© N O O A~ W N =

N o o~ W N = O ©

19
20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35

TimeSeriesExamAgent: Creating TimeSeries
Reasoning Benchmarks at Scale

Anonymous Author(s)
Affiliation
Address

email

Abstract

We introduce TimeSeriesExamAgent, a scalable and domain-agnostic framework
for automatically generating and validating time series reasoning benchmarks.
Existing benchmarks lack scalability, are limited to a few specific domains, while
building them remains labor intensive. Automated solutions for benchmark creation
have been proposed, but these typically rely on a single-step generation process
without verification, leading to lower-quality exams. Our framework addresses
these limitations by enabling domain experts to easily create high-quality, domain-
specific exams from their own datasets. A domain expert provides a dataset, a
natural language description, and a simple data-loading method. The agent then or-
chestrates the generation pipeline, including creating question templates, robustness
verification from multiple perspectives, and iterative refinement. We demonstrate
the framework on three datasets from two diverse domains— healthcare and finance;
and evaluate multiple state-of-the-art language models on the exams generated
by TimeSeriesExamAgent. Empirically, we demonstrate that the framework pro-
duces domain-agnostic benchmarks whose diversity matches human-generated
counterparts, and our evaluation of several Large Language Models shows that
accuracy remains limited, underscoring open challenges in time-series reasoning.

1 Introduction

Many recent works have applied Large Language Models (LLMs) to time series analysis tasks such
as forecasting, anomaly detection, and classification [1} [2, 3, 4, 15| |6]. More recently, attention has
shifted to evaluating the reasoning capabilities of LLMs in time series tasks. These evaluations are
typically framed in two ways: 1) contextualized traditional tasks such as forecasting, but with added
contextual information (e.g., providing a clinical scenario before a prediction) [[7} 8} 9} 10, [11]], and 2)
reasoning and understanding tasks that directly probe concepts in time series (e.g., “what kind of
trend does the following series exhibit?”) [[12} [13]].

However, existing benchmarks have clear limitations. Contextualized tasks remain close to tradi-
tional metrics (e.g., mean-squared-error for forecasting) without testing deeper reasoning, while
reasoning-style benchmarks often focus only on simple properties like trend or seasonality. In
practice, real-world domains such as healthcare require more complex reasoning, where tasks like
diagnosis naturally combine anomaly detection, classification, and domain knowledge. Curation is
another challenge. Annotation or template-based benchmarks are labor-intensive, while LLM-based
augmentation often lacks diversity because it simply expands existing datasets. As a result, building
specialized, domain-specific benchmarks remains difficult and time-consuming.

Inspired by other domains, recent works have begun to use agents to automate benchmark construction
and have shown promising results [[14} [15]. In this work, we propose TimeSeriesExam Agent, a

Under review at the NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT?S).
Do not distribute.

36
a7
38
39
40

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

pipeline that 1) generates domain-specific multiple-choice questions on time series data, 2) scales
efficiently, and 3) ensures reliable ground truth. We also evaluate 4 state-of-the-art LLMs on a
benchmark of 531 questions. Our results show that 1) different models perform well in different
domains of questions, and 2) all models struggle with highly complex questions that require combining
domain knowledge with reasoning. For brevity, we provide detailed related work in Appendix [A]

2 TimeSeriesExamAgent

Lmer
o= ll Example templates
| e |

gﬁ Generator LLM
@1 Concept LLM [gg@l ¢ Student LLM] cee [g\%@l 1 Student LLM]

Figure 1: TimeSeriesExamAgent architecture. The user provides exam-making instructions and a
custom dataset with minimal loading code. Agent outputs question templates — Python functions
generated by a generator LLM and filtered through three progressive stages of verification (syntax
and output format check, validation by LLM judge, capability-aligned filtering). Arrows denote data
flow, red ones show direction for rejected templates.

S Structure check

(+ Dataset + Loading __|
HES

class

Domain experts are often interested in assessing LLMs on specialized reasoning capabilities rather
than on broad, preexisting benchmarks (e.g., evaluating anomaly detection in ECG data ver-
sus generic healthcare reasoning). To this end, they typically possess domain-specific datasets
and wish to construct benchmarks that reflect the reasoning challenges within these datasets.
However, building such benchmarks manually is labor-intensive. To address this challenge,
we propose TimeSeriesExamAgent, a multi-agent framework that combines planning, genera-
tion, and verification to enable automatic benchmark construction. In this section, we describe
TimeSeriesExamAgent and its workflow in detail. An overview is shown in Fig.[l| The Generation
Agent takes as input a description of the natural language task 7" and a data set D. The description
T may include user guidelines for generation, contextual information about the dataset, or other
relevant instructions. For convenience, we denote each sample in D as (z;, z;), where x; € R™*d ig
a time series with n observations and d variables, and z; is an auxiliary array containing metadata or
labels related to the series. The user provides a dataset class D that supports basic operations such as
querying the ¢-th sample.

Generation We generate question templates instead of samples directly, as shown in Fig.[2] Tem-
plates offer two advantages: they are scalable, and their abstraction adds an extra layer of robustness.
By relying on structured, rule-based generation rather than manual inputs, they reduce the chance of
human errors or inconsistencies. Our generator LLM produces a predefined number of templates,
each implemented as a Python function. A template contains a formatted string for the question and
options, together with parameters that control how many questions to generate. For each question, the
template samples a pair (x;, ;) from the dataset D and applies a rule-based calculation to determine
the correct answer from the time series. For example, in a trend-detection template, the function
computes the linear trend coefficient of x; and selects “Yes, there is a linear trend” if the coefficient
exceeds a specified threshold. In addition to such signal-derived logic, templates can also utilize the
auxiliary property z;, effectively transforming classification problems into question—answer form.
For instance, if an ECG series in the dataset is labeled as exhibiting atrial fibrillation, the template
can present this label as one of the multiple-choice options. Each generated sample consists of
the question, its options, the correct answer, and one or more associated time series represented as
numerical values. We provide a breakdown of the Generation Agent and its prompt in Appendix
An example template is also provided.

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91

92
93
94
95
96
97
98

99
100
101
102
103
104
105
106

107

108
109
110
111

Verification We observe

that LLM-based generation Input Template Sampled question

RN
frequent]y prOduces err_ors . or &e*/ def question(num_samples:int) -> What kind of AV
irrelevant outputs, motivating List[QAPair]: conduction

. L L abnormality is

the I.]eed fOr a StruCtured ver @ # Question and option definition presnet in this rec?
ﬁCatlon pI‘OCGSS. We propose a —3 # Requierments for time series —
multistage verification process ("Daraset Handier) # Finding records in dataset 2; g;m
tO CheCk the aCCuraCy and * getDataframe() # len(qa_pairs_list) = num_samples

+ query(id)
relevance of each template. If a return qa_pairs_list ‘A L l L

. o, . vl i AN

template fails at any stage, it is —

returned to the generation agent

with feedback. The generation Figure 2: Question generation process: With information about
is iterative with a maximum of dataset, TimeSeriesAgent generates question template in a form
three attempts, after which the of Python functions. The created function can be called to get
ongoing template is discarded to arbitrary number of question samples.

avoid excessive context length

and cost from repeated failures.

Structure verification We check whether the generated template can be executed successfully. We
execute the generated template k = 5 times; if there are failures, the error message is returned as a
feedback.

Content verification Certain aspects of quality control are particularly well-suited for LLM-as-a-
judge evaluation. For example, verifying that a question is grammatically correct, free of ambiguity
or bias, and genuinely answerable from the accompanying time series can be effectively handled by
an LLM. To this end, we use an LLM verifier to assess the validty of each template. A quantitative
score is given, and we set a threshold for rejection. If the verifier raises any rejection, its explanation
is treated similarly to a structural error and the template is regenerated. We provide the detailed
prompt in Appendix [C|

Capability-Aligned Filtering To detect templates that generate overly simple or irrelevant exams,
we evaluate them using a set of test-taking LLMs with varying capabilities. This approach is inspired
by educational theory, particularly the expertise reversal effect [16]. A template is discarded if
weaker LLMs achieve higher average accuracy than stronger models, as this typically indicates
that the template is flawed or noisy rather than genuinely discriminative. Templates are retained if
performance scales with model capability— or if all models perform poorly, since such questions
may still capture genuine difficulty. We provide hyper-parameters in Appendix |F|and other design
specifics in Appendix

3 Experimental Setup, Results and Discussion

First, we generate one exam for each of the three real world datasets: PTB-XL [17], MIT-BIH [18]],
and yahoo finance stock dataset [19]. In total, we have 183 samples for YFinance, 197 samples
for MIT-BIH, and 151 samples for PTB-XL. We sample 4 or 5 instances per template. Thus, the
difference in the number of generated samples is a result of the template filtering mechanism above.

Dataset
Model | MIT-BIH PTB-XL YFinance | Average

gpt-4o [20] 0.416 0.424 0.579 0.475

03-mini [21]] 0.442 0.477 0.612 0.510
Qwen2.5-VL-Instruct [22] 0.411 0.490 0.563 0.486
Gemma-3-27b-it [23] 0.497 0.517 0.574 0.529

Table 1: Comparative performance of four vision—language models across medical (MIT-BIH, PTB-
XL) and financial (YFinance) time-series datasets. The results highlight dataset-specific strengths
and reveal Gemma-3-27B as the most consistent performer overall. Nonetheless, all models achieve
less than 55 mean accuracy, underscoring the difficulty of time-series reasoning for current VLMs.
The evaluation protocol is provided in Appendix [g

112
113
114
115
116
117

118
119
120
121
122
123
124

125
126
127
128

129
130
131
132

133

134
135
136

137
138
139

140
141
142
143
144
145
146

We select candidate models to cover a diverse range of performance levels, as indicated by the
OpenVLM Leaderboard [24]. In Table |1, we find that while reasoning-oriented models such as
03-mini perform well on finance-related questions, their performance is weaker on healthcare bench-
marks. This contrast could suggest that the general reasoning ability does not always transfer across
domains, particularly when tasks require domain-specific expertise or fine-grained interpretation of
physiological signals.

To further evaluate our benchmark, we compare multiple metrics on questions generated from
the dataset with those in ECG-QA [10]], a template-based benchmark also built on PTB-XL. The
goal is to demonstrate that our framework achieves comparable diversity without requiring manual
template curation. We picked random 50 question samples from each benchmark and calculated the
distances for every possible pair within the set. We used the Qwen/Qwen3-Embedding-8B sentence
transformer model to extract embeddings, as it achieved the second-best performance among all
models on the Hugging Face MTEB leaderboard.

Mean + Std
Benchmark Dataset Embedding Normalized Levenshtein
ECG-QA 0.207 £ 0.079 0.519 £ 0.157
TimeSeriesExamAgent (ours) | 0.287 4 0.069 0.542 + 0.040

Table 2: Question diversity comparison using embedding and normalized Levenshtein distance.

As shown in Table 2] benchmark generated by our framework shows a diversity comparable to one
developed by humans. This indicates that the proposed framework is able to capture a wide range of
expressions without relying on handcrafted templates, supporting its scalability and adaptability to
other domains.

We also employed G-Eval, a probabilistic LLM-as-a-judge framework [25]. An LLM is used to
evaluate the relevance of each question, assigning a score between 0 and 1 to indicate how well it
meets the specified criteria. Results are presented in Table|3] We provide the detailed G-Eval prompt
in Appendix [E]

Mean Result
Dataset Specificity Unambiguity Domain Relevance Answerability
ECG-QA 0.604 0.562 0.827 0.898
TimeSeriesExamAgent (ours) 0.964 0.989 1.000 0.993

Table 3: Question diversity comparison using G-Eval framework.

4 Limitations and Conclusions

In this work, we present a scalable, domain-specific framework for the automatic generation of
time-series benchmarks, enabling the creation of high-quality, large-scale evaluation datasets while
minimizing the need for labor-intensive human annotation.

A limitation of this study is that the quality of the generated exams depends on the quality and
coverage of the time series dataset. Additionally, domain specialists must provide carefully crafted
prompts.

For future work, we will explore human-in-the-loop improvements to template generation. In offline
sessions with clinicians, we observed that exams produced with such feedback are more likely to be
deemed valid. We also plan to validate exam quality by training time series—text alignment models
and testing their transfer performance on other established reasoning benchmarks [8]]. Finally, there
is growing attention on building time series agentic frameworks [26}27]. Enabling these frameworks
to write code in order to answer our benchmark questions would provide valuable insights to the
community.

147

148
149
150
151

152
153
154

155

157

158
159
160

161
162
163

164
165

166
167

169
170
171

172
173
174
175

176
177
178

179

181
182

183
184

185
186
187

188
189
190

191
192
193

References

(1]

(2]

(3]

[4

—_

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham
Kapoor, et al. Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815,
2024.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885,
2024.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu.
Tempo: Prompt-based generative pre-trained transformer for time series forecasting. arXiv
preprint arXiv:2310.04948, 2023.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu
Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by
reprogramming large language models. arXiv preprint arXiv:2310.01728, 2023.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series
analysis by pretrained Im. Advances in neural information processing systems, 36:43322-43355,
2023.

Nina Zukowska, Mononito Goswami, Michat Wilifiski, Willa Potosnak, and Artur Dubrawski.
Towards long-context time series foundation models. arXiv preprint arXiv:2409.13530, 2024.

Jialin Chen, Aosong Feng, Ziyu Zhao, Juan Garza, Gaukhar Nurbek, Cheng Qin, Ali Maatouk,
Leandros Tassiulas, Yifeng Gao, and Rex Ying. Mtbench: A multimodal time series benchmark
for temporal reasoning and question answering. arXiv preprint arXiv:2503.16858, 2025.

Yaxuan Kong, Yiyuan Yang, Yoontae Hwang, Wenjie Du, Stefan Zohren, Zhangyang Wang,
Ming Jin, and Qingsong Wen. Time-mqa: Time series multi-task question answering with
context enhancement. arXiv preprint arXiv:2503.01875, 2025.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Prabhakar Kamarthi,
Aditya Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, et al. Time-mmd:
Multi-domain multimodal dataset for time series analysis. Advances in Neural Information
Processing Systems, 37:77888-77933, 2024.

Jungwoo Oh, Gyubok Lee, Seongsu Bae, Joon-myoung Kwon, and Edward Choi. Ecg-qa: A
comprehensive question answering dataset combined with electrocardiogram. Advances in
Neural Information Processing Systems, 36:66277-66288, 2023.

Xu Wang, Jiaju Kang, Puyu Han, Yubao Zhao, Qian Liu, Liwenfei He, Lingqgiong Zhang,
Lingyun Dai, Yongcheng Wang, and Jie Tao. Ecg-expert-qa: A benchmark for evaluating
medical large language models in heart disease diagnosis. arXiv preprint arXiv:2502.17475,
2025.

Yifu Cai, Arjun Choudhry, Mononito Goswami, and Artur Dubrawski. Timeseriesexam: A time
series understanding exam. arXiv preprint arXiv:2410.14752, 2024.

Willa Potosnak, Cristian Challu, Mononito Goswami, Kin G. Olivares, Michal Wilinski, Nina
Zukowska, and Artur Dubrawski. Investigating compositional reasoning in time series founda-
tion models, 2025.

Natasha Butt, Varun Chandrasekaran, Neel Joshi, Besmira Nushi, and Vidhisha Balachan-

dran. Benchagents: Automated benchmark creation with agent interaction. arXiv preprint
arXiv:2410.22584, 2024.

Gauthier Guinet, Behrooz Omidvar-Tehrani, Anoop Deoras, and Laurent Callot. Automated
evaluation of retrieval-augmented language models with task-specific exam generation. arXiv
preprint arXiv:2405.13622, 2024.

194
195

197
198

199
200

201
202

204

211

213
214
215

216
217
218
219

220
221
222

223
224
225

234

240

[16] Slava Kalyuga. Expertise reversal effect and its implications for learner-tailored instruction.
Educational psychology review, 19(4):509-539, 2007.

[17] Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze,
Wojciech Samek, and Tobias Schaeffter. Ptb-xl, a large publicly available electrocardiography
dataset. Scientific data, 7(1):1-15, 2020.

[18] George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. IEEE
engineering in medicine and biology magazine, 20(3):45-50, 2001.

[19] Ranan Roussi. yfinance: Yahoo! finance market data downloader. https://github. com/
ranaroussi/yfinance, 2017. Accessed: 2025-08-22.

[20] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-40 system card. arXiv
preprint arXiv:2410.21276, 2024.

[21] OpenAl Openai 03-mini system card. https://openai.com/index/
03-mini-system-card/, January 2025. Accessed: 2025-08-22.

[22] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
arXiv preprint arXiv:2502.13923, 2025.

[23] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma
3 technical report. arXiv preprint arXiv:2503.19786, 2025.

[24] Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating
large multi-modality models. In Proceedings of the 32nd ACM International Conference on
Multimedia, pages 11198-11201, 2024.

[25] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval:
Nlg evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634,
2023.

[26] Yifu Cai, Xinyu Li, Mononito Goswami, Michat Wiliiski, Gus Welter, and Artur Dubrawski.
Timeseriesgym: A scalable benchmark for (time series) machine learning engineering agents.
arXiv preprint arXiv:2505.13291, 2025.

[27] Wen Ye, Wei Yang, Defu Cao, Yizhou Zhang, Lumingyuan Tang, Jie Cai, and Yan Liu. Domain-
oriented time series inference agents for reasoning and automated analysis. arXiv preprint
arXiv:2410.04047, 2024.

[28] Yilin Wang, Peixuan Lei, Jie Song, Yuzhe Hao, Tao Chen, Yuxuan Zhang, Lei Jia, Yuanxiang
Li, and Zhongyu Wei. Itformer: Bridging time series and natural language for multi-modal qa
with large-scale multitask dataset. arXiv preprint arXiv:2506.20093, 2025.

[29] Wanying Wang, Zeyu Ma, Pengfei Liu, and Mingang Chen. Testagent: A framework for domain-
adaptive evaluation of 1lms via dynamic benchmark construction and exploratory interaction.
arXiv preprint arXiv:2410.11507, 2024.

[30] Mike A Merrill, Mingtian Tan, Vinayak Gupta, Tom Hartvigsen, and Tim Althoff. Language
models still struggle to zero-shot reason about time series. arXiv preprint arXiv:2404.11757,
2024.

[31] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

https://github.com/ranaroussi/yfinance
https://github.com/ranaroussi/yfinance
https://github.com/ranaroussi/yfinance
https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/

241
242
243
244

245
246
247

248
249

250
251

252
253

254
255
256

257

258
259

261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276

[32] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in neural information processing
systems, 33:9459-9474, 2020.

[33] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

[34] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020.

[35] Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens,
2024.

[36] Qingyue Wang, Yanhe Fu, Yanan Cao, Shuai Wang, Zhiliang Tian, and Liang Ding. Recursively
summarizing enables long-term dialogue memory in large language models, 2025.

[37] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

A Related Work

Time series benchmarks The task of creating domain-specific time series reasoning benchmarks
is challenging. Existing benchmarks are either domain-agnostic, or limited to a specific domains
with high quality datasets. For example, TimeSeriesExam [12] introduced over 700 multiple-choice
questions to evaluate five general reasoning skills, but its questions primarily assess signal properties
(e.g. trend, cyclicity, stationarity) and lack the contextual depth needed for real-world applications.
Domain-specific benchmarks address this gap but have limited scope and poor extensibility, since
their curation often relies on templates. For instance, ECG-QA [10] and ECG-Expert-QA [11] focus
on ECG interpretation, while EngineMT-QA [28]] targets industrial settings. Automatic benchmark
generation offers a scalable alternative but raises concerns about quality and diversity of generated
questions. Without extensive verification, LLM-generated questions often require heavy manual
curation [8 [9], which is both difficult and time-consuming—undermining the main advantage of
automation.

Title | Multi-Domain Curation # Samples SKill type
| Fully Automatic P R PS
Time-MQA [8] v v 200,000 v v X
TimeSeriesExam [12] X X 763 v / X
Time-MMD [9] v X 17,113 v X X
MT-Bench [7] v X 22,000 v v X
ECG-QA [10] X X 414,348 v v v
TimeSeriesExamAgent (ours) v v 600+ v / v

Table 4: Overview of time series and multimodal datasets with curation and skill types (P — Prediction,
R — Reasoning, P — Practical skills. TimeSeriesExamAgent is universal — tailored to user’s needs and
with advanced automatic verifications.

Agents for benchmark creation An Al agent is an autonomous system that can observe its
environment, reason about possible actions, and act toward achieving a goal. In LLM-based settings,
the language model often provides the reasoning or planning layer that guides the agent’s decisions.
Recent work has shown success in using agents for automatic benchmark creation. Most solutions
adopt a multi-agent pipeline with planning, generation, validation, and evaluation modules [14]].
For instance, [29] integrates exploratory evaluation using reinforcement learning, while [[14] takes
a natural language task description as input. However, most of these approaches are not tailored to

277
278

279

280
281

282
283

284
285

286

287
288

289

290

291
292

293
294

295
296

297

298
299
300
301
302
303
304
305
306

308
309
310
311
312
313
314
315
316
317

318

319
320
321
322

time series and struggle to generate questions conditioned on numeric data. One recent solution does
incorporate time series but is limited to single-step design and lacks extensive verification [30].

B Generation Agent Workflow

We rely on two stages of generation for the templates: planning and generating, inspired by the
chain-of-thought (CoT) prompting[31]].

Generation planning To provide a relevant and diverse set of templates, we rely on a comprehensive
list of domain-specific concepts. There are several ways our pipeline generates a list of concepts:

1. LLM generation: User guidelines and dataset descriptions are provided as input to an LLM,
which proposes the concepts.
2. Web Search: We provide the option for generator LLM obtain concepts through web search.

3. Retrieval Augmented Generation: As an option, the user could also provide a relevant file
from which the LLM reads and generates concepts[32]].

Template generation As input to our generator, the following components are provided:

* User-provided guidelines: a document containing the user’s goal or specific requirements,

 Dataset description: a list of columns and example values with ranges from the dataset, with
a short usage example,

* List of concepts: generated in previous step. For each template, our pipeline will choose a
concept at random to ensure diversity.

» Example templates[Optional]: user-provided few-shot examples presenting required struc-
tural elements [33]].

B.1 Generation Prompt

Here is the goal of the exam questions:
{user_info_text}

Here are sample concepts on which you can base your question generation:
{concept_conversation}

Use the concept numbered {concept_no} from the list to guide the design of
your question template.

Here is the description of the dataset you will use to generate the
question:
{dataset_describe}

In your template, use the provided ‘user_dataset‘ object. Use its ‘query(
index) ¢ method to load relevant time series data.

Do not select time series randomly. First, formulate the question, and then
choose a time series that fits its logic and reasoning needs.

Generate one function-based question template now.

B.2 Example of Question Template

def question_6(num_samples, verbose=False):
hyperparameters = {
"min_trend_days": 20,
"max_series_length": 3000,

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

376
377
378
379
380
381

"trend_strength_threshold": 0.7,
"momentum_window": 10,

}

question = "Analyzing the price movements of {ticker} over the given
time period, does the price trend demonstrate strong momentum and
sustainability, or does it show signs of weakness and potential
reversal?"

options = [

"The trend shows strong momentum with consistent directional
movement and minimal pullbacks, suggesting the trend is likely to
continue.",

"The trend shows signs of weakness with frequent reversals and
inconsistent momentum, suggesting a potential trend change.",

"The trend shows mixed signals with alternating periods of strength

and weakness, making direction unclear.",

"The price movement shows no clear trend pattern, indicating a

ranging or sideways market."

]

def calculate_trend_strength(prices):
if len(prices) < hyperparameters["min_trend_days"]:
return None, None

returns = np.diff(prices) / prices[:-1]

Calculate momentum consistency
positive_days = np.sum(returns > 0)
negative_days = np.sum(returns < 0)
total_days = len(returns)

directional_consistency = max(positive_days, negative_days) /
total_days

Calculate average magnitude of moves
avg_abs_return = np.mean(np.abs(returns))

Calculate trend persistence (consecutive moves in same direction)
consecutive_moves = []
current_streak = 1
for i in range(l, len(returns)):
if np.sign(returns[i]) == np.sign(returns[i-1]):
current_streak += 1
else:
consecutive_moves.append (current_streak)
current_streak = 1
consecutive_moves.append(current_streak)

avg_streak = np.mean(consecutive_moves)
max_streak = max(consecutive_moves)

Determine overall trend direction
overall_return = (prices[-1] - prices[0]) / prices[0]
trend_direction = "up" if overall_return > O else "down"

return {
"directional_consistency": directional_consistency,
"avg_abs_return": avg_abs_return,

382
383
384
385
386
387
388
389
390
391
392
393

395
396
397
398
399
400
401
402
403
404
405
406
407

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

"avg_streak": avg_streak,
"max_streak": max_streak,
"overall_return": abs(overall_return),
"trend_direction": trend_direction

}, returns

qa_pairs = []
df = user_dataset.get_dataframe()

attempted_tickers = set()

while len(ga_pairs) < num_samples:
if verbose:
print (£f" [Question 6] Generating question {len(qa_pairs)} / {
num_samples}")

Select a ticker that hasn’t been attempted
available_tickers = [i for i in df.index if i not in
attempted_tickers]
if not available_tickers:
break

ticker_id = random.choice(available_tickers)
attempted_tickers.add(ticker_id)

df.loc[ticker_id, ’ticker’]
user_dataset.query(ticker_id)

ticker
prices

if len(prices) < hyperparameters["min_trend_days"]:
continue

Limit series length
if len(prices) > hyperparameters["max_series_length"]:
start_idx = random.randint (0, len(prices) - hyperparameters["
max_series_length"])
prices = prices[start_idx:start_idx + hyperparameters["
max_series_length"]]

Select a subset for analysis (to make question more focused)
analysis_length = min(len(prices), random.randint(50, 200))
start_idx = random.randint(0, len(prices) - analysis_length)
analysis_prices = prices[start_idx:start_idx + analysis_length]

trend_metrics, returns = calculate_trend_strength(analysis_prices)
if trend_metrics is None:
continue

Determine answer based on trend strength metrics

strength_score = (
trend_metrics["directional_consistency"] * 0.4 +
min(trend_metrics["avg_streak"] / 5, 1.0) * 0.3 +
min(trend_metrics["overall_return"] * 10, 1.0) * 0.3

)

if strength_score >= hyperparameters["trend_strength_threshold"]
and trend_metrics["max_streak"] >= 5:
answer = options[0]
elif strength_score < 0.4 or trend_metrics["directional_consistency
"] < 0.6:

10

441 answer = options[1]

442 elif 0.4 <= strength_score < hyperparameters["

443 trend_strength_threshold"]:

444 answer = options[2]

445 else:

446 answer = options[3]

447

448 question_text = question.format(ticker=ticker)

449

450 ga_pairs.append ({

451 "question": question_text,

452 "options": optionms,

453 "answer": answer,

454 "ticker": ticker,

455 "ts": analysis_prices,

456 "relevant_concepts": ["Volume-Price Trend Correlation", "Trend
457 Strength Analysis", "Price Momentum"],

458 "domain": "finance",

459 "detractor_types": ["Incorrect trend interpretation", "

460 Misunderstanding momentum signals"],

461 "question_type": "multiple_choice",

462 "format_hint": "Please answer the question and provide the

463 correct option letter, e.g., [A]l, [B], [C], [D], and option content at
464 the end of your answer. All information need to answer the question is
465 given. If you are unsure, please provide your best guess.",

466 1))

467

468 return qa_pairs

469 B.3 Example of Natural Language Description

470 I want to create time series exam testing model understanding of finance
471 time series data.

472

473 To load the data, use the provided
474

475 Given time series come from Yahoo Finance, include closing price of a stock.

¢¢‘user_dataset‘‘‘ object.

476 Interval between samples is 1 day.
477 Make sure that the length of time series (total number of samples of one or
478 two time series) does not excide 3000.

479
480 Please make sure that exams cannot be answer without timeseries!

481 B.4 Examples of Generated Questions

11

482

[N

ECG Question Example

Q: Analyze the P-wave morphology and amplitude characteristics in this recording. What atrial
abnormality is present?

A. RAO/RAE: Right atrial overload/enlargement with prominent P-waves
B. LAO/LAE: Left atrial overload/enlargement with bifid P-waves

C. Normal P-wave morphology with no atrial abnormalities

D. Absent P-waves indicating atrial fibrillation

answer: LAO/LAE: Left atrial overload/enlargement with bifid P-waves

N i i i N[thgi2 A A A R i
ESEEE A s | = A s] A A | EESE R
SgSTEzETie=es T N v O TN e SV
A
I i i i i i i i i i [
IEEESEIEIsEmissSssusscssusscess iEsEEEs]l | SEEE e | e naue | |Eeuuu e oy Een ==
: S Ot (el L oI L iSyaESsis
i
he A P~ it n fat N /\‘)
 [meBsEa| i i [iEdEeat icanas | lzzes aui mpuned =
A I & A N TN N P . il A\
e LU LW NP FESEEESY |EESS | ! /555 55y S Eam vy
7 y I 7 y i i I U i i
ESSmis=cn: e e A JAESE | [EEEEE
avlL SESSsEo=oc \
T
|RESEssy) i i i I i i i IS pea et
I asEsad LSERERE W~~~ T

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
(s)

12

il b ~L i L
P i i il MHW i i
AH\\ AI A””.! Hu HHW HHW
[b |
[= Jimn MHL MHHK | manem e
il i i ; 1
/HH”U. A/ A\.ull. MHM MHHW A”H\
q L | < il il W P
J _1] il
N NI NI L] L e
Lﬁltv il TR i JM
DGRl N SR .\W_ ._\l\u L
o A\.M L i //
_.n [Ty = i o A.I!JIN LHHW HHH.f
A/lIUv /ﬂh A/l ﬁ\m gt ﬂl\w
i 1] [Tk i i)
m\l\ Am Am,t B nnw g
N s e - 4 e e
i ; il
= AU AM.I -7 JHHW e
J \w \1w i il
B T
/!” = /IV | M\.L i e | ey
il il Pl il [T .M
S g | nlw \lw | Lhe

0.5 1.0 15 2.0 25 3.0 35 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
(s)

0.0

13

484

486

487

488

489

490
491
492
493
494

496
497
498
499
500

502
503

\

Finance Question Example

Q: Based on the daily closing price data for MAA over the past 2000 trading days, what does
the Relative Strength Index (RSI) analysis reveal about the stock’s momentum condition at the
end of the period?

A. The stock is in overbought territory with RST above 70, suggesting potential selling pressure.
B. The stock is in oversold territory with RSI below 30, suggesting potential buying opportunity.

C. The stock shows neutral momentum with RSI around 50, indicating balanced buying and
selling pressure.

D. The stock shows strong upward momentum with RSI consistently increasing but not yet
overbought.

answer: The stock shows neutral momentum with RSI around 50, indicating balanced buying
and selling pressure.
/

176
168
160
1524
144 4
136
1284
1201

o 1124
= 1044
> 064
88 1

80

724

56
48
40

o 250 500 750 1000 1250 1500 1750 2000
Time (days)

C LLM Verifier

For each template, we use an LLM to evaluate the generated question. Specifically, we ask:

* Is the question relevant to the given concept?
* Does answering the question require the provided time series?

* Are the question and answer free from ambiguity and bias?

C.1 Validation Prompt

You are an expert validator of question templates involving reasoning over
{exam_type} time series data.
You are given an exam question template:

{exam_template}

Your task is to validate the question template using the following criteria:
1. Is the question relevant to {exam_type} time series analysis?

2. Would you need the time series itself to answer the question?

3. Are there no ambiguity in the question or its answer?

If the answer to all is YES or MOSTLY YES, return only the number 1.

If the answer to either is NO, return your objections.
Return 1 (do not include any additional text then) or describe your objections.

14

504

505
506
507

508
509
510
511
512
513
514
515
516
517
518

519

520
521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

549
550
551
552
553
554
555
556
557

D Other Design Specifics

Detractors In addition, the mechanism of plausible but incorrect answer choices was implemented.
The LLM is prompted to reflect on possible mistakes that the test taker might make while solving the
exam. Using this knowledge, misleading, incorrect option choices can be generated.

Context Condensation A common issue we encountered in the framework was context window
overflow during exam regeneration. To mitigate this, we applied context condensation, which
reduces the number of tokens while preserving essential information. In our setup, the agent
generates templates in a conversational manner. The process begins with a generation prompt,
followed by a message containing the generated exam. If errors occur or the exam is rejected during
verification, the feedback and regenerated exams are appended to the conversation. Several context
condensation techniques exist, such as windowing [34] and context compression [35]. We adopt a
summarization-based method [36, [37]], which has shown strong results in prior work and fits our use
case. Specifically, we summarize non-recent pairs of failing exams and error messages into short
descriptions that highlight the issues encountered. These summaries provide the LLM with concise
feedback, supporting the generation of higher-quality templates.

E G-Eval

We evaluated a set of generated questions under the G-Eval framework. We used the following
criteria:

1. SPECIFICITY
Evaluate the specificity of the generated ECG multiple-choice question.

A good question should target a single phenomenon.

Evaluation steps:

1. Read the question and all answer options.

2. Determine if the question targets a single, clearly defined ECG finding
or clinical interpretation.

3. Assess the ratio of unique medical terms to general words.

4. Penalize if:
- The question is overly broad or open-ended (e.g., "Is this ECG normal
?u).
- The wording leaves diagnostic interpretation unclear.
- The question covers multiple unrelated phenomena.

Score highest if the question has one precise focus (e.g., "Is there ST
elevation in lead V37").

1. UNAMBIGUITY
Evaluate the unambiguity of the generated ECG multiple-choice question.
A question and the answers should not have multiple interpretations.

Evaluation steps:

1. Read the question and all answer options.

2. Determine if the question can be objectively assessed.

3. Check if the answers are clear and unambiguous.

4. Penalize if:
- The question uses subjective terms (e.g., "Does this look strange?").
- The answers are open to multiple interpretations.
- The question cannot be objectively answered.

Score highest if the question is clear and objective (e.g., "Is there
tachycardia?"),

2. DOMAIN RELEVANCE

15

558
559
560
561
562
563
564
565
566
567
568
569

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

596

597

598
599

600

601

602
603

604
605

606
607

Evaluate the domain relevance of the generated ECG multiple-choice question.
Does the question actually pertain to ECGs and medicine?

Evaluation steps:

1. Read the question and all answer options.

2. Identify medical and ECG-specific terminology.

3. Determine if the question is relevant to ECG interpretation and medical
diagnosis.

4. Penalize if:
- The question contains non-medical terms (e.g., "Is the line pretty?").
- The question is not related to ECG interpretation.
- The question lacks medical context.

Score highest if the question contains relevant medical terms
(e.g., "QRS," "arrhythmia," "P wave") and pertains to ECG interpretation.

3. ANSWERABILITY

Evaluate the answerability of the generated ECG multiple-choice question.

Even without an answer provided, the question should be answerable based on
the data (ECG).

Evaluation steps:
1. Read the question and all answer options.
2. Determine if the question can be answered by analyzing ECG waveform data.

3. Assess whether the question requires time series analysis or could be
answered without it.

4. Penalize if:
- The question asks about non-ECG factors (e.g., "Was the patient
nervous?").
- The question can be answered without analyzing the ECG time series
data.
- The question is too general and doesn’t require specific ECG analysis.

Score highest if the question requires specific ECG time series analysis
(e.g., "Is there atrial fibrillation?").
Give fewer points if the question can be answered without time series data.

F Hyperparameters
In this section, we list all the hyperparameter used for our agentic workflow.

1. Generator LLM: the LLM use to generate concepts and the corresponding template. We
used claude-sonnet-4-20250514 (initial generation with reasoning_effort="medium").

2. Concept LLM: the LLM use to generate concepts. We used gpt-40-2024-08-06.
3. Verifier LLM: the LLM use to verify templates. We used gpt-40-2024-08-06.

4. Student LLMs: the student LLMs we use to check the exam differentiability. Currently we
have two student LLMs: stronger: gpt-40-2024-08-06 and weaker: gpt-4o-mini.

5. Exam type: We are generating the data connected to specific domain. We used "ECG" and
"finance".

6. Few-shot examples: 3 templates prepared beforehand were used to present the desired
structure. For each generation, they were randomly sampled from set of 9.

16

608

609
610

611

612

613
614

G Evaluation Protocol

All used models were accessed by API with LiteLLM Python library. The following API providers
were used with default parameters:

* Closed source models — OpenAl API, Anthropic API
* Open source models — Hugging Face Inference Providers API

During the evaluation, the images of the plots were encoded with base64 encoding and provided to
the models. Plots were created with DPI = 50. We used setup without context condensation.

17

	Introduction
	TimeSeriesExamAgent
	Experimental Setup, Results and Discussion
	Limitations and Conclusions
	Related Work
	Generation Agent Workflow
	Generation Prompt
	Example of Question Template
	Example of Natural Language Description
	Examples of Generated Questions

	LLM Verifier
	Validation Prompt

	Other Design Specifics
	G-Eval
	Hyperparameters
	Evaluation Protocol

