

000 CONVT3: STRUCTURED STATE KERNELS FOR CONVO- 001 002 LUTIONAL STATE SPACE MODELS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Modeling long spatiotemporal sequences requires capturing both complex spa-
012 tial correlations and temporal dependencies. Convolutional State Space Models
013 (ConvSSMs) have been proposed to incorporate spatial modeling in State Space
014 Models (SSMs) using the convolution of tensor-valued states and kernels. Yet,
015 existing implementations remain limited to 1×1 state kernels for computational
016 feasibility, which limits the modeling capacity of ConvSSMs. We introduce a novel
017 spatiotemporal model, ConvT3 (**ConvSSM using Tridiagonal Toeplitz Tensors**),
018 designed to equivalently realize ConvSSMs with extended 3×3 state kernels.
019 ConvT3 structures a state kernel for its corresponding tensor to be composed as a
020 structured SSM matrix on hidden state dimensions and a constrained tridiagonal
021 Toeplitz tensor on spatial dimensions. We show that the structured tensor can
022 be diagonalized, which enables efficient parallel training while leveraging 3×3
023 state convolutions. We demonstrate that ConvT3 effectively embeds rich spatial
024 and temporal information into the dynamics of tensor-valued states, achieving
025 state-of-the-art performance on most metrics in long-range video generation and
026 physical system modeling.
027

028 1 INTRODUCTION 029

030 Modeling spatiotemporal dynamics is foundational for numerous domains, including videos (Finn
031 et al., 2016; Ho et al., 2022; Wasim et al., 2024), physical systems (Nguyen et al., 2023; Li et al.,
032 2024; Choi et al., 2020), and weather forecasting (Lam et al., 2023; Bodnar et al., 2024; Pathak et al.,
033 2022). In video generation, maintaining long-term memory and consistency is crucial for ensuring
034 realistic outputs. Similarly, modeling physical systems such as fluid flow or thermodynamic processes
035 requires fine-grained spatial reasoning within temporal dynamics, as spatial interactions evolve in
036 such systems. Consequently, spatiotemporal modeling has drawn intense interest as a key challenge
037 for domains that require capturing intricate dependencies across space and time.
038

039 Across visual and physical domains, sequence models offer a compelling paradigm for spatiotemporal
040 modeling, capturing the underlying dynamics that link input sequences to output sequences. The
041 primary objective of spatiotemporal sequence modeling is to integrate spatial feature extraction
042 with temporal representation. Early approaches like Convolutional Recurrent Neural Networks
043 (ConvRNNs), exemplified by ConvLSTM (Shi et al., 2015), introduced tensor-valued hidden states,
044 updated with convolutions, to capture spatial patterns. However, ConvRNNs inherit limitations of
045 RNNs, including serial training and difficulty in modeling long-range dependencies. Transformer-
046 based models (Yan et al., 2023; Park et al., 2023; Pătrăucean et al., 2024) have also been adapted to
047 video domains, employing factorized attention or patched-base processing to handle spatiotemporal
048 inputs. Although powerful, the quadratic-time computational cost of attention restricts the feasible
049 spatiotemporal context, especially as the data dimensionality and spatial/temporal resolution increase.
050

051 Convolutional State Space Models (ConvSSMs) (Smith et al., 2023) combine tensor-valued states
052 from ConvRNN with State Space Models (SSMs), providing expressive modeling capability with
053 linear-time efficiency. Although ConvSSMs conceptually allow arbitrary kernel sizes for the state,
input, output, and feedthrough convolutions, ConvS5 (Smith et al., 2023), the practical implementation
of ConvSSM, restricts the state kernels to pointwise 1×1 convolutions. This constraint is necessary
to avoid exploding computation in parallel scans with larger kernels, but it fundamentally limits the

learned state dynamics from effectively capturing spatiotemporal context. Such limitations motivate alternative designs that can leverage extended state kernels while maintaining efficient training.

In this paper, we propose a ConvSSM using Tridiagonal Toeplitz Tensors (ConvT3), which equivalently implements a ConvSSM with 3×3 state convolution. We first reformulate the convolution operations in a ConvSSM as tensor contractions, where state, input, output, and feedthrough tensors correspond to their respective kernels. The key idea of ConvT3 is to structure the state tensor using two components: a diagonalizable SSM matrix and a constrained tridiagonal Toeplitz tensor. The proposed structuring rule ensures ConvT3's diagonalizability and correspondence to the extended 3×3 kernels. Finally, we develop an efficient training algorithm using linear-complexity parallel scans with stable parameterization, which naturally generalizes to higher-dimensional data.

We empirically validate the effectiveness of ConvT3 on modeling videos and physical dynamics. On the long-range Moving-MNIST benchmark (Srivastava et al., 2015), ConvT3 consistently outperforms existing sequence models and achieves state-of-the-art results in video generation. On PDEBench datasets (Takamoto et al., 2022), ConvT3 attains the best accuracy in physical system modeling, while also exhibiting superior training stability compared to ConvS5. Ablation studies further confirm that the modeling performance of ConvT3 arises from its structured 3×3 state kernels rather than parameter growth. Together, these results demonstrate that ConvT3 provides a scalable, stable, and effective framework for modeling complex spatiotemporal dynamics.

2 PRELIMINARIES

Before introducing the equations, we summarize in Table 7 the symbols used for values and operations, with notations distinguished according to the type of value.

2.1 CONVOLUTIONAL STATE SPACE MODELS WITH POINTWISE STATE KERNELS

ConvSSM A ConvSSM using general-size convolution kernels was conceptually suggested by Smith et al. (2023), where an SSM combines convolutional operations for spatial feature extraction. Let $\mathcal{U}(t) \in \mathbb{R}^{H \times W \times U}$ be a U -channel two-dimensional data at time t , where H and W denote spatial height and width. A continuous-time ConvSSM is formulated with a state tensor $\mathcal{X}(t) \in \mathbb{C}^{H \times W \times P}$, where P denotes the hidden state dimension, and an output tensor $\mathcal{Y}(t) \in \mathbb{R}^{H \times W \times U}$, as

$$\mathcal{X}'(t) = \mathcal{A} * \mathcal{X}(t) + \mathcal{B} * \mathcal{U}(t), \quad (1)$$

$$\mathcal{Y}(t) = \mathcal{C} * \mathcal{X}(t) + \mathcal{D} * \mathcal{U}(t), \quad (2)$$

where $*$ denotes zero-padded convolution that preserves the tensor shapes, and $\mathcal{X}'(t) \triangleq \frac{d}{dt} \mathcal{X}(t)$. The convolution kernels $\mathcal{A} \in \mathbb{C}^{P \times P \times k_A \times k_A}$, $\mathcal{B} \in \mathbb{C}^{P \times U \times k_B \times k_B}$, $\mathcal{C} \in \mathbb{C}^{U \times P \times k_C \times k_C}$, $\mathcal{D} \in \mathbb{C}^{U \times U \times k_D \times k_D}$ are referred to as the state, input, output, and feedthrough kernels, respectively. The input–output tensor sequence can remain real-valued despite operating in the complex domain by parameterizing the kernels with conjugate pairs Gu et al. (2022).

ConvS5 A ConvS5 (Smith et al., 2023) implements a ConvSSM with a *pointwise state kernel*, i.e., $k_A = 1$, to apply parallel scans to the discretized ConvSSM

$$\mathcal{X}_{k+1} = \overline{\mathcal{A}} * \mathcal{X}_k + \overline{\mathcal{B}} * \mathcal{U}_k, \quad (3)$$

$$\mathcal{Y}_k = \mathcal{C} * \mathcal{X}_k + \mathcal{D} * \mathcal{U}_k, \quad (4)$$

where $\overline{\mathcal{A}} \in \mathbb{C}^{P \times P \times 1 \times 1}$ and $\overline{\mathcal{B}} \in \mathbb{C}^{P \times U \times k_B \times k_B}$ represent the state and input kernels discretized for a timescale parameter $\Delta \in \mathbb{R}^P$ by discretization methods, such as zero-order hold. The computation of the state tensor sequence $\mathcal{X}_{1:L}$ from the input tensor sequence $\mathcal{U}_{1:L}$ is enabled by parallel scans for an element $q_k = (q_{k,a}, q_{k,b}) := (\overline{\mathcal{A}}, \overline{\mathcal{B}} * \mathcal{U}_k)$ and a binary associative operator \bullet defined by

$$q_i \bullet q_j := (q_{j,a} \circ q_{i,a}, q_{j,a} * q_{i,b} + q_{j,b}), \quad (5)$$

where \circ denotes the convolution of kernels and $+$ is elementwise addition. Since the operation \circ produces growing kernels across scans, ConvS5 parameterizes $\mathcal{A} \in \mathbb{C}^{P \times P \times 1 \times 1}$ to maintain training feasibility on long sequences by preventing kernel growth during parallel scans.

However, this design restricts the expressivity of the state dynamics by reducing \mathcal{A} to a pointwise state kernel, leaving the spatial modeling to $\mathcal{B}, \mathcal{C}, \mathcal{D}$ kernels and to deeper stacking of layers.

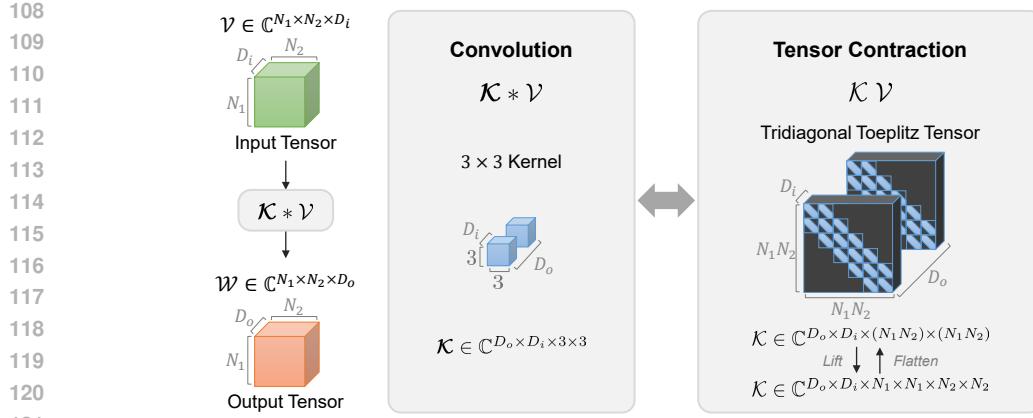


Figure 1: Equivalence between 3×3 convolution and its tensor contraction formulation using a TT tensor. For interpretability, the TT tensor is depicted with block TT matrices in the flattened form. The convolution operator $\mathcal{K} * \mathcal{V}$ can be expressed as a structured tensor contraction $\mathcal{K}\mathcal{V}$.

2.2 EIGENDECOMPOSITION OF TRIDIAGONAL TOEPLITZ MATRICES

As a preliminary, we recall the eigendecomposition of **tridiagonal Toeplitz (TT)** matrices. Define $T = \text{tridiag}(l_T, d_T, u_T) \in \mathbb{C}^{N \times N}$, where $l_T, d_T, u_T \in \mathbb{C}$ are the lower, diagonal, and upper entries:

$$T = \text{tridiag}(l_T, d_T, u_T) = \begin{bmatrix} d_T & u_T & & & \\ l_T & d_T & u_T & & \\ & \ddots & \ddots & \ddots & \\ & & l_T & d_T & u_T \\ & & & l_T & d_T \end{bmatrix}. \quad (6)$$

It is well known that a TT matrix admits a *closed-form eigendecomposition*, with the i th eigenvalue λ_i and its corresponding eigenvector x_i are given by

$$\lambda_i = d_T + 2\sqrt{l_T u_T} \cos\left(\frac{i\pi}{N+1}\right), \quad (7)$$

$$x_{ij} = (l_T/u_T)^{j/2} \sin\left(\frac{i j \pi}{N+1}\right). \quad (8)$$

where x_{ij} denotes the j th entry of the i th eigenvector, for $i, j = \{1, \dots, N\}$.

Thus, one can obtain the eigenvalues and eigenvectors of T using its entries l_T, d_T, u_T without further computation. In particular, TT matrices with the same off-diagonal ratio share a common eigenbasis.

2.3 CONVOLUTION AND TRIDIAGONAL TOEPLITZ TENSORS

Convolutions are linear and shift-invariant, so they can be rewritten as matrix/tensor operations with structured matrices/tensors. In 1D, they correspond to multiplication with Toeplitz matrices; in higher dimensions, to tensor contraction with Toeplitz tensors. The Toeplitz structure arises from the shift-invariance, while the convolution kernel size determines the number of nonzero off-diagonals.

For a 3×3 kernel $\mathcal{K} \in \mathbb{C}^{D_o \times D_i \times 3 \times 3}$ (with D_o output and D_i input channels), 2D convolutions can be written as the tensor contractions with TT tensors. Specifically, we call $\mathcal{T} \in \mathbb{C}^{D_o \times D_i \times N_1 \times N_1 \times N_2 \times N_2}$ a **TT tensor** if each slice $\mathcal{T}_{q,r,i_1,j_1,\dots} \in \mathbb{C}^{N_2 \times N_2}$ and $\mathcal{T}_{q,r,\dots,i_2,j_2} \in \mathbb{C}^{N_1 \times N_1}$ is TT matrix for all $q \in \{1, \dots, D_o\}$, $r \in \{1, \dots, D_i\}$, $i_1, j_1 \in \{1, \dots, N_1\}$, $i_2, j_2 \in \{1, \dots, N_2\}$ such that $|i_1 - j_1| \leq 1$, $|i_2 - j_2| \leq 1$. Values outside the tridiagonal patterns are zero.

Then, for an input tensor $\mathcal{V} \in \mathbb{C}^{N_1 \times N_2 \times D_i}$, the convolution with \mathcal{K} can be equivalently written as

$$\mathcal{K} * \mathcal{V} = \mathcal{K}\mathcal{V} \in \mathbb{C}^{N_1 \times N_2 \times D_o}, \quad (9)$$

where $\mathcal{K} \in \mathbb{C}^{D_o \times D_i \times N_1 \times N_1 \times N_2 \times N_2}$ is the associated TT tensor whose entries are induced by \mathcal{K} . The operation between the two tensors is a matrix-multiplication-like contraction along each D_i , N_1 , N_2 dimension. This correspondence between convolution and tensor contraction is illustrated in Figure 1.

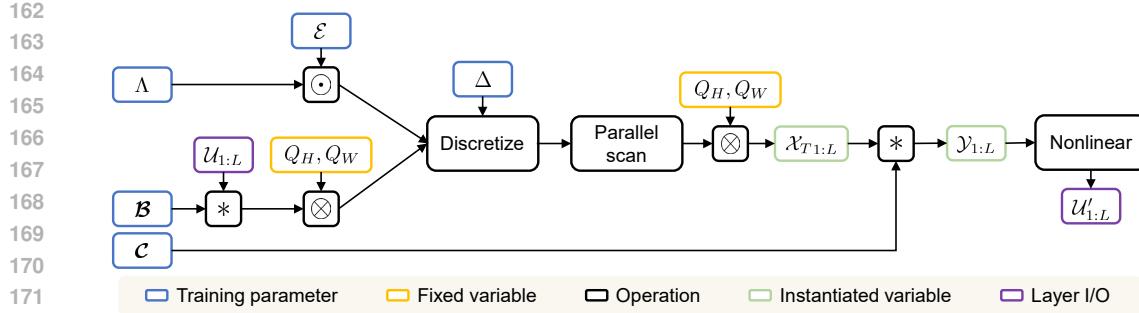


Figure 2: Algorithmic flow of parallel computation in a ConvT3 layer for length- L input and output tensor sequences $\mathcal{U}_{1:L}, \mathcal{U}'_{1:L} \in \mathbb{R}^{L \times H \times W \times U}$. The proportionality constraints in ConvT3 induce a form that allows parallel scans to be applied.

3 METHOD

In this section, three types of tensor operations are employed: (1) Elementwise multiplication along all dimensions, denoted by \odot ; (2) Tensor product resulting in dimension extension, denoted by \otimes ; and (3) Tensor contraction over certain dimensions, where the operator symbol is omitted. The contraction dimensions are specified using Einstein notation in Appendix A.1.

3.1 STRUCTURED STATE KERNELS OF CONVT3

Our goal is to construct a ConvSSM state kernel \mathcal{A} of size larger than 1×1 , while having a diagonalizable form, thus enabling linear complexity parallel scan. Also, we wish to employ the structure of a well-known state matrix like S5 along the state dimension to guarantee performance. We operate with a diagonalizable state matrix and a structured TT tensor to achieve such goals. We define the state tensor \mathcal{A} corresponding to the state kernel \mathcal{A} by the following method:

$$\mathcal{A} := f(R, \mathcal{S}), \quad (10)$$

where $R \in \mathbb{C}^{P \times P}$ is a diagonalizable matrix, $\mathcal{S} \in \mathbb{C}^{P \times P \times H \times H \times W \times W}$ is a **proportionality-constrained TT (PTT)** tensor, and f denotes the composition rule to construct a state tensor. Specifically, the PTT tensor \mathcal{S} satisfies two proportionality conditions with some nonzero ratios $\alpha_H, \alpha_W \in \mathbb{C}$:

$$(i) \quad l_{\mathcal{S}_{q,r,:,:,:i_w,j_w}} = \alpha_H u_{\mathcal{S}_{q,r,:,:,:i_w,j_w}}, \quad (ii) \quad l_{\mathcal{S}_{q,r,i_h,j_h,:,:}} = \alpha_W u_{\mathcal{S}_{q,r,i_h,j_h,:,:}}, \quad (11)$$

for all $q, r \in \{1, \dots, P\}$, $i_h, j_h \in \{1, \dots, H\}$, $i_w, j_w \in \{1, \dots, W\}$ such that $|i_h - j_h| \leq 1$, $|i_w - j_w| \leq 1$.

Moreover, for efficient computation in (14), we impose that the PTT tensor is diagonal along the hidden $P \times P$ dimension, i.e., each slice $\mathcal{S}_{:,:,i_h,j_h,i_w,j_w}$ is diagonal.

Importantly, we can decompose R and \mathcal{S} using their properties. First, since R is diagonalizable, there exists an invertible matrix $Q_P \in \mathbb{C}^{P \times P}$ such that

$$R = Q_P \Lambda Q_P^{-1}, \quad (12)$$

where $\Lambda \in \mathbb{C}^{P \times P}$ is diagonal.

Next, since (8) and (11), the spatial slices share common eigenbases $Q_H \in \mathbb{C}^{H \times H}$ and $Q_W \in \mathbb{C}^{W \times W}$ for the height and width dimensions, where the eigenbases are uniquely determined by α_H and α_W . Thus, \mathcal{S} can be decomposed as

$$\mathcal{S} = (I_P \otimes Q_H \otimes Q_W) \mathcal{E} (I_P \otimes Q_H \otimes Q_W)^{-1} \in \mathbb{C}^{P \times P \times H \times H \times W \times W}, \quad (13)$$

where $I_P \in \mathbb{R}^{P \times P}$ denotes the identity matrix, $\mathcal{E} \in \mathbb{C}^{P \times P \times H \times H \times W \times W}$, such that each slice $\mathcal{E}_{:,:,i_h,j_h,i_w,j_w} \in \mathbb{C}^{P \times P}$, $\mathcal{E}_{q,r,:,:,:i_w,j_w} \in \mathbb{C}^{H \times H}$ and $\mathcal{E}_{q,r,i_h,j_h,:,:} \in \mathbb{C}^{W \times W}$ are diagonal for $q, r \in \{1, \dots, P\}$, $i_h, j_h \in \{1, \dots, H\}$, $i_w, j_w \in \{1, \dots, W\}$ (Refer to Appendix A.2 for derivation).

216 Based on the decomposed factors, the composition rule f is defined as follows:
 217
 218

$$f(R_{(Q_P, \Lambda)}, \mathcal{S}_{(Q_H, Q_W, \mathcal{E})}) = (Q_P \otimes Q_H \otimes Q_W)((\Lambda \otimes I_H \otimes I_W) \odot \mathcal{E})(Q_P \otimes Q_H \otimes Q_W)^{-1}. \quad (14)$$

219 We formally define the proposed model, ConvT3, as Definition 1.
 220

221 **Definition 1.** A ConvT3 is defined as
 222

$$\begin{aligned} \mathcal{X}'(t) &= \mathcal{A} \mathcal{X}(t) + \mathcal{B} \mathcal{U}(t), \\ \mathcal{Y}(t) &= \mathcal{C} \mathcal{X}(t) + \mathcal{D} \mathcal{U}(t), \end{aligned} \quad (15)$$

224 where $\mathcal{A} = \mathcal{Q}((\Lambda \otimes I_H \otimes I_W) \odot \mathcal{E})\mathcal{Q}^{-1} \in \mathbb{C}^{P \times P \times H \times H \times W \times W}$ constructed by the composition
 225 rule f in (14), $\mathcal{B} \in \mathbb{C}^{P \times U \times H \times H \times W \times W}$, $\mathcal{C} \in \mathbb{C}^{U \times P \times H \times H \times W \times W}$, and $\mathcal{D} \in \mathbb{C}^{U \times U \times H \times H \times W \times W}$.
 226

227 We next show that the ConvT3 defined above is equivalent to a ConvSSM with a 3×3 state kernel.
 228

229 **Theorem 1.** A ConvT3 is a ConvSSM with a 3×3 state kernel $\mathcal{A} \in \mathbb{C}^{P \times P \times 3 \times 3}$.
 230

231 The key idea behind the proof (Appendix A.3) is that the state tensor of ConvT3, defined as
 232

$$\mathcal{A} = (Q_P \otimes Q_H \otimes Q_W)((\Lambda \otimes I_H \otimes I_W) \odot \mathcal{E})(Q_P \otimes Q_H \otimes Q_W)^{-1}, \quad (16)$$

233 retains a PTT structure. The middle factor $(\Lambda \otimes I_H \otimes I_W) \odot \mathcal{E}$, contracted with Q_H and Q_W , is
 234 itself a PTT tensor, since Λ is block-diagonal and \mathcal{E} preserves the Proportional Toeplitz pattern along
 235 the spatial dimensions H and W . The contraction with Q_P does not break this structure: Q_P also
 236 only acts on channel dimensions. As a result, the full tensor \mathcal{A} is a PTT tensor. By the equivalence
 237 between 2D convolution operations and tensor contractions with TT tensors (9), this establishes that
 238 ConvT3 is indeed a ConvSSM with a 3×3 state kernel.
 239

3.2 PARALLEL TRAINING OF CONVT3 IN LINEAR TIME

240 We next show that ConvT3 can be diagonalized, enabling the use of linear-time parallel scan in
 241 sequence length (Proof is provided in Appendix A.4).
 242

243 **Theorem 2.** A ConvT3 can be diagonalized as
 244

$$\begin{aligned} \mathcal{X}'_T(t) &= \mathcal{A}_T \mathcal{X}_T(t) + \mathcal{B}_T \mathcal{U}(t), \\ \mathcal{Y}(t) &= \mathcal{C}_T \mathcal{X}_T(t) + \mathcal{D} \mathcal{U}(t), \end{aligned} \quad (17)$$

245 where
 246

$$\mathcal{A}_T = (\Lambda \otimes I_H \otimes I_W) \odot \mathcal{E}, \quad \mathcal{B}_T = \mathcal{Q}^{-1} \mathcal{B}, \quad \mathcal{C}_T = \mathcal{C} \mathcal{Q}, \quad (18)$$

247 under the change of state $\mathcal{X}_T(t) = \mathcal{Q}^{-1} \mathcal{X}(t)$, with $\mathcal{Q} := Q_P \otimes Q_H \otimes Q_W$. The contraction
 248 dimensions of tensor contraction are stated by Einstein notation in Appendix A.1.
 249

250 Since the transformed state tensor \mathcal{A}_T (18) is diagonal, parallel scans using the operator in (5) can be
 251 applied to the transformed ConvT3 (17), enabling linear-time complexity in sequence length. See
 252 Appendix B for full complexity analysis.
 253

254 For equivalent state dynamics, transformation on \mathcal{B} and \mathcal{C} using \mathcal{Q} are performed before and after the
 255 scan. In practice, the transformation Q_P for the hidden dimension is omitted, since the state along
 256 the P dimension can be assumed to be trained in a diagonalized form, analogous to diagonal SSMs.
 257 This implementation detail is essential for reducing computational complexity, as changing the kernel
 258 operation of \mathcal{B}, \mathcal{C} to tensor products would be inefficient. Thus, the effective transformation reduces
 259 to the spatial transformation $Q_H \otimes Q_W$, which is sufficient for preserving the desired equivalence.
 260 The overall algorithmic flow for parallel training of ConvT3 is shown in Figure 2.
 261

3.3 PARAMETERIZATION OF CONVT3 FOR TRAINING STABILITY

262 **Overview of Learnable Parameters and Stable Reparameterization.** In continuous SSMs, stability
 263 follows from the Hurwitz condition applied to the diagonalized state matrix, since negative real parts
 264 guarantee contractive temporal dynamics. For ConvT3, the same principle applies, i.e., the stability
 265 of \mathcal{A}_T is ensured when the real part of its diagonal values remains strictly negative.
 266

267 As shown in Figure 3, the diagonalized state tensor \mathcal{A}_T can attain stable dynamics by enforcing two
 268 conditions: (1) $\Lambda \in \mathbb{C}^{P \times P}$ has negative real parts, and (2) \mathcal{E} are strictly positive. These conditions
 269 ensure the negativity of $\text{Re}\{\mathcal{A}_T\}$, and thus guarantee the stability of ConvT3. We now describe the
 270 reparameterization methods used to ensure that these conditions are satisfied.
 271

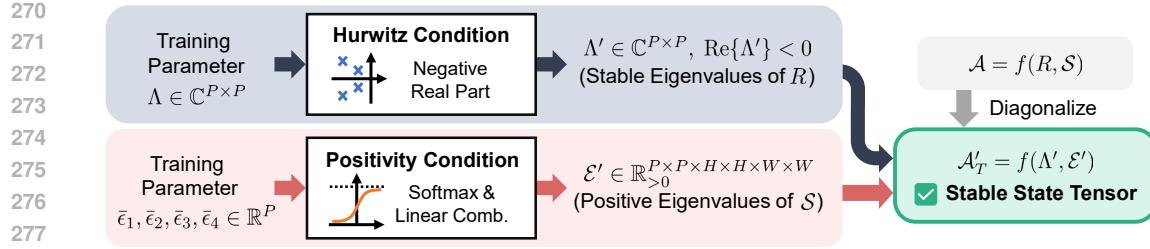


Figure 3: Reparameterization of ConvT3 state kernel for stability. The Λ (eigenvalues of R) is conditioned to have negative real parts, while the \mathcal{E} (eigenvalues of S) is conditioned to be positive. This ensures the stability of the resulting state tensor constructed from their combinations. Here, $\bar{\epsilon}_i$ denotes the vector whose components are the ϵ_i from all effective channels, and ' indicates that the value is reparameterized.

Hurwitz Condition. To guarantee the negativity of real part of Λ during training, we reparameterize the learnable Λ as

$$\Lambda' : \text{Re}\{\Lambda'\} = -\text{softplus}(\text{Re}\{\Lambda\}),$$

which automatically keeps $\text{Re}\{\Lambda'\} < 0$ at all times.

Positivity Condition. The other condition for stability is strict positivity of $\mathcal{E} > 0$, where \mathcal{E} is the eigenvalue of the PTT tensor $S \in \mathbb{C}^{P \times P \times H \times H \times W \times W}$.

We construct \mathcal{E} by extending the Toeplitz eigenvalue formula (7) to the PTT tensor by

$$\mathcal{E}_{q,r,i_h,j_h,i_w,j_w} = \epsilon_{q,r}(\theta_{i_h}^H, \theta_{i_w}^W) \delta_{q,r} \delta_{i_h,j_h} \delta_{i_w,j_w}, \quad (19)$$

where

$$\epsilon_{q,r}(\theta_{i_h}^H, \theta_{i_w}^W) = a_{q,r} + b_{q,r} \cos \theta_{i_h}^H + c_{q,r} \cos \theta_{i_w}^W + d_{q,r} \cos \theta_{i_h}^H \cos \theta_{i_w}^W, \quad (20)$$

for $\theta_{i_h}^H = \frac{\pi i_h}{H+1}$ and $\theta_{i_w}^W = \frac{\pi i_w}{W+1}$, with the channel indices $q, r \in \{1, \dots, P\}$, the spatial indices $i_h, j_h \in \{1, \dots, H\}$ and $i_w, j_w \in \{1, \dots, W\}$, and the Kronecker delta $\delta_{q,r}$. The scalar coefficients $a_{q,r}, b_{q,r}, c_{q,r}, d_{q,r} \in \mathbb{C}$ along with the off-diagonal proportions induces the 3×3 state kernel, where $a_{q,r}$ corresponds to the *center value* and $b_{q,r}, c_{q,r}, d_{q,r}$ with the *side values* of the kernel.

For simplicity, we drop the indices (q, r) with the understanding that the following derivations apply to all (q, r) . Thus, (20) is rewritten as

$$\epsilon(\theta_{i_h}^H, \theta_{i_w}^W) := a + b \cos \theta_{i_h}^H + c \cos \theta_{i_w}^W + d \cos \theta_{i_h}^H \cos \theta_{i_w}^W. \quad (21)$$

To guarantee positivity for all discrete $(\theta_{i_h}^H, \theta_{i_w}^W)$, it suffices to impose positivity over the continuous domain $(0, \pi) \times (0, \pi)$. Since ϵ is bilinear in $\cos \theta^H, \cos \theta^W \in (-1, 1)$, positivity is enforced by checking the four extreme points:

$$\epsilon_1 = a + b + c + d > 0, \quad \epsilon_2 = a + b - c - d > 0,$$

$$\epsilon_3 = a - b + c - d > 0, \quad \epsilon_4 = a - b - c + d > 0.$$

Here, we can fix the center coefficient a to 1, reducing redundant degrees of freedom, which implies

$$\epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4 = 4.$$

To satisfy all positivity constraints automatically, we reparameterize the four extreme values via a softmax:

$$\epsilon'_i = 4 \cdot \text{softmax}(\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4)_i,$$

which ensures $\epsilon'_i > 0$ and $\sum_i \epsilon'_i = 4$. The coefficients (b, c, d) are then recovered using the inverse linear transformation:

$$b = (\epsilon'_1 + \epsilon'_2 - \epsilon'_3 - \epsilon'_4)/4, \quad c = (\epsilon'_1 - \epsilon'_2 + \epsilon'_3 - \epsilon'_4)/4, \quad d = (\epsilon'_1 - \epsilon'_2 - \epsilon'_3 + \epsilon'_4)/4.$$

324 **Stable State Tensor \mathcal{A}_T .** Finally, combining the Hurwitz-stable Λ' and the positive eigenvalues \mathcal{E}'
 325 yields a diagonalized state operator that satisfies $\text{Re}\{\mathcal{A}_T\} < 0$ elementwise. Thus, the ConvT3 state
 326 tensor is guaranteed to remain stable throughout training while retaining fully learnable temporal and
 327 spatial dynamics.
 328
 329

330 **3.4 GENERALIZATION TO N -DIMENSIONAL CONVT3**
 331

332 The correspondence between convolution and Toeplitz tensors can extend ConvT3 to higher
 333 dimensions. While 2D convolutions are represented by TT tensors for two spatial dimensions, N -
 334 dimensional convolutions naturally induce TT tensors for N spatial dimensions. In a higher-order
 335 TT tensor, the tridiagonal pattern also arises along each of the N spatial axes for an N -dimensional
 336 kernel with a kernel size of 3. Thus, for an input tensor in an N -dimensional space, a convolution can
 337 be represented as a tensor contraction with the N -dimensional TT tensor followed by the contraction
 338 over the channel and spatial indices.

339 This implies that the ConvT3 formulation, defined for 2D inputs and PTT tensors, admits a natural
 340 theoretical extension to arbitrary spatial dimensions. The proportionality-constrained structure and
 341 parallel scan mechanism remain applicable, as they depend only on the PTT property along each axis
 342 rather than the dimensionality itself.
 343
 344

345 **4 RELATED WORKS**
 346

348 **ConvRNN-based Models** ConvRNNs capture local spatiotemporal correlations and are widely
 349 used in video prediction and physical simulations (Ballas et al., 2015); early variants such as
 350 ConvLSTM (Shi et al., 2015) and PredRNN (Wang et al., 2017) improved prediction by integrating
 351 spatial-temporal cues and introducing spatiotemporal memory. Building on these, SwinLSTM (Tang
 352 et al., 2023) embeds Transformer blocks within LSTM cells to model local and global dependencies,
 353 and a later PredRNN (Wang et al., 2022) improves long-term stability via memory decoupling.

354 **Transformer-based Models** Transformers, with self-attention, excel at global dependency modeling
 355 and are widely used in spatiotemporal tasks (Lee et al., 2024; Vaswani et al., 2017). Recent variants
 356 include TECO, which preserves long-term temporal consistency via a VQ-based non-autoregressive
 357 framework (Yan et al., 2023); PredFormer, a purely Transformer model with competitive results across
 358 benchmarks (Tang et al., 2024b); and TRecViT, a hybrid that pairs lightweight temporal recurrence
 359 with spatial Transformer blocks to balance efficiency and accuracy on long sequences (Pătrăucean
 360 et al., 2024).

361 **SSM-based Models** SSMs provide linear-time sequence modeling with strong memory retention
 362 (Zhang et al., 2024; Huang et al., 2025; Liu et al., 2024). Early S4 (Gu et al., 2021) and
 363 S5 (Smith et al., 2022) paved the way; ConvSSM (Smith et al., 2023) added spatial modeling via
 364 convolutions; S4ND (Nguyen et al., 2022) extended SSMs to multidimensional signals for vision;
 365 Selective SSM (Wang et al., 2023) prunes information-sparse tokens; and VMRNN (Tang et al.,
 366 2024a) leverages Mamba modules (Gu & Dao, 2023) to capture short- and long-term dynamics.

367
 368 **5 EXPERIMENTS**
 369

371 In Section 5.1, we evaluate the spatiotemporal modeling capability of ConvT3 on a long-range video
 372 generation task. In Section 5.2, we evaluate ConvT3 on complex physical system modeling. In
 373 Section 5.3, we present ablation studies on architecture and hyperparameters.
 374

375 For all tasks, we used off-diagonal proportions $\alpha_H = \alpha_W = -1$, meaning the state kernel is skew-
 376 symmetric across spatial dimensions. We initialized $b_{q,r}, c_{q,r}, d_{q,r}$ to zero to ensure equivalence with
 377 ConvS5 at initialization. The other experiment setups for each task are provided in Appendix D.
 Implementation is available at <https://anonymous.4open.science/r/ConvT3-1492/>.

378 Table 1: Evaluation on the Moving-MNIST dataset (Srivastava et al., 2015). We condition on
 379 100 frames, and then show results after generating 800 and 1200 frames. **Bold**: best performance.
 380 Underline: second-best performance.

Trained on 300 frames								
Method	100 → 800				100 → 1200			
	FVD ↓	PSNR ↑	SSIM ↑	LPIPS ↓	FVD ↓	PSNR ↑	SSIM ↑	LPIPS ↓
Transformer (Vaswani et al., 2017)	159	12.6	0.609	0.287	265	12.4	0.591	0.321
Performer (Choromanski et al., 2021)	234	13.4	0.652	0.379	275	13.2	0.592	0.393
CW-VAE (Saxena et al., 2021)	104	12.4	0.592	0.277	117	12.3	0.585	0.286
ConvLSTM (Shi et al., 2015)	128	15.0	0.737	0.169	187	14.1	<u>0.706</u>	<u>0.203</u>
ConvS5 (Smith et al., 2023)	72	<u>16.0</u>	<u>0.761</u>	<u>0.156</u>	187	<u>14.5</u>	0.678	0.230
ConvT3	<u>79</u>	16.1	0.776	0.146	<u>118</u>	15.2	0.746	0.179

Trained on 600 frames								
Method	100 → 800				100 → 1200			
	FVD ↓	PSNR ↑	SSIM ↑	LPIPS ↓	FVD ↓	PSNR ↑	SSIM ↑	LPIPS ↓
Transformer	<u>42</u>	13.7	0.672	0.207	91	13.1	0.631	0.252
Performer	93	12.4	0.616	0.274	243	12.2	0.608	0.312
CW-VAE	94	12.5	0.598	0.269	107	12.3	0.590	0.280
ConvLSTM	91	15.5	0.757	0.149	137	14.6	0.727	0.180
ConvS5	47	<u>16.4</u>	<u>0.788</u>	<u>0.134</u>	<u>71</u>	<u>15.6</u>	<u>0.763</u>	<u>0.162</u>
ConvT3	36	17.7	0.823	0.104	56	16.7	0.795	0.131

397 5.1 LONG-RANGE VIDEO MODELING AND GENERATION

398 Video modeling requires capturing both spatial structures within each frame and temporal dynamics
 399 across long sequences. To evaluate such capability, we consider the Moving-MNIST dataset (Srivas-
 400 tava et al., 2015), a standard benchmark where digits move within a 2D frame.

402 Following the task setup in ConvS5 (Smith et al., 2023), we train models to reconstruct 300 or 600
 403 input frames, and evaluate them at test time by 400, 800, and 1200 future frames from 100 observed
 404 frames. Baselines include Transformer (Vaswani et al., 2017), Performer (Choromanski et al., 2021),
 405 ConvLSTM (Shi et al., 2015), CW-VAE (Saxena et al., 2021), and ConvS5.

406 ConvT3 consistently outperforms existing baselines, showing significant improvements across nearly
 407 all metrics. When trained on 300 frames, ConvT3 achieves the best PSNR, SSIM, and LPIPS
 408 scores and second-best FVD scores for both 800- and 1200-frame generation. With longer training
 409 sequences of 600 frames, ConvT3 further amplifies its advantage, achieving the best scores for
 410 all metrics and prediction lengths. Overall, ConvT3 demonstrates state-of-the-art performance on
 411 the Moving-MNIST benchmark, validating the effectiveness of structured 3×3 state kernels for
 412 long-range spatiotemporal modeling.

413 5.2 PHYSICAL SYSTEM MODELING

414 5.2.1 PARTIAL DIFFERENTIAL EQUATION MODELING

418 Physical system modeling requires capturing the underlying spatiotemporal dynamics that govern
 419 complex phenomena, often expressed as PDEs. To assess ConvT3 on accurate prediction of physical
 420 dynamics, we use the PDEBench dataset (Takamoto et al., 2022), following the prediction task setup
 421 in MPP (McCabe et al., 2024). Among the 2D datasets in PDEBench, we exclude the computationally
 422 heavy compressible Navier–Stokes case and focus on the *Shallow-Water* and *Diffusion-Reaction*
 423 datasets, which require accurate modeling of nonlinear PDE dynamics.

424 For training, models are provided with the first 16 time steps of grid trajectories and optimized to
 425 predict the next single step. For ConvS5 and ConvT3 in this task, we replaced the attention layers in
 426 AViT by ConvS5 and ConvT3 layers, allowing direct comparison of spatiotemporal modeling ability
 427 within the same backbone. Performance is measured in terms of normalized root mean square error
 428 (NRMSE), along with inference time. Baselines include FNO (Li et al., 2020), UNet (Ronneberger
 429 et al., 2015), and AViT (McCabe et al., 2024), and ConvS5.

430 As shown in Table 2, ConvT3 achieved the best accuracy on both Shallow-Water and Diffusion-
 431 Reaction datasets while using significantly fewer parameters compared to large baselines. On
 Shallow-Water, ConvT3 performs comparably to ConvS5, while on Diffusion-Reaction, ConvT3

Table 2: Evaluation on Shallow-Water and Diffusion-Reaction datasets (Takamoto et al., 2022). Complex parameters were counted as two reals. Inference time was measured on A100 GPU. Bold: best performance. Underline: second-best performance. Dash: Not provided by source.

Model	#Params	NRMSE \downarrow		Time (s)	
		Shallow-Water	Diffusion-Reaction	Train Step	Evaluation Step
AViT-B	116M	0.00047	0.0110	-	-
FNO-B	115M	0.00246	0.0599	-	-
UNet	7M	0.083–	0.84–	-	-
FNO	927K	0.0044	0.12–	-	-
AViT-Ti	7M	0.00053	<u>0.0090</u>	303 (2.31 \times)	2.74 (2.06 \times)
ConvS5	6M	<u>0.00035</u>	0.0106	131 (1.00 \times)	1.33 (1.00 \times)
ConvT3	6M	0.00033	0.0087	151 (1.15 \times)	1.51 (1.14 \times)

Table 3: **(Ablations: Minimal parameterization.)**
MiniT3 outperformed ConvS5 despite the minimal increase in parameter numbers.

Model	#Params	MSE \downarrow	MAE \downarrow
ConvS5	24M	11.57	23.25
MiniT3	24M (+24)	10.87	21.64

Table 4: **(Ablations: Off-diagonal proportion.)**
Different proportions gave similar results.

α_H, α_W	MSE \downarrow	MAE \downarrow
1 (Symmetric)	10.97	22.12
–1 (Skew-symmetric)	10.99	22.15

Table 5: **(Ablations: Number of blocks.)**
ConvT3 generally achieved better performance than ConvS5 under the same number of blocks.

Model	#Blocks	MSE \downarrow	MAE \downarrow
ConvS5	2	13.15	27.08
	4	11.92	24.64
	6	11.13	22.76
	8	11.57	23.25
ConvT3	12	10.68	21.80
	2	12.91	25.75
	4	11.82	25.31
	6	11.11	23.38
	8	10.99	22.15
	12	10.57	21.77

achieved a substantial performance gain over ConvS5. Moreover, ConvT3 maintains efficiency close to ConvS5, demonstrating both effectiveness and scalability in modeling complex physical dynamics.

5.2.2 TRAINING STABILITY

ConvS5 often exhibited training instability, whereas ConvT3 remained stable under the same experimental and model configurations. As one representative instance shown in Figure 4, ConvT3 maintains a smooth loss curve, while ConvS5 suddenly spikes. This behavior persisted across multiple random seeds, suggesting it is not from initialization effects.

5.3 MODEL ABLATIONS

We conduct an ablation study on the standard Moving-MNIST task (Srivastava et al., 2015), predicting 10 frames from 10 observed frames.

In Table 3, we evaluate a variant of ConvT3, named MiniT3, which shares the same kernel slice across $P \times P$ hidden dimensions. This variant introduces structural alternation from ConvS5 to ConvT3, while minimizing the additional learnable parameter. Specifically, ConvT3 increases $3P$ parameters, but MiniT3 only increases 3 parameters per layer. Notably, MiniT3 significantly outperformed ConvS5 with only 24 additional parameters, demonstrating that the superior performance of ConvT3 arises from its structural improvements rather than parameter increase.

In Table 4, we check the influence of the off-diagonal proportions α_H and α_W with skew-symmetric and symmetric state kernels. The results showed nearly identical performance, implying that the proportions can be set to fixed, arbitrary values.

In Table 5 and Table 6, we compare ConvS5 and ConvT3 on various numbers of ConvSSM blocks and \mathcal{B}, \mathcal{C} kernel sizes. ConvT3 outperformed ConvS5 in most cases, especially when either \mathcal{B} or \mathcal{C} kernels were 1×1 sized, and thus the spatial modeling effect was minimal.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 6: **(Ablations: Kernel size.)** The introduction of a 3×3 state kernel \mathcal{A} , in contrast to relying solely on same-sized \mathcal{B} and \mathcal{C} kernels, resulted in notable performance gains. **Bold**: better performance under the same \mathcal{B} and \mathcal{C} settings. (More cases are provided in Table 12.)

Model	\mathcal{A} kernel	\mathcal{B} kernel	\mathcal{C} kernel	MSE \downarrow	MAE \downarrow
ConvS5	1×1	1×1	1×1	14.98	30.60
	1×1	1×1	3×3	12.74	24.07
	1×1	3×3	1×1	12.13	24.35
	1×1	3×3	3×3	11.57	23.25
ConvT3	3×3	1×1	1×1	14.68	29.65
	3×3	1×1	3×3	11.17	23.04
	3×3	3×3	1×1	11.69	23.46
	3×3	3×3	3×3	10.99	22.15

6 DISCUSSION

This work proposed ConvT3, which extends the state kernels of ConvSSM from pointwise to 3×3 . This extension enriched the spatial representation within the state dynamics and enabled the model to capture more complex interactions. As a result, ConvT3 achieved significant performance gains in downstream tasks. Another strength of ConvT3 lies in its efficient training algorithm. The algorithm scales linearly with sequence length, which makes ConvT3 feasible for long-range modeling. Experimental evaluations confirmed the inference speed, highlighting that the proposed method maintains efficiency without compromising modeling power. Furthermore, the parameters were carefully designed with stability in mind. By constraining the parameter space, ConvT3 avoided unstable dynamics that can hinder learning. This stability-oriented design was reflected in the experiments, where the model consistently exhibited smooth convergence and across datasets.

In theory, ConvT3 can be generalized to N -dimensional data by extending the PTT construction as described in Section 3.4. However, our empirical validation was conducted on 2D datasets, which are the most prevalent and practically important modalities. The absence of experiments on higher-dimensional data remains a limitation of this study. Furthermore, we adopted fixed proportionality conditions for the parameterization of PTT tensors. While this choice ensured tractability, it may limit flexibility. A natural extension would be to allow these proportionality to be learnable parameters, potentially improving adaptability while retaining structural interpretability.

540 REFERENCES

542 Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper into convolutional networks
543 for learning video representations. *arXiv preprint arXiv:1511.06432*, 2015.

544 Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
545 Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora: A foundation
546 model of the atmosphere. *arXiv preprint arXiv:2405.13063*, 2024.

548 Yun Young Choi, Seongyoon Kim, Soowhan Kim, and Jung-Il Choi. Multiple parameter identification
549 using genetic algorithm in vanadium redox flow batteries. *Journal of Power Sources*, 450:227684,
550 2020.

551 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea
552 Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
553 David Benjamin Belanger, Lucy Colwell, and Adrian Weller. Rethinking attention with Performers.
554 In *International Conference on Learning Representations*, 2021.

555 Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
556 through video prediction. *Advances in neural information processing systems*, 29, 2016.

558 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
559 preprint arXiv:2312.00752*, 2023.

560 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
561 state spaces. *arXiv preprint arXiv:2111.00396*, 2021.

563 Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
564 of diagonal state space models. In *Advances in Neural Information Processing Systems*, volume 35,
565 pp. 35971–35983, 2022.

566 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
567 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–8646,
568 2022.

569 Yizhou Huang, Yihua Cheng, and Kezhi Wang. Trajectory mamba: Efficient attention-mamba
570 forecasting model based on selective ssm. *arXiv preprint arXiv:2503.10898*, 2025.

572 Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran
573 Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose, Stephan
574 Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mohamed, and
575 Peter Battaglia. Graphcast: Learning skillful medium-range global weather forecasting, 2023.
576 URL <https://arxiv.org/abs/2212.12794>.

577 Minho Lee, Yun Young Choi, Sun Woo Park, Seunghwan Lee, Joohwan Ko, and Jaeyoung Hong.
578 Enhancing topological dependencies in spatio-temporal graphs with cycle message passing blocks.
579 In *The Third Learning on Graphs Conference*, 2024.

581 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
582 Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
583 *arXiv preprint arXiv:2010.08895*, 2020.

584 Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
585 Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
586 differential equations. *ACM/IMS Journal of Data Science*, 1(3):1–27, 2024.

587 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Jianbin
588 Jiao, and Yunfan Liu. Vmamba: Visual state space model. *Advances in neural information
589 processing systems*, 37:103031–103063, 2024.

591 Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Parker, Ruben Ohana, Miles Cranmer,
592 Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
593 Multiple physics pretraining for spatiotemporal surrogate models. *Advances in Neural Information
Processing Systems*, 37:119301–119335, 2024.

594 Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus, and
 595 Christopher Ré. S4nd: Modeling images and videos as multidimensional signals with state spaces.
 596 *Advances in neural information processing systems*, 35:2846–2861, 2022.

597

598 Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax:
 599 A foundation model for weather and climate. *arXiv preprint arXiv:2301.10343*, 2023.

600 Jungin Park, Jiyoung Lee, and Kwanghoon Sohn. Dual-path adaptation from image to video
 601 transformers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 602 Recognition*, pp. 2203–2213, 2023.

603

604 Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
 605 Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-
 606 net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
 607 *arXiv preprint arXiv:2202.11214*, 2022.

608

609 Viorica Pătrăucean, Xu Owen He, Joseph Heyward, Chuhan Zhang, Mehdi SM Sajjadi, George-
 610 Cristian Muraru, Artem Zholus, Mahdi Karami, Ross Goroshin, Yutian Chen, et al. Trecvit: A
 611 recurrent video transformer. *arXiv preprint arXiv:2412.14294*, 2024.

612

613 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 614 image segmentation. In *Medical Image Computing and Computer-Assisted Intervention–MICCAI
 615 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III
 616 18*, pp. 234–241. Springer, 2015.

617

618 Vaibhav Saxena, Jimmy Ba, and Danijar Hafner. Clockwork variational autoencoders. *Advances in
 619 Neural Information Processing Systems*, 34:29246–29257, 2021.

620

621 Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
 622 Convolutional lstm network: A machine learning approach for precipitation nowcasting. *Advances
 623 in neural information processing systems*, 28, 2015.

624

625 Jimmy Smith, Shalini De Mello, Jan Kautz, Scott Linderman, and Wonmin Byeon. Convolutional
 626 state space models for long-range spatiotemporal modeling. *Advances in Neural Information
 627 Processing Systems*, 36:80690–80729, 2023.

628

629 Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
 630 sequence modeling. *arXiv preprint arXiv:2208.04933*, 2022.

631

632 Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video
 633 representations using lstms. *arXiv preprint arXiv:1502.04681*, 2015. doi: 10.48550/arXiv.1502.
 634 04681.

635

636 Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
 637 Pflüger, and Mathias Niepert. PDEBench: An Extensive Benchmark for Scientific Machine
 638 Learning. In *36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on
 639 Datasets and Benchmarks*, 2022. URL <https://arxiv.org/abs/2210.07182>.

640

641 Song Tang, Chuang Li, Pu Zhang, and RongNian Tang. Swinlstm: Improving spatiotemporal
 642 prediction accuracy using swin transformer and lstm. In *Proceedings of the IEEE/CVF international
 643 conference on computer vision*, pp. 13470–13479, 2023.

644

645 Yujin Tang, Peijie Dong, Zhenheng Tang, Xiaowen Chu, and Junwei Liang. Vmrnn: Integrating
 646 vision mamba and lstm for efficient and accurate spatiotemporal forecasting. In *Proceedings of the
 647 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5663–5673, 2024a.

648

649 Yujin Tang, Lu Qi, Fei Xie, Xiangtai Li, Chao Ma, and Ming-Hsuan Yang. Predformer: Transformers
 650 are effective spatial-temporal predictive learners. *arXiv preprint arXiv:2410.04733*, 2024b.

651

652 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 653 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 654 systems*, 30, 2017.

648 Jue Wang, Wentao Zhu, Pichao Wang, Xiang Yu, Linda Liu, Mohamed Omar, and Raffay Hamid. Se-
649 lective structured state-spaces for long-form video understanding. In *Proceedings of the IEEE/CVF*
650 *Conference on Computer Vision and Pattern Recognition*, pp. 6387–6397, 2023.

651

652 Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S Yu. Predrnn: Recurrent
653 neural networks for predictive learning using spatiotemporal lstms. *Advances in neural information*
654 *processing systems*, 30, 2017.

655 Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, Philip S Yu, and Ming-
656 sheng Long. Predrnn: A recurrent neural network for spatiotemporal predictive learning. *IEEE*
657 *Transactions on Pattern Analysis and Machine Intelligence*, 45(2):2208–2225, 2022.

658

659 Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan Yang, and Fahad Shahbaz Khan.
660 Videogrounding-dino: Towards open-vocabulary spatio-temporal video grounding. In *Proceedings*
661 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18909–18918,
662 2024.

663 Wilson Yan, Danijar Hafner, Stephen James, and Pieter Abbeel. Temporally consistent transformers
664 for video generation. In *International Conference on Machine Learning*, pp. 39062–39098. PMLR,
665 2023.

666 Zeyu Zhang, Akide Liu, Ian Reid, Richard Hartley, Bohan Zhuang, and Hao Tang. Motion mamba:
667 Efficient and long sequence motion generation. In *European Conference on Computer Vision*, pp.
668 265–282. Springer, 2024.

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
704
705
706
707
708
709

Supplementary Material

708
709
CONTENTS

710	1
711	1
712	
713	2
714	2.1 Convolutional State Space Models with Pointwise State Kernels
715	2
716	2.2 Eigendecomposition of Tridiagonal Toeplitz Matrices
717	3
718	2.3 Convolution and Tridiagonal Toeplitz Tensors
719	3
720	
721	4
722	3.1 Structured State Kernels of ConvT3
723	4
724	3.2 Parallel Training of ConvT3 in Linear Time
725	5
726	3.3 Parameterization of ConvT3 for Training Stability
727	5
728	3.4 Generalization to N -Dimensional ConvT3
729	7
730	
731	4
732	4.1 Related works
733	7
734	
735	5
736	5.1 Long-Range Video Modeling and Generation
737	8
738	5.2 Physical System Modeling
739	8
740	5.2.1 Partial Differential Equation Modeling
741	8
742	5.2.2 Training Stability
743	9
744	5.3 Model Ablations
745	9
746	
747	6
748	6.1 Discussion
749	10
750	
751	A
752	Proofs
753	
754	A.1 Explicit Form of Tensor Contractions in Section 3
755	15
756	A.2 Proof of (13)
757	15
758	A.3 Proof of Theorem 1
759	17
760	A.4 Proof of Theorem 2
761	17
762	
763	B
764	Computational Complexity of ConvT3
765	18
766	
767	C
768	Supplementary Results
769	19
770	
771	D
772	Experiment Setup
773	21

756 A PROOFS
757

Notation Definition	
a	Scalar
A	Matrix
\mathbf{A}	Block matrix
\mathcal{A}	Tensor
\mathcal{A}	Convolution kernel
$*$	Convolution (Kernel–Tensor)
\circ	Convolution (Kernel–Kernel)
\odot	Elementwise multiplication
\otimes	Tensor product
\oplus	Direct sum
$\delta_{\cdot,\cdot}$	Kronecker delta

771 Table 7: Major notations

772 A.1 EXPLICIT FORM OF TENSOR CONTRACTIONS IN SECTION 3

773 The explicit tensor contractions are described by Einstein notation as follows:

774 • Equation (12)

775
$$R_{q,r} = Q_{q,s}^P \Lambda_{s,t} (Q^P)_{t,r}^{-1}.$$

776 • Equation (13)

777
$$\mathcal{S}_{q,r,i_h,j_h,i_w,j_w} = Q_{i_h,k_h}^H Q_{i_w,k_w}^W \mathcal{E}_{q,r,k_h,l_h,k_w,l_w} (Q^H)_{l_h,j_h}^{-1} (Q^W)_{l_w,j_w}^{-1}.$$

778 • Equation (16)

779
$$\mathcal{A}_{q,r,i_h,j_h,i_w,j_w} = Q_{q,s}^P Q_{i_h,k_h}^H Q_{i_w,k_w}^W (\Lambda_{s,t} \odot \mathcal{E}_{s,t,k_h,l_h,k_w,l_w}) (Q^P)_{t,r}^{-1} (Q^H)_{l_h,j_h}^{-1} (Q^W)_{l_w,j_w}^{-1}.$$

780 • Equation (18), Diagonalized state tensor

781
$$\mathcal{A}_{\mathcal{T}q,r,i_h,j_h,i_w,j_w} = \Lambda_{q,r} \odot \mathcal{E}_{q,r,i_h,j_h,i_w,j_w}.$$

782 • Equation (18), Transformation tensor

783
$$\mathcal{Q}_{q,r,i_h,j_h,i_w,j_w} = Q_{q,r}^P Q_{i_h,j_h}^H Q_{i_w,j_w}^W.$$

784 A.2 PROOF OF (13)

785 We derive (13) using the following theorems for general TT and PTT tensors. In the proofs of the
786 theorems, we use block matrices, i.e., flattened forms of tensors, for clarity of exposition.787 We first introduce the definition of a commutation matrix, which will be used in Theorem 3 to show
788 that a block TT matrix admits a closed-form eigendecomposition when its outer blocks share a
789 common eigenvector.790 **Definition 2.** The (m, n) -commutation matrix $K^{(m,n)} \in \{0, 1\}^{mn \times mn}$ is the unique permutation
791 matrix satisfying $K^{(m,n)} \text{vec}(A) = \text{vec}(A^T)$ for all $A \in \mathbb{C}^{m \times n}$.792 **Theorem 3.** Let $\mathbf{T} \in \mathbb{C}^{nm \times nm}$ be a block TT matrix with blocks $L, D, U \in \mathbb{C}^{m \times m}$ sharing a
793 common eigenbasis. Then \mathbf{T} admits a *closed-form eigendecomposition* of the form

794
$$\mathbf{T} = \tilde{\mathbf{Q}} \tilde{\Lambda}' \tilde{\mathbf{Q}}^{-1}, \quad (22)$$

795 where $\tilde{\mathbf{Q}}$ and $\tilde{\Lambda}'$ are explicitly constructed in the proof.800 *Proof of Theorem 3.* Suppose that the blocks admit eigendecompositions of the form

801
$$L = Q \Lambda_L Q^{-1}, \quad D = Q \Lambda_D Q^{-1}, \quad U = Q \Lambda_U Q^{-1},$$

with a common eigenvector matrix Q and diagonal matrices $\Lambda_L = \text{diag}(\lambda_{L,1}, \dots, \lambda_{L,m})$, $\Lambda_D = \text{diag}(\lambda_{D,1}, \dots, \lambda_{D,m})$, and $\Lambda_U = \text{diag}(\lambda_{U,1}, \dots, \lambda_{U,m})$. Then, \mathbf{T} can be written with a block tridiagonal matrix Λ as

$$\mathbf{T} = \mathbf{Q} \Lambda \mathbf{Q}^{-1}, \quad (23)$$

where $\mathbf{Q} = \text{diag}(Q, \dots, Q)$ and $\Lambda = \text{tridiag}(\Lambda_L, \Lambda_D, \Lambda_U)$.

Now, define a permuted matrix Λ' by

$$\Lambda' := K^{(m,n)} \Lambda K^{(n,m)}, \quad (24)$$

where $K^{(m,n)} \in \{0, 1\}^{mn \times mn}$ is the (m, n) -commutation matrix. The permuted matrix Λ' decomposes as the direct sum of tridiagonal Toeplitz matrices T_i for $i = 1, \dots, m$,

$$\Lambda' = T_1 \oplus \dots \oplus T_m,$$

where \oplus denotes the direct sum and each component $T_i \in \mathbb{C}^{n \times n}$ is given by $T_i = \text{tridiag}(\lambda_{L,i}, \lambda_{D,i}, \lambda_{U,i})$.

Since T_i is a TT matrix, it has a closed-form eigendecomposition,

$$T_i = \bar{Q}_i \bar{\Lambda}_i \bar{Q}_i^{-1},$$

where $\bar{\Lambda}_i = \text{diag}(\mu_{i,1}, \dots, \mu_{i,n})$ is a diagonal eigenvalue matrix with $\mu_{i,k} = \lambda_{D,i} + 2\sqrt{\lambda_{L,i}\lambda_{U,i}} \cos(\frac{k\pi}{n+1})$ and $\bar{Q}_i = [v_1^i, \dots, v_n^i]$ is the matrix of the corresponding eigenvectors with $v_k^i(j) = (\lambda_{L,i}/\lambda_{U,i})^{k/2} \sin(\frac{jk\pi}{n+1})$.

Since the permuted matrix Λ' is the direct sum of T_i for $i = 1, \dots, m$, Λ' has a closed-form eigendecomposition of the form

$$\Lambda' = \bar{\mathbf{Q}} \bar{\Lambda} \bar{\mathbf{Q}}^{-1}, \quad (25)$$

where $\bar{\mathbf{Q}} = \bar{Q}_1 \oplus \dots \oplus \bar{Q}_m$ and $\bar{\Lambda} = \bar{\Lambda}_1 \oplus \dots \oplus \bar{\Lambda}_m$.

Combining (23)–(25), the block TT matrix \mathbf{T} has a closed-form eigendecomposition since $K^{(m,n)} K^{(n,m)} = I_{mn}$.

$$\mathbf{T} = \tilde{\mathbf{Q}} \bar{\Lambda}' \tilde{\mathbf{Q}}^{-1}, \quad (26)$$

where $\tilde{\mathbf{Q}} := \mathbf{Q} \bar{\mathbf{Q}}'$, $\bar{\mathbf{Q}}' := K^{(n,m)} \bar{\mathbf{Q}} K^{(m,n)}$, and $\bar{\Lambda}' := K^{(n,m)} \bar{\Lambda} K^{(m,n)}$. \square

Now, we obtain Theorem 4 when constraining the proportionality of the block entries.

Theorem 4. Let $\mathbf{T} \in \mathbb{C}^{nm \times nm}$ be a block TT matrix with blocks $L, D, U \in \mathbb{C}^{m \times m}$ sharing a common eigenbasis Q . If $L = \alpha U$ for arbitrary $\alpha \in \mathbb{C}$, then \mathbf{T} admits a closed-form eigendecomposition of the form

$$\mathbf{T} = \begin{bmatrix} \bar{Q}_{11}Q & \dots & \bar{Q}_{1n}Q \\ \vdots & \ddots & \vdots \\ \bar{Q}_{n1}Q & \dots & \bar{Q}_{nn}Q \end{bmatrix} \bar{\Lambda}' \begin{bmatrix} \bar{Q}_{11}Q & \dots & \bar{Q}_{1n}Q \\ \vdots & \ddots & \vdots \\ \bar{Q}_{n1}Q & \dots & \bar{Q}_{nn}Q \end{bmatrix}^{-1}, \quad (27)$$

where \bar{Q} depends only on the matrix size n and α .

Proof. Using the notation of Theorem 3, when $L = \alpha U$, each TT matrix $T_i = \text{tridiag}(\lambda_{L,i}, \lambda_{D,i}, \lambda_{U,i})$ satisfies $\lambda_{L,i} = \alpha \lambda_{U,i}$. By (8), this implies that all T_i share the same eigenbasis \bar{Q} , i.e., $\bar{Q} = \bar{Q}_1 = \dots = \bar{Q}_m \in \mathbb{C}^{m \times m}$. Therefore, $\bar{\mathbf{Q}} = \text{diag}(\bar{Q}, \dots, \bar{Q}) \in \mathbb{C}^{nm \times nm}$ is uniquely determined by α . Since $\mathbf{Q} = \text{diag}(Q, \dots, Q) \in \mathbb{C}^{nm \times nm}$, substituting into the decomposition (26) yields (27), proving the claim. \square

Since the PTT tensor \mathcal{S} in (13) has proportionality conditions for both spatial dimensions, applying Theorem 4 to \mathcal{S} yields Corollary 4.1, which represents the explicit form of tensor contractions in (13).

Corollary 4.1. A PTT tensor $\mathcal{S} \in \mathbb{C}^{P \times P \times H \times H \times W \times W}$ can be decomposed as

$$\mathcal{S}_{q,r,i_1,j_1,i_2,j_2} = Q_{i_1,k_1}^H Q_{i_2,k_2}^W \mathcal{E}_{q,r,k_1,l_1,k_2,l_2}^P (Q^H)_{l_1,j_1}^{-1} (Q^W)_{l_2,j_2}^{-1},$$

where $Q^H \in \mathbb{C}^{H \times H}$, $Q^W \in \mathbb{C}^{W \times W}$, and $\mathcal{E}^P \in \mathbb{C}^{P \times P \times H \times H \times W \times W}$.

864 A.3 PROOF OF THEOREM 1
865866 *Proof.* We first show that the state tensor \mathcal{A} defined in (1) is a TT tensor.
867

868
869
$$\mathcal{A}_{q,r,i_h,j_h,i_w,j_w} = Q_{q,s}^P Q_{i_h,k_h}^H Q_{i_w,k_w}^W (\Lambda_{s,t} \odot \mathcal{E}_{s,t,k_h,l_h,k_w,l_w}) (Q^P)_{t,r}^{-1} (Q^H)_{l_h,j_h}^{-1} (Q^W)_{l_w,j_w}^{-1} \quad (28)$$

870
871

872 For all $i_h, j_h \in \{1, \dots, H\}$ such that $|i_h - j_h| > 1$, all slices $\mathcal{A}_{\cdot,\cdot,i_h,j_h,\cdot,\cdot}$ are zero, since \mathcal{S} has zero
873 value, which gives the tridiagonality condition for the H dimension. Likewise, the state tensor \mathcal{A} is
874 tridiagonal along the W dimension.
875876 For all $i_h, i'_h \in \{1, \dots, H-1\}$, the following equation holds due to the Toeplitz condition for \mathcal{S} .
877

878
$$\begin{aligned} \mathcal{A}_{q,r,i_h,i_h+1,i_w,j_w} &= Q_{q,s}^P (\Lambda_{s,t} \odot \mathcal{S}_{s,t,i_h,i_h+1,i_w,j_w}) (Q^P)_{t,r}^{-1}, \\ 879 &= Q_{q,s}^P (\Lambda_{s,t} \odot \mathcal{S}_{s,t,i'_h,i'_h+1,i_w,j_w}) (Q^P)_{t,r}^{-1}, \\ 880 &= \mathcal{A}_{q,r,i'_h,i'_h+1,i_w,j_w}, \\ 881 &= Q_{q,s}^P. \end{aligned} \quad (29)$$

882
883

884 Likewise, the condition is satisfied for the lower diagonal and the W dimension, proving the Toeplitz
885 condition for \mathcal{A} .
886887 Since (9) and \mathcal{A} is a TT tensor, it is equivalent to a $P \times P \times 3 \times 3$ kernel operation. \square
888889 A.4 PROOF OF THEOREM 2
890891 *Proof.* By definition (1), ConvT3 is given by
892

893
$$\begin{aligned} \mathcal{X}'(t) &= \mathcal{Q}((\Lambda \otimes I_H \otimes I_W) \odot \mathcal{E}) \mathcal{Q}^{-1} \mathcal{X}(t) + \mathcal{B} \mathcal{U}(t), \\ 894 \mathcal{Y}(t) &= \mathcal{C} \mathcal{X}(t) + \mathcal{D} \mathcal{U}(t). \end{aligned} \quad (30)$$

895 Suppose a state transformation $\mathcal{X}_T(t) = \mathcal{Q}^{-1} \mathcal{X}(t)$. Substituting $\mathcal{X}(t) = \mathcal{Q} \mathcal{X}_T(t)$ yields
896

897
$$\begin{aligned} \mathcal{Q} \mathcal{X}'_T(t) &= \mathcal{Q}((\Lambda \otimes I_H \otimes I_W) \odot \mathcal{E}) \mathcal{Q}^{-1} \mathcal{Q} \mathcal{X}_T(t) + \mathcal{B} \mathcal{U}(t), \\ 898 \mathcal{Y}(t) &= \mathcal{C} \mathcal{Q} \mathcal{X}_T(t) + \mathcal{D} \mathcal{U}(t). \end{aligned} \quad (31)$$

899

900 By performing tensor contraction with \mathcal{Q}^{-1} , we obtain
901

902
$$\mathcal{X}'_T(t) = ((\Lambda \otimes I_H \otimes I_W) \odot \mathcal{E}) \mathcal{X}_T(t) + \mathcal{Q}^{-1} \mathcal{B} \mathcal{U}(t). \quad (32)$$

903

904 Therefore, the transformed system is
905

906
$$(\mathcal{A}_T, \mathcal{B}_T, \mathcal{C}_T, \mathcal{D}) = ((\Lambda \otimes I_H \otimes I_W) \odot \mathcal{E}, \mathcal{Q}^{-1} \mathcal{B}, \mathcal{C} \mathcal{Q}, \mathcal{D}),$$

907 which completes the proof. \square
908
909
910
911
912
913
914
915
916
917

918 B COMPUTATIONAL COMPLEXITY OF CONVT3

920 The computational complexity of parallel scan in ConvT3, given input $\mathcal{B}_T \mathcal{U}_{1:L} \in \mathbb{C}^{L \times H \times W \times P}$
 921 is $\mathcal{O}(LPHW)$, identical to the ConvSSM model with pointwise state kernel. This is because the
 922 diagonalized form of the state tensor \mathcal{A} allows identical parallel scan operations for the two cases.
 923

924 The total computational complexity for a single pointwise state kernel ConvSSM layer is $\mathcal{O}(LPHW +$
 925 $T_B + T_C)$, with T_B the cost for input kernel convolution, and T_C the cost for output kernel convolution.
 926 Since $T_B = \mathcal{O}(LPUk_B^2 HW)$ and $T_C = \mathcal{O}(LPUk_C^2 HW)$, the total cost will be $\mathcal{O}(LPHWU(k_B^2 +$
 927 $k_c^2))$ (Smith et al., 2023).

928 For ConvT3, we have additional matrix multiplication operations with Q_H and Q_W (Check Figure 2
 929 for details), so the total cost is $\mathcal{O}(LPHWU(k_B^2 + k_C^2) + LPHW(H + W))$ if naively implemented.
 930 However, matrix multiplication with the Q matrix is the same as a discrete sine transform (DST)
 931 type-I, and thus the matrix multiplication can be implemented via fast Fourier transform (FFT)-based
 932 routines. Instead of $\mathcal{O}(H^2)$ complexity due to dense matrix multiplication, the DST type-I has
 933 a complexity of $\mathcal{O}(H \log H)$. Thus, with FFT-based routines, the total complexity of ConvT3 is
 934 reduced to $\mathcal{O}(LPHWU(k_B^2 + k_c^2) + LPHW(\log H + \log W))$.

935 Notice two main things: First, the additional computational cost of ConvT3 does not scale with the
 936 input dimension U , which is normally the same scale as the state dimension P , meaning ConvT3
 937 becomes more efficient as the hidden dimension of the model grows. Second, although the cost of
 938 ConvT3 scales more according to spatial size compared to ConvS5, the cost ratio grows logarithmically,
 939 thus there does not exist a point where ConvT3 becomes unfeasible.

940 Table 8, Table 9, and Table 10 provide inference-time and memory comparisons between single
 941 ConvS5 and ConvT3 layers across different state sizes, hidden dimensions, sequence lengths, and
 942 image resolutions, respectively.

943 Table 8: Inference time and memory usage under different state sizes.

944 State size P , Hidden dim U	945 Time [ms]		946 Memory [GB]	
	947 ConvS5	948 ConvT3	949 ConvS5	950 ConvT3
947 512	948 52.7 (1.00×)	949 65.8 (1.25×)	950 4.26 (1.00×)	5.22 (1.23×)
947 256	948 20.1 (1.00×)	949 28.0 (1.39×)	950 2.13 (1.00×)	2.62 (1.23×)
947 128	948 10.5 (1.00×)	949 13.8 (1.31×)	950 1.09 (1.00×)	1.34 (1.23×)
947 64	948 7.2 (1.00×)	949 9.3 (1.29×)	950 0.58 (1.00×)	0.70 (1.21×)

951 Table 9: Inference time and memory usage under different sequence lengths.

953 Sequence length L	954 Time [ms]		955 Memory [GB]	
	956 ConvS5	957 ConvT3	958 ConvS5	959 ConvT3
956 100	957 100.2 (1.00×)	958 138.6 (1.38×)	959 10.46 (1.00×)	12.39 (1.18×)
956 50	957 50.8 (1.00×)	958 67.3 (1.32×)	959 5.25 (1.00×)	6.28 (1.19×)
956 20	957 20.9 (1.00×)	958 27.9 (1.33×)	959 2.13 (1.00×)	2.62 (1.22×)
956 10	957 11.9 (1.00×)	958 15.4 (1.29×)	959 1.09 (1.00×)	1.40 (1.28×)

960 Table 10: Inference time and memory usage under different image resolutions.

962 Image resolution $H \times W$	963 Time [ms]		964 Memory [GB]	
	965 ConvS5	966 ConvT3	967 ConvS5	968 ConvT3
965 32×32	966 77.2 (1.00×)	967 160.6 (2.08×)	968 8.25 (1.00×)	11.75 (1.42×)
965 16×16	966 20.9 (1.00×)	967 27.8 (1.33×)	968 2.13 (1.00×)	2.62 (1.23×)
965 8×8	966 7.7 (1.00×)	967 9.7 (1.26×)	968 0.60 (1.00×)	0.70 (1.16×)
965 4×4	966 7.0 (1.00×)	967 8.0 (1.14×)	968 0.22 (1.00×)	0.24 (1.08×)

972 **C SUPPLEMENTARY RESULTS**

973
 974 Table 11: Full results on the Moving-MNIST dataset (Srivastava et al., 2015). The number of training
 975 frames, 300 or 600, is specified in the table header. The evaluation task is to condition on 100 frames,
 976 and then generate forward 400, 800, and 1200 frames.

Trained on 300 frames						
Method	Params	100 → 400				LPIPS ↓
		FVD ↓	PSNR ↑	SSIM ↑		
Transformer	164M	73 ± 3	13.5 ± 0.1	0.669 ± 0.002	0.213 ± 0.003	
Performer	164M	111 ± 9	13.4 ± 0.1	0.653 ± 0.002	0.288 ± 0.001	
CW-VAE	20M	78 ± 1	12.7 ± 0.1	0.611 ± 0.002	0.254 ± 0.001	
ConvLSTM	20M	57 ± 3	16.9 ± 0.2	0.796 ± 0.004	0.113 ± 0.002	
ConvSSM (random init)	20M	67 ± 3	15.5 ± 0.1	0.742 ± 0.001	0.168 ± 0.001	
ConvS5	20M	26 ± 1	18.1 ± 0.1	0.830 ± 0.003	0.094 ± 0.002	
ConvS5 (reproduced)	21M	26 ± 2	17.9 ± 0.1	0.824 ± 0.003	0.097 ± 0.001	
ConvT3	21M	33 ± 2	18.0 ± 0.1	0.828 ± 0.003	0.096 ± 0.002	
Trained on 600 frames						
Method	Params	100 → 400				LPIPS ↓
		FVD ↓	PSNR ↑	SSIM ↑		
Transformer	164M	21 ± 1	15.0 ± 0.1	0.741 ± 0.002	0.138 ± 0.001	
Performer	164M	27 ± 1	13.1 ± 0.1	0.654 ± 0.004	0.206 ± 0.001	
CW-VAE	20M	73 ± 2	12.9 ± 0.1	0.621 ± 0.004	0.242 ± 0.001	
ConvLSTM	20M	39 ± 5	17.3 ± 0.2	0.812 ± 0.005	0.100 ± 0.003	
ConvSSM (random init)	20M	81 ± 6	15.5 ± 0.1	0.743 ± 0.002	0.163 ± 0.003	
ConvS5	20M	23 ± 3	18.1 ± 0.1	0.832 ± 0.003	0.092 ± 0.003	
ConvS5 (reproduced)	21M	15 ± 1	19.5 ± 0.2	0.865 ± 0.004	0.071 ± 0.003	
ConvT3	21M	16 ± 1	19.8 ± 0.1	0.871 ± 0.002	0.066 ± 0.000	
Trained on 300 frames						
Method	Params	100 → 800				LPIPS ↓
		FVD ↓	PSNR ↑	SSIM ↑		
Transformer	164M	159 ± 7	12.6 ± 0.1	0.609 ± 0.002	0.287 ± 0.001	
Performer	164M	234 ± 1	13.4 ± 0.1	0.652 ± 0.006	0.379 ± 0.002	
CW-VAE	20M	104 ± 2	12.4 ± 0.1	0.592 ± 0.002	0.277 ± 0.002	
ConvLSTM	20M	128 ± 4	15.0 ± 0.1	0.737 ± 0.003	0.169 ± 0.001	
ConvSSM (random init)	20M	287 ± 5	13.6 ± 0.1	0.577 ± 0.001	0.293 ± 0.001	
ConvS5	20M	72 ± 3	16.0 ± 0.1	0.761 ± 0.005	0.156 ± 0.003	
ConvS5 (reproduced)	21M	74 ± 3	16.0 ± 0.1	0.767 ± 0.004	0.152 ± 0.001	
ConvT3	21M	79 ± 2	16.1 ± 0.1	0.776 ± 0.004	0.146 ± 0.002	
Trained on 600 frames						
Method	Params	100 → 800				LPIPS ↓
		FVD ↓	PSNR ↑	SSIM ↑		
Transformer	164M	42 ± 2	13.7 ± 0.1	0.672 ± 0.002	0.207 ± 0.003	
Performer	164M	93 ± 5	12.4 ± 0.1	0.616 ± 0.002	0.274 ± 0.001	
CW-VAE	20M	94 ± 3	12.5 ± 0.9	0.598 ± 0.004	0.269 ± 0.001	
ConvLSTM	20M	91 ± 7	15.5 ± 0.2	0.757 ± 0.005	0.149 ± 0.003	
ConvSSM (random init)	20M	145 ± 8	14.3 ± 0.1	0.696 ± 0.002	0.218 ± 0.002	
ConvS5	20M	23 ± 3	18.1 ± 0.1	0.832 ± 0.003	0.092 ± 0.003	
ConvS5 (reproduced)	21M	35 ± 3	17.6 ± 0.2	0.819 ± 0.005	0.109 ± 0.005	
ConvT3	21M	36 ± 4	17.7 ± 0.1	0.823 ± 0.003	0.104 ± 0.001	
Trained on 300 frames						
Method	Params	100 → 1200				LPIPS ↓
		FVD ↓	PSNR ↑	SSIM ↑		
Transformer	164M	265 ± 8	12.4 ± 0.1	0.591 ± 0.002	0.321 ± 0.002	
Performer	164M	275 ± 5	13.2 ± 0.1	0.592 ± 0.001	0.393 ± 0.001	
CW-VAE	20M	117 ± 2	12.3 ± 0.1	0.585 ± 0.002	0.286 ± 0.001	
ConvLSTM	20M	187 ± 6	14.1 ± 0.1	0.706 ± 0.003	0.203 ± 0.001	
ConvSSM (random init)	20M	511 ± 8	13.3 ± 0.1	0.515 ± 0.001	0.348 ± 0.001	
ConvS5	20M	187 ± 5	14.5 ± 0.1	0.678 ± 0.003	0.230 ± 0.004	
ConvS5 (reproduced)	21M	130 ± 5	14.9 ± 0.1	0.721 ± 0.004	0.198 ± 0.002	
ConvT3	21M	118 ± 3	15.2 ± 0.1	0.746 ± 0.004	0.179 ± 0.002	
Trained on 600 frames						
Method	Params	100 → 1200				LPIPS ↓
		FVD ↓	PSNR ↑	SSIM ↑		
Transformer	164M	91 ± 6	13.1 ± 0.1	0.631 ± 0.004	0.252 ± 0.002	
Performer	164M	243 ± 7	12.2 ± 0.1	0.608 ± 0.001	0.312 ± 0.002	
CW-VAE	20M	107 ± 2	12.3 ± 0.1	0.590 ± 0.004	0.280 ± 0.002	
ConvLSTM	20M	137 ± 9	14.6 ± 0.1	0.727 ± 0.004	0.180 ± 0.003	
ConvSSM (random init)	20M	215 ± 9	13.4 ± 0.1	0.614 ± 0.001	0.287 ± 0.001	
ConvS5	20M	71 ± 9	15.6 ± 0.1	0.763 ± 0.002	0.162 ± 0.003	
ConvS5 (reproduced)	21M	55 ± 4	16.6 ± 0.1	0.791 ± 0.005	0.136 ± 0.005	
ConvT3	21M	56 ± 7	16.7 ± 0.1	0.795 ± 0.003	0.131 ± 0.002	

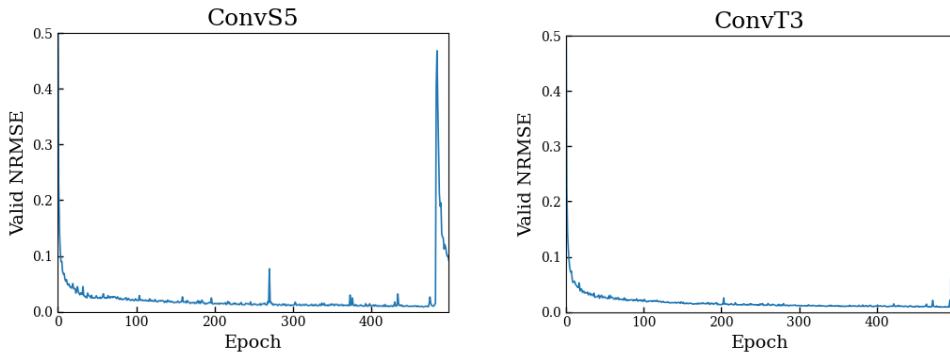


Figure 4: Training loss curves of ConvT3 and ConvS5 in a representative run on the Diffusion Reaction dataset, illustrating their training stability.

Table 12: **(Ablations: Kernel size.)** The introduction of a 3×3 state kernel \mathcal{A} , in contrast to relying solely on same-sized \mathcal{B} and \mathcal{C} kernels, resulted in notable performance gains. **Bold**: better performance under the same \mathcal{B} and \mathcal{C} settings.

Model	\mathcal{A} kernel	\mathcal{B} kernel	\mathcal{C} kernel	MSE \downarrow	MAE \downarrow
ConvS5	1×1	1×1	1×1	14.98	30.60
	1×1	1×1	3×3	12.74	24.07
	1×1	1×1	5×5	10.56	21.03
	1×1	3×3	1×1	12.13	24.35
	1×1	3×3	3×3	11.57	23.25
	1×1	3×3	5×5	11.49	22.83
	1×1	5×5	1×1	11.82	23.52
	1×1	5×5	3×3	12.48	24.43
	1×1	5×5	5×5	13.56	24.73
ConvT3	3×3	1×1	1×1	14.68	29.65
	3×3	1×1	3×3	11.17	23.04
	3×3	1×1	5×5	9.91	20.38
	3×3	3×3	1×1	11.69	23.46
	3×3	3×3	3×3	10.99	22.15
	3×3	3×3	5×5	11.34	22.43
	3×3	5×5	1×1	11.48	23.09
	3×3	5×5	3×3	12.76	24.47
	3×3	5×5	5×5	13.20	24.57

1080 **D EXPERIMENT SETUP**
10811082 Table 13: Experiment configuration for ConvT3 and ConvS5 on long-range Moving-MNIST experi-
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

	Hyperparameters	Moving-MNIST-300	Moving-MNIST-600
	Params	21M	21M
	Input Resolution	64×64	64×64
	Latent Resolution	16×16	16×16
	Batch Size	8	8
	Sequence Length	300	600
	LR	1×10^{-3}	1×10^{-3}
	LR Schedule	cosine	cosine
	Warmup Steps	5k	5k
	Max Training Steps	300K	300K
	Weight Decay	1×10^{-5}	1×10^{-5}
Encoder	Depths	64, 128, 256	64, 128, 256
	Blocks	1	1
Decoder	Depths	64, 128, 256	64, 128, 256
	Blocks	1	1
ConvSSM	Hidden Dim (U)	256	256
	State Size (P)	256	256
	\mathcal{B} Kernel Size	3×3	3×3
	\mathcal{C} Kernel Size	3×3	3×3
	Layers	8	8

Table 14: Experiment configuration for ConvT3 and ConvS5 on PDEBench experiments. Learning rate for ConvS5 on Diffusion-Reaction was reduced due to training instability.

	Hyperparameters	Shallow-Water	Diffusion-Reaction
	Params	6M	6M
	Input Resolution	128×128	128×128
	Latent Resolution	8×8	8×8
	Batch Size	8	8
	Sequence Length	$16 \rightarrow 1$	$16 \rightarrow 1$
	LR	5×10^{-4}	$5 \times 10^{-4} / 2 \times 10^{-4}$
	LR Schedule	cosine	cosine
	Warmup Steps	10k	10k
	Max Training Steps	1M	1M
	Weight Decay	1×10^{-5}	1×10^{-5}
ConvSSM	Hidden Dim (U)	384	384
	State Size (P)	384	384
	\mathcal{B} Kernel Size	1×1	1×1
	\mathcal{C} Kernel Size	1×1	1×1
	Layers	6	6

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148

Table 15: Experiment configuration for ablation studies. Overall model structure is ResNet.

1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

	Hyperparameters	ConvS5	ConvT3
	Input Resolution	64×64	64×64
	Latent Resolution	16×16	16×16
	Batch Size	16	16
	Sequence Length	$10 \rightarrow 10$	$10 \rightarrow 10$
	LR	1×10^{-3}	1×10^{-3}
	LR Schedule	cosine	cosine
	Warmup Epochs	10	10
	Max Training Epochs	200	200
	Weight Decay	1×10^{-5}	1×10^{-5}
Encoder	Depths	64, 128, 256	64, 128, 256
	Blocks	1	1
Decoder	Depths	64, 128, 256	64, 128, 256
	Blocks	1	1
ConvSSM	Hidden Dim (U)	256	256
	State Size (P)	256	256
	\mathcal{B} Kernel Size	$3 \times 3 / 1 \times 1$	$3 \times 3 / 1 \times 1$
	\mathcal{C} Kernel Size	$3 \times 3 / 1 \times 1$	$3 \times 3 / 1 \times 1$
	Layers	$2 / 4 / 6 / 8 / 12$	$2 / 4 / 6 / 8 / 12$
	Off-Diagonal Proportion	N/A	-1, -1 / 1, 1
	Mini (Kernel Sharing)	N/A	Yes / No