
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ClickPrompt: CTR Models are Strong Prompt Generators for
Adapting Language Models to CTR Prediction

Anonymous Author(s)

ABSTRACT
Click-through rate (CTR) prediction has become increasingly indis-
pensable for various Internet applications. Traditional CTR models
convert the multi-field categorical data into ID features via one-hot
encoding, and extract the collaborative signals among features. Such
a paradigm suffers from the problem of semantic information loss.
Another line of research explores the potential of pretrained lan-
guage models (PLMs) for CTR prediction by converting input data
into textual sentences through hard prompt templates. Although
semantic signals are preserved, they generally fail to capture the col-
laborative information (e.g., feature interactions, pure ID features),
not to mention the unacceptable inference overhead brought by the
huge model size. In this paper, we aim to model both the semantic
knowledge and collaborative knowledge for accurate CTR estima-
tion, and meanwhile address the inference inefficiency issue. To
benefit from both worlds and close their gaps, we propose a novel
model-agnostic framework (i.e., ClickPrompt), where we incorpo-
rate CTR models to generate interaction-aware soft prompts for
PLMs. We design a prompt-augmented masked language modeling
(PA-MLM) pretraining task, where PLM has to recover the masked
tokens based on the language context, as well as the soft prompts
generated by CTR model. The collaborative and semantic knowl-
edge from ID and textual features would be explicitly aligned and
interacted via the prompt interface. Then, we can either tune the
CTR model with PLM for superior performance, or solely tune the
CTR model without PLM for inference efficiency. Experiments on
four real-world datasets validate the effectiveness of ClickPrompt
compared with existing baselines. The source code1 is available.

1 INTRODUCTION
Click-through rate (CTR) prediction serves as a key component
in various online applications [7, 9, 20, 34, 58]. It aims to estimate
the probability of a user’s click given a specific context [35], which
could be formulated as multi-field categorical data format:

𝒙𝑰𝑫𝒊 = (0, ..., 1, 0)︸ ︷︷ ︸
𝐼𝑡𝑒𝑚=𝐽 𝑒𝑎𝑛𝑠

(1, ..., 0, 0)︸ ︷︷ ︸
𝐶𝑜𝑙𝑜𝑟=𝐵𝑙𝑢𝑒

... (1, 0) .︸︷︷︸
𝐺𝑒𝑛𝑑𝑒𝑟=𝐹𝑒𝑚𝑎𝑙𝑒

(1)

Over the past decade, various neural CTR models have been pro-
posed to extract collaborative knowledge and capture high-order
feature interaction patterns. However, they generally suffer from
the problem of semantic information loss. That is, the multi-field
categorical data will be converted into ID features with one-hot
encoding as shown in Eq. 1 (e.g., “female” to “01”, and “male” to “10”).
Therefore, the input data of CTR models is only a collection of ID
codes without any semantic information which inherently contains
implicit yet beneficial correlations among features. For example,
the movie “The Avengers 4: Endgame” is not only related to its pre-
ceding series “The Avengers 1-3” based on simple text similarity, but

1https://anonymous.4open.science/r/ClickPrompt-D6E3/

Soft Prompt Vectors

Gender is female. Age is 18-25. Title
is The Flash. Movie genre is action.

Language
Model

CTR
Model

CTR Estimation

female
18-25
The Flash
action

Forward Collaborative
Knowledge

Forward Semantic
Knowledge

Backward Semantic
Knowledge

Figure 1: The information flow of the collaborative and se-
mantic knowledge in our proposed ClickPrompt framework.
With the soft prompts serving as the bridges, the ID-based col-
laborative information is transmitted to the language model
by forward propagation, and the text-based semantic infor-
mation flows back into the CTR model via backpropagation.

is also associated with other superhero movies (e.g., “Iron Man” and
“Captain America”) based on latent semantic knowledge. However,
once converted into one-hot ID codes, it loses the valuable semantic
information, which could lead to inferior predictive performance,
especially for scenarios with cold-start users/items, low-frequency
long-tail features or inadequate click signals.

To this end, recent works [11, 17, 33] start to introduce pretrained
language models (PLMs) to address the aforementioned semantic
information loss problem. They convert multi-field categorical data
into textual features with hard prompt templates instead of ID fea-
tures with one-hot encoding, resulting in another textual modality
for the same input sample 𝑥𝑖 :

𝒙𝒕𝒆𝒙𝒕𝒊 = “User AX529 is a female. Her profession is a nurse.
Her location is New York. She is recommended item CF173,
a pair of jeans in color blue. ”

(A)

In Template A shown above, the underlined words or phrases need
to be dynamically filled in according to the input sample 𝑥𝑖 . In this
way, these works preserve the semantic information by formulating
CTR prediction as either a sequence-to-sequence task [6, 10, 62] or
a binary classification task [23, 38]. PLMs possess a vast volume
of open-world knowledge from the pretraining corpora and even
show impressive emergent abilities (e.g., logical reasoning) if the
parameter size scales up, which helps to capture the semantic in-
formation. Nevertheless, simply adapting PLMs for CTR estimation
generally suffers from two limitations, i.e., predictive inaccuracy
and inference inefficiency.

The predictive inaccuracy is mainly caused by the disability of
PLMs in modeling collaborative knowledge [33, 57]. First, there
exists a kind of pure ID features that inherently contains no seman-
tic information (e.g., item ID, user ID). The tokenization results of
these pure ID features are actually meaningless to PLMs (e.g., user
ID AX529 might be tokenized as [AX, 52, 9]). Second, PLMs struggle
to explicitly capture feature interactions, since all the field-wise

1

https://anonymous.4open.science/r/ClickPrompt-D6E3/

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

features are assembled linearly as textual sentences via templates
and then broken down into word tokens [27]. PLMs can model
the contextual semantic information among word tokens, but it
loses the field-level views of feature interactions which are essential
for CTR prediction. Preliminary works address such challenges by
introducing additional embedding tables [10], maintaining a set of
adapter modules [11], and seeking for better ID indexing strate-
gies [18]. However, the collaborative knowledge embedded among
ID features is still under-exploited, e.g., the field-aware feature
interactions are not explicitly maintained.

The inference inefficiency issue stems from the intrinsic charac-
teristics of pretrained language models, where bigger model size is
required for better language understanding ability [33, 61]. Adapt-
ing PLM will greatly increase the computational cost and inference
time due to its large-scale stacked attention-based transformer
layers. This is unacceptable for real-world time-sensitive online
services, where a request should be responded within tens of mil-
liseconds. Many works [16, 46, 59] tend to adopt the whole PLM
for training, and pre-cache the output representations of PLM for
inference acceleration, which heavily requires storage and com-
putational resources, as well as engineering efforts. Moreover, the
pre-caching operation might impair the real-time property of rec-
ommender systems and thus hurt the predictive performance.

In this paper, we aim to capture both the semantic knowledge and
collaborative knowledge for accurate CTR prediction, while tackling
the inference inefficiency problem in the meantime. To this end, we
propose a novel framework named ClickPrompt, where we regard
CTR models2 as soft prompt generators for PLMs. Specifically, we
maintain a CTRmodel and a pretrained language model, which take
as inputs the ID features 𝑥 𝐼𝐷

𝑖
and textual features 𝑥𝑡𝑒𝑥𝑡

𝑖
, respectively.

A prompt generation layer is placed upon the CTRmodel to produce
learnable soft prompt vectors, which will be fed as prefix states
into each layer of PLM. ClickPrompt follows the pretrain-finetune
learning schemes [8, 35]. We design a prompt-augmented masked
language modeling (PA-MLM) pretraining task. To be specific, we
first adopt the token-masking strategy from BERT [8] to obtain the
masked textual features 𝑥𝑡𝑒𝑥𝑡

𝑖
. Then, PLM is required to recover

the corrupted textual features 𝑥𝑡𝑒𝑥𝑡
𝑖

based on the text context, as
well as the soft prompts generated from ID features 𝑥 𝐼𝐷

𝑖
. As shown

in Figure 1, with the soft prompts as the bridges, the ID-based
collaborative knowledge will be passed to PLM through forward
propagation, and the text-based semantic knowledge would flow
back into the CTR model via backpropagation. After pretraining,
we propose two different finetuning strategies for CTR prediction:
• Finetune with PLM. We could tune the CTR model and PLM

as a whole, where they are connected by the prompt genera-
tion layer. The collaborative knowledge from CTR model and
semantic knowledge from PLM would explicitly align and inter-
act with each other through the soft prompt interface, resulting
in superior CTR performance.

• Finetune w/o PLM. To further tackle the inference inefficiency
issue, we can solely finetune the CTR model without PLM. PA-
MLM pretraining has provided semantic-aware parameter ini-
tialization for downstream CTR finetuning, which promotes the

2In this paper, unless specified otherwise, the phrase “CTR model” is referred to as
traditional CTR models that take one-hot ID features as inputs.

final performance without altering the CTR model structure or
adding extra inference costs.

ClickPrompt serves as a model-agnostic framework that is compat-
ible with various CTR models and pretrained language models. The
main contributions of this paper are concluded as follows:
• We propose a novel framework (i.e., ClickPrompt), where CTR

models serve as the soft prompt generators for PLMs. A prompt-
augmented masked language modeling pretraining (PA-MLM)
task is designed to model the mutual interaction and explicit
alignment between the collaborative and semantic knowledge
via the soft prompt interface, which significantly improves the
downstream CTR performance.

• ClickPrompt is model-agnostic and compatible with various CTR
models and PLMs. Moreover, by solely finetuning the CTRmodel,
ClickPrompt can enhance the predictive accuracy without alter-
ing the CTR model structure or adding extra inference costs.

• Extensive experiments on four real-world public datasets demon-
strate the superiority of our proposed ClickPrompt, compared
with existing baseline models.

2 PRELIMINARIES
2.1 Traditional CTR Prediction
Without loss of generality, the basic form of CTR prediction casts
a binary classification problem over multi-field categorical data.
Each data sample contains 𝐹 fields with each field taking one single
value frommultiple categories, and can be represented by (𝑥𝑖 , 𝑦𝑖). In
traditional CTR prediction, we apply one-hot encoding to convert 𝑥𝑖
into a sparse vector 𝑥 𝐼𝐷

𝑖
as shown in Eq. 1, and maintain 𝑦𝑖 ∈ {1, 0}

as the ground-true label (click or not).
CTR models estimate the click probability 𝑃 (𝑦𝑖 = 1|𝑥𝑖) for each

instance. According to [35, 54, 63], the structure of most traditional
neural CTR models can be abstracted into three layers: (1) embed-
ding layer, (2) feature interaction layer, and (3) prediction layer.

Embedding layer transforms the sparse one-hot input 𝑥 𝐼𝐷
𝑖

into
low-dimensional dense embedding vectors E𝑖 = [𝑣𝑖1; 𝑣𝑖2; . . . ; 𝑣𝑖𝐹] ∈
R𝐹×𝑑 , where 𝑑 is the embedding size, and 𝐹 is the number of fields.

Feature interaction layer, as the key functional module of CTR
models, is intended to capture the second- or higher-order feature
interactions with various operations (e.g., attention, product). This
layer would generate a compact representation 𝑞𝑖 based on the
dense embedding vectors E𝑖 for the data instance 𝑥𝑖 .

Prediction layer calculates the click probability 𝑦𝑖 = 𝑃 (𝑦𝑖 =
1|𝑥𝑖) based on the representation 𝑞𝑖 produced by the feature inter-
action layer. It is usually a linear layer or an MLP module followed
by a sigmoid function 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥).

After the prediction layer, the CTR model is trained in an end-
to-end manner with the binary cross-entropy (BCE) loss:

L = − 1
𝑁

∑︁𝑁

𝑖=1
[𝑦𝑖 log𝑦𝑖 + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)] , (2)

where 𝑁 is the number of training samples.

2.2 PLM-based CTR Prediction
With the rising of pretrained language models (PLMs), researchers
exploit the semantic-related abilities of PLMs to solve the CTR
estimation problem. Different from traditional CTR prediction, the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

input 𝑥𝑖 is transformed into textual sentences 𝑥𝑡𝑒𝑥𝑡
𝑖

via hard prompt
templates as illustrated in Template A. According to the task genre
and ground-truth label formulation, PLM-based CTR prediction
can be roughly divided into two categories [33, 57].

The first one [1, 38, 46] regards CTR prediction as a binary text
classification task, where the ground-truth labels are still the same
as traditional settings (i.e., 𝑦𝑖 ∈ {0, 1}). They leverage PLMs to
extract the dense representation 𝑞𝑡𝑒𝑥𝑡

𝑖
of textual input 𝑥𝑡𝑒𝑥𝑡

𝑖
, which

is followed by the prediction layer for click estimation. BCE loss is
adopted for optimization.

𝑦𝑖 = 𝜎
(
MLP

(
PLM

(
𝑥𝑡𝑒𝑥𝑡𝑖

)))
∈ (0, 1) . (3)

The second category [6, 10, 17] views CTR prediction as a sequence-
to-sequence task, where the ground-truth labels are transformed
into binary key words (e.g., yes/no, good/bad). They utilize encoder-
decoder or decoder-only PLMs to follow instructions and answer a
binary question (e.g.,Will the user favor the item?) appended behind
the textual input 𝑥𝑡𝑒𝑥𝑡

𝑖
. PLMs could be either frozen for zero-shot

settings, or finetuned via causal language modeling.
In this paper, we generally focus on the first category. That is,

we place an MLP module upon the textual representation 𝑞𝑡𝑒𝑥𝑡
𝑖

produced by the PLM.

3 METHODOLOGY
In this section, we introduce the details of model architecture and
learning strategy of our proposed ClickPrompt framework.

3.1 Overview of ClickPrompt
As depicted in Figure 2, the model architecture design of Click-
Prompt can be mainly divided into three stages: (1) modality trans-
formation, (2) prompt generation, and (3) prompt fusion.

Firstly, the modality transformation layer converts the input
data 𝑥𝑖 into one-hot ID features 𝑥 𝐼𝐷

𝑖
and textual features 𝑥𝑡𝑒𝑥𝑡

𝑖
,

respectively. Secondly, ID features 𝑥 𝐼𝐷
𝑖

are fed into the CTR model
followed by a prompt generation layer to produce independent soft
prompt vectors. Finally, during the prompt fusion stage, the soft
prompts serve as prefix hidden states at each transformer layer of
PLM, which allows for the explicit alignment between collaborative
and semantic knowledge.

As for the learning strategy, ClickPrompt adopts the common
pretrain-finetune scheme. We first design a prompt-augmented
masked language modeling (PA-MLM) task for pretraining, where
PLM is required to recover themasked tokens based on text contexts
as well as soft prompts generated by the CTR model. After pretrain-
ing, we can conduct supervised finetuning either with or without
PLM. The former enables explicit interaction between collaborative
and semantic information for superior performance, while the latter
addresses the inference inefficiency issue.

Hereinafter, we omit the detailed structures of the CTR model
and PLM, since ClickPrompt acts as a model-agnostic framework
for both of them.

3.2 Modality Transformation
The modality transformation layer converts the input 𝑥𝑖 into two
different modalities (i.e., ID features 𝑥 𝐼𝐷

𝑖
and textual features 𝑥𝑡𝑒𝑥𝑡

𝑖

respectively). The ID features 𝑥 𝐼𝐷
𝑖

are obtained via one-hot encod-
ing as shown in Eq. 1. As for the textual features 𝑥𝑡𝑒𝑥𝑡

𝑖
, previous

works [3, 15] suggest that sophisticated templates for tabular data
might mislead the model and make it fail to grasp the key informa-
tion among the texts. Therefore, we employ the following simple
“what is what” hard prompt template:

𝑥𝑡𝑒𝑥𝑡𝑖, 𝑗 =

[
𝑓 𝑛𝑎𝑚𝑒𝑗 , “𝑖𝑠”, 𝑓𝑖, 𝑗 , “.”

]
, 𝑗 = 1, ..., 𝐹 ,

𝑥𝑡𝑒𝑥𝑡𝑖 =

[
𝑥𝑡𝑒𝑥𝑡𝑖,1 , 𝑥𝑡𝑒𝑥𝑡𝑖,2 , · · · , 𝑥𝑡𝑒𝑥𝑡𝑖,𝐹

]
,

(4)

where 𝑓 𝑛𝑎𝑚𝑒
𝑗

is the field name of 𝑗-th field, 𝑓𝑖, 𝑗 is the feature value
of the 𝑗-th field in 𝑖-th data instance, and [·] denotes the conjunct
operator to concatenate elements in the list with white spaces “ ”.

3.3 Prompt Generation
The prompt generation stage aims to encode the ID features 𝑥 𝐼𝐷

𝑖
into independent soft prompt vectors that contain rich collaborative
knowledge for later fusion. As described in Section 2.1, we feed the
ID input 𝑥 𝐼𝐷

𝑖
through the embedding and feature interaction (FI)

layer of the CTR model to obtain the compact representation 𝑞𝑖 :

𝑞𝑖 = FI_Layer(Embed_Layer(𝑥 𝐼𝐷𝑖)) . (5)

Then, we maintain a set of parallel projection networks {𝑔𝑙,𝑘 (·)}
for soft prompt generation:

𝑝𝑖,𝑙,𝑘 = 𝑔𝑙,𝑘 (𝑞𝑖), 1 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑘 ≤ 𝐾, (6)

where 𝑝𝑖,𝑙,𝑘 denotes the 𝑘-th prompt vector at the 𝑙-th layer of PLM.
𝐿 is the number of transformer layer of PLM, and𝐾 is the number of
soft prompts per layer. Each projection network 𝑔𝑙,𝑘 (·) is designed
as a multi-layer perceptron (MLP), facilitating dimensionality con-
sistency and space transformation.

3.4 Prompt Fusion
As shown in Figure 2, the obtained soft prompts would serve as
prefix hidden states at each transformer layer of PLM. To be specific,
the textual features 𝑥𝑡𝑒𝑥𝑡

𝑖
are tokenized into 𝑍 word tokens, and

the 𝑙-th layer of PLM can be formulated as:

[ℎ𝑖,𝑙+1,𝑧]𝑍𝑧=1 = Transformer𝑙
(
[𝑝𝑖,𝑙,𝑘]𝐾𝑘=1 ⊕ [ℎ𝑖,𝑙,𝑧]𝑍𝑧=1

)
, (7)

where [ℎ𝑖,𝑙,𝑧]𝑍𝑧=1 are the hidden states of tokens at each layer 𝑙 . In
this way, through the self-attention mechanism of each transformer
layer, the collaborative signals from the CTRmodel can be explicitly
aligned and fused with the semantic knowledge from the text side
via the prompt interface.

Finally, after the 𝐿 layer propagation, we apply the pooling &
prediction layer upon the output states of PLM:

MLP
(
Pooling

(
[ℎ𝑖,𝐿+1,𝑧]𝑍𝑧=1

))
. (8)

The output dimensionality, as well as the following activation
and loss function, depends on the task and learning strategy we
adopt, which will be further discussed in Section 3.5.

3.5 Learning Strategy
As shown in Figure 2, ClickPrompt employs the common pretrain-
finetune scheme for learning strategy. Specifically, we first pro-
pose prompt-augmented masked language modeling (PA-MLM) as

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

CTR
ModelCTR

Model

Soft
Prompts

CTR Model

Pooling & Prediction Layer

Tokenization & Work Embedding Layer

... ...

... ...
......

Prompt Generation Layer

User ID is 523. Gender is male. Age is above 18. Location is
New York. I tem ID is 9635. Brand is Nike. Title is Air Shoes.

User_523

New York

Air Shoes

User ID Gender Age Location Item ID Brand Title Click

523 male above 18 New York 9635 Nike Air Max Shoes 1 Dataset

Modality Transformation Layer

3

...

Prompt
Fusion

Modality
Transformation

1

Prompt
Generation

2

Model Architecture

Language
Model

CTR
Model

Original ID Features Masked Textual Features

Soft Prompts

Recovered Tokens

PA-MLM Pretraining

ID Features Textual Features

Finetune with PLM

ID Features

Finetune w/o PLM

Soft Prompt Vector Hidden State for Word Token Semantic-aware Initialization Collaborative-aware Initialization

Language
Model

Figure 2: The illustration of the model architecture and learning strategy for our proposed ClickPrompt framework.

the pretraining task to intermingle the collaborative and semantic
knowledge via the linkage of soft prompts, resulting in improved
parameter initialization. Next, we could either perform supervised
finetuning with PLM for superior CTR performance, or solely fine-
tune the CTR model without PLM to preserve both the improved
predictive accuracy and inference efficiency.

3.5.1 Prompt-augmented Masked Language Modeling. As shown in
Figure 2, we propose to apply token masking on the textual features
𝑥𝑡𝑒𝑥𝑡
𝑖

to obtain corrupted textual inputs 𝑥𝑡𝑒𝑥𝑡
𝑖

, while preserving
the original ID features 𝑥 𝐼𝐷

𝑖
. Then, PLM is required to recover

the masked tokens based on the language context, together with
the soft prompts generated from the intact ID features. Therefore,
the pooling & prediction layer in Eq. 8 is designed as the classical
decoder module of language models, which is followed by a softmax
function and cross-entropy loss. Following [8, 43], we uniformly
sample 15% tokens for each input 𝑥𝑡𝑒𝑥𝑡

𝑖
, and perform three different

operations with ratio 8:1:1, i.e., (1) [MASK] replacement, (2) random
word replacement, and (3) keeping unchanged.

To complete such a cloze task over masked tokens, PLM has to
extract and incorporate the corresponding “right answer” embedded
in the soft prompts, resulting in fine-grained alignments between
the CTR model and PLM towards the same input 𝑥𝑖 .

3.5.2 Finetuning with PLM. Obviously, we can retain the whole
model structure, and continue supervised finetuning for down-
stream CTR prediction task. As illustrated in Figure 2, we integrate
the predictions from both CTR model and PLM, while they are
explicitly interacted with soft prompt vectors:

𝑦𝐶𝑇𝑅𝑖 = MLP (𝑞𝑖) ∈ R,

𝑦𝑃𝐿𝑀𝑖 = MLP
(
Pooling

(
[ℎ𝑖,𝐿+1,𝑧]𝑍𝑧=1

))
∈ R,

𝑦𝑖 = 𝜎

(
𝛼 × 𝑦𝐶𝑇𝑅𝑖 + (1 − 𝛼) × 𝑦𝑃𝐿𝑀𝑖

)
,

(9)

where 𝛼 is a learnable parameter to balance the weights of predic-
tions, and 𝜎 (·) is the sigmoid function. In this way, the collaborative

and semantic knowledge from two modalities are thoroughly con-
nected and intertwined during finetuning, thus leading to superior
CTR performance.

3.5.3 Finetuning without PLM. To further address the inference in-
efficiency issue, as depicted in Figure 2, we could solely finetune the
CTRmodel without PLM.We have injected the semantic knowledge
from PLM into the CTR model through backpropagation during
PA-MLM pretraining. Hence, such a semantic-aware parameter ini-
tialization would enable implicit interactions between collaborative
and semantic knowledge, enhancing CTR performance without
altering the CTR model structure or adding extra inference cost:

𝑦𝑖 = 𝜎 (MLP (𝑞𝑖)) ∈ R. (10)

For both two finetuning strategies, we apply the binary cross en-
tropy loss over the estimated click probability as shown in Eq. 2.

4 EXPERIMENT
In this section, we conduct extensive experiments to answer the
following research questions:
RQ1 How does ClickPrompt perform compared with existing

baseline models?
RQ2 Is ClickPrompt compatible with various CTR models and

pretrained language models?
RQ3 What are the influences of different model configurations

for ClickPrompt?
RQ4 How does ClickPrompt perform in scenarios with long-tail

low-frequency users or items?

Table 1: The dataset statistics

Dataset #Training #Validation #Test #Fields #Features

Movielens-1M 591,208 73,902 73,902 8 17,251
BookCrossing 824,936 103,117 103,118 8 722,234
Amazon-Toys 1489782 186,223 186,223 5 371,813
GoodReads 16,097,632 2,012,204 2,012,204 15 4,565,430

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: The overall performance comparison of different models. The best result is given in bold, while the second-best
value is underlined. We also use

::::
wavy

::::::::
underline to denote the best baseline performance. Rel.Impr denotes the relative AUC

improvement rate of our proposed ClickPrompt𝑤𝑖𝑡ℎ 𝑃𝐿𝑀 against each baseline model. The symbol * indicates statistically
significant improvement of ClickPrompt over the best baseline model with 𝑝 < 0.001.

Model Movielens-1M BookCrossing Amazon-Toys GoodReads
AUC Log Loss Rel.Impr AUC Log Loss Rel.Impr AUC Log Loss Rel.Impr AUC Log Loss Rel.Impr

FM 0.8371 0.4090 1.53% 0.7871 0.5202 2.02% 0.6668 0.4059 1.30% 0.7614 0.5190 1.85%
DNN 0.8413 0.3944 1.02% 0.7940 0.5124 1.13% 0.6686 0.3982 1.03% 0.7685 0.5082 0.91%

DeepFM 0.8443
:::::
0.3915 0.66% 0.7959 0.5106 0.89% 0.6692 0.3978 0.94% 0.7690 0.5136 0.85%

xDeepFM 0.8435 0.3950 0.76% 0.7943 0.5122 1.10% 0.6681 0.3967 1.11% 0.7697 0.5072 0.75%
IPNN 0.8437 0.3926 0.73% 0.7953 0.5111 0.97% 0.6687 0.3980 1.02% 0.7722 0.5148 0.43%
DCN 0.8423 0.3964 0.90% 0.7952 0.5116 0.98% 0.6688 0.3964 1.00% 0.7693 0.5074 0.81%

AutoInt 0.8399 0.4004 1.19% 0.7954 0.5113 0.96% 0.6678 0.3977 1.15% 0.7682 0.5084 0.95%
FiGNN 0.8399 0.3991 1.19% 0.7970 0.5105 0.75% 0.6700

:::::
0.3947 0.82% 0.7667 0.5094 1.15%

FGCNN 0.8416 0.3957 0.99% 0.7985
:::::
0.5082 0.56% 0.6675 0.3978 1.20% 0.7705 0.5064 0.65%

DCNv2 0.8439 0.3954 0.71% 0.7970 0.5096 0.75% 0.6701 0.3961 0.81% 0.7711 0.5059 0.57%

CTR-BERT 0.8296 0.4208 2.45% 0.7848 0.5268 2.32% 0.6649 0.3988 1.59% 0.7457 0.5292 4.00%
P5 0.8173 0.4171 3.99% 0.7695 0.5360 4.35% 0.6470 0.4018 4.40% 0.7367 0.5531 5.27%

PTab 0.8353 0.4081 1.75% 0.7979 0.5208 0.64% 0.6685 0.3995 1.05% 0.7566 0.5203 2.50%
CTRL

::::
0.8453 0.3932 0.54%

::::
0.7992 0.5092 0.48%

::::
0.6704 0.3960 0.76%

::::
0.7735

:::::
0.5038 0.26%

ClickPrompt𝑤/𝑜 𝑃𝐿𝑀 0.8467∗ 0.3939 - 0.8013∗ 0.5051∗ - 0.6719∗ 0.3933∗ - 0.7744∗ 0.5030∗ -
ClickPrompt𝑤𝑖𝑡ℎ 𝑃𝐿𝑀 0.8499∗ 0.3905∗ - 0.8030∗ 0.5037∗ - 0.6755∗ 0.3890∗ - 0.7755∗ 0.5022∗ -

4.1 Experiment Setups
4.1.1 Datasets. Since PLM-based CTR prediction requires datasets
to maintain the original semantic/textual features, instead of anony-
mous feature IDs, we select four real-world public datasets from dif-
ferent recommendation scenarios (i.e., MovieLens-1M3, BookCross-
ing4, Amazon-Toys5, and GoodReads6). All datasets are divided into
training, validation, and testing sets with proportion 8:1:1 according
to the global timestamps. The basic statistics of these four datasets
are summarized in Table 1. More detailed information about the
datasets and data preprocessing is given in Appendix A

4.1.2 Evaluation Metrics. To evaluate the performance of CTR
prediction methods, we adopt AUC (Area under the ROC curve)
and Log Loss (binary cross-entropy loss) as the evaluation metrics.
Slightly higher AUC or lower Log Loss (e.g., 0.001) can be regarded
as significant improvement in CTR prediction [32, 54, 56]

4.1.3 Baselines. For traditional CTR models, we select baselines
with different feature interaction operators, including FM [52],
DNN,DeepFM [12], xDeepFM [32], PNN [48], DCN [55], AutoInt [53],
FiGNN [30], FGCNN[37], and DCNv2 [56]. For PLM-based CTR
models, we choose CTR-BERT [46], P5 [10], PTab [38], CTRL [27]
as the representative baselines.

4.1.4 Implementation Details. We adopt AdamW as the optimizer.
For prompt-augmented masked language modeling pretraining, we
set batch size to 1024 and learning rate to 5 × 10−5. The warm-
up ratio is selected from {0, 0.05, 0.1}. The number of pretrain-
ing epoch is 20. For the finetuning phase, the batch size is set to
256 for Movielens-1M, 256 for BookCrossing, 1024 for AZ-Toys,
and 4096 for GoodReads. The learning rate for CTR model part

3https://grouplens.org/datasets/movielens/1m/
4http://www2.informatik.uni-freiburg.de/~cziegler/BX/
5https://cseweb.ucsd.edu/~jmcauley/datasets.html
6https://mengtingwan.github.io/data/goodreads.html

is 1 × 10−3, while the learning rate for PLM part is selected from
{0, 3 × 10−5, 5 × 10−5}. Setting the learning rate for PLM as zero
means that we freeze the language model and only update the CTR
model. The projection network 𝑔𝑙,𝑘 for prompt generation is a tanh-
activated two-layer MLP with hidden size equal to the embedding
size of PLM. The number of prompts per layer 𝐾 is selected from
{1, 3, 5, 7}. Since ClickPrompt is a model-agnostic framework, we
choose DCNv2 [56] as the CTR model and RoBERTa-base [43] as
the pretrained language model, unless otherwise specified. Finally,
we adopt the model at the iteration with the highest validation
AUC for evaluation in the testing set. We also provide the detailed
hyperparameter settings for each baseline models in Appendix B

4.2 Overall Performance (RQ1)
We compare the overall performance of our proposed ClickPrompt
with the selected baseline models. Note that we choose DCNv2
as the CTR model and RoBERTa-base as the pretrained language
model. The results are reported in Table 2, from which we can
obtain the following observations:

• Traditional CTR models show significantly better performance
over PLM-based CTR models, except for CTRL. This indicates
that the collaborative information embeded among feature cross-
ing patterns is crucial for CTR prediction, and solely relying on
semantic knowledge from textual inputs might lead to inferior
performance, which is consistent with the results in [27].

• CTRL generally achieves the best performance among all the
baseline models. CTRL adopts the CLIP-based framework [50],
and distills the semantic knowledge from PLM into the CTR
model via contrastive pretraining. However, the contrastive ob-
jective could only provide coarse-grained instance-level supervi-
sions for implicit alignment and late interaction upon the final
representations of PLM and CTR model, resulting in relatively
inferior performance compared with our proposed ClickPrompt.

5

https://grouplens.org/datasets/movielens/1m/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
https://cseweb.ucsd.edu/~jmcauley/datasets.html
https://mengtingwan.github.io/data/goodreads.html

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: The model compatibility analysis of our proposed ClickPrompt over different CTR models and PLMs. N/A means
to train the raw CTR model from scratch without ClickPrompt. For each CTR model, we denote the best result in bold, and
underline the second-best value. Rel.Impr denotes the relative AUC improvement rate against the raw CTR model (i.e., N/A).
The improvements are statistically significant with 𝑝 < 0.001 against the corresponding raw CTR models (i.e., N/A).

CTR Model Finetuning Language Model Movielens-1M BookCrossing Amazon-Toys
AUC Log Loss Rel.Impr AUC Log Loss Rel.Impr AUC Log Loss Rel.Impr

DCNv2

N/A 0.8439 0.3954 - 0.7970 0.5096 - 0.6701 0.3961 -

w/o PLM
TinyBERT 0.8464 0.3943 0.30% 0.7997 0.5070 0.34% 0.6705 0.3956 0.06%

RoBERTa-base 0.8467 0.3939 0.33% 0.8013 0.5051 0.54% 0.6719 0.3933 0.27%
RoBERTa-large 0.8476 0.3920 0.44% 0.8017 0.5047 0.59% 0.6723 0.3939 0.33%

with PLM
TinyBERT 0.8470 0.3933 0.37% 0.8003 0.5063 0.41% 0.6732 0.3943 0.46%

RoBERTa-base 0.8499 0.3905 0.71% 0.8030 0.5037 0.75% 0.6755 0.3890 0.81%
RoBERTa-large 0.8498 0.3918 0.70% 0.8032 0.5034 0.78% 0.6759 0.3893 0.87%

AutoInt

N/A 0.8399 0.4004 - 0.7954 0.5113 - 0.6678 0.3977 -

w/o PLM
TinyBERT 0.8422 0.3995 0.27% 0.7967 0.5098 0.16% 0.6714 0.3948 0.54%

RoBERTa-base 0.8439 0.3967 0.48% 0.7981 0.5091 0.34% 0.6724 0.3944 0.69%
RoBERTa-large 0.8454 0.3965 0.65% 0.7989 0.5084 0.44% 0.6732 0.3918 0.81%

with PLM
TinyBERT 0.8458 0.3915 0.70% 0.7981 0.5081 0.34% 0.6728 0.3943 0.75%

RoBERTa-base 0.8465 0.3912 0.79% 0.8004 0.5076 0.63% 0.6760 0.3924 1.23%
RoBERTa-large 0.8481 0.3893 0.98% 0.8009 0.5070 0.69% 0.6767 0.3893 1.33%

DNN

N/A 0.8413 0.3944 - 0.7940 0.5124 - 0.6686 0.3982 -

w/o PLM
TinyBERT 0.8435 0.3944 0.26% 0.7960 0.5114 0.25% 0.6700 0.3956 0.21%

RoBERTa-base 0.8448 0.3929 0.42% 0.7972 0.5097 0.40% 0.6704 0.3943 0.27%
RoBERTa-large 0.8455 0.3927 0.50% 0.7985 0.5081 0.57% 0.6710 0.3942 0.36%

with PLM
TinyBERT 0.8446 0.3925 0.39% 0.7971 0.5093 0.39% 0.6732 0.3946 0.69%

RoBERTa-base 0.8455 0.3909 0.50% 0.7994 0.5080 0.68% 0.6742 0.3935 0.84%
RoBERTa-large 0.8462 0.3914 0.58% 0.7999 0.5070 0.74% 0.6745 0.3930 0.88%

• ClickPrompt𝑤𝑖𝑡ℎ 𝑃𝐿𝑀 achieves significant improvements over
all the baseline models, which validates the effectiveness of ex-
plicit alignment and early interaction between collaborative and
semantic knowledge through the soft prompt interface.

• ClickPrompt𝑤/𝑜 𝑃𝐿𝑀 generally wins the second place, signif-
icantly outperforming baseline methods without altering the
model structure of DCNv2. This demonstrates the importance
of semantic-aware parameter initialization brought by PA-MLM
pretraining. By sacrificing the opportunity for explicit inter-
action with semantic signals during downstream finetuning,
ClickPrompt𝑤/𝑜 𝑃𝐿𝑀 successfully promotes the predictive accu-
racy without increasing the inference latency.

4.3 Model Compatibility (RQ2)
To investigate the model compatibility, we apply the ClickPrompt
framework over different backbones in terms of both CTR models
and PLMs. For CTR models, we select DCNv2 [56], AutoInt [53] and
DNN, which represent different type of feature interaction opera-
tors. For PLMs, we choose the following three backbones with differ-
ent model sizes: TinyBERT (14.5M) [21], RoBERTa-base(125M) [43],
and RoBERTa-large(335M) [43]. We conduct the model compatibil-
ity experiments onMovielens-1M, BookCrossing, andAmazon-Toys
datasets. The results are reported in Table 3, from which we can
obtain the following observations:

• ClickPrompt is able to achieve significant improvement over the
raw CTR model (i.e., N/A) for all the backbones, which demon-
strates its superior model compatibility in terms of both CTR
models and PLMs.

• As the model size of PLM continues to grow, the performance im-
provement over the raw CTRmodel brought by ClickPrompt also
gradually increases, except for few cases. Larger pretrained lan-
guage models possess a broader range of open-world knowledge,
which can benefit the fusion and alignment between semantic
and collaborative signals.

• Although we observe the phenomenon that performance contin-
ues to increase with the language model size, a larger volume of
PLM does not necessarily lead to a proportional improvement in
CTR predictive performance. Therefore, considering the training
overhead, we suggest RoBERTa-base to be a more proper and
economic choice for ClickPrompt to balance the performance
gain and training cost when involving PLMs.

4.4 Ablation Study (RQ3)
We analyze the impact of hyperparameters and different config-
urations in ClickPrompt, including the prompt strategy, and the
collaborative & semantic knowledge fusion strategy. In this section,
we select DCNv2, AutoInt and DNN as the backbone CTR mod-
els, and choose RoBERTa-base as the PLM backbone. Experiments
are conducted on Movielens-1M, BookCrossing, and Amazon-Toys
datasets under the finetuning-with-PLM strategy.

4.4.1 Prompt Strategy. We compare two different prompt strate-
gies shown in Figure 3, and report the results in Table 4. We observe
that the layerwise prompt strategy consistently outperforms that
without layerwise prompting. If the prompt vectors are only placed
at the shallow input layer, the collaborative knowledge from CTR
model might be overwhelmed during the PLM forwarding, thus

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

... ...

... ...
...

Layerwise Prompt

... ...

... ...
...

w/o Layerwise Prompt

Soft Prompt Vector Hidden State for Word Token

Figure 3: The illustration of prompt strategy variants.We can
either only insert the prompts at the first input layer (left),
or perform layerwise soft prompts for PLM (right). Note that
ClickPrompt adopts the latter prompt strategy.

Table 4: The ablation study of the prompt strategies illus-
trated in Figure 3. The best results are given in bold. Rel.Impr
denotes the relative AUC improvement rate of Layerwise
strategy against w/o-Layerwise strategy.

Dataset CTR Model
Prompt Strategy

Rel.Imprw/o Layerwise Layerwise
AUC Log Loss AUC Log Loss

Movielens-1M
DCNv2 0.8468 0.3948 0.8499 0.3905 0.37%
AutoInt 0.8445 0.3946 0.8465 0.3912 0.24%
DNN 0.8433 0.3959 0.8455 0.3909 0.26%

BookCrossing
DCNv2 0.7993 0.5075 0.8030 0.5037 0.46%
AutoInt 0.7982 0.5091 0.8004 0.5076 0.28%
DNN 0.7981 0.5109 0.7994 0.5080 0.16%

Amazon-Toys
DCNv2 0.6712 0.3945 0.6755 0.3890 0.64%
AutoInt 0.6702 0.4006 0.6760 0.3924 0.87%
DNN 0.6695 0.3962 0.6742 0.3935 0.70%

Table 5: The ablation study on the fusion strategy for collab-
orative and semantic knowledge. The best values are given
in bold, while the second best values are underlined.

CTR Model Variant
Movielens-1M BookCrossing Amazon-Toys
AUC Log Loss AUC Log Loss AUC Log Loss

DCNv2

ClickPrompt 0.8499 0.3905 0.8030 0.5037 0.6755 0.3890
w/o Prompt 0.8470 0.3939 0.8016 0.5049 0.6735 0.3922
w/o Pretrain 0.8439 0.3949 0.8008 0.5057 0.6727 0.3917
w/o Both 0.8438 0.3960 0.7993 0.5073 0.6706 0.3966

AutoInt

ClickPrompt 0.8465 0.3912 0.8004 0.5076 0.6760 0.3924
w/o Prompt 0.8443 0.3992 0.7999 0.5082 0.6722 0.3985
w/o Pretrain 0.8450 0.3953 0.7987 0.5092 0.6720 0.3945
w/o Both 0.8448 0.3967 0.7982 0.5127 0.6699 0.3978

DNN

ClickPrompt 0.8455 0.3909 0.7994 0.5080 0.6742 0.3935
w/o Prompt 0.8437 0.3959 0.7988 0.5079 0.6699 0.3979
w/o Pretrain 0.8445 0.3951 0.7972 0.5123 0.6718 0.3947
w/o Both 0.8441 0.3953 0.7973 0.5128 0.6698 0.3996

leading to unbalanced interactions with semantic knowledge and
consequently inferior performance.

4.4.2 Collaborative & Semantic Knowledge Fusion Strategy. In Click-
Prompt, there are two key technical points for the interaction and
alignment between the collaborative and semantic knowledge.

(1) From the model architecture perspective, the layerwise soft
prompts serve as the bridge for explicit interactions between
CTR models and PLMs.

Table 6: The performance of DCNv2 and ClickPrompt
(DCNv2 as backbone) for the long-tail user/item problems
on MovieLens-1M dataset. The best results are given in bold.
Rel.Impr denotes the relative AUC improvement rate.

Long-tail
User ?

Long-tail
Item ?

DCNv2 ClickPrompt
Rel.Impr

AUC Log Loss AUC Log Loss
✔ ✔ 0.6000 0.6624 0.6500 0.6038 8.33%
✘ ✔ 0.6886 0.6930 0.7003 0.6888 1.70%
✔ ✘ 0.8149 0.3977 0.8186 0.3916 0.45%
✘ ✘ 0.8485 0.3978 0.8520 0.3926 0.41%

(2) From the learning strategy perspective, PA-MLM pretraining
task forces PLM to extract and incorporate the useful collabo-
rative information embedded in prompt vectors, resulting in
fine-grained alignments.

Hence, we compare ClickPrompt with the following three variants:
• w/o Prompt. We retain the PA-MLM pretraining phase, but

remove the prompt interface between the CTR model and PLM
during the finetuning phase. That is, the model architecture for
finetuning degenerates into a two-tower version that simply add
up the outputs from the CTR model and PLM.

• w/o Pretrain. We remove the PA-MLM pretraining phase, while
preserving the model architecture with soft prompt interface for
downstream CTR prediction.

• w/o Both. We remove both the prompt interface and PA-MLM
pretraining, which eliminates the interaction and alignment be-
tween collaborative and semantic knowledge during the training.

The results are reported in Table 5. When we remove either the
prompt interface or PA-MLMpretraining, the performance degrades
on three datasets for all backbone CTR models. This suggests that
the explicit interaction and fine-grained alignment between col-
laborative and semantic knowledge can lead to better information
extraction and fusion from both input modalities, and thus boost
the CTR predictive performance.

4.5 Long-tail User/Item Analysis (RQ4)
The semantic information brought by PLM is especially valuable
for scenarios with cold-start or long-tail users/items. Hence, in this
section, we conduct in-depth analysis to further investigate the
reasons for the performance improvement of ClickPrompt over the
backbone CTR model from the long-tail user/item perspective.

We conduct the experiment on MovieLens-1M dataset with
DCNv2 as the backbone CTR model and RoBERTa-base as the
backbone PLM. We adopt the finetuning-with-PLM strategy. Specif-
ically, we sort users/items based on their frequency of occurrence
in the training set. The bottom 10% in terms of frequency are classi-
fied as long-tail low-frequency users/items, while the rest 90% are
considered as non-long-tail ones. According to whether users and
items are long-tail or not, we divide the entire testing set into four
mutually exclusive subsets. We evaluate DCNv2 and ClickPrompt
on each subset and report the results in Table 6, from which the
following observations are obtained:
• Long-tail low-frequency users or items can lead to significant

performance degradation for the traditional ID-based CTRmodel
(i.e., DCNv2), while ClickPrompt can consistently improves the
predictive performance across all four subsets.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

• In cases where the long-tail problem is more severe (e.g., the
subset where users and items are both long-tail), ClickPrompt
can bring significantly larger improvements over the backbone
CTR model. This confirms that ClickPrompt is effective in ad-
dressing cold-start or long-tail problems for recommendation,
which mainly contribute to the final performance enhancement.

5 RELATEDWORK
5.1 Traditional CTR Prediction
To estimate the user click probability, traditional CTR models usu-
ally convert the input data into ID features via one-hot encoding.
The key idea is to capture the feature crossing patterns, which in-
dicates the combination relationships of multiple features. While
the implicit feature interactions are modeled by a deep neural net-
work (DNN), the explicit feature interactions are captured by a
specially designed learning function operator: (1) product operator,
(2) convolutional operator, and (3) attention operator.

Product operators [12, 14, 19, 22, 48, 49] originate from clas-
sical shallow models such as FM [52] and POLY2 [4]. For exam-
ple, DCN [55], xDeepFM [32], DCNv2 [56] are proposed to cap-
ture high-order feature interactions by applying product-based
feature interactions at each layer explicitly. Convolutional op-
erators [30, 37, 40] (e.g., Convolutional Neural Networks (CNN)
and Graph Convolutional Networks (GCN)) are also explored to
capture the local and global views of feature patterns [37], and pro-
mote the interaction modeling through message propagation [30].
Attention operators [5, 29, 53, 60] suggest adopting the atten-
tion mechanism to allow feature fields or feature interactions to
contribute differently to the final CTR prediction.

Although such an ID-based CTRmodeling paradigmhas achieved
remarkable progress in the past decades, they generally suffer from
the semantic information loss issue brought by one-hot encoding.
This thereby leads to their disabilities to handle scenarios with
cold-start users/items or low-frequency long-tail features.

5.2 PLM-based CTR Prediction
With the rapid development of pretrained language models (PLMs)
in natural language processing (NLP) domains, researchers begin to
explore the potential of PLMs for CTR prediction [33, 59]. Different
from the ID-based one-hot encoding in traditional CTR prediction,
the input data is converted into textual sentences through hard
prompt templates as shown in Template A. According to the ground-
truth label formulation and task genre, PLM-based CTR prediction
can be roughly divided into two categories.

The first one [26, 45, 46] retain the ground-truth labels as binary
codes {0, 1} similar to traditional settings, and model the CTR pre-
diction task as a binary text classification problem. For instance,
PTab [38] first further pretrains a BERT model [8] for the masked
language modeling objective based on the textualized CTR data, and
then finetune it for downstream CTR estimation with a randomly
initialized prediction head.

The second category [36, 64] transforms the binary labels into a
pair of key answer words (e.g., Yes/No, Good/Bad), and thus models
the CTR prediction as a sequence-to-sequence task. For example,
P5 [10], as well as its variants [11, 17, 18], propose to tune T5 [51]
as a unified recommendation model for various downstream tasks

in a textual generative manner. Other works [1, 39] also intends to
incorporate decoder-only large language models (LLMs) to follow
instructions and answer the user preference question appended
after the textual input sentences.

Although the semantic information loss issue is well addressed,
these PLM-based CTR models cannot capture the field-wise col-
laborative signals, leading to inferior CTR predictive performance.
Moreover, the heavy inference overhead brought by the large model
size makes it impractical for real-world industrial applications. Our
proposed ClickPrompt could not only retain and fuse both the
semantic and collaborative knowledge to achieve SOTA CTR pre-
dictive performance, but also deal with the inference inefficiency
problem by providing a better semantic-aware parameter initializa-
tion for solely finetuning CTR model.

5.3 Prompt Tuning
Prompt tuning introduces a set of trainable continuous prompts to
the pretrained language models for specific NLP tasks (e.g., knowl-
edge probing, text classification) [24, 41]. Generally, prompt tun-
ing [13, 28] acts as a parameter-efficient finetuning (PEFT) solution,
where we only update the soft prompts’ parameters with supervi-
sion from downstream tasks, while keeping the entire parameters
of the original PLM unchanged [25]. In this way, we can substan-
tially reduce per-task storage and memory usage when finetuning
PLMs on different downstream tasks. Moreover, some works [2, 42]
propose to tune the soft prompts together with all of or part of the
parameters of PLM. Notably, this setting no more belongs to the
PEFT methods. It is very similar to the standard pretrain-finetune
paradigm, but the addition of the learnable soft prompts can pro-
vide additional bootstrapping for model training [41]. Although
this line of methods can significantly enhance the model capability,
it requires heavy computational and storage resources and may
overfit on small datasets.

In this paper, ClickPrompt adopts the basic idea of prompt tun-
ing [41, 47] to connect the CTR model and PLM with the layerwise
trainable soft prompts. In general, the structure of the CTR model is
specially designed to capture essential feature interaction patterns,
and is therefore a naturally strong soft prompt generator to adapt
PLMs to the downstream CTR prediction task.

6 CONCLUSION
In this paper, we propose a novel model-agnostic framework (i.e.,
ClickPrompt), where CTR models serve as the soft prompt gener-
ators for PLMs. A pretrain-finetune scheme is designed to enable
explicit interaction and alignment between the collaborative knowl-
edge from one-hot ID modality and the semantic knowledge from
textual modality, which significantly improves the CTR predictive
performance. Furthermore, we provide another lightweight fine-
tuning strategy to solely train the CTR model for downstream tasks
without PLMs, thus properly tackling the inference inefficiency
issue. Extensive experiments on four real-world datasets validate
the superior predictive performance and model compatibility of
ClickPrompt compared with baseline models. As for future works,
a promising direction is to further improve pretraining efficiency.
Moreover, we will explore the application of ClickPrompt on other
recommendation tasks (e.g., learning to rank).

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan

He. 2023. Tallrec: An effective and efficient tuning framework to align large
language model with recommendation. arXiv preprint arXiv:2305.00447 (2023).

[2] Eyal Ben-David, Nadav Oved, and Roi Reichart. 2022. PADA: Example-based
Prompt Learning for on-the-fly Adaptation to Unseen Domains. Transactions of
the Association for Computational Linguistics 10 (2022), 414–433.

[3] Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji
Kasneci. 2022. Language models are realistic tabular data generators. arXiv
preprint arXiv:2210.06280 (2022).

[4] Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, and Chih-
Jen Lin. 2010. Training and testing low-degree polynomial data mappings via
linear SVM. Journal of Machine Learning Research 11, 4 (2010).

[5] Zekai Chen, Fangtian Zhong, Zhumin Chen, Xiao Zhang, Robert Pless, and
Xiuzhen Cheng. 2021. DCAP: Deep Cross Attentional Product Network for User
Response Prediction. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. 221–230.

[6] Zeyu Cui, Jianxin Ma, Chang Zhou, Jingren Zhou, and Hongxia Yang. 2022.
M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender
Systems. arXiv preprint arXiv:2205.08084 (2022).

[7] Xinyi Dai, Jianghao Lin, Weinan Zhang, Shuai Li, Weiwen Liu, Ruiming Tang,
Xiuqiang He, Jianye Hao, Jun Wang, and Yong Yu. 2021. An adversarial imitation
click model for information retrieval. In Proceedings of the Web Conference 2021.
1809–1820.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[9] Lingyue Fu, Jianghao Lin, Weiwen Liu, Ruiming Tang, Weinan Zhang, Rui Zhang,
and Yong Yu. 2023. An F-shape Click Model for Information Retrieval on Multi-
block Mobile Pages. In Proceedings of the Sixteenth ACM International Conference
on Web Search and Data Mining. 1057–1065.

[10] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022.
Recommendation as language processing (rlp): A unified pretrain, personalized
prompt & predict paradigm (p5). In Proceedings of the 16th ACM Conference on
Recommender Systems. 299–315.

[11] Shijie Geng, Juntao Tan, Shuchang Liu, Zuohui Fu, and Yongfeng Zhang. 2023.
VIP5: Towards Multimodal Foundation Models for Recommendation. arXiv
preprint arXiv:2305.14302 (2023).

[12] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
Deepfm: a factorization-machine based neural network for ctr prediction. In
IJCAI.

[13] Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. 2021. Warp:
Word-level adversarial reprogramming. arXiv preprint arXiv:2101.00121 (2021).

[14] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In SIGIR. 355–364.

[15] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi
Jiang, and David Sontag. 2023. Tabllm: Few-shot classification of tabular data
with large language models. In International Conference on Artificial Intelligence
and Statistics. PMLR, 5549–5581.

[16] Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong
Wen. 2022. Towards Universal Sequence Representation Learning for Recom-
mender Systems. In Proceedings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining. 585–593.

[17] Wenyue Hua, Yingqiang Ge, Shuyuan Xu, Jianchao Ji, and Yongfeng Zhang. 2023.
UP5: Unbiased Foundation Model for Fairness-aware Recommendation. arXiv
preprint arXiv:2305.12090 (2023).

[18] Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. 2023. How
to Index Item IDs for Recommendation Foundation Models. arXiv preprint
arXiv:2305.06569 (2023).

[19] Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019. FiBiNET: combining fea-
ture importance and bilinear feature interaction for click-through rate prediction.
In Proceedings of the 13th ACM Conference on Recommender Systems. 169–177.

[20] Yanhua Huang, Hangyu Wang, Yiyun Miao, Ruiwen Xu, Lei Zhang, and Weinan
Zhang. 2022. Neural Statistics for Click-Through Rate Prediction. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1849–1853.

[21] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, FangWang,
and Qun Liu. 2019. Tinybert: Distilling bert for natural language understanding.
arXiv preprint arXiv:1909.10351 (2019).

[22] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware
factorization machines for CTR prediction. In RecSys. 43–50.

[23] Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy,
Lichan Hong, Ed Chi, and Derek Zhiyuan Cheng. 2023. Do LLMs Understand
User Preferences? Evaluating LLMs On User Rating Prediction. arXiv preprint
arXiv:2305.06474 (2023).

[24] Boseop Kim, HyoungSeok Kim, Sang-Woo Lee, Gichang Lee, Donghyun Kwak,
Dong Hyeon Jeon, Sunghyun Park, Sungju Kim, Seonhoon Kim, Dongpil Seo,

et al. 2021. What changes can large-scale language models bring? intensive study
on hyperclova: Billions-scale korean generative pretrained transformers. arXiv
preprint arXiv:2109.04650 (2021).

[25] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for
parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021).

[26] Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian
McAuley. 2023. Text Is All You Need: Learning Language Representations for
Sequential Recommendation. arXiv preprint arXiv:2305.13731 (2023).

[27] Xiangyang Li, Bo Chen, Lu Hou, and Ruiming Tang. 2023. CTRL: Connect
Tabular and Language Model for CTR Prediction. arXiv preprint arXiv:2306.02841
(2023).

[28] Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190 (2021).

[29] Zeyu Li, Wei Cheng, Yang Chen, Haifeng Chen, and Wei Wang. 2020. Inter-
pretable click-through rate prediction through hierarchical attention. In Pro-
ceedings of the 13th International Conference on Web Search and Data Mining.
313–321.

[30] Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. 2019. Fi-gnn:
Modeling feature interactions via graph neural networks for ctr prediction.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 539–548.

[31] Zekun Li, ShuWu, Zeyu Cui, and Xiaoyu Zhang. 2021. GraphFM: Graph factoriza-
tion machines for feature interaction modeling. arXiv preprint arXiv:2105.11866
(2021).

[32] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature inter-
actions for recommender systems. In KDD. 1754–1763.

[33] Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Xiangyang Li, Chenxu
Zhu, Huifeng Guo, Yong Yu, Ruiming Tang, et al. 2023. How Can Recom-
mender Systems Benefit from Large Language Models: A Survey. arXiv preprint
arXiv:2306.05817 (2023).

[34] Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Shuai Li, Ruiming Tang,
Xiuqiang He, Jianye Hao, and Yong Yu. 2021. A Graph-Enhanced Click Model
for Web Search. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 1259–1268.

[35] Jianghao Lin, Yanru Qu,Wei Guo, Xinyi Dai, Ruiming Tang, Yong Yu, andWeinan
Zhang. 2023. MAP: A Model-agnostic Pretraining Framework for Click-through
Rate Prediction. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 1379–1389.

[36] Jianghao Lin, Rong Shan, Chenxu Zhu, Kounianhua Du, Bo Chen, Shigang Quan,
Ruiming Tang, Yong Yu, and Weinan Zhang. 2023. ReLLa: Retrieval-enhanced
Large Language Models for Lifelong Sequential Behavior Comprehension in
Recommendation. arXiv preprint arXiv:2308.11131 (2023).

[37] Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, and Yuzhou Zhang.
2019. Feature generation by convolutional neural network for click-through rate
prediction. InWWW. 1119–1129.

[38] Guang Liu, Jie Yang, and Ledell Wu. 2022. PTab: Using the Pre-trained Language
Model for Modeling Tabular Data. arXiv preprint arXiv:2209.08060 (2022).

[39] Junling Liu, Chao Liu, Renjie Lv, Kang Zhou, and Yan Zhang. 2023. Is chatgpt a
good recommender? a preliminary study. arXiv preprint arXiv:2304.10149 (2023).

[40] Qiang Liu, Feng Yu, Shu Wu, and Liang Wang. 2015. A Convolutional Click
Prediction Model. In Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management. ACM, 1743–1746.

[41] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang,
and Jie Tang. 2021. P-tuning v2: Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv preprint arXiv:2110.07602 (2021).

[42] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and
Jie Tang. 2023. GPT understands, too. AI Open (2023).

[43] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[44] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[45] Zhiming Mao, Huimin Wang, Yiming Du, and Kam-fai Wong. 2023. UniTRec: A
Unified Text-to-Text Transformer and Joint Contrastive Learning Framework
for Text-based Recommendation. arXiv preprint arXiv:2305.15756 (2023).

[46] Aashiq Muhamed, Iman Keivanloo, Sujan Perera, James Mracek, Yi Xu, Qingjun
Cui, Santosh Rajagopalan, Belinda Zeng, and Trishul Chilimbi. 2021. CTR-BERT:
Cost-effective knowledge distillation for billion-parameter teacher models. In
NeurIPS Efficient Natural Language and Speech Processing Workshop.

[47] Guanghui Qin and Jason Eisner. 2021. Learning how to ask: Querying LMs with
mixtures of soft prompts. arXiv preprint arXiv:2104.06599 (2021).

[48] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.
2016. Product-based neural networks for user response prediction. In ICDM.

[49] Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng
Guo, Yong Yu, and Xiuqiang He. 2018. Product-based neural networks for user
response prediction over multi-field categorical data. TOIS 37, 1 (2018), 1–35.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[50] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
International conference on machine learning. PMLR, 8748–8763.

[51] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. The Journal of
Machine Learning Research 21, 1 (2020), 5485–5551.

[52] Steffen Rendle. 2010. Factorization machines. In ICDM.
[53] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,

and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1161–1170.

[54] Fangye Wang, Yingxu Wang, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang,
and Ning Gu. 2022. Enhancing CTR Prediction with Context-Aware Feature
Representation Learning. arXiv preprint arXiv:2204.08758 (2022).

[55] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[56] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong,
and Ed Chi. 2021. Dcn v2: Improved deep & cross network and practical lessons
for web-scale learning to rank systems. In Proceedings of the Web Conference
2021. 1785–1797.

[57] Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen,
Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, et al. 2023. A Survey on Large
Language Models for Recommendation. arXiv preprint arXiv:2305.19860 (2023).

[58] Yunjia Xi, Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Rui Zhang,
Ruiming Tang, and Yong Yu. 2023. A Bird’s-eye View of Reranking: from List
Level to Page Level. In Proceedings of the Sixteenth ACM International Conference
on Web Search and Data Mining. 1075–1083.

[59] Yunjia Xi, Weiwen Liu, Jianghao Lin, Jieming Zhu, Bo Chen, Ruiming Tang,
Weinan Zhang, Rui Zhang, and Yong Yu. 2023. Towards Open-World Recom-
mendation with Knowledge Augmentation from Large Language Models. arXiv
preprint arXiv:2306.10933 (2023).

[60] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
2017. Attentional factorization machines: Learning the weight of feature interac-
tions via attention networks. IJCAI (2017).

[61] Canwen Xu and Julian McAuley. 2023. A survey on model compression and ac-
celeration for pretrained language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 37. 10566–10575.

[62] Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin Zhao, Leyu Lin, and Ji-Rong
Wen. 2023. Recommendation as instruction following: A large language model
empowered recommendation approach. arXiv preprint arXiv:2305.07001 (2023).

[63] Weinan Zhang, Jiarui Qin, Wei Guo, Ruiming Tang, and Xiuqiang He. 2021. Deep
learning for click-through rate estimation. IJCAI (2021).

[64] Zizhuo Zhang and BangWang. 2023. Prompt learning for news recommendation.
arXiv preprint arXiv:2304.05263 (2023).

A DATA PREPROCESSING
We conduct experiments on four real-world datasets from different
recommendation scenarios. The information about data preprocess-
ing is given below:

• Movielens-1M is a movie recommendation dataset from Movie-
lens website with ratings ranging from 1 to 5. We binarize the
ratings with a threshold of 4, while removing neutral samples
with ratings equal to 3 [31, 53].

• BookCrossing is a book recommendation dataset fromBookCross-
ing website with ratings ranging from 0 to 10. We convert the
ratings into binary labels with a threshold of 5.

• Amazon-Toys is a e-commercial dataset of toys category from
Amazon with ratings ranging from 1 to 5. We binarize the ratings
with a threshold of 4. We apply 5-core filtering to ensure each
user or item has at least five interaction records [10, 31].

• GoodReads is a book recommendation dataset from GoodReads
website with ratings ranging from 1 to 5. We transform the rat-
ings into binary labels with a threshold of 4. Similar to Amazon-
Toys, we apply 10-core filtering to ensure each user or item has
at least ten interaction records.

B BASELINE IMPLEMENTATION
In this section, we give the hyperparameter configuration for each
baseline model from two different categories: (1) traditional CTR
models, and (2) PLM-based CTR models.

B.1 Traditional CTR Models
We train each traditional CTR model from scratch based on click
signals without pretraining. Similar to the finetuning stage of Click-
Prompt, we adopt AdamW [44] as the optimizer. The batch size is
set to 256 for Movielens-1M, 256 for BookCrossing, 1024 for AZ-
Toys, and 4096 for GoodReads. The learning rate is set to 1 × 10−3.
We set the embedding size to 32 for MovieLens-1M and BookCross-
ing, and 16 for Amazon-Toys and GoodReads. The dropout rate is
selected from {0.0, 0.1, 0.2}. We utilize one linear layer after the
feature interaction layer to make the final CTR prediction. Un-
less stated otherwise, we adopt ReLU as the activation function.
The model-specific hyperparameter settings for base models are as
follows:

• DNN. We select the size of DNN layer from {128, 256, 512}, and
the number of DNN layers from {3, 4, 5, 6}.

• DeepFM [12].We select the size of DNN layer from {128, 256, 512},
and the number of DNN layers from {3, 4, 5, 6}.

• xDeepFM [32]. We choose the number of CIN layers from
{2, 3, 4, 5}, and the number of units per CIN layer is set to 25.
We select the size of DNN layer from {128, 256, 512}, and the
number of DNN layers from {3, 4, 5, 6}.

• IPNN [48]. We select the size of DNN layer from {128, 256, 512},
and the number of DNN layers from {3, 4, 5, 6}.

• DCN [55]. We select the size of DNN layer from {128, 256, 512},
and the number of DNN layers from {3, 4, 5, 6}. We force the
CrossNet module to have the same number of layer as the DNN
network.

• AutoInt [53]. We select the number of attention layers from
{3, 4, 5, 6}. The number of attention heads per layer and the
attention size are set to 1 and 32, respectively.

• FiGNN [30]. We select the number of layers from {3, 4, 5, 6}, and
apply residual connection for the graph layers.

• FGCNN. Wemaintain 4 tanh-activated convolutional layers with
a kernel size of 7 and pooling size of 2 for each layer. The number
of channels for each layer is set to 6, 8, 10, 12, respectively. The
numbers of channels for recombination layers are all set to 3.

• DCNv2 [56].We select the size of DNN layer from {128, 256, 512},
and the number of DNN layers from {3, 4, 5, 6}. We force the
CrossNet module to have the same number of layer as the DNN
network.

B.2 PLM-based CTR Models
This line of methods generally incorporate the pretrained language
models for CTR prediction. We keep the structure of PLMs un-
changed, and describe the training setting for each model as follows.
Note that we utilize AdamW [44] as the optimizer for all of the
PLM-based baseline models.

• CTR-BERT [46]. We maintain a two-tower model structure
based on the BERT [8] model to encode the user and item infor-
mation, respectively. We set the total number of tuning epochs

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

to 10 with batch size of 1024. The learning rate is set to 5 × 10−5
with linear decay. The warmup ratio is set to 0.05.

• P5 [10] is a unified sequence-to-sequence frameworkwith T5 [51]
as the backbone pretrained language model for multiple recom-
mendation tasks. In this paper, we leverage P5 for a single task
only (i.e., CTR prediction). The total number of epochs is set
to 10 with batch size of 32. The learning rate is selected from
{5 × 10−4, 1 × 10−3} with linear decay. The warmup ratio is 0.05.
Following P5’s official implementation, we also perform gradient
clip with threshold equal to 1.0.

• PTab [38] adopts the common pretrain-finetune scheme based
on the BERT [8] model. PTab first further pretrains the BERT
model with the classical masked language modeling objective
based on the textualized CTR data, and then finetunes BERT
for downstream CTR prediction as a text classification problem.
Following the original paper, we pretrain BERT for 10 epochs

with batch size equal to 1024. The learning rate for pretraining
is set to 5× 10−5 with linear decay. The warmup ratio is 0.05. As
for finetuning, the total number of tuning epoch is set to 10 with
batch size of 1024. The learning rate for finetuning is initialized
at 5 × 10−5 with linear decay. The warmup ratio is 0.01.

• CTRL [27] designs a contrastive pretraining framework to im-
plicitly align the collaborative knowledge from CTR models and
semantic knowledge fromPLMs. Following the original paper, we
choose AutoInt as the backbone CTR model and TinyBERT [21]
as the backbone PLM. We first perform contrastive pretraining
for 20 epochs, and then finetune AutoInt for downstream CTR
prediction tasks. The model structure of AutoInt is set as the best
configuration based on the grid-search result stated in Appen-
dix B.1. Other training configurations are the same as reported
in CTRL’s original paper [27].

11

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Traditional CTR Prediction
	2.2 PLM-based CTR Prediction

	3 Methodology
	3.1 Overview of ClickPrompt
	3.2 Modality Transformation
	3.3 Prompt Generation
	3.4 Prompt Fusion
	3.5 Learning Strategy

	4 Experiment
	4.1 Experiment Setups
	4.2 Overall Performance (RQ1)
	4.3 Model Compatibility (RQ2)
	4.4 Ablation Study (RQ3)
	4.5 Long-tail User/Item Analysis (RQ4)

	5 Related Work
	5.1 Traditional CTR Prediction
	5.2 PLM-based CTR Prediction
	5.3 Prompt Tuning

	6 Conclusion
	References
	A Data Preprocessing
	B Baseline Implementation
	B.1 Traditional CTR Models
	B.2 PLM-based CTR Models

