). Even in neu-
roscience, existing literature accounts for the prefrontal cortex
being largely responsible for hierarchical behavior (Badre, 2008;
Botvinick, 2008; Courtney et al., 2007; Fuster, 1989; Koechlin
et al., 2003). Thus, even though HRL was not developed to answer
questions in psychology and neuroscience, it addresses an issue
with standard RL methods which might also be prevalent in the
brain.

Early work in psychology had also postulated the presence
of hierarchy in human behavior. That determining the sequence
of primitive actions requires higher-level representations of task
context, was first formalized by Lashley in 1951 (Lashley, 1951).
The concept of task representation (Cohen et al., 1990; Cooper
& Shallice, 2000; Monsell, 2003) is very similar to the option
construct (discussed earlier) that was developed in reinforcement
learning literature. Empirical evidence that human mental repre-
sentations are organized hierarchically was also found (Newtson
et al., 1976; Zacks & Tversky, 2001). Hierarchy has also been
observed in the behavior of children through their childhood.
Children learn elementary skills which are gradually integrated
into more complex skills and knowledge as they grow (Bruner,
1973; Fischer, 1980; Greenfield et al., 1972).

The strongest resemblance to HRL is found in the production-
system based theories of cognition, especially ACT-R (Anderson
et al., 2004) and Soar (Lehman, Laird, & Rosenbloom, 1996).
These frameworks propose that the solution to a problem can
make use of shorter action sequences called ‘‘chunks". Given a
problem, high-level decisions can be used to trigger these chunks.
Though these frameworks are similar to HRL in many regards,
they differ in the aspect of not being based around a single reward
maximization objective.

Thus, HRL shares attributes with multiple theories in behav-
ioral psychology. However, ideas in psychology go even beyond
the positive transfer problem that we have until now discussed
i.e., sequencing temporally abstracted actions to develop goal-
directed policies; and discuss downsides of hierarchical learning
in humans. Luchins in 1942 (Luchins, 1942) introduced the nega-
tive transfer problem; that pre-existing knowledge with context
differing from the current problem can hinder problem-solving in
human subjects. Surprisingly, HRL aligns with behavioral theories
even in these downsides. A direct analog to the negative transfer
problem has been observed in HRL (Botvinick et al., 2009).

As a natural extension to the above-discussed work that pro-
vides strong evidence for the hierarchical nature of human behav-
ior, recent neuroscience research has delved deeper into neural
correlates for hierarchy. Ribas-Fernandes et al. (2011) showed for
the first time that the medial PFC processes subgoal-related RPEs.
This was followed by further study on the nature of these RPEs,
which showed that subgoal-related RPEs are unsigned (Ribas-
Fernandes et al., 2019). These results reinforce recent evidence
that RPEs for different task levels are induced as separable signals
in the basal ganglia (Diuk, Tsai, Wallis, Botvinick, & Niv, 2013).
Balaguer et al. (2016) extend these studies to hierarchical plan-
ning, by reporting that neural signals in the dmPFC encode the
cost of representing hierarchical plans.
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Amajor challenge in hierarchical RL has been option discovery,
that is, how to form chunks of ‘reusable’ actions from primitive
ones. One approach to option discovery is to keep a record of
states that occur frequently on paths to goals and label them
as subgoals or bottleneck states that a good solution must pass
through (Mcgovern, 2002; Pickett & Barto, 2002; Schwartz &
Thrun, 1995). This bottleneck theory is also consistent with work
that shows that humans are sensitive to repeating sequences of
events. Another approach to option discovery from HRL literature
is to construct a graph of states and all the transitions possi-
ble. Then, graph partitioning can be used to identify bottleneck
states which can be used as subgoals during the learning pro-
cess (Şimşek et al., 2005; Mannor et al., 2004; Menache et al.,
2002). Existing work in psychology provides empirical evidence
that children identify causal representations that they then in-
tegrate into a large causal model (Gopnik et al., 2004; Gopnik
& Schulz, 2004; Sommerville & Woodward, 2005a, 2005b). More
recent work in HRL uses task agnostic approaches to discover
options, by using intrinsic rewards for exploration (Barto et al.,
2004; Singh et al., 2004). Existing neuroscience literature also
provides evidence for something similar to this notion of intrinsic
reward driven learning. It has been found that the same dopamin-
ergic neurons that code reward prediction errors also respond
to novel stimuli (Bunzeck & Düzel, 2006; Redgrave & Gurney,
2006; Schultz et al., 1993). In psychology, intrinsic rewards are
strongly tied to ideas of motivation which like their RL coun-
terpart, depend on the animal’s action as well as current state.
For example, a rabbit in a state of hunger is more motivated to
obtain a food reward. Despite the similarity, RL algorithms still
do not capture the correlation between strength/vigor of actions
and motivation (which is seen in animals) (Skinner, 1988), since
simple environments commonly used in RL do not allow the
agent to control the rate at which actions are performed.

A parallel line of research tries to approach the problem of
hierarchy discovery, by building computational models of how
the brain might do so. Solway et al. (2014) developed a Bayesian
model selection approach to identify optimal hierarchies. Struc-
ture discovered using this approach explains various behavioral
effects like bottleneck states, transitions and hierarchical plan-
ning. Tomov et al. (2020) extended this approach by proposing
a Bayesian model that additionally captures uncertainty-based
learning and reward generalization, both of which were unex-
plained by previous models (Schapiro et al., 2013; Solway et al.,
2014).

5. Discussion

Reinforcement learning’s emergence as a state-of-the-art ma-
chine learning framework and concurrently, its promising ability
to model several aspects of biological learning and decision mak-
ing, have enabled research at the intersection of reinforcement
learning, neuroscience and psychology. Through this review, we
have attempted to comprehensively illustrate the various classes
of RL methods and validation of these methods in brain science
literature. Table 1 summarizes all the findings discussed in the
paper and provides a mapping between RL concepts and evidence
corresponding to them in neuroscience and psychology.

As detailed in earlier sections, findings in brain science have
played an important role in inspiring new reinforcement learning
ideas such as value functions, eligibility traces, TD learning, meta
RL and hierarchical RL. Given this success, we now discuss some
ways in which existing work in brain science could potentially
further influence reinforcement learning research.

• Distinct rewards: In the brain, distinct rewards condition
behavior for a single decision, and each reward might be

encoded by different brain regions (Cai et al., 2011; Kim
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Fig. 6. Comparison of humans with state of the art deep reinforcement
learning methods on the Atari game ‘Frostbite’. The best Deep RL agent,
QN++ takes significantly more time (∼400 h) than humans to achieve similar
erformance. Other agents (DQN and DQN+) fail to match performance even
fter a large amount of experience.
ource: Lake et al. (2017).

et al., 2008; Murdoch et al., 2018; Padoa-Schioppa & Assad,
2006; Pastor-Bernier & Cisek, 2011; Seo et al., 2009; So &
Stuphorn, 2010; Tremblay & Schultz, 1999; Wallis & Miller,
2003). Rewards in modern deep RL algorithms always up-
date all parameters in the network, which is inefficient and
could potentially impact learning in cases where objectives
desired by two or more reward signals conflict.

• Action eligibility traces: Neurons in the orbitofrontal cortex
are believed to encode relationships between actions and
their corresponding outcomes (Barraclough et al., 2004; Kim
et al., 2009; Seo et al., 2009; Sul et al., 2010). RL algorithms
predominantly use only state eligibility traces, which is suf-
ficient when the same actions are available at every state.
However, in real-world cases where different states allow
different sets of actions, a trace for actions might be useful.

• ‘Imagination’ replay: Experience replay in deep RL models
tend to replay past-experienced sequences of states in the
order in which they occurred (Mnih et al., 2015; Schaul et al.,
2016). Recent observations in neuroscience suggest that hip-
pocampal replay might replay states based on the expected
sequence according to an internal world model (Liu et al.,
2019). This event-based replay is currently unexplored in RL
literature.

• Action vigor: Work on the role of motivation in animal
behavior observes a strong correlation between motivation
and action vigor (Skinner, 1988). Though modern RL al-
gorithms do model motivation using intrinsic motivation
and curiosity (Barto et al., 2004; Singh et al., 2004), most
RL environments do not allow agents to adjust the rate at
which actions are applied. This currently prevents poten-
tially interesting analysis on vigor, caution and motivation
in RL agent behavior.

• Grounded language learning: Language plays an important
role in many aspects of human learning such as exploration
and forming internal representations. Recent work in com-
putational linguistics also emphasizes the role of pragmatic
communication in human representation learning (Cohn-
Gordon, Goodman, & Potts, 2019). Recent work in RL has
embraced language and has made strides towards propos-
ing algorithms and challenges that present language as an
important tool for learning (Colas et al., 2020; Narasimhan,
Barzilay, & Jaakkola, 2018).
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• Social learning: A key aspect of human learning is our
ability to learn via social interaction. Theory of Mind (TOM)
(Premack & Woodruff, 1978) involves the ability to under-
stand others by attributing mental beliefs, intents, desires,
emotions, and knowledge to them. Recent studies show
that neural signals carry social information, as reviewed
comprehensively by Insel and Fernald (2004). Social situa-
tions are much more complex which may not be completely
expressible from a single reward value.

• Modularity: The human brain is known to be very modular
in nature. Specific regions specialize in specific roles such
as the occipital lobe deals primarily with vision signals, the
temporal lobe deals primarily with auditory signals, etc.
Modularity makes learning systems flexible, adaptable and
allow quick transfer of decision making knowledge allowing
humans to be versatile at learning. Although work exists on
modular reinforcement Learning (Simpkins & Isbell, 2019;
Sprague & Ballard, 2003), most current RL algorithms and
computational models lack modularity and are unable to
adapt to new tasks, domains, etc quickly, as there is a lack
of formalism guiding the definition and use of modularity.
It is a core component for both our internal world models
as well as in sequential decision making (Fodor, 1983). In
the former case, modularity leads to building parts that may
specialize in a domain, for instance, processing a partic-
ular type of sensory signal. In the latter case, modularity
results in efficient adaptation to new tasks, domains, etc.
Recently, Chang, Kaushik, Griffiths, and Levine (2021) built
principles for modular decision making in the model-free
setting by establishing principles to identify credit assign-
ment algorithms which allow independent modification of
components.

Leveraging and implementing ideas from neuroscience and
psychology for RL could also potentially help address the impor-
tant issues of sample efficiency and exploration in modern-day
algorithms. Humans can learn new tasks with very little data
(Fig. 6). Moreover, they can perform variations of a learned task
(with different goals, handicaps etc.) without having to re-learn
from scratch (Lake et al., 2017; Tsividis et al., 2017). Unlike
deep RL models, humans form rich, generalizable representations
which are transferable across tasks. Principles such as compo-
sitionality, causality, intuitive physics and intuitive psychology
have been observed in human learning behavior, which if repli-
cated or modeled in RL, could produce large gains in sample
efficiency and robustness (Lake et al., 2017).

Studies in neuroscience and psychology have also been moti-
vated by ideas originally developed in RL literature. For instance,
the temporal difference model made several important predic-
tions about classical conditioning in animals (Sutton & Barto,
1981, 1990), some of which were verified experimentally only
later (Kehoe et al., 1987). Studies into the possibility of distribu-
tional coding in the brain (Dabney et al., 2020) were motivated by
the distributional TD model developed a few years before (Belle-
mare et al., 2017). Another example is meta reinforcement learn-
ing which according to Wang et al. (2018) was first observed as
an emergent phenomenon in recurrent networks trained using an
RL algorithm, which inspired research into the possibility of the
prefrontal cortex encoding similar behavior. All of these examples
suggest that reinforcement learning is a promising model for
learning in the brain and therefore that experimenting with RL
models could yield predictions that motivate future research in
neuroscience and psychology.
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