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Abstract
Hybrid-based retrieval methods, which unify001
dense-vector and lexicon-based retrieval, have002
garnered considerable attention in the industry003
due to performance enhancement. However,004
despite their promising results, the application005
of these hybrid paradigms in Chinese retrieval006
contexts has remained largely underexplored.007
In this paper, we introduce HyReC, an innova-008
tive end-to-end optimization method tailored009
specifically for hybrid-based retrieval in Chi-010
nese. HyReC enhances performance by inte-011
grating the semantic union of terms into the012
representation model. Additionally, it features013
the Global-Local-Aware Encoder (GLAE) to014
promote consistent semantic sharing between015
lexicon-based and dense retrieval while mini-016
mizing the interference between them. To fur-017
ther refine alignment, we incorporate a Normal-018
ization Module (NM) that fosters mutual bene-019
fits between the retrieval approaches. Finally,020
we evaluate HyReC on the C-MTEB retrieval021
benchmark to demonstrate its effectiveness.022

1 Introduction023

Retrieval-augmented generation (RAG) enhances024

large language models by incorporating external025

knowledge to address hallucination issues, simul-026

taneously catalyzing the rapidly evolving develop-027

ment of the retrieval community. How to effec-028

tively retrieve the most relevant information from029

the knowledge base is critically important for the030

final generation results. According to the encod-031

ing space, retrieval methods can be mainly catego-032

rized into three classifications: dense-vector( e.g.,033

Condenser (Gao and Callan, 2021a), Bge embed-034

ding (Xiao et al., 2023), and Jina embedding (Stu-035

rua et al., 2024)), lexicon-based( e.g., DeepCT (Dai036

and Callan, 2019), SparTerm (Bai et al., 2020), and037

TILDE (Zhuang and Zuccon, 2021b)) and hybrid-038

based paradigms(e.g., COIL-full (Gao et al., 2021),039

Unifier (Shen et al., 2023) and Bge M3 (Chen et al.,040

2024) ). Among them, the hybrid-based paradigm041

Figure 1: A example for lexicon-based retrieval. The
three columns comprise the query, passage 1, and pas-
sage 2. The three rows illustrate the original text, the
term-level matching results(terms derived from the to-
kenizer), and the word-level matching results(words
generated by word segmentation), respectively.

has garnered significant attention owing to its supe- 042

rior performance. 043

The hybrid retrieval frameworks typically intro- 044

duce a lexicon-based retrieval branch into the ex- 045

isting dense-vector model (Gao et al., 2021; Shen 046

et al., 2023; Chen et al., 2024). The final matching 047

score is computed as the sum of scores from both 048

branches: the dense branch calculates similarity via 049

the inner product of query and passage embeddings, 050

while the lexicon-based branch is derived by multi- 051

plying the weights of the tokenizer-defined terms 052

shared between the query and passage, followed 053

by summing the resulting products. While this 054

paradigm works adequately for English retrieval, it 055

faces critical challenges in Chinese scenarios due 056

to the absence of word boundaries (spaces). Specif- 057

ically, lexicon-based matching relies on tokenizer- 058

defined terms, which often fail to capture semantic 059

nuances in Chinese. For instance, as illustrated 060

in Fig. 1, term-level matching may incorrectly as- 061

sign an identical score between Passage 1 and Pas- 062

sage 2, exposing semantic inconsistencies between 063

term granularity and actual word meanings. This 064

highlights the need for dedicated optimization of 065

hybrid-based paradigms for Chinese. 066

It has been proven and widely accepted that 067

in traditional lexicon-based retrieval, word-level 068

matching properly can significantly improve per- 069

formance. As illustrated in Fig. 1 (Row 3), such 070
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improvements rely heavily on word segmentation071

modules to identify meaningful words. Widely072

adopted tools like Jieba1 implement this through073

frequency-based heuristics, yet their lack of se-074

mantic awareness inevitably limits matching accu-075

racy. To address this limitation, neural methods for076

word segmentation have emerged, utilizing bert-077

like models to capture semantic context (Tian et al.,078

2020; Huang et al., 2020; Maimaiti et al., 2021).079

Nevertheless, these approaches typically employ080

two separate models for words segmentation and081

lexicon-based retrieval, which lacks an end-to-end082

optimization solution and leaves room for perfor-083

mance enhancement.084

In this paper, we present an innovative method085

called HyReC, which offers an end-to-end opti-086

mization solution for hybrid-based retrieval sys-087

tems in Chinese scenarios. Specifically, HyReC088

integrates dense-vector retrieval, lexicon-based re-089

trieval, and the semantic union of terms into a sin-090

gle model. The word segmentation is defined as the091

semantic union of terms to distinguish the differ-092

ence between tokenizer-defined terms and model-093

defined semantic words. Within HyReC, the [CLS]094

embedding is utilized for dense-vector retrieval,095

while embeddings from other tokens are employed096

for sparse retrieval and the semantic union of terms.097

During training, we have developed a labelling tool098

for training the semantic union, while the dense-099

vector and lexicon-based retrieval components are100

trained using a contrastive learning approach. Once101

trained, HyReC conducts large-scale retrieval ei-102

ther through its lexicon representation using an103

efficient inverted index or by leveraging dense vec-104

tors with parallelizable dot-product operations. In105

particular, each dimension of the lexicon repre-106

sentation corresponds to a term in the vocabulary,107

with its value reflecting the importance of that term108

within the passage. This vocabulary includes the109

result from the tokenizer’s definition and the newly110

generated words generated by the semantic union111

of existing terms.112

Moreover, we introduce an innovative module113

named the Global-Local-Aware Encoder (GLAE)114

to facilitate consistent semantic sharing, while si-115

multaneously minimizing the interference between116

the two retrieval paradigms. Since the dense-vector117

paradigm is designed to learn sequence-level dense118

representations, the lexicon-based paradigm fo-119

cuses on obtaining word-level lexicon represen-120

1https://github.com/fxsjy/jieba

tations (Shen et al., 2023). Additionally, we in- 121

troduce a Normalization Module (NM) designed 122

to align the two retrieval paradigms more reason- 123

ably, fostering mutual benefits. We normalize the 124

matching scores of both paradigms to a 0-1 scale, 125

rather than imposing rigid weights to enforce align- 126

ment (Chen et al., 2024). 127

Our main contributions of this paper are summa- 128

rized as follows: 129

• We propose HyReC, a novel hybrid retrieval 130

framework tailored for Chinese scenarios that uni- 131

fies dense-vector retrieval, lexicon-based retrieval, 132

and semantic union of terms within a single model. 133

• We additionally develop two key components: 134

GLAE enables consistent semantic sharing while 135

reducing paradigm interference, and NM achieves 136

better alignment between two retrieval paradigms. 137

• Extensive experiments demonstrate that 138

HyReC consistently outperformed baseline algo- 139

rithms on the C-MTEB retrieval benchmark, vali- 140

dating its effectiveness. 141

2 Related Work 142

2.1 Dense-vector Retriever 143

To improve the retriever’s performance, contem- 144

porary methods often focus on strategies such as 145

selecting difficult negatives, leveraging pre-training 146

and developing more elegant training recipes. For 147

instance, ANCE (Xiong et al., 2020) introduced 148

an innovative learning mechanism that globally 149

selects difficult negatives from the entire corpus, 150

utilizing an asynchronously updated approximate 151

nearest neighbour (ANN) index. In contrast, 152

ADORE (Zhan et al., 2021) employed dynamic 153

sampling to adaptively adjust hard negative train- 154

ing samples during the model training process. 155

Moreover, Condenser (Gao and Callan, 2021a) 156

and coCondenser (Gao and Callan, 2021b) devel- 157

oped a pre-training strategy specifically designed 158

for ad-hoc retrieval to enhance the performance 159

of the model. Recently, Bge embedding (Xiao 160

et al., 2023), and Jina embedding (Sturua et al., 161

2024) have introduced a three-stage training recipe 162

and scaled training data to further enhance the re- 163

triever’s effectiveness. 164

2.2 Lexicon-based Retriever 165

In recent years, researchers have been fervently 166

working to enhance context representation in the 167

lexicon-based retriever. DeepCT (Dai and Callan, 168

2019) translates contextual term representations 169
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Figure 2: The architecture of our HyReC. HyReC first utilizes a semantic sharing backbone to extract low-level
textual features for both paradigms. It then comprises two branches, each dedicated to learning global-aware and
local-aware representations for the dense-vector retriever and the lexicon-based retriever, respectively. Additionally,
a bagging module is employed to aggregate the weights and semantic union of terms, further enhancing the lexicon-
based retriever’s capabilities.

from BERT into term weights, deriving matching170

scores by multiplying the weights of terms shared171

between the query and passage and summing the172

resulting products. Similarly, SparTerm (Bai et al.,173

2020) introduced a contextual importance predic-174

tor that accurately assesses the significance of175

each term within the vocabulary. Building on176

contextual term representations, SPLADE (For-177

mal et al., 2021) further introduced an innovative178

log-saturation effect that effectively regulates term179

dominance, promoting natural sparsity in the result-180

ing representations. Additionally, TILDE (Zhuang181

and Zuccon, 2021b) proposed a more efficient182

framework for lexicon-based retrieval by incorpo-183

rating a query likelihood component.184

2.3 Hybrid-based Paradigms Retriever185

The hybrid-based paradigm has garnered signifi-186

cant attention from the industry owing to its supe-187

rior performance. COIL (Gao et al., 2021) used188

word-bag match and relied on [CLS] vectors for189

computing relevance scores to assess hybrid-based190

retrievers. Bge M3 (Chen et al., 2024) expanded191

the ability of the hybrid-based retrieval by improv-192

ing the training recipe and scaled training data.193

The authors in (Wang et al., 2021; Zhuang et al.,194

2024) explored normalization for combining dense195

and sparse retrievals. However, our method inte-196

grates normalization module during the training 197

phase to jointly optimize the interaction between 198

dense and sparse retrievals, rather than only ap- 199

plying it during inference. Unifier (Shen et al., 200

2023) integrates dense-vector and lexicon-based 201

retrieval into a single model with dual representing 202

capabilities. It also introduces a self-regularization 203

method based on list-wise agreements from these 204

dual views. However, to improve performance in 205

lexicon-based retrieval, Unifier replaces the embed- 206

ding of the [CLS] token in the lexicon encoder 207

with that from the local-aware dense encoder. This 208

decision increases the inference time for lexicon- 209

based retrieval and couples the lexicon-based re- 210

trieval with dense-vector retrieval, limiting flexi- 211

bility in their applications. Additionally, the previ- 212

ously mentioned methods place limited emphasis 213

on this scheme within the Chinese context and ig- 214

nore the union between adjacent terms. 215

3 Methodology 216

HyReC seamlessly integrates dense-vector re- 217

trieval, lexicon-based retrieval, and the semantic 218

union of terms into a single model. Additionally, 219

it incorporates GLAE to ensure consistent seman- 220

tic sharing while effectively minimizing interfer- 221

ence between the two retrieval paradigms. Ulti- 222

mately, it presents NM to align these two retrieval 223
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approaches.224

3.1 Network Architecture225

As illustrated in Fig. 2, HyReC primarily con-226

sists of the semantic sharing backbone (detailed227

in Sec.3.1.1), the global-aware lexicon encoder (de-228

tailed in Sec.3.1.2), the local-aware dense encoder229

(detailed in Sec.3.1.3), three projectors (detailed230

in Sec.3.1.4) and the bagging module (detailed in231

Sec.3.1.4). The semantic sharing backbone, the232

global-aware lexicon encoder and the local-aware233

dense encoder are collectively referred to as GLAE.234

3.1.1 Semantic Sharing Backbone235

We begin by employing a semantic sharing back-236

bone to extract low-level textual features for both237

retrieval paradigms, ensuring consistent semantic238

sharing. While the two paradigms concentrate on239

different levels of representation granularity( dense-240

vector retrieval focusing on sequence-level dense241

representation and lexicon-based retrieval empha-242

sizing word-level contextualization embeddings),243

both paradigms delve into the semantic information244

of each term within the sentence. This shared ex-245

ploration enables them to develop a cohesive under-246

standing of semantic and syntactic knowledge di-247

rected toward the same retrieval targets. Like (Shen248

et al., 2023), we also leverage a multi-layer Trans-249

former encoder to produce the semantic sharing250

backbone, i.e.,251

S(x) = TF -Enc([CLS]x[SEP ]; θ(ssb)) (1)252

where TF -Enc refers to a multi-layer Transformer253

encoder that utilizes parameters θ(ssb). [CLS] and254

[SEP ] are special tokens by following PLMs (De-255

vlin et al., 2019). x represents either a query or a256

document.257

3.1.2 Global-aware Lexicon Encoder258

Building on the low-level textual features, we pro-259

pose a representation module that generates a word-260

level lexicon representation. This module not only261

ensures consistent semantic sharing but also mini-262

mizes the interference from sequence-level dense263

representation associated with the dense retrieval264

paradigm. Unlike the approach taken in (Shen et al.,265

2023), we refrain from replacing the embedding266

of the [CLS] token with that from the local-aware267

dense encoder for two key reasons: first, to reduce268

the inference time of the lexicon-based retrieval;269

and second, to decouple the lexicon-based retrieval270

and the dense-vector retrieval, allowing for more 271

flexibility in their application. Given that the word- 272

level lexicon representation captures global vocabu- 273

lary space information, we designate this module as 274

the global-aware lexicon encoder. To achieve this, 275

we utilize an additional multi-layer Transformer 276

encoder to process S(x). This can be expressed as 277

L(x) = TF -Enc(S(x); θ(gle)) (2) 278

where this module is parameterized by θ(gle), 279

which is distinct from θ(ssb), the resulting L(x) de- 280

notes a word-level lexicon representation of the 281

input text x, which is utilized for lexicon-based 282

retrieval. 283

3.1.3 Local-aware Dense Encoder 284

Additionally, building on the low-level textual fea- 285

tures, we present another representation module 286

that generates a sequence-level dense representa- 287

tion. This module not only ensures consistent se- 288

mantic sharing but also reduces interference from 289

the word-level lexicon representation associated 290

with the lexicon retrieval paradigm. Since the 291

sequence-level dense representation does not incor- 292

porate global vocabulary space information, which 293

captures local contextualization, we refer to this 294

module as the local-aware dense encoder. To 295

achieve this, we apply another multi-layer Trans- 296

former encoder to S(x), This can be written as 297

D(x) = TF -Enc(S(x); θ(lde)) (3) 298

where this module is parameterized θ(lde) , the 299

resulting D(x) denotes a sequence-level dense 300

representation of the input text x, which is em- 301

ployed for dense-vector retrieval. The dimension 302

of S(x), L(x) and D(x) is [B,N,H], where B 303

represents the batch size, N denotes the input se- 304

quence length, and H indicates the hidden size of 305

the model. 306

3.1.4 Hybrid Retrieval 307

After obtaining the word-level lexicon represen- 308

tation L(x) and sequence-level dense representa- 309

tion D(x) of the input text x, we employ three pro- 310

jectors( i.e., weight projector, union projector and 311

dense projector) to acquire the term weight, term 312

union and dense vector, respectively. 313

To achieve term union, the union projector com- 314

bines the word-level lexicon representation L(x) 315

into four classification probabilities, indicating ‘S’ 316

(single term word) ‘B’ (the beginning position of 317

4



the word), ‘M’ (the middle position of the word),318

and ‘E’ (the ending position of the word), respec-319

tively. This is expressed as:320

Utermi = softmax(wuli + bu) (4)321

where termi is the ith term or token in input x.322

wu and bu are linear weights and bias of the union323

projector module, respectively. li is ith token’s324

word-level lexicon representations from L(x).325

For term weight, we adopt a method inspired by326

the recent TILDEv2 (Zhuang and Zuccon, 2021a),327

which optimizes memory usage by storing only the328

scores of tokens that appear in current passages329

rather than the entire vocabulary. Differing from330

the original TILDEv2, our lexicon-based retrieval331

incorporates term union information to enhance332

performance. The weight projector integrates the333

word-level lexicon representation L(x) to produce334

a term importance score:335

Wtermi = log(1 +ReLU(wwli + bw)) (5)336

where ww and bw are linear weights and bias of the337

weight projector module, respectively.338

Lastly, the dense projector combines the rep-339

resentation of special token [CLS] from the340

sequence-level dense representation D(x) to gener-341

ate a sequence-level dense vector, which is utilized342

for dense-vector retrieval:343

Dvec = (wddCLS + bd) (6)344

where wd and bd are linear weights and bias of345

the dense projector module, respectively. dCLS is346

[CLS] representations from D(x).347

In the inference, we utilize the Bagging mod-348

ule to aggregate both the weights and the seman-349

tic unions of terms. To elaborate, we proceed as350

follows: first, based on Utermi , we derive the re-351

sult Uwordj for the jth semantic union. Notably,352

Uwordj may encompass multiple terms or tokens353

when Utermi belongs to the set {B,M,E}; Sec-354

ond, we compute the weight Wwordj associated355

with Uwordj . as follows:356

Uwordj = max(Utermi); termi ∈ wordj (7)357

358
Wwordj = max(Wtermi); termi ∈ wordj (8)359

where wordj represents a word that consists of360

more than one term or token.361

The final matching score for hybrid retrieval is362

calculated as the sum of the matching scores from363

both the lexicon retrieval and the dense retrieval, 364

i.e., 365

S(q, p) = Slex(q, p) + Sden(q, p) (9) 366

where Slex(q, p) and Sden(q, p) denote the match- 367

ing score of the lexicon retrieval and the dense 368

retrieval, respectively. The matching score of the 369

lexicon-based method is calculated by weights mul- 370

tiplications of the common terms shared in the 371

query and the passages. 372

Slex(q, p) =
∑
i,j

W q
ˆtermi

W p
ˆtermj

(10) 373

where W q
ˆtermi

, W p
ˆtermj

represents the weight of the 374

ith term( or word) from the query and the passage, 375

respectively. ˆtermi is derived from both termi and 376

wordi( similarly for ˆtermj .). 377

Sden(q, p) = Dq
vec ·Dp

vec (11) 378

where Dq
vec and Dp

vec are sequence-level dense vec- 379

tors of query and passage, respectively. 380

3.2 Loss 381

Given a query q and a set of n passages D = 382

{p+, p̂1, p̂2, ..., p̂n−1}. The lexicon retrieval and 383

the dense retrieval task are acquired by the rank- 384

ing objective with a contrastive loss. Thus, their 385

training loss is 386

L∗ = −log
eS

∗(q,p+)/τ

eS∗(q,p+))/τ +
∑

P̂ eS
∗(q,p̂j)/τ

(12) 387

where τ is the temperature parameter. ∗ is lex or 388

den, which denotes the matching score of the lexi- 389

con retrieval and the dense retrieval, respectively. p 390

and q+ represent the paired texts, p̂j ∈ P̂ denotes 391

a hard negative. 392

The semantic union loss, represented as Lunion, 393

is employed by the cross-entropy loss, as repre- 394

sented below. 395

Lunion = −
∑
i

yilog(Utermi) (13) 396

where yi represents the labels of the term union 397

(for more details, see Section 4.1.1). 398

The total loss for our HyReC is 399

L = Llex + Lden + Lunion (14) 400
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3.3 Normalization Module (NM)401

In lexicon-based retrieval, matching scores are com-402

puted through weighted summation of identical403

terms, where the score range varies significantly404

depending on term weights. Similarly, dense re-405

trieval scores obtained through vector dot products406

also exhibit unpredictable ranges. This discrepancy407

in score distributions makes direct combination408

problematic, necessitating normalization to align409

their scales. We first perform L2 normalization on410

the sequence-level dense representation D(x) be-411

fore computing dot products. For the lexicon-based412

branch, we employ an attention mask to identify413

valid tokens, followed by L2 normalization of the414

term importance score vectors Wtermi for these415

selected tokens. The benefits of this module are416

as follows: First, it mitigates training instability417

caused by score disparities, which otherwise lead to418

inconsistent model preferences for dense or sparse419

retrieval across samples. Second, the normaliza-420

tion process effectively balances the contribution421

of each branch, allowing for more stable optimiza-422

tion. Finally, by aligning the score distributions,423

the model can learn more meaningful combination424

weights during training.425

4 Experiments426

4.1 Implementation Details427

We follow the training recipe of BGE (Xiao et al.,428

2023) to ensure a fair comparison. See details of429

method and datasets in Appendix A.430

4.1.1 Labelling Tool for Semantic Union431

We combine the Jieba frequency word segmen-432

tation module with manually crafted regular ex-433

pressions to generate labels for the semantic union.434

Since the Jieba framework relies primarily on fre-435

quency information and exhibits limited general-436

ization, we enhance it by incorporating regular ex-437

pressions to identify additional patterns, such as nu-438

meric expressions, quantity phrases, product mod-439

els, and version identifiers. Labelling the semantic440

union involves the following steps: 1) Extracting441

the segmented words from the input and identify-442

ing the offsets of these segmented words within the443

original string; 2) Obtaining the tokenization re-444

sults and their respective offsets; 3) Producing the445

labelling results by aligning the offsets between the446

segmented words and the tokenizer outputs. The447

offsets of the segmented words align a single token448

and the corresponding token is labelled as ‘S’ (indi-449

cating 0 class). For offsets that encompass multiple 450

tokens, the tokens are labelled sequentially as ‘B’ 451

(indicating 1 class), ‘M’ (indicating 2 class), and 452

‘E’ (indicating 3 class). 453

4.1.2 Evalution Metrics 454

In this paper, we explore the application of a hybrid- 455

based paradigm within Chinese retrieval scenar- 456

ios, focusing primarily on Chinese retrieval ex- 457

periments. We adopt the C-MTEB (Xiao et al., 458

2023) retrieval benchmark as our standard, given 459

its prominence in the field. Adhering to the 460

official benchmark protocols, we evaluate our 461

method using Pyserini (Lin et al., 2021) and utilize 462

nDCG@10 as the primary evaluation metric. 463

4.1.3 Experimental Setups 464

For pre-training with a large volume of unsuper- 465

vised data, we set the batch size to 512, with a 466

maximum query and passage length of 512 tokens. 467

The learning rate is configured at 1 × 10−4, the 468

warmup ratio is 0.1, and the weight decay is set to 469

0.01. This pre-training process is conducted across 470

16 V100 (32GB) GPUs. 471

In the two fine-tuning stages, we utilize a batch 472

size of 64 for the small-scale model and 30 for the 473

base-scale model. Additionally, we set the maxi- 474

mum lengths for queries and passages to 64 and 475

256 tokens, respectively. We perform 5 epochs 476

with a learning rate of 5 × 10−5, a temperature 477

parameter of 0.05, and a weight decay of 0.01. The 478

fine-tuning stage is executed on 8 3090 (24GB) 479

GPUs. For the high-quality fine-tuning stage, we 480

sample 3 negative instances for each query. 481

The small-scale model( with 38M parameters) is 482

composed of a single-layer semantic sharing back- 483

bone, a single-layer global-aware lexicon encoder, 484

and a single-layer local-aware dense encoder. In 485

contrast, the base-scale model( with 153M parame- 486

ters) incorporates a 5-layer semantic sharing back- 487

bone, a 7-layer global-aware lexicon encoder, and 488

a 7-layer local-aware dense encoder. Notably, in 489

small cases due to the constraints of our machine, 490

we have opted not to scale our model to a large 491

scale( like BAAI/bge-large-zh (Xiao et al., 2023)). 492

4.2 Main Evaluation 493

We conducted experiments using the C-MTEB re- 494

trieval benchmark (Xiao et al., 2023) to compare 495

HyReC with the existing methods listed in Tab. 1. 496

Our HyReC model exhibits remarkable advance- 497

ments on the C-MTEB retrieval benchmark, It sig- 498
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Model T2 MM Du Covid Cmed Ecom Med Video Avg
luotuo-bert-medium 58.67 55.31 59.36 55.48 18.04 40.48 29.8 38.04 44.4
text2vec-base-chinese 51.67 44.06 52.23 44.81 15.91 34.59 27.56 39.52 38.79
m3e-base 73.14 65.45 75.76 66.42 30.33 50.27 42.8 51.11 56.91
OpenAI 69.14 69.86 71.17 57.21 22.36 44.49 37.92 43.85 52.0
multilingual-e5-base 70.86 76.04 81.64 73.45 27.2 54.17 48.35 61.3 61.63
BAAI/bge-base-zh 83.35 79.11 86.02 72.07 41.77 63.53 56.64 73.76 69.53
BGE-m3-sparse 71.80 59.31 71.53 76.57 24.32 50.76 43.78 58.68 57.08
BGE-m3-dense 81.07 77.25 84.03 76.56 33.78 58.39 54.27 56.95 65.29
BGE-m3-hybrid 83.04 77.57 84.52 79.22 33.28 60.65 55.35 63.13 67.10
HyReC-base-sparse 73.00 69.43 74.58 74.41 30.76 59.64 48.29 67.07 62.15
HyReC-base-dense 82.93 77.40 89.13 76.06 34.42 61.31 57.30 72.16 68.84
HyReC-base-hybrid 84.03 77.81 87.31 79.53 38.47 64.82 58.89 73.46 70.54
multilingual-e5-small 71.39 73.17 81.35 72.82 24.38 53.56 44.84 58.09 59.95
BAAI/bge-small-zh 77.59 67.56 77.89 68.95 35.18 58.17 49.9 69.33 63.07
HyReC-small-sparse 73.20 68.23 74.67 75.93 28.67 59.30 46.64 68.48 61.89
HyReC-small-dense 76.90 70.30 82.76 72.43 33.81 55.04 51.02 66.05 63.54
HyReC-small-hybrid 80.52 73.29 82.82 76.47 34.93 61.43 53.27 71.14 66.73

Table 1: The experimental results on the C-MTEB retrieval benchmark are evaluated using nDCG@10. T2,
MM, Du, Covid, Cmed, Ecom, Med and Video correspond to the T2Retrieval, MMarcoRetrieval, DuRetrieval,
CovidRetrieval, CmedqaRetrieval, EcomRetrieval, MedicalRetrieval and VideoRetrieval development settings in
C-MTEB retrieval benchmark.

Table 2: Ablation study on the effectiveness of each
component on C-MTEB retrieval benchmark( SU
means the semantic union of terms).

NM GLAE SU Lexicon Dense Hybrid

✓ ✓ 56.89 57.80 58.53
✓ ✓ 60.80 60.82 65.41
✓ ✓ 60.65 63.13 66.14
✓ ✓ ✓ 61.89 63.54 66.73

nificantly outperforms Bge (Xiao et al., 2023) on499

nDCG@10 with a margin of +3.66%. A compa-500

rable improvement was observed when we scaled501

our model to a base size, resulting in an additional502

gain of +1.01% (notably, without the constraints503

of our machine, this improvement would be even504

more pronounced). Furthermore, the integration505

of lexicon-based and dense-vector retrieval leads506

to notable enhancements in retrieval performance,507

with improvements of +4.84% for lexicon-based508

retrieval and +3.19% for dense-vector retrieval.509

Ultimately, compared to the BGE-m3-hybrid ap-510

proach which employs the same method (Chen511

et al., 2024), our hybrid-based retrieval method512

achieved a significant improvement in retrieval per-513

formance, reaching a 3.44% enhancement, demon-514

strating its outstanding effectiveness. Moreover,515

even without the inclusion of CovidRetrieval in the516

training data, our approach showcases its remark-517

able ability to generalize across diverse datasets. 518

4.3 Ablation Studies 519

4.3.1 Effectiveness of Each Component 520

The contributions of different components of 521

HyReC are listed in Tab. 2. Utilizing the small- 522

scale model of HyReC for this ablation study, we 523

observed that the removal of the NM module leads 524

to a significant drop in performance, highlighting 525

the detrimental effects of an unpredictable score 526

range on unstable training. The GLAE module 527

was configured by adjusting the number of layers 528

in the semantic sharing backbone, global-aware 529

lexicon encoder, and local-aware dense encoder. 530

The removal of the GLAE module entailed elimi- 531

nating both the global-aware lexicon encoder and 532

the local-aware dense encoder, while setting the 533

number of layers in the semantic sharing back- 534

bone to two. The removal of the GLAE module 535

leads to a decline in both lexicon-based (61.89% 536

to 60.80%) and dense-vector (63.54% to 60.82%) 537

retrieval performance, highlighting the interplay 538

between the two retrieval paradigms. Further- 539

more, we conducted two additional experiments: 540

1) training exclusively on the lexicon-based re- 541

trieval task, which yielded an nDCG@10 score of 542

53.05%, and 2) training solely on the dense-vector 543

retrieval task, resulting in an nDCG@10 score of 544

7



Figure 3: Ablation study on the performance of GLAE
by the base-scale model, where the row axis N is the
layer number of the global-aware lexicon encoder or the
local-aware dense encoder and the layer number of the
semantic sharing backbone is 12−N .

63.11%. Consequently, the semantic sharing back-545

bone promotes consistent semantic sharing, as evi-546

denced by substantial improvements—rising from547

53.05% to 61.89% for lexicon-based retrieval and548

from 63.11% to 63.54% for dense-vector retrieval,549

with the most notable enhancement observed in550

lexicon-based retrieval. Additionally, introducing551

semantic union results in marked improvements:552

lexicon-based (rising from 60.65% to 61.89%),553

dense-vector (increasing from 63.13% to 63.54%),554

and hybrid-based retrieval (growing from 66.14%555

to 66.73%). This clearly illustrates that semantic556

union not only enhances lexicon-based retrieval557

but also positively affects dense-vector retrieval.558

The ablation studies presented in Tab. 2 verify the559

effectiveness of each module in our HyReC.560

4.3.2 Parameters of GLAE561

As depicted in Fig. 3, increasing the number of lay-562

ers in the global-aware lexicon encoder or the local-563

aware dense encoder(while progressively reducing564

the layer number of the semantic sharing backbone)565

initially leads to an increase in all nDCG@10566

scores. This initial enhancement can be attributed567

to a decrease in the interplay between the two re-568

trieval paradigms. Beyond a certain point, the569

scores begin to decline, which is a consequence570

of reduced consistent semantic sharing.571

4.4 Ablation of the Semantic Union of Terms572

We conducted experiments to validate the proposed573

semantic union of terms. As illustrated in Tab.574

3, the nDCG@10 performance of the semantic575

union surpasses the frequency-based method by576

4.19%, 0.41% and 0.52% in lexicon-based, dense-577

vector and hybrid-based retrieval performance, re-578

spectively. These results clearly show that our pro-579

Table 3: Ablation study on the performance of the se-
mantic union of terms on C-MTEB retrieval benchmark.

Method Lexicon Dense Hybrid

Jieba 57.70 63.13 66.21
HyReC 61.89 63.54 66.73

Table 4: The case study of the semantic union. Red
words are incorrect segmentation.

Sentence 李一一一下子想不起她是谁
LiYiyi immediately couldn’t remember who she was

Jieba 李/一一/一下子/想不起/她/是/谁
Li/ Yiyi/ immediately/ couldn’t remember/ she/ was/ who

HyReC 李一一/一下子/想不起/她/是/谁
LiYiyi/ immediately/ couldn’t remember/ she/ was/ who

Sentence 你告诉我光弱一端
You tell me weak light side

Jieba 你/告诉/我光弱/一端
You/ tell/ my weak light/ side

HyReC 你/告诉/我/光弱/一端
You/ tell/ me/ weak light/ side

posed semantic union of terms outperforms the 580

frequency-based method, i.e., Jieba. Additionally, 581

we visualize the outputs of both the semantic union 582

of terms and Jieba to assess the semantic informa- 583

tion utilized in generating segmented words. As 584

demonstrated in Tab. 4, the proposed semantic 585

union of terms effectively comprehends the seman- 586

tic nuances of the terms and achieves meaningful 587

word segmentation by this semantic understanding. 588

589

5 Conclusion 590

In this paper, we introduced HyReC, an innova- 591

tive end-to-end optimization method specifically 592

designed for hybrid-based retrieval systems in the 593

Chinese context. HyReC effectively integrates 594

dense-vector retrieval, lexicon-based retrieval, and 595

the semantic union of terms into a cohesive model 596

to enhance overall performance. Additionally, our 597

method incorporates two pivotal modules: (1) the 598

Global-Local-Aware Encoder (GLAE), which facil- 599

itates consistent semantic sharing while minimiz- 600

ing interference between the retrieval paradigms, 601

and (2) the Normalization Module (NM), which 602

further fine-tunes the alignment between these re- 603

trieval paradigms. Our experimental results re- 604

veal that HyReC significantly outperforms the 605

baseline, achieving remarkable improvements in 606

nDCG@10 (+3.66% for the small-scale model and 607

+1.01% for the base-scale model). The evaluations 608

conducted on the C-MTEB retrieval benchmark 609

conclusively demonstrate the effectiveness of our 610

proposed approach. 611
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6 Limitations612

While our study presents a novel optimization mod-613

ule, semantic union of terms, tailored for enhanc-614

ing retrieval tasks in Chinese retrieval scenarios, it615

is important to acknowledge two key limitations.616

First, the proposed module is specifically designed617

and optimized for Chinese language expressions,618

and its applicability to other languages remains un-619

explored. This limitation arises from the inherent620

linguistic characteristics embedded in the semantic621

union of terms, which are currently aligned with622

Chinese and may not directly generalize to mul-623

tilingual contexts. Future work could investigate624

the adaptation of this module to other languages625

by incorporating cross-lingual semantic representa-626

tions. Second, the experimental validation of our627

approach is confined to retrieval tasks on the C-628

MTEB benchmark, and its performance in other629

tasks, such as classification or clustering, has not630

been evaluated. This restriction stems from the fact631

that the semantic union of terms is inherently opti-632

mized for retrieval matching, and its effectiveness633

in broader applications remains an open question.634

Extending the evaluation to additional domains635

could provide a more comprehensive understand-636

ing of the module’s versatility and potential impact.637

Additionally, due to the constraints of our GPU638

resources, we were unable to scale the model to639

a larger size(like BAAI/bge-large-zh (Xiao et al.,640

2023)) and the optimization of the base-scale model641

may not have been fully realized, limiting its po-642

tential performance.643
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Model T2 MM Du Covid Cmed Ecom Med Video Avg
BAAI/bge-base-zh 82.38 88.73 87.27 86.78 51.39 80.20 65.90 86.00 78.58
BGE-m3-sparse 70.19 71.04 72.19 86.56 29.89 65.00 51.10 74.20 65.02
BGE-m3-dense 80.12 88.18 86.25 88.83 42.33 74.60 62.80 72.30 74.43
BGE-m3-hybrid 81.68 88.35 86.52 90.25 41.31 76.40 63.60 78.50 75.83
HyReC-base-sparse 72.28 80.62 76.06 87.20 37.10 74.40 55.70 82.90 70.78
HyReC-base-dense 81.70 87.93 89.55 88.41 42.59 76.30 66.30 85.40 77.27
HyReC-base-hybrid 82.73 87.83 88.28 90.99 46.83 79.40 68.10 86.90 78.88
BAAI/bge-small-zh 76.29 79.22 79.80 82.35 44.08 73.30 58.10 82.40 71.94
HyReC-small-sparse 72.45 79.77 75.74 88.09 34.91 72.80 54.60 83.80 70.27
HyReC-small-dense 75.94 81.45 83.69 84.56 42.60 70.60 60.40 81.00 72.53
HyReC-small-hybrid 79.33 84.20 84.05 88.25 42.43 76.30 62.10 86.10 75.34

Table 5: The experimental results on the C-MTEB retrieval benchmark are evaluated using Recall@10. T2,
MM, Du, Covid, Cmed, Ecom, Med and Video correspond to the T2Retrieval, MMarcoRetrieval, DuRetrieval,
CovidRetrieval, CmedqaRetrieval, EcomRetrieval, MedicalRetrieval and VideoRetrieval development settings in
C-MTEB retrieval benchmark.

Model T2 MM Du Covid Cmed Ecom Med Video Avg
BAAI/bge-base-zh 92.13 74.52 90.95 70.77 44.44 59.32 53.62 67.85 69.20
HyReC-base-sparse 85.04 66.27 85.47 70.22 34.38 54.97 45.95 61.98 63.03
HyReC-base-dense 91.62 74.43 94.77 72.14 37.00 56.58 54.48 67.83 68.61
HyReC-base-hybrid 92.47 74.92 93.26 75.89 41.50 60.24 56.05 69.08 70.43
BAAI/bge-small-zh 88.47 64.27 86.59 64.66 38.04 53.39 47.32 65.15 63.49
HyReC-small-sparse 85.12 64.96 85.30 71.88 32.08 55.02 44.10 63.52 62.75
HyReC-small-dense 87.64 67.19 90.70 68.65 36.50 50.12 48.13 61.23 63.77
HyReC-small-hybrid 90.29 70.19 90.53 72.68 38.26 56.78 50.53 66.30 66.94

Table 6: The experimental results on the C-MTEB retrieval benchmark are evaluated using MRR@10.

A Training Recipe790

Our training pipeline consists of both pre-training791

and fine-tuning phases. During fine-tuning, the792

global-aware lexicon encoder and local-aware793

dense encoder are initialized with the same pre-794

trained parameters. Specifically, we partition the795

pre-trained BERT model into two components: (1)796

the semantic-sharing backbone and (2) the encoder797

module. The latter is then used to initialize both798

the global and local encoders.799

• Pre-Training. Utilizing the RetroMAE (Xiao800

et al., 2022) method, a variant of mask language801

modeling, we leverage the Wudao (Yuan et al.,802

2021) corpora to pre-train our model, which means803

we do not use any pre-trained language models.804

• Preliminary Fine-tuning. At this stage, we805

gather text pairs from various open web sources,806

such as Zhihu and Baike. To enhance the qual-807

ity of our dataset, we employ a third-party model,808

Text2Vec-Chinese2, to filter out noisy data by ap-809

2https://huggingface.co/GanymedeNil

plying a threshold of 0.43. Through this process, 810

we successfully filter 160 million text pairs from 811

the unlabeled corpora. Finally, the pre-trained 812

model undergoes fine-tuning on this carefully cu- 813

rated corpus, which empowers it to effectively dif- 814

ferentiate between the paired texts. Contrastive 815

learning is employed to achieve local-aware dense 816

representations and global-aware lexicon represen- 817

tations, while classification learning is utilized for 818

semantic union. In-batch negative samples are 819

adopted during training for contrastive learning. 820

• High-quality Fine-tuning. The model 821

undergoes additional fine-tuning using a set 822

of high-quality text pairs, which includes T 2- 823

Ranking (Fuller et al., 2008), DURreader (He 824

et al., 2018), mMARCO (Bonifacio et al., 2022), 825

CMedQA-v2 (Zhang et al., 2018) and multi- 826

cpr (Long et al., 2022). In total, there are 118,944,5 827

paired texts, most of which are curated through 828

human annotation to ensure their high quality. Dur- 829

ing this stage, both contrastive learning and clas- 830

sification learning are employed to further refine 831

11



Model T2 MM Du Covid Cmed Ecom Med Video Avg
BAAI/bge-base-zh 76.02 73.93 76.98 70.80 35.18 59.32 53.52 67.85 64.20
HyReC-base-sparse 63.18 65.59 64.48 70.27 25.84 54.97 45.95 61.98 56.53
HyReC-base-dense 75.03 73.79 82.58 72.05 29.03 56.58 54.47 67.88 63.93
HyReC-base-hybrid 76.32 74.39 80.20 75.82 32.71 60.24 55.99 69.08 65.60
BAAI/bge-small-zh 68.59 63.60 68.39 64.64 29.24 53.39 47.27 65.17 57.54
HyReC-small-sparse 63.44 64.27 64.98 71.99 23.87 55.02 44.10 63.52 56.40
HyReC-small-dense 67.76 66.47 74.37 68.52 28.06 50.12 48.08 61.28 58.08
HyReC-small-hybrid 72.01 69.58 74.44 72.65 29.49 56.78 50.48 66.30 61.47

Table 7: The experimental results on the C-MTEB retrieval benchmark are evaluated using MAP@10.

the model. In contrastive learning, we not only832

utilize in-batch negative samples but also imple-833

ment an ANN-style sampling strategy (Xiong et al.,834

2021) to generate hard negative samples. This stage835

features two key distinctions from the preliminary836

fine-tuning: firstly, it incorporates high-quality text837

pairs with human annotations for training; secondly,838

the negative sampling process is enhanced by the839

inclusion of hard negative samples.840

B ANN-style Hard Negative Mining841

Our ANN-style hard negative mining involves:842

• building an index using the first-stage model.843

• retrieving the top 100 passages per query.844

• sampling hard negatives from non-positive pas-845

sages ranked 20th–100th.846

C Evaluation in Other Metrics847

As illustrated in Tables 5-7, our retrieval method848

significantly enhances performance. This is evi-849

denced by its impressive results across Recall@10,850

MRR@10, and MAP@10 metrics, highlight-851

ing its exceptional effectiveness( MRR@10 and852

MAP@10 metrics exclude the bge-m3 model due853

to the absence of pertinent evaluation codes on its854

official website.).855
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