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Abstract

Hybrid-based retrieval methods, which unify
dense-vector and lexicon-based retrieval, have
garnered considerable attention in the industry
due to performance enhancement. However,
despite their promising results, the application
of these hybrid paradigms in Chinese retrieval
contexts has remained largely underexplored.
In this paper, we introduce HyReC, an innova-
tive end-to-end optimization method tailored
specifically for hybrid-based retrieval in Chi-
nese. HyReC enhances performance by inte-
grating the semantic union of terms into the
representation model. Additionally, it features
the Global-Local-Aware Encoder (GLAE) to
promote consistent semantic sharing between
lexicon-based and dense retrieval while mini-
mizing the interference between them. To fur-
ther refine alignment, we incorporate a Normal-
ization Module (NM) that fosters mutual bene-
fits between the retrieval approaches. Finally,
we evaluate HyReC on the C-MTEB retrieval
benchmark to demonstrate its effectiveness.

1 Introduction

Retrieval-augmented generation (RAG) enhances
large language models by incorporating external
knowledge to address hallucination issues, simul-
taneously catalyzing the rapidly evolving develop-
ment of the retrieval community. How to effec-
tively retrieve the most relevant information from
the knowledge base is critically important for the
final generation results. According to the encod-
ing space, retrieval methods can be mainly catego-
rized into three classifications: dense-vector( e.g.,
Condenser (Gao and Callan, 2021a), Bge embed-
ding (Xiao et al., 2023), and Jina embedding (Stu-
rua et al., 2024)), lexicon-based( e.g., DeepCT (Dai
and Callan, 2019), SparTerm (Bai et al., 2020), and
TILDE (Zhuang and Zuccon, 2021b)) and hybrid-
based paradigms(e.g., COIL-full (Gao et al., 2021),
Unifier (Shen et al., 2023) and Bge M3 (Chen et al.,
2024) ). Among them, the hybrid-based paradigm
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Figure 1: A example for lexicon-based retrieval. The
three columns comprise the query, passage 1, and pas-
sage 2. The three rows illustrate the original text, the
term-level matching results(terms derived from the to-
kenizer), and the word-level matching results(words
generated by word segmentation), respectively.

has garnered significant attention owing to its supe-
rior performance.

The hybrid retrieval frameworks typically intro-
duce a lexicon-based retrieval branch into the ex-
isting dense-vector model (Gao et al., 2021; Shen
et al., 2023; Chen et al., 2024). The final matching
score is computed as the sum of scores from both
branches: the dense branch calculates similarity via
the inner product of query and passage embeddings,
while the lexicon-based branch is derived by multi-
plying the weights of the tokenizer-defined terms
shared between the query and passage, followed
by summing the resulting products. While this
paradigm works adequately for English retrieval, it
faces critical challenges in Chinese scenarios due
to the absence of word boundaries (spaces). Specif-
ically, lexicon-based matching relies on tokenizer-
defined terms, which often fail to capture semantic
nuances in Chinese. For instance, as illustrated
in Fig. 1, term-level matching may incorrectly as-
sign an identical score between Passage 1 and Pas-
sage 2, exposing semantic inconsistencies between
term granularity and actual word meanings. This
highlights the need for dedicated optimization of
hybrid-based paradigms for Chinese.

It has been proven and widely accepted that
in traditional lexicon-based retrieval, word-level
matching properly can significantly improve per-
formance. As illustrated in Fig. 1 (Row 3), such



improvements rely heavily on word segmentation
modules to identify meaningful words. Widely
adopted tools like Jieba' implement this through
frequency-based heuristics, yet their lack of se-
mantic awareness inevitably limits matching accu-
racy. To address this limitation, neural methods for
word segmentation have emerged, utilizing bert-
like models to capture semantic context (Tian et al.,
2020; Huang et al., 2020; Maimaiti et al., 2021).
Nevertheless, these approaches typically employ
two separate models for words segmentation and
lexicon-based retrieval, which lacks an end-to-end
optimization solution and leaves room for perfor-
mance enhancement.

In this paper, we present an innovative method
called HyReC, which offers an end-to-end opti-
mization solution for hybrid-based retrieval sys-
tems in Chinese scenarios. Specifically, HyReC
integrates dense-vector retrieval, lexicon-based re-
trieval, and the semantic union of terms into a sin-
gle model. The word segmentation is defined as the
semantic union of terms to distinguish the differ-
ence between tokenizer-defined terms and model-
defined semantic words. Within HyReC, the [C' LS|
embedding is utilized for dense-vector retrieval,
while embeddings from other tokens are employed
for sparse retrieval and the semantic union of terms.
During training, we have developed a labelling tool
for training the semantic union, while the dense-
vector and lexicon-based retrieval components are
trained using a contrastive learning approach. Once
trained, HyReC conducts large-scale retrieval ei-
ther through its lexicon representation using an
efficient inverted index or by leveraging dense vec-
tors with parallelizable dot-product operations. In
particular, each dimension of the lexicon repre-
sentation corresponds to a term in the vocabulary,
with its value reflecting the importance of that term
within the passage. This vocabulary includes the
result from the tokenizer’s definition and the newly
generated words generated by the semantic union
of existing terms.

Moreover, we introduce an innovative module
named the Global-Local-Aware Encoder (GLAE)
to facilitate consistent semantic sharing, while si-
multaneously minimizing the interference between
the two retrieval paradigms. Since the dense-vector
paradigm is designed to learn sequence-level dense
representations, the lexicon-based paradigm fo-
cuses on obtaining word-level lexicon represen-
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tations (Shen et al., 2023). Additionally, we in-
troduce a Normalization Module (NM) designed
to align the two retrieval paradigms more reason-
ably, fostering mutual benefits. We normalize the
matching scores of both paradigms to a 0-1 scale,
rather than imposing rigid weights to enforce align-
ment (Chen et al., 2024).

Our main contributions of this paper are summa-
rized as follows:

e We propose HyReC, a novel hybrid retrieval
framework tailored for Chinese scenarios that uni-
fies dense-vector retrieval, lexicon-based retrieval,
and semantic union of terms within a single model.

e We additionally develop two key components:
GLAE enables consistent semantic sharing while
reducing paradigm interference, and NM achieves
better alignment between two retrieval paradigms.

e Extensive experiments demonstrate that
HyReC consistently outperformed baseline algo-
rithms on the C-MTEB retrieval benchmark, vali-
dating its effectiveness.

2 Related Work

2.1 Dense-vector Retriever

To improve the retriever’s performance, contem-
porary methods often focus on strategies such as
selecting difficult negatives, leveraging pre-training
and developing more elegant training recipes. For
instance, ANCE (Xiong et al., 2020) introduced
an innovative learning mechanism that globally
selects difficult negatives from the entire corpus,
utilizing an asynchronously updated approximate
nearest neighbour (ANN) index. In contrast,
ADORE (Zhan et al., 2021) employed dynamic
sampling to adaptively adjust hard negative train-
ing samples during the model training process.
Moreover, Condenser (Gao and Callan, 2021a)
and coCondenser (Gao and Callan, 2021b) devel-
oped a pre-training strategy specifically designed
for ad-hoc retrieval to enhance the performance
of the model. Recently, Bge embedding (Xiao
et al., 2023), and Jina embedding (Sturua et al.,
2024) have introduced a three-stage training recipe
and scaled training data to further enhance the re-
triever’s effectiveness.

2.2 Lexicon-based Retriever

In recent years, researchers have been fervently
working to enhance context representation in the
lexicon-based retriever. DeepCT (Dai and Callan,
2019) translates contextual term representations
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Figure 2: The architecture of our HyReC. HyReC first utilizes a semantic sharing backbone to extract low-level
textual features for both paradigms. It then comprises two branches, each dedicated to learning global-aware and
local-aware representations for the dense-vector retriever and the lexicon-based retriever, respectively. Additionally,
a bagging module is employed to aggregate the weights and semantic union of terms, further enhancing the lexicon-

based retriever’s capabilities.

from BERT into term weights, deriving matching
scores by multiplying the weights of terms shared
between the query and passage and summing the
resulting products. Similarly, SparTerm (Bai et al.,
2020) introduced a contextual importance predic-
tor that accurately assesses the significance of
each term within the vocabulary. Building on
contextual term representations, SPLADE (For-
mal et al., 2021) further introduced an innovative
log-saturation effect that effectively regulates term
dominance, promoting natural sparsity in the result-
ing representations. Additionally, TILDE (Zhuang
and Zuccon, 2021b) proposed a more efficient
framework for lexicon-based retrieval by incorpo-
rating a query likelihood component.

2.3 Hybrid-based Paradigms Retriever

The hybrid-based paradigm has garnered signifi-
cant attention from the industry owing to its supe-
rior performance. COIL (Gao et al., 2021) used
word-bag match and relied on [C'LS] vectors for
computing relevance scores to assess hybrid-based
retrievers. Bge M3 (Chen et al., 2024) expanded
the ability of the hybrid-based retrieval by improv-
ing the training recipe and scaled training data.
The authors in (Wang et al., 2021; Zhuang et al.,
2024) explored normalization for combining dense
and sparse retrievals. However, our method inte-

grates normalization module during the training
phase to jointly optimize the interaction between
dense and sparse retrievals, rather than only ap-
plying it during inference. Unifier (Shen et al.,
2023) integrates dense-vector and lexicon-based
retrieval into a single model with dual representing
capabilities. It also introduces a self-regularization
method based on list-wise agreements from these
dual views. However, to improve performance in
lexicon-based retrieval, Unifier replaces the embed-
ding of the [C'LS] token in the lexicon encoder
with that from the local-aware dense encoder. This
decision increases the inference time for lexicon-
based retrieval and couples the lexicon-based re-
trieval with dense-vector retrieval, limiting flexi-
bility in their applications. Additionally, the previ-
ously mentioned methods place limited emphasis
on this scheme within the Chinese context and ig-
nore the union between adjacent terms.

3 Methodology

HyReC seamlessly integrates dense-vector re-
trieval, lexicon-based retrieval, and the semantic
union of terms into a single model. Additionally,
it incorporates GLAE to ensure consistent seman-
tic sharing while effectively minimizing interfer-
ence between the two retrieval paradigms. Ulti-
mately, it presents NM to align these two retrieval



approaches.

3.1 Network Architecture

As illustrated in Fig. 2, HyReC primarily con-
sists of the semantic sharing backbone (detailed
in Sec.3.1.1), the global-aware lexicon encoder (de-
tailed in Sec.3.1.2), the local-aware dense encoder
(detailed in Sec.3.1.3), three projectors (detailed
in Sec.3.1.4) and the bagging module (detailed in
Sec.3.1.4). The semantic sharing backbone, the
global-aware lexicon encoder and the local-aware
dense encoder are collectively referred to as GLAE.

3.1.1 Semantic Sharing Backbone

We begin by employing a semantic sharing back-
bone to extract low-level textual features for both
retrieval paradigms, ensuring consistent semantic
sharing. While the two paradigms concentrate on
different levels of representation granularity( dense-
vector retrieval focusing on sequence-level dense
representation and lexicon-based retrieval empha-
sizing word-level contextualization embeddings),
both paradigms delve into the semantic information
of each term within the sentence. This shared ex-
ploration enables them to develop a cohesive under-
standing of semantic and syntactic knowledge di-
rected toward the same retrieval targets. Like (Shen
et al., 2023), we also leverage a multi-layer Trans-
former encoder to produce the semantic sharing
backbone, i.e.,

S@) = TF-Enc([CLS)z[SEP];0¢) (1)

where T'F'- Enc refers to a multi-layer Transformer
encoder that utilizes parameters 6(>*?). [C'LS] and
[SEP] are special tokens by following PLMs (De-
vlin et al., 2019). z represents either a query or a
document.

3.1.2 Global-aware Lexicon Encoder

Building on the low-level textual features, we pro-
pose a representation module that generates a word-
level lexicon representation. This module not only
ensures consistent semantic sharing but also mini-
mizes the interference from sequence-level dense
representation associated with the dense retrieval
paradigm. Unlike the approach taken in (Shen et al.,
2023), we refrain from replacing the embedding
of the [C'LS] token with that from the local-aware
dense encoder for two key reasons: first, to reduce
the inference time of the lexicon-based retrieval;
and second, to decouple the lexicon-based retrieval

and the dense-vector retrieval, allowing for more
flexibility in their application. Given that the word-
level lexicon representation captures global vocabu-
lary space information, we designate this module as
the global-aware lexicon encoder. To achieve this,
we utilize an additional multi-layer Transformer
encoder to process S (#), This can be expressed as

L&) = TF-Enc(8®); glote)) 2)

where this module is parameterized by 6(9'¢),
which is distinct from 9(550) the resulting L(*) de-
notes a word-level lexicon representation of the
input text x, which is utilized for lexicon-based
retrieval.

3.1.3 Local-aware Dense Encoder

Additionally, building on the low-level textual fea-
tures, we present another representation module
that generates a sequence-level dense representa-
tion. This module not only ensures consistent se-
mantic sharing but also reduces interference from
the word-level lexicon representation associated
with the lexicon retrieval paradigm. Since the
sequence-level dense representation does not incor-
porate global vocabulary space information, which
captures local contextualization, we refer to this
module as the local-aware dense encoder. To
achieve this, we apply another multi-layer Trans-
former encoder to S (z), This can be written as

D@ = TF-Enc(S®; glde)) (3)

where this module is parameterized 9(de) | the
resulting D(*) denotes a sequence-level dense
representation of the input text x, which is em-
ployed for dense-vector retrieval. The dimension
of S(z), L{z) and D'z) is [B, N, H], where B
represents the batch size, N denotes the input se-
quence length, and H indicates the hidden size of
the model.

3.1.4 Hybrid Retrieval

After obtaining the word-level lexicon represen-
tation L(*) and sequence-level dense representa-
tion D(®) of the input text =, we employ three pro-
jectors( i.e., weight projector, union projector and
dense projector) to acquire the term weight, term
union and dense vector, respectively.

To achieve term union, the union projector com-
bines the word-level lexicon representation L (%)
into four classification probabilities, indicating ‘S’
(single term word) ‘B’ (the beginning position of



the word), ‘M’ (the middle position of the word),
and ‘E’ (the ending position of the word), respec-
tively. This is expressed as:

Uterm; = softmax(wyl; + by) )

where term; is the ¢th term or token in input x.
w,, and b,, are linear weights and bias of the union
projector module, respectively. [; is ¢th token’s
word-level lexicon representations from L(%).

For term weight, we adopt a method inspired by
the recent TILDEv2 (Zhuang and Zuccon, 2021a),
which optimizes memory usage by storing only the
scores of tokens that appear in current passages
rather than the entire vocabulary. Differing from
the original TILDEV2, our lexicon-based retrieval
incorporates term union information to enhance
performance. The weight projector integrates the
word-level lexicon representation L(*) to produce
a term importance score:

Wierm; = log(1 + ReLU (wyli + by))  (5)

where w,, and b,, are linear weights and bias of the
weight projector module, respectively.

Lastly, the dense projector combines the rep-
resentation of special token [C'LS] from the
sequence-level dense representation D(®) to gener-
ate a sequence-level dense vector, which is utilized
for dense-vector retrieval:

Dvec = (wddCLS + bd) (6)

where wy and by are linear weights and bias of
the dense projector module, respectively. dop g is
[C'LS] representations from D(®).

In the inference, we utilize the Bagging mod-
ule to aggregate both the weights and the seman-
tic unions of terms. To elaborate, we proceed as
follows: first, based on Userm,;, we derive the re-
sult Uwordj for the jth semantic union. Notably,
medj may encompass multiple terms or tokens
when Uperr,, belongs to the set {B, M, E'}; Sec-
ond, we compute the weight Wwordj associated
with Uwordj- as follows:

Uword; = max(Uterm, ); term; € word; — (7)

Waord; = max(Wierm, ); term; € word;  (8)

where word; represents a word that consists of
more than one term or token.

The final matching score for hybrid retrieval is
calculated as the sum of the matching scores from

both the lexicon retrieval and the dense retrieval,
ie.,

S(q,p) = 5" (q,p) + S**(q,p) (9

where S'°*(q, p) and S (q, p) denote the match-
ing score of the lexicon retrieval and the dense
retrieval, respectively. The matching score of the
lexicon-based method is calculated by weights mul-
tiplications of the common terms shared in the
query and the passages.

Slex(q,p) _ Z w4 wP

term;  term;
Z7j

(10)

B t’; . Tepresents the weight of the
i J

1th term( or word) from the query and the passage,
respectively. term; is derived from both term; and

word;( similarly for terAmj.).

where W2 .
term.

Sden(%p) =D4 .pDP

vec vec

(11)

where DZ.. and D%, are sequence-level dense vec-
tors of query and passage, respectively.

3.2 Loss

Given a query g and a set of n passages D =
{p*,P1, P2, .-, Pn—1}. The lexicon retrieval and
the dense retrieval task are acquired by the rank-
ing objective with a contrastive loss. Thus, their
training loss is

S apt)/T

eS*(ap™))/T 4 >p eS*(a:p;)/7 (12)

L, = —log

where 7 is the temperature parameter. * is lex or
den, which denotes the matching score of the lexi-
con retrieval and the dense retrieval, respectively. p
and ¢ represent the paired texts, p; € P denotes
a hard negative.

The semantic union loss, represented as L pion,
is employed by the cross-entropy loss, as repre-
sented below.

£union = - Z yilOQ(Utermi) (13)

7
where y; represents the labels of the term union
(for more details, see Section 4.1.1).
The total loss for our HyReC is



3.3 Normalization Module (NM)

In lexicon-based retrieval, matching scores are com-
puted through weighted summation of identical
terms, where the score range varies significantly
depending on term weights. Similarly, dense re-
trieval scores obtained through vector dot products
also exhibit unpredictable ranges. This discrepancy
in score distributions makes direct combination
problematic, necessitating normalization to align
their scales. We first perform L2 normalization on
the sequence-level dense representation D) be-
fore computing dot products. For the lexicon-based
branch, we employ an attention mask to identify
valid tokens, followed by L2 normalization of the
term importance score vectors Wi, for these
selected tokens. The benefits of this module are
as follows: First, it mitigates training instability
caused by score disparities, which otherwise lead to
inconsistent model preferences for dense or sparse
retrieval across samples. Second, the normaliza-
tion process effectively balances the contribution
of each branch, allowing for more stable optimiza-
tion. Finally, by aligning the score distributions,
the model can learn more meaningful combination
weights during training.

4 [Experiments

4.1 Implementation Details

We follow the training recipe of BGE (Xiao et al.,
2023) to ensure a fair comparison. See details of
method and datasets in Appendix A.

4.1.1 Labelling Tool for Semantic Union

We combine the Jieba frequency word segmen-
tation module with manually crafted regular ex-
pressions to generate labels for the semantic union.
Since the Jieba framework relies primarily on fre-
quency information and exhibits limited general-
ization, we enhance it by incorporating regular ex-
pressions to identify additional patterns, such as nu-
meric expressions, quantity phrases, product mod-
els, and version identifiers. Labelling the semantic
union involves the following steps: 1) Extracting
the segmented words from the input and identify-
ing the offsets of these segmented words within the
original string; 2) Obtaining the tokenization re-
sults and their respective offsets; 3) Producing the
labelling results by aligning the offsets between the
segmented words and the tokenizer outputs. The
offsets of the segmented words align a single token
and the corresponding token is labelled as ‘S’ (indi-

cating O class). For offsets that encompass multiple
tokens, the tokens are labelled sequentially as ‘B’
(indicating 1 class), ‘M’ (indicating 2 class), and
‘E’ (indicating 3 class).

4.1.2 Evalution Metrics

In this paper, we explore the application of a hybrid-
based paradigm within Chinese retrieval scenar-
ios, focusing primarily on Chinese retrieval ex-
periments. We adopt the C-MTEB (Xiao et al.,
2023) retrieval benchmark as our standard, given
its prominence in the field. Adhering to the
official benchmark protocols, we evaluate our
method using Pyserini (Lin et al., 2021) and utilize
nDCG@10 as the primary evaluation metric.

4.1.3 Experimental Setups

For pre-training with a large volume of unsuper-
vised data, we set the batch size to 512, with a
maximum query and passage length of 512 tokens.
The learning rate is configured at 1 x 1074, the
warmup ratio is 0.1, and the weight decay is set to
0.01. This pre-training process is conducted across
16 V100 (32GB) GPUs.

In the two fine-tuning stages, we utilize a batch
size of 64 for the small-scale model and 30 for the
base-scale model. Additionally, we set the maxi-
mum lengths for queries and passages to 64 and
256 tokens, respectively. We perform 5 epochs
with a learning rate of 5 X 1072, a temperature
parameter of 0.05, and a weight decay of 0.01. The
fine-tuning stage is executed on 8 3090 (24GB)
GPUs. For the high-quality fine-tuning stage, we
sample 3 negative instances for each query.

The small-scale model( with 38M parameters) is
composed of a single-layer semantic sharing back-
bone, a single-layer global-aware lexicon encoder,
and a single-layer local-aware dense encoder. In
contrast, the base-scale model( with 153M parame-
ters) incorporates a 5-layer semantic sharing back-
bone, a 7-layer global-aware lexicon encoder, and
a 7-layer local-aware dense encoder. Notably, in
small cases due to the constraints of our machine,
we have opted not to scale our model to a large
scale( like BAAI/bge-large-zh (Xiao et al., 2023)).

4.2 Main Evaluation

We conducted experiments using the C-MTEB re-
trieval benchmark (Xiao et al., 2023) to compare
HyReC with the existing methods listed in Tab. 1.
Our HyReC model exhibits remarkable advance-
ments on the C-MTEB retrieval benchmark, It sig-



Model T2 MM Du Covid Cmed Ecom Med Video Avg

luotuo-bert-medium 58.67 5531 5936 5548 18.04 4048 29.8 38.04 444

text2vec-base-chinese 51.67 44.06 52.23 44.81 1591 34.59 27.56 39.52 38.79
m3e-base 73.14 6545 7576 66.42 30.33 5027 42.8 S51.11 5691
OpenAl 69.14 69.86 71.17 57.21 2236 4449 3792 4385 52.0

multilingual-e5-base  70.86 76.04 81.64 7345 272 5417 4835 613 61.63
BAAI/bge-base-zh 83.35 79.11 86.02 72.07 41.77 63.53 56.64 73.76 69.53
BGE-m3-sparse 71.80 59.31 71.53 76.57 2432 50.76 43.78 58.68 57.08
BGE-m3-dense 81.07 77.25 84.03 76.56 33.78 58.39 5427 5695 65.29
BGE-m3-hybrid 83.04 77.57 84.52 7922 3328 60.65 5535 63.13 67.10
HyReC-base-sparse 73.00 69.43 7458 7441 30.76 59.64 4829 67.07 62.15
HyReC-base-dense 82.93 7740 89.13 76.06 3442 61.31 5730 72.16 68.84
HyReC-base-hybrid 84.03 77.81 8731 79.53 3847 64.82 58.89 7346 70.54
multilingual-e5-small  71.39 73.17 8135 72.82 2438 53.56 44.84 58.09 59.95
BAAI/bge-small-zh 77.59 67.56 77.89 68.95 3518 58.17 499 6933 63.07
HyReC-small-sparse ~ 73.20 68.23 74.67 7593 28.67 5930 46.64 68.48 61.89
HyReC-small-dense ~ 76.90 70.30 82.76 7243 33.81 55.04 51.02 66.05 63.54
HyReC-small-hybrid  80.52 73.29 82.82 76.47 3493 6143 53.27 71.14 66.73

Table 1: The experimental results on the C-MTEB retrieval benchmark are evaluated using nDCG@Q10. T2,
MM, Du, Covid, Cmed, Ecom, Med and Video correspond to the T2Retrieval, MMarcoRetrieval, DuRetrieval,
CovidRetrieval, CmedgaRetrieval, EcomRetrieval, MedicalRetrieval and VideoRetrieval development settings in

C-MTERB retrieval benchmark.

Table 2: Ablation study on the effectiveness of each
component on C-MTEB retrieval benchmark( SU
means the semantic union of terms).

NM GLAE SU Lexicon Dense Hybrid
v v 56.89 57.80  58.53
v v 60.80 60.82 6541
v v 60.65 63.13  66.14
v v v 61.89 63.54  66.73

nificantly outperforms Bge (Xiao et al., 2023) on
nDCGQ10 with a margin of +3.66%. A compa-
rable improvement was observed when we scaled
our model to a base size, resulting in an additional
gain of +1.01% (notably, without the constraints
of our machine, this improvement would be even
more pronounced). Furthermore, the integration
of lexicon-based and dense-vector retrieval leads
to notable enhancements in retrieval performance,
with improvements of +4.84% for lexicon-based
retrieval and +3.19% for dense-vector retrieval.
Ultimately, compared to the BGE-m3-hybrid ap-
proach which employs the same method (Chen
et al., 2024), our hybrid-based retrieval method
achieved a significant improvement in retrieval per-
formance, reaching a 3.44% enhancement, demon-
strating its outstanding effectiveness. Moreover,
even without the inclusion of CovidRetrieval in the
training data, our approach showcases its remark-

able ability to generalize across diverse datasets.

4.3 Ablation Studies
4.3.1 Effectiveness of Each Component

The contributions of different components of
HyReC are listed in Tab. 2. Utilizing the small-
scale model of HyReC for this ablation study, we
observed that the removal of the NM module leads
to a significant drop in performance, highlighting
the detrimental effects of an unpredictable score
range on unstable training. The GLAE module
was configured by adjusting the number of layers
in the semantic sharing backbone, global-aware
lexicon encoder, and local-aware dense encoder.
The removal of the GLAE module entailed elimi-
nating both the global-aware lexicon encoder and
the local-aware dense encoder, while setting the
number of layers in the semantic sharing back-
bone to two. The removal of the GLAE module
leads to a decline in both lexicon-based (61.89%
to 60.80%) and dense-vector (63.54% to 60.82%)
retrieval performance, highlighting the interplay
between the two retrieval paradigms. Further-
more, we conducted two additional experiments:
1) training exclusively on the lexicon-based re-
trieval task, which yielded an n DC'G@10 score of
53.05%, and 2) training solely on the dense-vector
retrieval task, resulting in an nDC'G@10 score of
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Figure 3: Ablation study on the performance of GLAE
by the base-scale model, where the row axis NV is the
layer number of the global-aware lexicon encoder or the
local-aware dense encoder and the layer number of the
semantic sharing backbone is 12 — N.

63.11%. Consequently, the semantic sharing back-
bone promotes consistent semantic sharing, as evi-
denced by substantial improvements—rising from
53.05% to 61.89% for lexicon-based retrieval and
from 63.11% to 63.54% for dense-vector retrieval,
with the most notable enhancement observed in
lexicon-based retrieval. Additionally, introducing
semantic union results in marked improvements:
lexicon-based (rising from 60.65% to 61.89%),
dense-vector (increasing from 63.13% to 63.54%),
and hybrid-based retrieval (growing from 66.14%
to 66.73%). This clearly illustrates that semantic
union not only enhances lexicon-based retrieval
but also positively affects dense-vector retrieval.
The ablation studies presented in Tab. 2 verify the
effectiveness of each module in our HyReC.

4.3.2 Parameters of GLAE

As depicted in Fig. 3, increasing the number of lay-
ers in the global-aware lexicon encoder or the local-
aware dense encoder(while progressively reducing
the layer number of the semantic sharing backbone)
initially leads to an increase in all nDCG@10
scores. This initial enhancement can be attributed
to a decrease in the interplay between the two re-
trieval paradigms. Beyond a certain point, the
scores begin to decline, which is a consequence
of reduced consistent semantic sharing.

4.4 Ablation of the Semantic Union of Terms

We conducted experiments to validate the proposed
semantic union of terms. As illustrated in Tab.
3, the nDC'GQ10 performance of the semantic
union surpasses the frequency-based method by
4.19%, 0.41% and 0.52% in lexicon-based, dense-
vector and hybrid-based retrieval performance, re-
spectively. These results clearly show that our pro-

Table 3: Ablation study on the performance of the se-
mantic union of terms on C-MTEB retrieval benchmark.

Method Lexicon Dense Hybrid
Jieba 57.70 63.13  66.21
HyReC 61.89 63.54 66.73

Table 4: The case study of the semantic union. Red
words are incorrect segmentation.

F——— T TENERZEE
LiYiyi immediately couldn’t remember who she was
Jieba T —— — N T IRANE W Rl
Li/ Yiyi/ immediately/ couldn’t remember/ she/ was/ who
F—— — T AR T 2
LiYiyi/ immediately/ couldn’t remember/ she/ was/ who
RERRIEH W
You tell me weak light side
Jieba ARSI S
You/ tell/ my weak light/ side
TR &l Bl 58/ — 3
You/ tell/ me/ weak light/ side

Sentence

HyReC

Sentence

HyReC

posed semantic union of terms outperforms the
frequency-based method, i.e., Jieba. Additionally,
we visualize the outputs of both the semantic union
of terms and Jieba to assess the semantic informa-
tion utilized in generating segmented words. As
demonstrated in Tab. 4, the proposed semantic
union of terms effectively comprehends the seman-
tic nuances of the terms and achieves meaningful
word segmentation by this semantic understanding.

5 Conclusion

In this paper, we introduced HyReC, an innova-
tive end-to-end optimization method specifically
designed for hybrid-based retrieval systems in the
Chinese context. HyReC effectively integrates
dense-vector retrieval, lexicon-based retrieval, and
the semantic union of terms into a cohesive model
to enhance overall performance. Additionally, our
method incorporates two pivotal modules: (1) the
Global-Local-Aware Encoder (GLAE), which facil-
itates consistent semantic sharing while minimiz-
ing interference between the retrieval paradigms,
and (2) the Normalization Module (NM), which
further fine-tunes the alignment between these re-
trieval paradigms. Our experimental results re-
veal that HyReC significantly outperforms the
baseline, achieving remarkable improvements in
nDCGQ@10 (+3.66% for the small-scale model and
+1.01% for the base-scale model). The evaluations
conducted on the C-MTEB retrieval benchmark
conclusively demonstrate the effectiveness of our
proposed approach.



6 Limitations

While our study presents a novel optimization mod-
ule, semantic union of terms, tailored for enhanc-
ing retrieval tasks in Chinese retrieval scenarios, it
is important to acknowledge two key limitations.
First, the proposed module is specifically designed
and optimized for Chinese language expressions,
and its applicability to other languages remains un-
explored. This limitation arises from the inherent
linguistic characteristics embedded in the semantic
union of terms, which are currently aligned with
Chinese and may not directly generalize to mul-
tilingual contexts. Future work could investigate
the adaptation of this module to other languages
by incorporating cross-lingual semantic representa-
tions. Second, the experimental validation of our
approach is confined to retrieval tasks on the C-
MTEB benchmark, and its performance in other
tasks, such as classification or clustering, has not
been evaluated. This restriction stems from the fact
that the semantic union of terms is inherently opti-
mized for retrieval matching, and its effectiveness
in broader applications remains an open question.
Extending the evaluation to additional domains
could provide a more comprehensive understand-
ing of the module’s versatility and potential impact.
Additionally, due to the constraints of our GPU
resources, we were unable to scale the model to
a larger size(like BAAI/bge-large-zh (Xiao et al.,
2023)) and the optimization of the base-scale model
may not have been fully realized, limiting its po-
tential performance.
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Model T2 MM Du Covid Cmed Ecom Med Video Avg

BAAI/bge-base-zh 82.38 88.73 87.27 86.78 51.39 80.20 6590 86.00 78.58
BGE-m3-sparse 70.19 71.04 72.19 86.56 29.89 65.00 51.10 7420 65.02
BGE-m3-dense 80.12 88.18 86.25 88.83 4233 74.60 62.80 7230 7443
BGE-m3-hybrid 81.68 8835 86.52 90.25 4131 7640 63.60 7850 75.83
HyReC-base-sparse ~ 72.28 80.62 76.06 87.20 37.10 74.40 55.70 8290 70.78
HyReC-base-dense 81.70 8793 89.55 8841 4259 7630 6630 8540 77.27
HyReC-base-hybrid  82.73 87.83 8828 90.99 46.83 79.40 68.10 86.90 78.88
BAAI/bge-small-zh ~ 76.29 79.22 79.80 8235 44.08 7330 58.10 8240 71.94
HyReC-small-sparse  72.45 79.77 75.74 88.09 3491 72.80 54.60 83.80 70.27
HyReC-small-dense  75.94 8145 83.69 84.56 42.60 70.60 60.40 81.00 72.53
HyReC-small-hybrid 79.33 84.20 84.05 8825 4243 7630 62.10 86.10 75.34

Table 5: The experimental results on the C-MTEB retrieval benchmark are evaluated using Recall@10. T2,
MM, Du, Covid, Cmed, Ecom, Med and Video correspond to the T2Retrieval, MMarcoRetrieval, DuRetrieval,
CovidRetrieval, CmedgaRetrieval, EcomRetrieval, MedicalRetrieval and VideoRetrieval development settings in

C-MTEB retrieval benchmark.

Model T2 MM Du Covid Cmed Ecom Med Video Avg

BAAI/bge-base-zh 92.13 7452 9095 70.77 44.44 5932 53.62 67.85 69.20
HyReC-base-sparse ~ 85.04 66.27 8547 70.22 3438 5497 4595 6198 63.03
HyReC-base-dense ~ 91.62 7443 94.77 72.14 37.00 56.58 5448 67.83 68.61
HyReC-base-hybrid  92.47 74.92 93.26 75.89 4150 60.24 56.05 69.08 70.43
BAAIl/bge-small-zh  88.47 64.27 86.59 64.66 38.04 5339 47.32 65.15 63.49
HyReC-small-sparse  85.12 64.96 8530 71.88 32.08 55.02 44.10 63.52 62.75
HyReC-small-dense  87.64 67.19 90.70 68.65 36.50 50.12 48.13 61.23 63.77
HyReC-small-hybrid 90.29 70.19 90.53 72.68 38.26 56.78 50.53 66.30 66.94

Table 6: The experimental results on the C-MTEB retrieval benchmark are evaluated using M RRQ10.

A Training Recipe

Our training pipeline consists of both pre-training
and fine-tuning phases. During fine-tuning, the
global-aware lexicon encoder and local-aware
dense encoder are initialized with the same pre-
trained parameters. Specifically, we partition the
pre-trained BERT model into two components: (1)
the semantic-sharing backbone and (2) the encoder
module. The latter is then used to initialize both
the global and local encoders.

e Pre-Training. Utilizing the RetroMAE (Xiao
et al., 2022) method, a variant of mask language
modeling, we leverage the Wudao (Yuan et al.,
2021) corpora to pre-train our model, which means
we do not use any pre-trained language models.

o Preliminary Fine-tuning. At this stage, we
gather text pairs from various open web sources,
such as Zhihu and Baike. To enhance the qual-
ity of our dataset, we employ a third-party model,
Text2Vec-Chinese?, to filter out noisy data by ap-

Zhttps://huggingface.co/GanymedeNil
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plying a threshold of 0.43. Through this process,
we successfully filter 160 million text pairs from
the unlabeled corpora. Finally, the pre-trained
model undergoes fine-tuning on this carefully cu-
rated corpus, which empowers it to effectively dif-
ferentiate between the paired texts. Contrastive
learning is employed to achieve local-aware dense
representations and global-aware lexicon represen-
tations, while classification learning is utilized for
semantic union. In-batch negative samples are
adopted during training for contrastive learning.

e High-quality Fine-tuning. @ The model
undergoes additional fine-tuning using a set
of high-quality text pairs, which includes 72-
Ranking (Fuller et al., 2008), DURreader (He
et al., 2018), mMARCO (Bonifacio et al., 2022),
CMedQA-v2 (Zhang et al.,, 2018) and multi-
cpr (Long et al., 2022). In total, there are 118,944,5
paired texts, most of which are curated through
human annotation to ensure their high quality. Dur-
ing this stage, both contrastive learning and clas-
sification learning are employed to further refine



Model T2 MM  Du Covid Cmed Ecom Med Video Avg

BAAI/bge-base-zh 76.02 7393 7698 70.80 35.18 5932 5352 6785 64.20
HyReC-base-sparse  63.18 65.59 64.48 70.27 25.84 5497 4595 6198 56.53
HyReC-base-dense ~ 75.03 73.79 82.58 72.05 29.03 56.58 54.47 67.88 63.93
HyReC-base-hybrid  76.32 74.39 80.20 75.82 32.71 60.24 55.99 69.08 65.60
BAAI/bge-small-zh  68.59 63.60 68.39 64.64 29.24 5339 4727 65.17 57.54
HyReC-small-sparse  63.44 64.27 64.98 7199 23.87 55.02 44.10 6352 56.40
HyReC-small-dense  67.76 66.47 7437 68.52 28.06 50.12 48.08 61.28 58.08
HyReC-small-hybrid 72.01 69.58 74.44 72.65 2949 56.78 5048 6630 61.47

Table 7: The experimental results on the C-MTEB retrieval benchmark are evaluated using M AP@10.

the model. In contrastive learning, we not only
utilize in-batch negative samples but also imple-
ment an ANN-style sampling strategy (Xiong et al.,
2021) to generate hard negative samples. This stage
features two key distinctions from the preliminary
fine-tuning: firstly, it incorporates high-quality text
pairs with human annotations for training; secondly,
the negative sampling process is enhanced by the
inclusion of hard negative samples.

B ANN-style Hard Negative Mining

Our ANN-style hard negative mining involves:
e building an index using the first-stage model.
e retrieving the top 100 passages per query.
e sampling hard negatives from non-positive pas-
sages ranked 20th—100th.

C Evaluation in Other Metrics

As illustrated in Tables 5-7, our retrieval method
significantly enhances performance. This is evi-
denced by its impressive results across Recall@10,
MRR@10, and M APQ10 metrics, highlight-
ing its exceptional effectiveness( M RR@10 and
M AP@10 metrics exclude the bge-m3 model due
to the absence of pertinent evaluation codes on its
official website.).
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