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ABSTRACT

Modeling long spatiotemporal sequences requires capturing both complex spa-
tial correlations and temporal dependencies. Convolutional State Space Models
(ConvSSMs) have been proposed to incorporate spatial modeling in State Space
Models (SSMs) using the convolution of tensor-valued states and kernels. Yet,
existing implementations remain limited to 1× 1 state kernels for computational
feasibility, which limits the modeling capacity of ConvSSMs. We introduce a novel
spatiotemporal model, ConvT3 (ConvSSM using Tridiagonal Toeplitz Tensors),
designed to equivalently realize ConvSSMs with extended 3 × 3 state kernels.
ConvT3 structures a state kernel for its corresponding tensor to be composed as a
structured SSM matrix on hidden state dimensions and a constrained tridiagonal
Toeplitz tensor on spatial dimensions. We show that the structured tensor can
be diagonalized, which enables efficient parallel training while leveraging 3× 3
state convolutions. We demonstrate that ConvT3 effectively embeds rich spatial
and temporal information into the dynamics of tensor-valued states, achieving
state-of-the-art performance on most metrics in long-range video generation and
physical system modeling.

1 INTRODUCTION

Modeling spatiotemporal dynamics is foundational for numerous domains, including videos (Finn
et al., 2016; Ho et al., 2022; Wasim et al., 2024), physical systems (Nguyen et al., 2023; Li et al.,
2024; Choi et al., 2020), and weather forecasting (Lam et al., 2023; Bodnar et al., 2024; Pathak et al.,
2022). In video generation, maintaining long-term memory and consistency is crucial for ensuring
realistic outputs. Similarly, modeling physical systems such as fluid flow or thermodynamic processes
requires fine-grained spatial reasoning within temporal dynamics, as spatial interactions evolve in
such systems. Consequently, spatiotemporal modeling has drawn intense interest as a key challenge
for domains that require capturing intricate dependencies across space and time.

Across visual and physical domains, sequence models offer a compelling paradigm for spatiotemporal
modeling, capturing the underlying dynamics that link input sequences to output sequences. The
primary objective of spatiotemporal sequence modeling is to integrate spatial feature extraction
with temporal representation. Early approaches like Convolutional Recurrent Neural Networks
(ConvRNNs), exemplified by ConvLSTM (Shi et al., 2015), introduced tensor-valued hidden states,
updated with convolutions, to capture spatial patterns. However, ConvRNNs inherit limitations of
RNNs, including serial training and difficulty in modeling long-range dependencies. Transformer-
based models (Yan et al., 2023; Park et al., 2023; Pătrăucean et al., 2024) have also been adapted to
video domains, employing factorized attention or patched-base processing to handle spatiotemporal
inputs. Although powerful, the quadratic-time computational cost of attention restricts the feasible
spatiotemporal context, especially as the data dimensionality and spatial/temporal resolution increase.

Convolutional State Space Models (ConvSSMs) (Smith et al., 2023) combine tensor-valued states
from ConvRNN with State Space Models (SSMs), providing expressive modeling capability with
linear-time efficiency. Although ConvSSMs conceptually allow arbitrary kernel sizes for the state,
input, output, and feedthrough convolutions, ConvS5 (Smith et al., 2023), the practical implementation
of ConvSSM, restricts the state kernels to pointwise 1× 1 convolutions. This constraint is necessary
to avoid exploding computation in parallel scans with larger kernels, but it fundamentally limits the
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learned state dynamics from effectively capturing spatiotemporal context. Such limitations motivate
alternative designs that can leverage extended state kernels while maintaining efficient training.

In this paper, we propose a ConvSSM using Tridiagonal Toeplitz Tensors (ConvT3), which equiva-
lently implements a ConvSSM with 3× 3 state convolution. We first reformulate the convolution
operations in a ConvSSM as tensor contractions, where state, input, output, and feedthrough tensors
correspond to their respective kernels. The key idea of ConvT3 is to structure the state tensor using
two components: a diagonalizable SSM matrix and a constrained tridiagonal Toeplitz tensor. The
proposed structuring rule ensures ConvT3’s diagonalizability and correspondence to the extended
3× 3 kernels. Finally, we develop an efficient training algorithm using linear-complexity parallel
scans with stable parameterization, which naturally generalizes to higher-dimensional data.

We empirically validate the effectiveness of ConvT3 on modeling videos and physical dynamics. On
the long-range Moving-MNIST benchmark (Srivastava et al., 2015), ConvT3 consistently outperforms
existing sequence models and achieves state-of-the-art results in video generation. On PDEBench
datasets (Takamoto et al., 2022), ConvT3 attains the best accuracy in physical system modeling,
while also exhibiting superior training stability compared to ConvS5. Ablation studies further confirm
that the modeling performance of ConvT3 arises from its structured 3× 3 state kernels rather than
parameter growth. Together, these results demonstrate that ConvT3 provides a scalable, stable, and
effective framework for modeling complex spatiotemporal dynamics.

2 PRELIMINARIES

Before introducing the equations, we summarize in Table 7 the symbols used for values and operations,
with notations distinguished according to the type of value.

2.1 CONVOLUTIONAL STATE SPACE MODELS WITH POINTWISE STATE KERNELS

ConvSSM A ConvSSM using general-size convolution kernels was conceptually suggested by Smith
et al. (2023), where an SSM combines convolutional operations for spatial feature extraction. Let
U(t) ∈ RH×W×U be a U -channel two-dimensional data at time t, where H and W denote spatial
height and width. A continuous-time ConvSSM is formulated with a state tensor X (t) ∈ CH×W×P ,
where P denotes the hidden state dimension, and an output tensor Y(t) ∈ RH×W×U , as

X ′(t) = A ∗ X (t) +B ∗ U(t), (1)
Y(t) = C ∗ X (t) +D ∗ U(t), (2)

where ∗ denotes zero-padded convolution that preserves the tensor shapes, and X ′(t) ≜ d
dtX (t).

The convolution kernels A ∈ CP×P×kA×kA , B ∈ CP×U×kB×kB , C ∈ CU×P×kC×kC , D ∈
CU×U×kD×kD are referred to as the state, input, output, and feedthrough kernels, respectively. The
input–output tensor sequence can remain real-valued despite operating in the complex domain by
parameterizing the kernels with conjugate pairs Gu et al. (2022).

ConvS5 A ConvS5 (Smith et al., 2023) implements a ConvSSM with a pointwise state kernel, i.e.,
kA = 1, to apply parallel scans to the discretized ConvSSM

Xk+1 = A ∗ Xk +B ∗ Uk, (3)
Yk = C ∗ Xk +D ∗ Uk, (4)

where A ∈ CP×P×1×1 and B ∈ CP×U×kB×kB represent the state and input kernels discretized for
a timescale parameter ∆ ∈ RP by discretization methods, such as zero-order hold. The computation
of the state tensor sequence X1:L from the input tensor sequence U1:L is enabled by parallel scans for
an element qk = (qk,a, qk,b) := (A,B ∗ Uk) and a binary associative operator • defined by

qi • qj := (qj,a ◦ qi,a, qj,a ∗ qi,b + qj,b), (5)

where ◦ denotes the convolution of kernels and + is elementwise addition. Since the operation ◦
produces growing kernels across scans, ConvS5 parameterizes A ∈ CP×P×1×1 to maintain training
feasibility on long sequences by preventing kernel growth during parallel scans.

However, this design restricts the expressivity of the state dynamics by reducing A to a pointwise
state kernel, leaving the spatial modeling to B, C, D kernels and to deeper stacking of layers.
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Figure 1: Equivalence between 3× 3 convolution and its tensor contraction formulation using a TT
tensor. For interpretability, the TT tensor is depicted with block TT matrices in the flattened form.
The convolution operator K ∗ V can be expressed as a structured tensor contraction KV .

2.2 EIGENDECOMPOSITION OF TRIDIAGONAL TOEPLITZ MATRICES

As a preliminary, we recall the eigendecomposition of tridiagonal Toeplitz (TT) matrices. Define
T = tridiag (lT , dT , uT ) ∈ CN×N , where lT , dT , uT ∈ C are the lower, diagonal, and upper entries:

T = tridiag(lT , dT , uT ) =


dT uT

lT dT uT

. . . . . . . . .
lT dT uT

lT dT

 . (6)

It is well known that a TT matrix admits a closed-form eigendecomposition, with the ith eigenvalue
λi and its corresponding eigenvector xi are given by

λi = dT + 2
√
lTuT cos

(
iπ

N+1

)
, (7)

xij = (lT /uT )
j/2

sin
(

ijπ
N+1

)
. (8)

where xij denotes the jth entry of the ith eigenvector, for i, j = {1, . . . , N}.

Thus, one can obtain the eigenvalues and eigenvectors of T using its entries lT , dT , uT without further
computation. In particular, TT matrices with the same off-diagonal ratio share a common eigenbasis.

2.3 CONVOLUTION AND TRIDIAGONAL TOEPLITZ TENSORS

Convolutions are linear and shift-invariant, so they can be rewritten as matrix/tensor operations with
structured matrices/tensors. In 1D, they correspond to multiplication with Toeplitz matrices; in
higher dimensions, to tensor contraction with Toeplitz tensors. The Toeplitz structure arises from the
shift-invariance, while the convolution kernel size determines the number of nonzero off-diagonals.

For a 3×3 kernel K ∈ CDo×Di×3×3 (with Do output and Di input channels), 2D convolutions can be
written as the tensor contractions with TT tensors. Specifically, we call T ∈ CDo×Di×N1×N1×N2×N2

a TT tensor if each slice Tq,r,i1,j1,:,: ∈ CN2×N2 and Tq,r,:,:,i2,j2 ∈ CN1×N1 is TT matrix for
all q ∈ {1, . . . , Do}, r ∈ {1, . . . , Di}, i1, j1 ∈ {1, . . . , N1}, i2, j2 ∈ {1, . . . , N2} such that
|i1 − j1| ≤ 1, |i2 − j2| ≤ 1. Values outside the tridiagonal patterns are zero.

Then, for an input tensor V ∈ CN1×N2×Di , the convolution with K can be equivalently written as

K ∗ V = KV ∈ CN1×N2×Do , (9)

where K ∈ CDo×Di×N1×N1×N2×N2 is the associated TT tensor whose entries are induced by K.
The operation between the two tensors is a matrix-multiplication-like contraction along each Di,
N1, N2 dimension. This correspondence between convolution and tensor contraction is illustrated
in Figure 1.
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Discretize Parallel
scan Nonlinear

OperationTraining parameter Fixed variable Instantiated variable Layer I/O

Figure 2: Algorithmic flow of parallel computation in a ConvT3 layer for length-L input and output
tensor sequences U1:L, U ′

1:L ∈ RL×H×W×U . The proportionality constraints in ConvT3 induce a
form that allows parallel scans to be applied.

3 METHOD

In this section, three types of tensor operations are employed: (1) Elementwise multiplication along
all dimensions, denoted by ⊙; (2) Tensor product resulting in dimension extension, denoted by ⊗;
and (3) Tensor contraction over certain dimensions, where the operator symbol is omitted. The
contraction dimensions are specified using Einstein notation in Appendix A.1.

3.1 STRUCTURED STATE KERNELS OF CONVT3

Our goal is to construct a ConvSSM state kernel A of size larger than 1 × 1, while having a
diagonalizable form, thus enabling linear complexity parallel scan. Also, we wish to employ the
structure of a well-known state matrix like S5 along the state dimension to guarantee performance.
We operate with a diagonalizable state matrix and a structured TT tensor to achieve such goals. We
define the state tensor A corresponding to the state kernel A by the following method:

A := f(R,S), (10)

where R ∈ CP×P is a diagonalizable matrix, S ∈ CP×P×H×H×W×W is a proportionality-
constrained TT (PTT) tensor, and f denotes the composition rule to construct a state tensor.
Specifically, the PTT tensor S satisfies two proportionality conditions with some nonzero ratios
αH , αW ∈ C:

(i) lSq,r,:,:,iw,jw
= αH uSq,r,:,:,iw,jw

, (ii) lSq,r,ih,jh,:,:
= αW uSq,r,ih,jh,:,:

, (11)

for all q, r ∈ {1, . . . , P}, ih, jh ∈ {1, . . . ,H}, iw, jw ∈ {1, . . . ,W} such that |ih − jh| ≤ 1,
|iw − jw| ≤ 1.

Moreover, for efficient computation in (14), we impose that the PTT tensor is diagonal along the
hidden P × P dimension, i.e., each slice S:,:,ih,jh,iw,jw is diagonal.

Importantly, we can decompose R and S using their properties. First, since R is diagonalizable, there
exists an invertible matrix QP ∈ CP×P such that

R = QPΛQ
−1
P , (12)

where Λ ∈ CP×P is diagonal.

Next, since (8) and (11), the spatial slices share common eigenbases QH ∈ CH×H and QW ∈
CW×W for the height and width dimensions, where the eigenbases are uniquely determined by αH

and αW . Thus, S can be decomposed as

S = (IP ⊗QH ⊗QW ) E (IP ⊗QH ⊗QW )−1 ∈ CP×P×H×H×W×W , (13)

where IP ∈ RP×P denotes the identity matrix, E ∈ CP×P×H×H×W×W , such that each slice
E:,:,ih,jh,iw,jw ∈ CP×P , Eq,r,:,:,iw,jw ∈ CH×H and Eq,r,ih,jh,:,: ∈ CW×W are diagonal for q, r ∈
{1, . . . , P}, ih, jh ∈ {1, . . . ,H}, iw, jw ∈ {1, . . . ,W} (Refer to Appendix A.2 for derivation).

4
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Based on the decomposed factors, the composition rule f is defined as follows:
f
(
R(QP ,Λ),S(QH ,QW ,E)

)
= (QP ⊗QH ⊗QW )

(
(Λ⊗ IH ⊗ IW )⊙E

)
(QP ⊗QH ⊗QW )−1. (14)

We formally define the proposed model, ConvT3, as Definition 1.
Definition 1. A ConvT3 is defined as

X ′(t) = A X (t) + B U(t),
Y(t) = C X (t) +D U(t),

(15)

where A = Q
(
(Λ ⊗ IH ⊗ IW ) ⊙ E

)
Q−1 ∈ CP×P×H×H×W×W constructed by the composition

rule f in (14), B ∈ CP×U×H×H×W×W , C ∈ CU×P×H×H×W×W , and D ∈ CU×U×H×H×W×W .

We next show that the ConvT3 defined above is equivalent to a ConvSSM with a 3× 3 state kernel.

Theorem 1. A ConvT3 is a ConvSSM with a 3× 3 state kernel A ∈ CP×P×3×3.
The key idea behind the proof (Appendix A.3) is that the state tensor of ConvT3, defined as

A = (QP ⊗QH ⊗QW )
(
(Λ⊗ IH ⊗ IW )⊙ E

)
(QP ⊗QH ⊗QW )−1, (16)

retains a PTT structure. The middle factor (Λ ⊗ IH ⊗ IW ) ⊙ E , contracted with QH and QW , is
itself a PTT tensor, since Λ is block-diagonal and E preserves the Proportional Toeplitz pattern along
the spatial dimensions H and W . The contraction with QP does not break this structure: QP also
only acts on channel dimensions. As a result, the full tensor A is a PTT tensor. By the equivalence
between 2D convolution operations and tensor contractions with TT tensors (9), this establishes that
ConvT3 is indeed a ConvSSM with a 3× 3 state kernel.

3.2 PARALLEL TRAINING OF CONVT3 IN LINEAR TIME

We next show that ConvT3 can be diagonalized, enabling the use of linear-time parallel scan in
sequence length (Proof is provided in Appendix A.4).
Theorem 2. A ConvT3 can be diagonalized as

X ′
T (t) = ATXT (t) + BT U(t),
Y(t) = CTXT (t) +DU(t),

(17)

where
AT = (Λ⊗ IH ⊗ IW )⊙ E , BT = Q−1B, CT = CQ, (18)

under the change of state XT (t) = Q−1X (t), with Q := QP ⊗ QH ⊗ QW . The contraction
dimensions of tensor contraction are stated by Einstein notation in Appendix A.1.
Since the transformed state tensor AT (18) is diagonal, parallel scans using the operator in (5) can be
applied to the transformed ConvT3 (17), enabling linear-time complexity in sequence length. See
Appendix B for full complexity analysis.

For equivalent state dynamics, transformation on B and C using Q are performed before and after the
scan. In practice, the transformation QP for the hidden dimension is omitted, since the state along
the P dimension can be assumed to be trained in a diagonalized form, analogous to diagonal SSMs.
This implementation detail is essential for reducing computational complexity, as changing the kernel
operation of B, C to tensor products would be inefficient. Thus, the effective transformation reduces
to the spatial transformation QH ⊗QW , which is sufficient for preserving the desired equivalence.
The overall algorithmic flow for parallel training of ConvT3 is shown in Figure 2.

3.3 PARAMETERIZATION OF CONVT3 FOR TRAINING STABILITY

Overview of Learnable Parameters and Stable Reparameterization. In continuous SSMs, stability
follows from the Hurwitz condition applied to the diagonalized state matrix, since negative real parts
guarantee contractive temporal dynamics. For ConvT3, the same principle applies, i.e., the stability
of AT is ensured when the real part of its diagonal values remains strictly negative.

As shown in Figure 3, the diagonalized state tensor AT can attain stable dynamics by enforcing two
conditions: (1) Λ ∈ CP×P has negative real parts, and (2) E are strictly positive. These conditions
ensure the negativity of Re{AT }, and thus guarantee the stability of ConvT3. We now describe the
reparameterization methods used to ensure that these conditions are satisfied.

5
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Figure 3: Reparameterization of ConvT3 state kernel for stability. The Λ (eigenvalues of R) is
conditioned to have negative real parts, while the E (eigenvalues of S) is conditioned to be positive.
This ensures the stability of the resulting state tensor constructed from their combinations. Here, ϵ̄i
denotes the vector whose components are the ϵi from all effective channels, and ′ indicates that the
value is reparameterized.

Hurwitz Condition. To guarantee the negativity of real part of Λ during training, we reparameterize
the learnable Λ as

Λ′ : Re{Λ′} = −softplus(Re{Λ}),
which automatically keeps ℜ{Λ′} < 0 at all times.

Positivity Condition. The other condition for stability is strict positivity of E > 0, where E is the
eigenvalue of the PTT tensor S ∈ CP×P×H×H×W×W .

We construct E by extending the Toeplitz eigenvalue formula (7) to the PTT tensor by

Eq,r,ih,jh,iw,jw = ϵq,r(θ
H
ih
, θWiw ) δq,rδih,jhδiw,jw , (19)

where

ϵq,r(θ
H
ih
, θWiw ) = aq,r + bq,r cos θ

H
ih

+ cq,r cos θ
W
iw + dq,r cos θ

H
ih
cos θWiw , (20)

for θHih = πih
H+1 and θWiw = πiw

W+1 , with the channel indices q, r ∈ {1, . . . , P}, the spatial indices
ih, jh ∈ {1, . . . ,H} and iw, jw ∈ {1, . . . ,W}, and the Kronecker delta δ·,·. The scalar coefficients
aq,r, bq,r, cq,r, dq,r ∈ C along with the off-diagonal proportions induces the 3× 3 state kernel, where
aq,r corresponds to the center value and bq,r, cq,r, dq,r with the side values of the kernel.

For simplicity, we drop the indices (q, r) with the understanding that the following derivations apply
to all (q, r). Thus, (20) is rewritten as

ϵ(θHih , θ
W
iw ) := a+ b cos θHih + c cos θWiw + d cos θHih cos θ

W
iw . (21)

To guarantee positivity for all discrete (θHih , θ
W
iw
), it suffices to impose positivity over the continuous

domain (0, π) × (0, π). Since ϵ is bilinear in cos θH , cos θW ∈ (−1, 1), positivity is enforced by
checking the four extreme points:

ϵ1 = a+ b+ c+ d > 0, ϵ2 = a+ b− c− d > 0,

ϵ3 = a− b+ c− d > 0, ϵ4 = a− b− c+ d > 0.

Here, we can fix the center coefficient a to 1, reducing redundant degrees of freedom, which implies

ϵ1 + ϵ2 + ϵ3 + ϵ4 = 4.

To satisfy all positivity constraints automatically, we reparameterize the four extreme values via a
softmax:

ϵ′i = 4 · softmax(ϵ1, ϵ2, ϵ3, ϵ4)i,

which ensures ϵ′i > 0 and
∑

i ϵ
′
i = 4. The coefficients (b, c, d) are then recovered using the inverse

linear transformation:

b = (ϵ′1 + ϵ′2 − ϵ′3 − ϵ′4)/4, c = (ϵ′1 − ϵ′2 + ϵ′3 − ϵ′4)/4, d = (ϵ′1 − ϵ′2 − ϵ′3 + ϵ′4)/4.
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Stable State Tensor AT . Finally, combining the Hurwitz-stable Λ′ and the positive eigenvalues E ′

yields a diagonalized state operator that satisfies Re{AT } < 0 elementwise. Thus, the ConvT3 state
tensor is guaranteed to remain stable throughout training while retaining fully learnable temporal and
spatial dynamics.

3.4 GENERALIZATION TO N -DIMENSIONAL CONVT3

The correspondence between convolution and Toeplitz tensors can extend ConvT3 to higher di-
mensions. While 2D convolutions are represented by TT tensors for two spatial dimensions, N -
dimensional convolutions naturally induce TT tensors for N spatial dimensions. In a higher-order
TT tensor, the tridiagonal pattern also arises along each of the N spatial axes for an N -dimensional
kernel with a kernel size of 3. Thus, for an input tensor in an N -dimensional space, a convolution can
be represented as a tensor contraction with the N -dimensional TT tensor followed by the contraction
over the channel and spatial indices.

This implies that the ConvT3 formulation, defined for 2D inputs and PTT tensors, admits a natural
theoretical extension to arbitrary spatial dimensions. The proportionality-constrained structure and
parallel scan mechanism remain applicable, as they depend only on the PTT property along each axis
rather than the dimensionality itself.

4 RELATED WORKS

ConvRNN-based Models ConvRNNs capture local spatiotemporal correlations and are widely
used in video prediction and physical simulations (Ballas et al., 2015); early variants such as
ConvLSTM (Shi et al., 2015) and PredRNN (Wang et al., 2017) improved prediction by integrating
spatial–temporal cues and introducing spatiotemporal memory. Building on these, SwinLSTM (Tang
et al., 2023) embeds Transformer blocks within LSTM cells to model local and global dependencies,
and a later PredRNN (Wang et al., 2022) improves long-term stability via memory decoupling.

Transformer-based Models Transformers, with self-attention, excel at global dependency modeling
and are widely used in spatiotemporal tasks (Lee et al., 2024; Vaswani et al., 2017). Recent variants
include TECO, which preserves long-term temporal consistency via a VQ-based non-autoregressive
framework (Yan et al., 2023); PredFormer, a purely Transformer model with competitive results across
benchmarks (Tang et al., 2024b); and TRecViT, a hybrid that pairs lightweight temporal recurrence
with spatial Transformer blocks to balance efficiency and accuracy on long sequences (Pătrăucean
et al., 2024).

SSM-based Models SSMs provide linear-time sequence modeling with strong memory reten-
tion (Zhang et al., 2024; Huang et al., 2025; Liu et al., 2024). Early S4 (Gu et al., 2021) and
S5 (Smith et al., 2022) paved the way; ConvSSM (Smith et al., 2023) added spatial modeling via
convolutions; S4ND (Nguyen et al., 2022) extended SSMs to multidimensional signals for vision;
Selective SSM (Wang et al., 2023) prunes information-sparse tokens; and VMRNN (Tang et al.,
2024a) leverages Mamba modules (Gu & Dao, 2023) to capture short- and long-term dynamics.

5 EXPERIMENTS

In Section 5.1, we evaluate the spatiotemporal modeling capability of ConvT3 on a long-range video
generation task. In Section 5.2, we evaluate ConvT3 on complex physical system modeling. In
Section 5.3, we present ablation studies on architecture and hyperparameters.

For all tasks, we used off-diagonal proportions αH = αW = −1, meaning the state kernel is skew-
symmetric across spatial dimensions. We initialized bq,r, cq,r, dq,r to zero to ensure equivalence with
ConvS5 at initialization. The other experiment setups for each task are provided in Appendix D.
Implementation is available at https://anonymous.4open.science/r/ConvT3-1492/.
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Table 1: Evaluation on the Moving-MNIST dataset (Srivastava et al., 2015). We condition on
100 frames, and then show results after generating 800 and 1200 frames. Bold: best performance.
Underline: second-best performance.
Trained on 300 frames

100 → 800 100 → 1200
Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Transformer (Vaswani et al., 2017) 159 12.6 0.609 0.287 265 12.4 0.591 0.321
Performer (Choromanski et al., 2021) 234 13.4 0.652 0.379 275 13.2 0.592 0.393
CW-VAE (Saxena et al., 2021) 104 12.4 0.592 0.277 117 12.3 0.585 0.286
ConvLSTM (Shi et al., 2015) 128 15.0 0.737 0.169 187 14.1 0.706 0.203
ConvS5 (Smith et al., 2023) 72 16.0 0.761 0.156 187 14.5 0.678 0.230
ConvT3 79 16.1 0.776 0.146 118 15.2 0.746 0.179

Trained on 600 frames
Transformer 42 13.7 0.672 0.207 91 13.1 0.631 0.252
Performer 93 12.4 0.616 0.274 243 12.2 0.608 0.312
CW-VAE 94 12.5 0.598 0.269 107 12.3 0.590 0.280
ConvLSTM 91 15.5 0.757 0.149 137 14.6 0.727 0.180
ConvS5 47 16.4 0.788 0.134 71 15.6 0.763 0.162
ConvT3 36 17.7 0.823 0.104 56 16.7 0.795 0.131

5.1 LONG-RANGE VIDEO MODELING AND GENERATION

Video modeling requires capturing both spatial structures within each frame and temporal dynamics
across long sequences. To evaluate such capability, we consider the Moving-MNIST dataset (Srivas-
tava et al., 2015), a standard benchmark where digits move within a 2D frame.

Following the task setup in ConvS5 (Smith et al., 2023), we train models to reconstruct 300 or 600
input frames, and evaluate them at test time by 400, 800, and 1200 future frames from 100 observed
frames. Baselines include Transformer (Vaswani et al., 2017), Performer (Choromanski et al., 2021),
ConvLSTM (Shi et al., 2015), CW-VAE (Saxena et al., 2021), and ConvS5.

ConvT3 consistently outperforms existing baselines, showing significant improvements across nearly
all metrics. When trained on 300 frames, ConvT3 achieves the best PSNR, SSIM, and LPIPS
scores and second-best FVD scores for both 800- and 1200-frame generation. With longer training
sequences of 600 frames, ConvT3 further amplifies its advantage, achieving the best scores for
all metrics and prediction lengths. Overall, ConvT3 demonstrates state-of-the-art performance on
the Moving-MNIST benchmark, validating the effectiveness of structured 3 × 3 state kernels for
long-range spatiotemporal modeling.

5.2 PHYSICAL SYSTEM MODELING

5.2.1 PARTIAL DIFFERENTIAL EQUATION MODELING

Physical system modeling requires capturing the underlying spatiotemporal dynamics that govern
complex phenomena, often expressed as PDEs. To assess ConvT3 on accurate prediction of physical
dynamics, we use the PDEBench dataset (Takamoto et al., 2022), following the prediction task setup
in MPP (McCabe et al., 2024). Among the 2D datasets in PDEBench, we exclude the computationally
heavy compressible Navier–Stokes case and focus on the Shallow-Water and Diffusion-Reaction
datasets, which require accurate modeling of nonlinear PDE dynamics.

For training, models are provided with the first 16 time steps of grid trajectories and optimized to
predict the next single step. For ConvS5 and ConvT3 in this task, we replaced the attention layers in
AViT by ConvS5 and ConvT3 layers, allowing direct comparison of spatiotemporal modeling ability
within the same backbone. Performance is measured in terms of normalized root mean square error
(NRMSE), along with inference time. Baselines include FNO (Li et al., 2020), UNet (Ronneberger
et al., 2015), and AViT (McCabe et al., 2024), and ConvS5.

As shown in Table 2, ConvT3 achieved the best accuracy on both Shallow-Water and Diffusion-
Reaction datasets while using significantly fewer parameters compared to large baselines. On
Shallow-Water, ConvT3 performs comparably to ConvS5, while on Diffusion-Reaction, ConvT3
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Table 2: Evaluation on Shallow-Water and Diffusion-Reaction datasets (Takamoto et al., 2022).
Complex parameters were counted as two reals. Inference time was measured on A100 GPU. Bold:
best performance. Underline: second-best performance. Dash: Not provided by source.

Model #Params NRMSE ↓ Time (s)

Shallow-Water Diffusion-Reaction Train Step Evaluation Step

AViT-B 116M 0.00047 0.0110 - -
FNO-B 115M 0.00246 0.0599 - -

UNet 7M 0.083− 0.84− - -
FNO 927K 0.0044 0.12− - -

AViT-Ti 7M 0.00053 0.0090 303 (2.31×) 2.74 (2.06×)
ConvS5 6M 0.00035 0.0106 131 (1.00×) 1.33 (1.00×)
ConvT3 6M 0.00033 0.0087 151 (1.15×) 1.51 (1.14×)

Table 3: (Ablations: Minimal parameterization.)
MiniT3 outperformed ConvS5 despite the minimal
increase in parameter numbers.

Model #Params MSE ↓ MAE ↓
ConvS5 24M 11.57 23.25
MiniT3 24M (+24) 10.87 21.64

Table 4: (Ablations: Off-diagonal proportion.)
Different proportions gave similar results.

αH , αW MSE ↓ MAE ↓
1 (Symmetric) 10.97 22.12

−1 (Skew-symmetric) 10.99 22.15

Table 5: (Ablations: Number of blocks.)
ConvT3 generally achieved better performance
than ConvS5 under the same number of blocks.

Model #Blocks MSE ↓ MAE ↓

ConvS5

2 13.15 27.08
4 11.92 24.64
6 11.13 22.76
8 11.57 23.25

12 10.68 21.80

ConvT3

2 12.91 25.75
4 11.82 25.31
6 11.11 23.38
8 10.99 22.15

12 10.57 21.77

achieved a substantial performance gain over ConvS5. Moreover, ConvT3 maintains efficiency close
to ConvS5, demonstrating both effectiveness and scalability in modeling complex physical dynamics.

5.2.2 TRAINING STABILITY

ConvS5 often exhibited training instability, whereas ConvT3 remained stable under the same ex-
perimental and model configurations. As one representative instance shown in Figure 4, ConvT3
maintains a smooth loss curve, while ConvS5 suddenly spikes. This behavior persisted across multiple
random seeds, suggesting it is not from initialization effects.

5.3 MODEL ABLATIONS

We conduct an ablation study on the standard Moving-MNIST task (Srivastava et al., 2015), predicting
10 frames from 10 observed frames.

In Table 3, we evaluate a variant of ConvT3, named MiniT3, which shares the same kernel slice across
P × P hidden dimensions. This variant introduces structural alternation from ConvS5 to ConvT3,
while minimizing the additional learnable parameter. Specifically, ConvT3 increases 3P parameters,
but MiniT3 only increases 3 parameters per layer. Notably, MiniT3 significantly outperformed
ConvS5 with only 24 additional parameters, demonstrating that the superior performance of ConvT3
arises from its structural improvements rather than parameter increase.

In Table 4, we check the influence of the off-diagonal proportions αH and αW with skew-symmetric
and symmetric state kernels. The results showed nearly identical performance, implying that the
proportions can be set to fixed, arbitrary values.

In Table 5 and Table 6, we compare ConvS5 and ConvT3 on various numbers of ConvSSM blocks
and B,C kernel sizes. ConvT3 outperformed ConvS5 in most cases, especially when either B or C
kernels were 1× 1 sized, and thus the spatial modeling effect was minimal.
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Table 6: (Ablations: Kernel size.) The introduction of a 3 × 3 state kernel A, in contrast to
relying solely on same-sized B and C kernels, resulted in notable performance gains. Bold: better
performance under the same B and C settings. (More cases are provided in Table 12.)

Model A kernel B kernel C kernel MSE ↓ MAE ↓

ConvS5

1× 1 1× 1 1× 1 14.98 30.60
1× 1 1× 1 3× 3 12.74 24.07
1× 1 3× 3 1× 1 12.13 24.35
1× 1 3× 3 3× 3 11.57 23.25

ConvT3

3× 3 1× 1 1× 1 14.68 29.65
3× 3 1× 1 3× 3 11.17 23.04
3× 3 3× 3 1× 1 11.69 23.46
3× 3 3× 3 3× 3 10.99 22.15

6 DISCUSSION

This work proposed ConvT3, which extends the state kernels of ConvSSM from pointwise to
3× 3. This extension enriched the spatial representation within the state dynamics and enabled the
model to capture more complex interactions. As a result, ConvT3 achieved significant performance
gains in downstream tasks. Another strength of ConvT3 lies in its efficient training algorithm.
The algorithm scales linearly with sequence length, which makes ConvT3 feasible for long-range
modeling. Experimental evaluations confirmed the inference speed, highlighting that the proposed
method maintains efficiency without compromising modeling power. Furthermore, the parameters
were carefully designed with stability in mind. By constraining the parameter space, ConvT3 avoided
unstable dynamics that can hinder learning. This stability-oriented design was reflected in the
experiments, where the model consistently exhibited smooth convergence and across datasets.

In theory, ConvT3 can be generalized to N -dimensional data by extending the PTT construction as
described in Section 3.4. However, our empirical validation was conducted on 2D datasets, which
are the most prevalent and practically important modalities. The absence of experiments on higher-
dimensional data remains a limitation of this study. Furthermore, we adopted fixed proportionality
conditions for the parameterization of PTT tensors. While this choice ensured tractability, it may limit
flexibility. A natural extension would be to allow these proportionalities to be learnable parameters,
potentially improving adaptability while retaining structural interpretability.
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A PROOFS

Notation Definition
a Scalar
A Matrix
A Block matrix
A Tensor
A Convolution kernel
∗ Convolution (Kernel–Tensor)
◦ Convolution (Kernel–Kernel)
⊙ Elementwise multiplication
⊗ Tensor product
⊕ Direct sum
δ.,. Kronecker delta

Table 7: Major notations

A.1 EXPLICIT FORM OF TENSOR CONTRACTIONS IN SECTION 3

The explicit tensor contractions are described by Einstein notation as follows:

• Equation (12)
Rq,r = QP

q,sΛs,t(Q
P )−1

t,r .

• Equation (13)

Sq,r,ih,jh,iw,jw = QH
ih,kh

QW
iw,kw

Eq,r,kh,lh,kw,lw(Q
H)−1

lh,jh
(QW )−1

lw,jw
.

• Equation (16)

Aq,r,ih,jh,iw,jw = QP
q,sQ

H
ih,kh

QW
iw,kw

(Λs,t⊙Es,t,kh,lh,kw,lw)(Q
P )−1

t,r (Q
H)−1

lh,jh
(QW )−1

lw,jw
.

• Equation (18), Diagonalized state tensor

AT q,r,ih,jh,iw,jw = Λq,r ⊙ Eq,r,ih,jh,iw,jw .

• Equation (18), Transformation tensor

Qq,r,ih,jh,iw,jw = QP
q,rQ

H
ih,jh

QW
iw,jw .

A.2 PROOF OF (13)

We derive (13) using the following theorems for general TT and PTT tensors. In the proofs of the
theorems, we use block matrices, i.e., flattened forms of tensors, for clarity of exposition.

We first introduce the definition of a commutation matrix, which will be used in Theorem 3 to show
that a block TT matrix admits a closed-form eigendecomposition when its outer blocks share a
common eigenvector.

Definition 2. The (m,n)-commutation matrix K(m,n) ∈ {0, 1}mn×mn is the unique permutation
matrix satisfying K(m,n)vec(A) = vec(AT ) for all A ∈ Cm×n.

Theorem 3. Let T ∈ Cnm×nm be a block TT matrix with blocks L,D,U ∈ Cm×m sharing a
common eigenbasis. Then T admits a closed-form eigendecomposition of the form

T = Q̃ Λ
′
Q̃−1, (22)

where Q̃ and Λ
′

are explicitly constructed in the proof.

Proof of Theorem 3. Suppose that the blocks admit eigendecompositions of the form

L = QΛLQ
−1, D = QΛDQ−1, U = QΛUQ

−1,
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with a common eigenvector matrix Q and diagonal matrices ΛL = diag(λL,1, · · · , λL,m), ΛD =
diag(λD,1, · · · , λD,m), and ΛU = diag(λU,1, · · · , λU,m). Then, T can be written with a block
tridiagonal matrix Λ as

T = QΛQ−1, (23)
where Q = diag(Q, . . . , Q) and Λ = tridiag(ΛL,ΛD,ΛU ).

Now, define a permuted matrix Λ′ by

Λ′ := K(m,n)ΛK(n,m), (24)

where K(m,n) ∈ {0, 1}mn×mn is the (m,n)-commutation matrix. The permuted matrix Λ′ decom-
poses as the direct sum of tridiagonal Toeplitz matrices Ti for i = 1, · · · ,m,

Λ′ = T1 ⊕ · · · ⊕ Tm,

where ⊕ denotes the direct sum and each component Ti ∈ Cn×n is given by Ti =
tridiag(λL,i, λD,i, λU,i).

Since Ti is a TT matrix, it has a closed-form eigendecomposition,

Ti = QiΛiQ
−1

i ,

where Λi = diag(µi,1 · · ·µi,n) is a diagonal eigenvalue matrix with µi,k = λD,i +

2
√
λL,iλU,i cos(

kπ
n+1 ) and Qi = [vi1, · · · , vin] is the matrix of the corresponding eigenvectors with

vik(j) = (λL,i/λU,i)
k/2 sin jkπ

n+1 .

Since the permuted matrix Λ′ is the direct sum of Ti for i = 1, · · · ,m, Λ′ has a closed-form
eigendecomposition of the form

Λ′ = Q Λ Q
−1

, (25)

where Q = Q1 ⊕ · · · ⊕Qm and Λ = Λ1 ⊕ · · · ⊕ Λm.

Combining (23)–(25), the block TT matrix T has a closed-form eigendecomposition since
K(m,n)K(n,m) = Imn.

T = Q̃ Λ
′
Q̃−1, (26)

where Q̃ := Q Q
′
, Q

′
:= K(n,m)QK(m,n), and Λ

′
:= K(n,m)ΛK(m,n).

Now, we obtain Theorem 4 when constraining the proportionality of the block entries.

Theorem 4. Let T ∈ Cnm×nm be a block TT matrix with blocks L,D,U ∈ Cm×m sharing a com-
mon eigenbasis Q. If L = αU for arbitrary α ∈ C, then T admits a closed-form eigendecomposition
of the form

T =

 Q11Q · · · Q1nQ
...

. . .
...

Qn1Q · · · QnnQ

Λ
′

 Q11Q · · · Q1nQ
...

. . .
...

Qn1Q · · · QnnQ


−1

, (27)

where Q depends only on the matrix size n and α.

Proof. Using the notation of Theorem 3, when L = αU , each TT matrix Ti =
tridiag(λL,i, λD,i, λU,i) satisfies λL,i = αλU,i. By (8), this implies that all Ti share the same
eigenbasis Q, i.e., Q = Q1 = · · · = Qm ∈ Cm×m. Therefore, Q = diag(Q, . . . , Q) ∈ Cnm×nm is
uniquely determined by α. Since Q = diag(Q, . . . , Q) ∈ Cnm×nm, substituting into the decomposi-
tion (26) yields (27), proving the claim.

Since the PTT tensor S in (13) has proportionality conditions for both spatial dimensions, applying
Theorem 4 to S yields Corollary 4.1, which represents the explicit form of tensor contractions in (13).
Corollary 4.1. A PTT tensor S ∈ CP×P×H×H×W×W can be decomposed as

Sq,r,i1,j1,i2,j2 = QH
i1,k1

QW
i2,k2

EP
q,r,k1,l1,k2,l2 (QH)−1

l1,j1
(QW )−1

l2,j2
,

where QH ∈ CH×H , QW ∈ CW×W , and EP ∈ CP×P×H×H×W×W .
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A.3 PROOF OF THEOREM 1

Proof. We first show that the state tensor A defined in (1) is a TT tensor.

Aq,r,ih,jh,iw,jw = QP
q,sQ

H
ih,kh

QW
iw,kw

(Λs,t ⊙ Es,t,kh,lh,kw,lw)(Q
P )−1

t,r (Q
H)−1

lh,jh
(QW )−1

lw,jw

= QP
q,s(Λs,t ⊙ Ss,t,ih,jh,iw,jw)(Q

P )−1
t,r

(28)

For all ih, jh ∈ {1, . . . ,H} such that |ih − jh| > 1, all slices A:,:,ih,jh,:,: are zero, since S has zero
value, which gives the tridiagonality condition for the H dimension. Likewise, the state tensor A is
tridiagonal along the W dimension.

For all ih, i′h ∈ {1, . . . ,H − 1}, the following equation holds due to the Toeplitz condition for S.

Aq,r,ih,ih+1,iw,jw = QP
q,s(Λs,t ⊙ Ss,t,ih,ih+1,iw,jw)(Q

P )−1
t,r ,

= QP
q,s(Λs,t ⊙ Ss,t,i′h,i

′
h+1,iw,jw)(Q

P )−1
t,r ,

= Aq,r,i′h,i
′
h+1,iw,jw ,

= QP
q,s.

(29)

Likewise, the condition is satisfied for the lower diagonal and the W dimension, proving the Toeplitz
condition for A.

Since (9) and A is a TT tensor, it is equivalent to a P × P × 3× 3 kernel operation.

A.4 PROOF OF THEOREM 2

Proof. By definition (1), ConvT3 is given by

X ′(t) = Q
(
(Λ⊗ IH ⊗ IW )⊙ E

)
Q−1X (t) + B U(t),

Y(t) = C X (t) +D U(t).
(30)

Suppose a state transformation XT (t) = Q−1X (t). Substituting X (t) = QXT (t) yields

QX ′
T (t) = Q

(
(Λ⊗ IH ⊗ IW )⊙ E

)
Q−1QXT (t) + B U(t),

Y(t) = C QXT (t) +DU(t).
(31)

By performing tensor contraction with Q−1, we obtain

X ′
T (t) =

(
(Λ⊗ IH ⊗ IW )⊙ E

)
XT (t) +Q−1B U(t). (32)

Therefore, the transformed system is

(AT ,BT , CT ,D) =
(
(Λ⊗ IH ⊗ IW )⊙ E , Q−1B, CQ, D

)
,

which completes the proof.
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B COMPUTATIONAL COMPLEXITY OF CONVT3

The computational complexity of parallel scan in ConvT3, given input BT U1:L ∈ CL×H×W×P

is O(LPHW ), identical to the ConvSSM model with pointwise state kernel. This is because the
diagonalized form of the state tensor A allows identical parallel scan operations for the two cases.

The total computational complexity for a single pointwise state kernel ConvSSM layer is O(LPHW+
TB+TC), with TB the cost for input kernel convolution, and TC the cost for output kernel convolution.
Since TB = O(LPUk2BHW ) and Tc = O(LPUk2CHW ), the total cost will be O(LPHWU(k2B +
k2c )) (Smith et al., 2023).

For ConvT3, we have additional matrix multiplication operations with QH and QW (Check Figure 2
for details), so the total cost is O(LPHWU(k2B +k2C)+LPHW (H+W )) if naively implemented.
However, matrix multiplication with the Q matrix is the same as a discrete sine transform (DST)
type-I, and thus the matrix multiplication can be implemented via fast Fourier transform (FFT)-based
routines. Instead of O(H2) complexity due to dense matrix multiplication, the DST type-I has
a complexity of O(H logH). Thus, with FFT-based routines, the total complexity of ConvT3 is
reduced to O(LPHWU(k2B + k2c ) + LPHW (logH + logW )).

Notice two main things: First, the additional computational cost of ConvT3 does not scale with the
input dimension U , which is normally the same scale as the state dimension P , meaning ConvT3
becomes more efficient as the hidden dimension of the model grows. Second, although the cost of
ConvT3 scales more according to spatial size compared to ConvS5, the cost ratio grows logarithmi-
cally, thus there does not exist a point where ConvT3 becomes unfeasible.

Table 8, Table 9, and Table 10 provide inference-time and memory comparisons between single
ConvS5 and ConvT3 layers across different state sizes, hidden dimensions, sequence lengths, and
image resolutions, respectively.

Table 8: Inference time and memory usage under different state sizes.

Time [ms] Memory [GB]
State size P , Hidden dim U ConvS5 ConvT3 ConvS5 ConvT3

512 52.7 (1.00×) 65.8 (1.25×) 4.26 (1.00×) 5.22 (1.23×)
256 20.1 (1.00×) 28.0 (1.39×) 2.13 (1.00×) 2.62 (1.23×)
128 10.5 (1.00×) 13.8 (1.31×) 1.09 (1.00×) 1.34 (1.23×)
64 7.2 (1.00×) 9.3 (1.29×) 0.58 (1.00×) 0.70 (1.21×)

Table 9: Inference time and memory usage under different sequence lengths.

Time [ms] Memory [GB]
Sequence length L ConvS5 ConvT3 ConvS5 ConvT3

100 100.2 (1.00×) 138.6 (1.38×) 10.46 (1.00×) 12.39 (1.18×)
50 50.8 (1.00×) 67.3 (1.32×) 5.25 (1.00×) 6.28 (1.19×)
20 20.9 (1.00×) 27.9 (1.33×) 2.13 (1.00×) 2.62 (1.22×)
10 11.9 (1.00×) 15.4 (1.29×) 1.09 (1.00×) 1.40 (1.28×)

Table 10: Inference time and memory usage under different image resolutions.

Time [ms] Memory [GB]
Image resolution H ×W ConvS5 ConvT3 ConvS5 ConvT3

32×32 77.2 (1.00×) 160.6 (2.08×) 8.25 (1.00×) 11.75 (1.42×)
16×16 20.9 (1.00×) 27.8 (1.33×) 2.13 (1.00×) 2.62 (1.23×)

8×8 7.7 (1.00×) 9.7 (1.26×) 0.60 (1.00×) 0.70 (1.16×)
4×4 7.0 (1.00×) 8.0 (1.14×) 0.22 (1.00×) 0.24 (1.08×)
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C SUPPLEMENTARY RESULTS

Table 11: Full results on the Moving-MNIST dataset (Srivastava et al., 2015). The number of training
frames, 300 or 600, is specified in the table header. The evaluation task is to condition on 100 frames,
and then generate forward 400, 800, and 1200 frames.

Trained on 300 frames
100 → 400

Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Transformer 164M 73 ± 3 13.5 ± 0.1 0.669 ± 0.002 0.213 ± 0.003
Performer 164M 111 ± 9 13.4 ± 0.1 0.653 ± 0.002 0.288 ± 0.001
CW-VAE 20M 78 ± 1 12.7 ± 0.1 0.611 ± 0.002 0.254 ± 0.001
ConvLSTM 20M 57 ± 3 16.9 ± 0.2 0.796 ± 0.004 0.113 ± 0.002
ConvSSM (random init) 20M 67 ± 3 15.5 ± 0.1 0.742 ± 0.001 0.168 ± 0.001
ConvS5 20M 26 ± 1 18.1 ± 0.1 0.830 ± 0.003 0.094 ± 0.002

ConvS5 (reproduced) 21M 26 ± 2 17.9 ± 0.1 0.824 ± 0.003 0.097 ± 0.001
ConvT3 21M 33 ± 2 18.0 ± 0.1 0.828 ± 0.003 0.096 ± 0.002

Trained on 600 frames
100 → 400

Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Transformer 164M 21 ± 1 15.0 ± 0.1 0.741 ± 0.002 0.138 ± 0.001
Performer 164M 27 ± 1 13.1 ± 0.1 0.654 ± 0.004 0.206 ± 0.001
CW-VAE 20M 73 ± 2 12.9 ± 0.1 0.621 ± 0.004 0.242 ± 0.001
ConvLSTM 20M 39 ± 5 17.3 ± 0.2 0.812 ± 0.005 0.100 ± 0.003
ConvSSM (random init) 20M 81 ± 6 15.5 ± 0.1 0.743 ± 0.002 0.163 ± 0.003
ConvS5 20M 23 ± 3 18.1 ± 0.1 0.832 ± 0.003 0.092 ± 0.003

ConvS5 (reproduced) 21M 15 ± 1 19.5 ± 0.2 0.865 ± 0.004 0.071 ± 0.003
ConvT3 21M 16 ± 1 19.8 ± 0.1 0.871 ± 0.002 0.066 ± 0.000

Trained on 300 frames
100 → 800

Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Transformer 164M 159 ± 7 12.6 ± 0.1 0.609 ± 0.002 0.287 ± 0.001
Performer 164M 234 ± 1 13.4 ± 0.1 0.652 ± 0.006 0.379 ± 0.002
CW-VAE 20M 104 ± 2 12.4 ± 0.1 0.592 ± 0.002 0.277 ± 0.002
ConvLSTM 20M 128 ± 4 15.0 ± 0.1 0.737 ± 0.003 0.169 ± 0.001
ConvSSM (random init) 20M 287 ± 5 13.6 ± 0.1 0.577 ± 0.001 0.293 ± 0.001
ConvS5 20M 72 ± 3 16.0 ± 0.1 0.761 ± 0.005 0.156 ± 0.003

ConvS5 (reproduced) 21M 74 ± 3 16.0 ± 0.1 0.767 ± 0.004 0.152 ± 0.001
ConvT3 ) 21M 79 ± 2 16.1 ± 0.1 0.776 ± 0.004 0.146 ± 0.002

Trained on 600 frames
100 → 800

Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Transformer 164M 42 ± 2 13.7 ± 0.1 0.672 ± 0.002 0.207 ± 0.003
Performer 164M 93 ± 5 12.4 ± 0.1 0.616 ± 0.002 0.274 ± 0.001
CW-VAE 20M 94 ± 3 12.5 ± 0.9 0.598 ± 0.004 0.269 ± 0.001
ConvLSTM 20M 91 ± 7 15.5 ± 0.2 0.757 ± 0.005 0.149 ± 0.003
ConvSSM (random init) 20M 145 ± 8 14.3 ± 0.1 0.696 ± 0.002 0.218 ± 0.002
ConvS5 20M 23 ± 3 18.1 ± 0.1 0.832 ± 0.003 0.092 ± 0.003

ConvS5 (reproduced) 21M 35 ± 3 17.6 ± 0.2 0.819 ± 0.005 0.109 ± 0.005
ConvT3 21M 36 ± 4 17.7 ± 0.1 0.823 ± 0.003 0.104 ± 0.001

Trained on 300 frames
100 → 1200

Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Transformer 164M 265 ± 8 12.4 ± 0.1 0.591 ± 0.002 0.321 ± 0.002
Performer 164M 275 ± 5 13.2 ± 0.1 0.592 ± 0.001 0.393 ± 0.001
CW-VAE 20M 117 ± 2 12.3 ± 0.1 0.585 ± 0.002 0.286 ± 0.001
ConvLSTM 20M 187 ± 6 14.1 ± 0.1 0.706 ± 0.003 0.203 ± 0.001
ConvSSM (random init) 20M 511 ± 8 13.3 ± 0.1 0.515 ± 0.001 0.348 ± 0.001
ConvS5 20M 187 ± 5 14.5 ± 0.1 0.678 ± 0.003 0.230 ± 0.004

ConvS5 (reproduced) 21M 130 ± 5 14.9 ± 0.1 0.721 ± 0.004 0.198 ± 0.002
ConvT3 21M 118 ± 3 15.2 ± 0.1 0.746 ± 0.004 0.179 ± 0.002

Trained on 600 frames
100 → 1200

Method Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Transformer 164M 91 ± 6 13.1 ± 0.1 0.631 ± 0.004 0.252 ± 0.002
Performer 164M 243 ± 7 12.2 ± 0.1 0.608 ± 0.001 0.312 ± 0.002
CW-VAE 20M 107 ± 2 12.3 ± 0.1 0.590 ± 0.004 0.280 ± 0.002
ConvLSTM 20M 137 ± 9 14.6 ± 0.1 0.727 ± 0.004 0.180 ± 0.003
ConvSSM (random init) 20M 215 ± 9 13.4 ± 0.1 0.614 ± 0.001 0.287 ± 0.001
ConvS5 20M 71 ± 9 15.6 ± 0.1 0.763 ± 0.002 0.162 ± 0.003

ConvS5 (reproduced) 21M 55 ± 4 16.6 ± 0.1 0.791 ± 0.005 0.136 ± 0.005
ConvT3 21M 56 ± 7 16.7 ± 0.1 0.795 ± 0.003 0.131 ± 0.002
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Figure 4: Training loss curves of ConvT3 and ConvS5 in a representative run on the Diffusion
Reaction dataset, illustrating their training stability.

Table 12: (Ablations: Kernel size.) The introduction of a 3 × 3 state kernel A, in contrast to
relying solely on same-sized B and C kernels, resulted in notable performance gains. Bold: better
performance under the same B and C settings.

Model A kernel B kernel C kernel MSE ↓ MAE ↓

ConvS5

1× 1 1× 1 1× 1 14.98 30.60
1× 1 1× 1 3× 3 12.74 24.07
1× 1 1× 1 5× 5 10.56 21.03
1× 1 3× 3 1× 1 12.13 24.35
1× 1 3× 3 3× 3 11.57 23.25
1× 1 3× 3 5× 5 11.49 22.83
1× 1 5× 5 1× 1 11.82 23.52
1× 1 5× 5 3× 3 12.48 24.43
1× 1 5× 5 5× 5 13.56 24.73

ConvT3

3× 3 1× 1 1× 1 14.68 29.65
3× 3 1× 1 3× 3 11.17 23.04
3× 3 1× 1 5× 5 9.91 20.38
3× 3 3× 3 1× 1 11.69 23.46
3× 3 3× 3 3× 3 10.99 22.15
3× 3 3× 3 5× 5 11.34 22.43
3× 3 5× 5 1× 1 11.48 23.09
3× 3 5× 5 3× 3 12.76 24.47
3× 3 5× 5 5× 5 13.20 24.57
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D EXPERIMENT SETUP

Table 13: Experiment configuration for ConvT3 and ConvS5 on long-range Moving-MNIST experi-
ments. Overall model structure is ResNet.

Hyperparameters Moving-MNIST-300 Moving-MNIST-600

Params 21M 21M
Input Resolution 64× 64 64× 64
Latent Resolution 16× 16 16× 16
Batch Size 8 8
Sequence Length 300 600
LR 1× 10−3 1× 10−3

LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 300K 300K
Weight Decay 1× 10−5 1× 10−5

Encoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

Decoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

ConvSSM

Hidden Dim (U ) 256 256
State Size (P ) 256 256
B Kernel Size 3× 3 3× 3
C Kernel Size 3× 3 3× 3
Layers 8 8

Table 14: Experiment configuration for ConvT3 and ConvS5 on PDEBench experiments. Learning
rate for ConvS5 on Diffusion-Reaction was reduced due to training instability.

Hyperparameters Shallow-Water Diffusion-Reaction

Params 6M 6M
Input Resolution 128× 128 128× 128
Latent Resolution 8× 8 8× 8
Batch Size 8 8
Sequence Length 16 → 1 16 → 1
LR 5× 10−4 5× 10−4 / 2× 10−4

LR Schedule cosine cosine
Warmup Steps 10k 10k
Max Training Steps 1M 1M
Weight Decay 1× 10−5 1× 10−5

ConvSSM

Hidden Dim (U ) 384 384
State Size (P ) 384 384
B Kernel Size 1× 1 1× 1
C Kernel Size 1× 1 1× 1
Layers 6 6
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Table 15: Experiment configuration for ablation studies. Overall model structure is ResNet.

Hyperparameters ConvS5 ConvT3

Input Resolution 64× 64 64× 64
Latent Resolution 16× 16 16× 16
Batch Size 16 16
Sequence Length 10 → 10 10 → 10
LR 1× 10−3 1× 10−3

LR Schedule cosine cosine
Warmup Epochs 10 10
Max Training Epochs 200 200
Weight Decay 1× 10−5 1× 10−5

Encoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

Decoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1

ConvSSM

Hidden Dim (U ) 256 256
State Size (P ) 256 256
B Kernel Size 3× 3 / 1× 1 3× 3 / 1× 1
C Kernel Size 3× 3 / 1× 1 3× 3 / 1× 1
Layers 2 / 4 / 6 / 8 / 12 2 / 4 / 6 / 8 / 12
Off-Diagonal Proportion N/A -1, -1 / 1, 1
Mini (Kernel Sharing) N/A Yes / No
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